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Keynote Presentations

Plenary Session

Welcome

Conference

Dr. Edward Miller, Software Research
Conference Overview

#1
(DAy 1)

Plenary Keynote

Dr. John D. Musa, Consultant
Applying Operational Profiles to Testing: ISSRE
Results

#2
(DAY 1)

"I Plenary Keynote

Mr. Bill Eldridge, Barclays’ EURO Advisor
EMU: The Impact on Firms’ Global Operations

Plenary Keynote

Mrs. Dorothy G. Graham, Grove Consultants

#3 Inspection: Myths and Misconceptions
(DAy 2)
| Plenary Keynote | Mr. David Talbot, European Commission
(DX“ 2 EU Commission Actions for Y2K and EURO
y

Plenary Keynote

Dr. Boris Beizer, Analysis, Inc.

#2 Nostradamus Redux
(DAy3)
Conference | Dr. Edward Miller, Software Research
Conclusion” '} | essons Learned ' |
(DAy 3)

QWE’98 Best Paper Award
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Technology Track

Conference Day #1 ( Wednesday, 11 November, 1998")

1T | Mr. Rene Weichselbaum, Frequentis Nachrichtentechnik
GesmbH
Software Test Automation

| 2T | Mr. James Clarke, Lucent Technologies
Automated Test Generation From a Behavioral Model

3T | Ms. Brlgld Haworth, Bournemouth UnlverS|ty
Adequacy Criteria for Object.Testing

| 4T | Mr. Bill Bently & Mr. Robert V. Binder, mu-Research /
RBSC Corporation

The Dynamic Information Flow Testing of Objects: When
Path Testing Meets Object-Oriented Testing

5T | Dr. Denise Woit & Prof. David Mason, Ryerson Polytechnic
University .
Component Independence for Software System Rellablllty
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Technology Track

Conference Day.#2 ( Thursday, 12 November, 1998 ).

67T | Dr. Linda Rosenberg, Mr. Ted Hammer & L. Hoffman,
GSFC NASA / Unisys
Testing Metrics for Requirement Quality

1 7T | Mr. Hans Buwalda, CMG Finance BV
Testing with Action Worlds, A Quality approach to
(Automated) Software Testing

8T | Mr. Jon Huber, Hewlett Packard
Software Defect Analysis: Real World Testing Implications
& A Simple Model.for Test Process Defect Analysis

OT | Prof. Antonia Bertolino & Ms. E. Marchetti, CNR-IEI
- | A Simple-Model to Predict How Many More Failures Will
Appear in Testing

10T | Dr. Stacy J. Prowell, Q-Labs, Inc.
: Impact of Sequence-Based Specification on-Statistical

Software Testing

QWE'98 * | | . SR




2" |nternational Software Quality Week Europe

Technology Track

Conference Day #3 ( Friday, 13 November;:1998 )

11T | Dr. Matthias Grochtmann &-Mr. Joachlm Wegener

Daimler-Benz AG
Evolutlonary Testlng of Temporal Correctness

12T | Ms. Martina Marre, Ms. Monica Bobrowskl & Mr. Danlel
‘Yankelevich, Universidad de Buenos Aires :

A Software Engineering View of Data Quality
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Tools & Solutions Track

Conference Day #1 ( Wednesday, 11 November, 1998")

13

Mr. Manuel Gonzalez, Hewlett Packard
System Test Server Through the Web

2S

Mr. Istvan‘Forgacs & Mr. Akos Hajnal, Hungarian
Academy of Sciences

Automated Test Data Generatlon to Solve the Y2K
Problem

3S

Mr. Felix Silva, Hewlett Packard
Product Quality Profiling: A Practical Model to Capture
the Experiences of Software Users

45

Mr. Otto Vinter, Bruil & Kjaer
Improved Requirements Engineering Based On Defect
Analysis

)

Mr. Robert J. Poston, AONIX |
Making Test Cases From Use Cases Automatically
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Tools & Solutions Track

Conference Day #2 ( Thursday, 12 November, 1998 )

6S

Dr. Avi Zi\_/ & Dr. Shmu_el Ur, IBM R_esearch Lab_in Haifa
Off-The-Shelf vs. Custom Made Coverage Models, Which
Is The One For You?

7S

Mr. Howard Chorney, Process Software Corporation
A Practical Approach to Using Software Metrics

8S

Mr. Lionel Briand, Mr. Bernd G. Freimut, Mr. Oliver
Laitenberger, Dr. Gunther Ruhe & Ms. Brigitte Klein ,
Fraunhofer IESE/Allianz Life Assurance

Quality Assurance Technologies for the EURO Coversion
Industrial Experience at Allianz Life Assurance

9>

Mr. Jakob-Lyng Petersen, ScanRail Consult
An Experience In Automatic Verification for Railway
Interlocking Systems

10S

Mr. Tom Gilb, Result Planning Limited

Risk Management Technology: A rich practical toolkit for
identifying, documenting analyzing and coping with
project risks.
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Tools & Solutions Track

Conference Day#3 ( Friday, 13 November; 1998 )

11S

Dr. Peter Liggesmeyer, Mr.-Michael Rettelbach &
Michael Greiner, Siemens AG

Prediction of Prolect Quality by Applying Stochastical
Techniques to Metrics Based on Accounting Data |

| An Industrial Case Study

12S

Mr. John Corden, CYRANO
Year 2000 - Hidden. Dangers
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Process & Management Track

Conference Day #1 ( Wednesday, 11 November, 1998")

1M | Mr. Leslie A. Little, Aztek Engineering
Requirements Management-Simple Tools-Simple Processes

| 2M | Mr. Nathan Petschenik; Bellcore {
Year 2000: Catalyst for Better Ongoing Testing

3M | Mr. Juan Jaliff, Mr. Wolfgang Eixelsberger, Mr. Arne
lversen & Mr. Roland Revesjf, ABB

Making Industrial Plants Y2K-Ready: Concept and
Experience at ABB

AN | Mr. Stale Amland, Avenir (UK) Ltd.
Risk Based Testing

5M | Mr. Graham Titterington, Ovum, Ltd
A Comparison of the IT Implications of the Y2K and the
EURO Issues
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Process & Management Track
Conference Day. #2 ( Thursday, 12 November, 1998)

6M | Mr..L. Daniel Crowley, IDX Corporation
.| Cost of Quality - The Bottom Line of Quality

7M | Dr. Erik P. Van Veenendaal, Improve Quality Services
Questionnaire Based Usability Testing

8M | Mr. Gorka Benguria, Ms. Luisa Escalante, Ms. Elisa Gallo,
Ms. Elizabete Ostolaza & Mr. Mikel Vergasa,
European Software Institute

Staged Model forSPICE: How to. Reduce Time to'Market -
TT™

OM | Dr. Antonio Cicu, Mr. Domenico Tappero Merlo, Mr.
Francesco Bonelli, Mr. Fabrizio Conicella & Mr. Fabio
Valle, QualityLab Consortium/MetriQs

Managing Customer’s Requirements in a: SME: A Process
Improvement Initiative Using a IT-Based Methodoloty

and Tool.

10 | Mr. Thomas Drake, Coastal Research & Technology, Inc.
M- | The EURO Conversion.- Myth versus Reality?
Panelists:Mr. John Corden, Mr. Patrick O’Beirne

Mr. Jens Pas, and Mr. Graham Titterington
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Conference Day#3 ( Friday, 13 November; 1998 )

11M | Mr. Mark Buenen, GiTek Software n.v.
| Introducing Structured Testing in a Dynamic, - °
Low-Mature Organisation

' 12M | Ms. Elisa Galio, Mr. Pablo Ferrer, Mr. Mi.kel Vergara &
; - Mr. Chema Sanz, European Software Institute
SW CMM Level2: The Hidden Structure
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Vendor Technical Track

17
Day#1

Mr. Charles J. Crawford, Blackstone & Cullen
Year 2000 and the EURO: Compliance Testing and
Data Management

3V
Day#1

Dr. Edward Miller, Software Research, Inc.
Remote Testing Technology

oV

Day#1

Mr. Gordon Tredgold, The Testing Consultancy.
Year 2000 Functional Testing

6V
Day#2

Mr. Luc Van Hamme, OM Partners n.v.
Results of the ESSI PIE Project OMP/CAST

Day#2

7V | Dr. Boudewijn Schokker, VAC Software Engineering
Day#2 | Visions and Tools
8V | Dr. Edward Miller,~ Software Research, Inc:.

WebSite Validation Technology:
Assuring E-Commerce Quality

oV

Day#2

Mr. Bob Bartlett, SIM Group Ltd.
Building Re-usable Test Environments for Y2K and
EMU / EURO Testing

10V

Day#2

Mr. Ido Sarig, Mercury Interactive

EMU Conversion - Test Reality Before Reality Tests You...
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Extra Presentations -

-Conference Day #1 and Day #2

1E | Mr. Bogdan Bereza-Jarocinski, ENEA Data AB
; Is Software Testing Scientific?
2E | Mr. Patrick O’'Beirne, Modelling Ltd. _
| Managing Risk in EURO Currency Conversion
3E | Mr. Jens Pas, Ms. Ethel Verbiest, Mr. Wim Blommaert &
Mr. Steven Patry, ps_testware
Testing the Year 2000
4E | Mr..Richard Tinker & Mr. Ron Walters, BT Labs
- | System Integration and VV&T Strategies
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Software Research, Inc. BIackstone&CuIIen Inc.
Co-Sponsors: - _ .+ CMG Information Technology -

CYRANO (UK) Ltd.
IQUIP Informatica B.V.
McCabe & Associates.
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Boris Beizer, Analysis, Inc. USA
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Applving Operational Profilesto Testing,
with Updates from | SSRE

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

39 Hamilton Road
Morristown, NJ 07960-5341
J.musa@ieee.org

Copyright O 1998 by John D. Musa

ALL RIGHTS RESERVED. No part of this document may be reproduced in any form,
hard copy or eectronic, without written permission of John D. Musa. No part of any
accompanying presentation may be recorded (audio or video) without similar written
permission.
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‘The Euro and its Impact on
Firms Globa Operations

Bill Eldridge
E. U. Advisar’ s Office, Director.
Barclays Bank PLC

Slide 2

Agenda

 The Details of EMU
» Business |ssues

Slide 3




What isEMU?

» Single Currency
» One Poalitically Independent Bank - ECB
» One Monetary Policy

Slide 4

Why?

Consistency in Single Market

Reduces Cross Frontier Transaction Costs
Eliminates Exchange Risk

Lower Interest Rates

Political Cohesion
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Joining Criteria

Inflation - 2.7%

Exchange Rate Stability

Government Budget Deficit - 3% GDP
Government Debt - 60% of GDP
Convergent Interest Rates

Slide 6

Staying In

» Stability and Growth Pact

— Preventative
— Dissuasive
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“1st Wave”

Countries

Austria
Belgium
Finland
France
Germany
Ireland

Italy
Luxembourg
Netherlands
Portugal
Spain

Later
countries

Denmark - opt out
Greece-convergence
Sweden-convergence
UK - choice

Slide 8

Timetable

1-3May Decison Announced
1st January 1999 Day One

— No compulsion, No prohibition

1st January 2002 Notes and Coin
1st July 2002 End of Legacy Currencies
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Government Debt

Slide 10

E. U. Globally

Comparableto USA - GDP, Trade

% OECD GDP % Global Trade

EU 15 38 20
USA 31 18

Japan 23 8
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What will it mean for Firms
Globa Operations?

 |T an Essential Building Block

» Business Strategy
— Price
— Markets
— Economics
— New Currency
— Financing

Slide 12

What Does it Mean for EU
Banking?

FX trading

Systems

Pan European Benchmarks
L oss of Domestic Franchise
Catalyst for Change
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What Does it Mean for UK
Banking?
» Ready for 1/1/99
— Financial Markets
— Asset Management

— Corporates
— European Retall

UK Retail next wave?

Slide 14

UK Banks and UK Entry

e Lead Time-3Years
* Short Trangition
 Timetable
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What Has Barclays Been Doing?

« 1991 Maastricht Treaty

e 1995 Task Force

e 1997 Customer Road Shows
» 1998 Final Preparations

Slide 16

Conclusions

» Good Objectives

* ThereisaPriceto Pay
» Huge Experiment

* PreparationisKey
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| ngpection:
mythsand misconceptions

Dorothy R. Graham

Grove Consultants
Grove House
40 Ryles Park Road
Macclesfield, Cheshire
SK11 8AH UK.

Tel: +44 1625 616279
Fax: +44 1625 619979
www.grove.co.uk
email: dorothy@grove.co.uk

© Grove Consultants, 1998

Myths and misconceptions
s Myth

- A plausble gory about asupernaturd phenomenon
= Misconception

- afaseor misgaken view, opinion or atitude
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Contents

= What Inspection is
= How Inspection is misunderstood
= What Inspection can & cannot do

Slide 4

Software
Development
Stage

Next Software
Development
Stage
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Contents

= What Inspection is

= How Inspection is misunderstood
- Ingpectionistime-consuming & expengve
Every page should be Inspected - with limited time, look at
more pages/ hour
Ingpection is subjective and detalled (“nit-picking”)
Themaln part isthe meding
- Themain focusison finding defects
= What Inspection can & cannot do

Slide 6

Bendfits of I ngpections

Development productivity improvement
Reduced development timescales
Reduced testing time and cost

Lifetime cost reductions
Reduced fault levels
Improved customer relations
etc.
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Expensve?

= “high-priced, costly”
- How long is actudly spent doing reviews/
| ngpections?
= Compared to what?
- What vadue do they achieve? (quantified)
- What isthe codt of defectsNOT found?
= Are they value for money?
- “Expensve’ can be much chegper

Slide 8

| ngpections ar e cot-effective

s 25% reduction in schedules
= remove 80% - 95% of errors at each stage
= 28 times reduction in maintenance cost

Major conversion project recovered a 4 times
slippage (another 3 wks early in 1 yr project)

A software warranty offered to customers
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Contents

= What Inspection is

= How Inspection is misunderstood
- Ingpection istime-consuming & expensve
=) - Every page should be Ingpected - with limited time, look &t

more pages/ hour
Ingpection is subjective and detalled (“nit-picking”)
The man pat isthe medting
The man focusis on finding defects

= What Inspection can & cannot do

Slide 10

At firg glance..

Here' sadocument: review this (or Ingpect it)
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Reviews. timeand 9zedgerminerate

Checking
Rate

50 pages per hour

Slide 12

Review “ Thoroughness’ ?

ordinary “review” - finds some defects, one mgar, fix them,
congder the document now corrected and OK
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|ngpection: timeand rate determinesze

Optimum:
1 page*
per hour

2 pages (at optimum rate)

Slide 14

I ngpection can find degp-seated defects
al of that type can be corrected, but needs optimum checking rate
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Contents

s What Inspection is

s How Inspection is misunderstood
- Ingpection istime-consuming & expensve
- Bvery page should be Inspected - with limited time, look &t
more pages/ hour
- Ingpection is subjective and detaled (“nit-picking”)
- Theman pat isthe meding
- Theman focusison finding defects
= What Inspection can & cannot do

Slide 16

What aretheimportant defects?

= Defects which
- causethemost severe problems
- 0o the most money

- Caue grediest embarrassment
= What often gets checked?

- mis-gpdings, Indlentation

- “dandards’
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Rules thefoundation of I ngoection

» A defect is a potential violation of a Rule

- Rulesareamed a mgor defects

- Rules are acoepted by author

- Rules make Ingpection objective, not subjective
= Good Rulesets are critical to success

- ambiguity, clarity, Sources, risks, versons,
dructure, generdity
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Contents

= What Inspection is
= How Inspection is misunderstood
- Ingpectionistime-consuming & expendve
- Bvay page should be Ingpected - with limited time, look &

more pages/ hour
- Ingpection isubjective and detaled (“nit-picking”)
= - The man pat isthe mesting
- Theman focusison finding defects
= What Inspection can & cannot do
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“Ingpection isa meting’

= Preparation is probably good to do
= The meeting is 2 hours

= “Discussion meeting” - discuss defects,
agree which are real defects, discuss how to
fix them

Slide 20

Themeding

Minor part of the process
- 80% of defectsfound in checking
Only held if economic

- vadue delermines duration (may be0)
Highly efficient if held

- “nodiscusson’ rule

Raise issues, not agree or solve them
- power to the editor / author
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Contents

s What Inspection is

s How Inspection is misunderstood
Ingpection istime-consuming & expengve
Every page should be Inspected - with limited time, look &t
more pages/ hour
Ingpection is subjective and detalled (“nit-picking”)
Theman pat isthe meeting

= - The man focusison finding defects
= What Inspection can & cannot do
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L earn about products

Inspection
\ (to improve products)

exited
product

same task
donein the
same way

all products can be
cleaned up by Insp
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L earn about the process

Inspection
to improve the
process (task)

exited
product

next
exited
product

fewer defects  less Insp needed even cleaner products

Slide 24

Contents

= What Inspection is
s How Inspection is misunderstood
|ngpection istime-consuming & expanave
Every page should be Ingpected - with limited time, look &t

moare pages/ hour
- Ingpection issubjective and detaled (“nit-picking”)
- Theman pat isthe meding
- The man focusison finding defects
= What Inspection can & cannot do
- Limitations of Ingpection
- A myth?
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When Ingpection will not work

= in a“blame culture”

= Manager wants to use Inspection metrics for
individual performance evaluation (or rumour)

= deadlines always rewarded, poor quality
never penalised

Slide 26

When I ngpection will work

= Mmanagement wants to know the real truth
about quality, and really wants to improve

= quality is important to the business

= software development is a defined process,
based on written documents
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What Ingpection can do

Find deep-seated important defects

= Teach people how to perform their work

Slide 28

better

Kick-start and invigorate a process
improvement initiative

Improve quality and productivity
Shorten delivery schedules
Make testing easier to estimate and plan

What I ngpection cannat do

Find all defects
- not economic to be 1009 effective
Replace all other forms of review

- reviewsfor decidon-making, discusson,
walkthroughsfor education

Decide whether this is the right system

- Inspection can verify, only partialy vaidae
(agang written sources)

Inspection is “document-bound”

- limitation of the technique
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A myth?

= Supernatural influence
- itwas OK before
- Ingpection disturbed the powers
- Oefects suddenly gppear
= Not a myth, another misconception

Slide 30

Per ception ver susredlity

Inspection

\’
actual /\/\

defects
in work

perceived
defects
in work
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Smmary: Key Paints

= Inspection is a well-defined, proven technique
- to identify mgor defectsin written documents
= Inspection has many misconceptions

- expendve, raes, rules, medting, defectsprocess
Improvement, mekesit worse

= Inspection is document-bound
- but isthe most codt-effective qudlity technique
- (if carried out correctly!)

Slide 32




atg EUROPEAN COMMISSION
* w DIRECTORATE-GENERAL I
v ¥ INDUSTRY
*ﬁ % R&TD: Information technologies
* Software and advanced information processing

Softwar e Quality Week Conference— Brussels 12 November 1998
EU Commission actionsfor Y2K and euro
By: David Talbot

The two issues have both similarities (at the technical level) but also major
differences.

Amongst the similarities both are:
— Major challenges for IT management
— Significant users of scarce human resources

— World wide in their impact (the euro is not just a European issue, for example 1
trillion ecu’ s worth of trade is conducted between the EU and US aone)

However, arecognition of the differencesis essential.

— Y2K is substantially a technical IT matter with possibly profound business
impacts in terms of the consequences of any failure to correct the problem; it is
essentially a“distress purchase” with limited/little added value.

The euro is essentially a business matter with the potential to transform the
business landscape and the way in which an enterprise will operate; this has a
clear and significant impact on the enterprises IT systems; in this regard the
adaptation of 1T systemsis not a“technical” matter, it must be driven by business
considerations.

The Commission position and actions reflect these important differences. The speaker
will aim to develop the above points in more detail and outline the “political”,
practical and technical steps that have been taken to address these issues.
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1. Nostradamus Redux
We live in confusing and troubled times: who better to guide us than Nostradamus? Some newly discovered
predictions from the missing parts of his section V11, and some new trandation of previous ones are provided
here for your entertainment and amusement. My interjections for the sake of clarification are in brackets.
Nostradamus' predictions take the form of four-line stanzas called “quatrains.” He often bundles several
predictions within one quatrain and sometimes a prediction is given in parts of severa different quatrains.
Where appropriate, | have edited out the parts that do not concern us and merged parts to make the
predictions more sensible. Nostradamus isinconsistent when it comes to dates: sometimes he refers to years
after his birth, sometimesto years after publication of his predictions, and sometimes to absolute yearsin the
common calendar. | have adjusted all dates to the common calendar.

Nostradamus, viewing our times through the eyes of the 16" century, did not have words for ideas
such as “president” or “software bug.” So we must interpret “king” to mean any leader, “country” or
“kingdom” to also apply to corporations, and any kind of insect to mean software bug.

2.Y2K

The Internet newsgroup, comp.software.year-2000 is (in)famous for it's gloomy Y 2K predictions.
Nostradamus foresaw the Y 2K bug, the associated socia problems, the resolution, and the aftermath.
Nostradamus is certainly as credible as most of the Y 2K predictions we hear these days.

[11/34.  Then when the eclipse of the sun
Will in broad daylight the monster [ Y2K bugs] be seen.
It [year representation] will be interpreted quite differently [that’s the crux of the problem, isn't it?];
They will not care about expense, none will have provided for it.

Isthere any doubt that this refersto the Y 2K problem? And how about...

1122 A thing existing without any senses [obviously he means computer programs]

Will cause its own end to happen through artifice [good description of an ABEND].
1/44. In a short time sacrifices [taxes] will be resumed,

Those opposed will be put to death like martyrs.

The remediation effort of the United States Internal Revenue Service does not succeed at first—plagued by ABENDs.  The resulting
chaos prompts a short-lived tax revolt. But the softwareis repaired and tax collection resumed. Those who did not pay their taxes
are dedlt with severely. Nostradamusisn't awaysto be taken literdly; e.g., “put to desth...”; but then considering how tax departments
often behave, I'm not sure that the literal interpretation isn’t correct.

VI1I-14 Hewill cometo expose the false topography,
The urns of the tomb will be opened.
Sect and holy philosophy to thrive,
Black for White and the new for the old.

Thisisavery detailed predictions that refersto my talk on Y 2K at the 1998 Quality Week Conference. “He" refersto Boris Beizer.
The key point is in the last line which clearly refers to remediation of legacy code and the fact that for Y 2K testing, we must rely
mainly on behavioral (i.e., Black Box testing) and forego detailed coverage testing.

1147 The speeches of Lake Leman will become angered,
The days will drag out into weeks,
Then months, then years, then all will fail [Sounds like Y2K, doesn't it?].
The authorities will condemn their useless powers.

IV/13  New of the great lossis brought;

The report will astonish the camp.
IV/9 When Genevain trouble and distress
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Is betrayed by the Swiss.
V/85  Through the Swiss and surrounding areas
They will war because of the clouds [of bugs].
A swarm of locusts and gnats [Nostradamus for “ bug” ],
The faults of Genevawill be laid quite bare.

1/61 The wretched, republic will be ruined
By anew authority.
The great amount of ill will accumulated in exile
Will make the Swiss break their important agreement.

An emergency global Y 2K political conference is held in Geneva, Switzerland. It is arancorous conference, in part asa
result of all the delegates being unable to get their credit cards accepted—which is a special hardship in Switzerland. Meanwhile,
remediation drags out for weeks, months, and even years— but there are still massive software failures at the end. The politicians
are frustrated by their inability to find political solutionsto the problem. The collapse of the global monetary system is attributed to
Y 2K bugs in Swiss banking software. Switzerland closes their international banks and cancels all agreements.

X/[72  Intheyear 1999 and seven months,
From the sky will come the great King of Terror.
1/80 Then amonster will be born of avery hideous beast:
In March, April, May and June great wounding and worrying.

Dire predictions for July 1999, which iswhen we can expect many of the first Y2K bugsto strike. Expect the Y 2K problemsto peak
between March-June 2000, with even greater impact than previously expected — the use of “then” makesit clear that he' stalking
about the following year (2000).

VI1/8  Thosewho werein the kingdom for knowledge
Will become impoverished by aroya change.
Some exiled without support, having no gold,
Neither learning nor the learned will be held of much vaue.

Nostradamus tells us that there will be a new administration in the US, following the 1999 election but he doesn’t tell us
which party will win. However, whatever the party, the new president puts the blame on the data processing community and initiates
harsh measuresin punishment. We can certainly expect thiskind of behavior on the part of paliticians who have to have someone
to blame and who better to blame than programmers and SQA people. A big drop in programmer salaries after Y 2K. A note of
caution by the seer for Y 2K consultants—Don’t expect the current billing levelsto hold forever.

VI1/2 In the year one-thousand, nine-hundred and eighty more or less
One will await avery strange century.
In the year two-thousand and three,
The skies as witness that several kingdoms (one to five) will make a change.

Although Y 2k remediation began in the early 1980's he predicts that by 2003 only 1 in 5 countries will have completed the task.

VI1I/44  After ageneration and a bit, from afew bits
Anew aplague of midges, mites, and locusts rises from Xanthus
To plague the unwary and uncaring
Who heeded not the previous holocaust.

The timing makes this right for the UNIX 2028 rollover bug. “Xanthus® is probably an anagram for “UNIX.” Thereitisall over
again. Just like Y 2K, the problem will be ignored.

3. Euro

Conversion to the Euro, coming as it does simultaneously with Y 2K is another problem that was much on
Nostradamus' s mind.
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1/40 The false trumpet concealing madness [apparently his opinions of the Euro]
Will cause Byzantium to change its laws.
From Egypt there will go forth aman
Who wants the edict withdrawn, changing money and standards.

Turkey and Egypt are conditionaly accepted into the European Economic Union. Turkey willingly changes monetary policiesin order
to achieve compliance, but Egypt objects to the schedule because it cannot change its software in time and in accordance to the
specified standards.

IV/48  Theplains of Europe, rich and wide,
Will produce so many gadflies and grasshoppers [ bugs]
That the light of the sun will be clouded over.
Devouring everything, a great pestilence will come from them.

Oh-oh! Looks like there’ s going to be alot of turmoil from the Euro conversion.

1/73 France shall be accused of neglect by her five partners ... [What else is new?].

The Outer Three will adamant remain, [Norway, Denmark, and Swveden, obviously]
IV-21  The change will be very difficult.

Both city and province will gain by it.

Business as usua in EEU. Conversion will not be easy, but all’swell that ends well.

4. The Computer Industry, Microsoft, Gates
Nostradamusis credited with predicting Napoleon and Hitler. You didn’t think he would leave out Microsoft
and Bill Gates, did you?

IV/31  Themoon, in the middle of the night of the high mountain
The young wise man alone with brains has seen it.
Invited by his disciples to become immortal,
His eyes to the south, his hands on his breast, his body in thefire.

Who else but Bill Gates? But what about that “body in the fire?" Perhaps the following quatrain sheds light on this.

VI1/45 The Newest Testament [Anagram for NT?] again delayed
Held closeted in secrets deep.
The multitudes play into hiswily hands
By their intemperate impatience.

By once again delaying the release of WIN NT5, Gates assures total saturation of WIN98, capturing the last holdouts under DOS,
WIN 3.1, and WIN 95 who are forced into WIN 98 asthe only Y 2K compliant operating system. But Gates takes alot of heat over
thisploy (“hisbody in thefire”).

V/75  Hewill rise high over hiswedlth, move to the right,
Hewill remain seated on the square stone;
Towards the south placed at the Window,

A crooked staff in his hands, his mouth sealed.

Gates will get even richer and more powerful. As he does, he will increasingly adopt conservative politics. The use of
Windows will increase significantly in Africaand South America as the next big market for personal computers. More trouble from
the US Justice Department because of predatory business practices by his staff (a staff which he completely controls). Gates will
refuse to testify before agrand jury.

VI1/61 From Gates through the Window, air and wheels combine,

The aging sage foresees the union.
Timid judgesrise in righteous anger,
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But soon to deep they go again.
An aging Bill Gates argues before the U.S. supreme court that the absorption of United Airlines by Microsoft (“air and wheels
combing”) is a natural evolution of the operating system (WIN NT8.0) that began with virtual flight in Flight Simulator XXII1.
Similarly, the proposed absorption of General Motorsis argued as an inevitable evolution from virtua travel on the Internet to physica
travel. The US Supreme Court judges make politically correct verbal opposition but let the case die when they refuse to provide an
opinion on the question.

VII/52 The antipodal names inverted
The king, his colors true reveal ed.
Leviathan, his mighty gorge extended,
Sweeps the smaller sea.

Microsoft’s name is changed to “Megahard.” “We re no longer “micro” and we were never “soft.”, Gates explains. “ The new name
isin keeping with what we have always been.” Megahard buys the entire list of the NASDAQ stock exchange.

[1/89  Oneday the two great leaders will be friends;
Their great power will be seen to grow.
The new land will be at the height of its power,
To the man of blood the number is reported.

Microsoft and Oracle merge as Gates and Ellison shake hands. “The man of blood” (Gates) is the new CEO of the combined
companies who asks for an immediate financia statement.

IV/75 Hewho wasready to fight will desert,
The chief adversary will win the victory.
The rear guard will make a defense,
But will falter and die.

Lou Gerstner (IBM’s CEO) fights a hostile takeover bid by Microsoft, but eventually bails out with his golden parachute. The Lotus
Notes loyalists attempt to take their product private, but do not succeed.

[1/11  Thefollowing son the elder will succeed,
Very greatly raised to akingdom of privilege.
His bitter renown will be feared by all,
But his children will be thrown out of the kingdom.

Bill Gates IV, succeeds Bill Gates Ill as chairman of Macrohard/IBM/Oracle/lUNITED/GM (known in the industry as
“MACROMUG"). He botches the job by changing the company into a repressive hell more regimented than IBM at its worst.
Eventually, the next generation (Bill Gates V) loses control of the conglomerate.

5. Clinton, American politics, and L’ affair L ewinski

As of the time of thiswriting (August 4, 1998) the Clinton/Lewinski affair is till unresolved. Apparently, like
many American politicians (in the opposition party) Nostradamus believed it to be one of the great scandals
of history. We have already seen some of these, and others have been hinted about.

VI1I1/23 Lettersare found in the queen’s chests,
No signature and no name of the author.
Theruse will concesl the offers;
So that they do not know who the lover is.

Sounds familiar? Anonymous letters that possibly are an invitation by Clinton to an intern for a very private meeting are found in
Hillary Clinton’sfiles; but key sections are missing so that it's impossible to prove to whom the letters refer or who wrote them.

IV/57  Ignorant envy supported by the great king,

He will propose forbidding the writings.
Hiswife, not hiswife, [Hillary?] tempted by another,
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No longer will the double-dealing couple protest against it.
Clinton proposes a cover up by censorship. Hillary istempted to have her own affair in retribution — but, finally, the letters are
turned over to the grand jury as the Clintons agree to their release.

VIII1/14 The offence of the adulterer will become known
Which will occur to his great dishonor.

VI111/95 The seducer will be placed in aditch
And will betied up for sometime.

A clear reference to the final resolution of the Clinton/Lewinski affair. Clinton certainly seemsto be “tied-up and in aditch” over this
affair.

VI/59 Thelady, furiousin an adulterous rage,
Will come to conspire to not speak to her Prince.
But the culprit will soon be known,
So that seventeen will be martyred.

This happened awhile ago. Clinton white house. Hillary isfurious and won't speak to Clinton. The news gets out. Nostradamus has
Lewinski’'s age wrong: She was older than seventeen.

VI1/72  Through feigned fury of adivine emotion
The wife of the great one will be badly violated.
The judges wishing to condemn such a doctrine,
The victim is sacrificed to the ignorant people.

Troublefor Hillary. She actsfurious about Clinton’ s disclosures. It's an act, because she knew about it all along. Nevertheless, she
has to take alot of abuse for speaking out. The supreme court wants to act against the president. Clinton turnsit about by getting
Lewinski indicted. Special prosecutor Starr backs off from the immunity pledge and Lewinski is charged with perjury.
VI1/13 A doubtful one will not come far from the kingdom,

The greater part will wish to support him.

A Capitol will not want him to reign:

Hewill not be able to bear his great burden.

Despite everything, Clinton’s popularity in the polls continues. Congress wants to impeach him. He considers resigning.

X/76  The Senate will seethe parade for one
Who afterwards will be driven out, vanquished.
His adherents will be there at the sound of atrumpet,
Their possessions for sale, the enemies driven out.

Oh, oh! It lookslike the US senate will successfully impeach Clinton, after all. His whole administration will go out with him.

6. Softwar e Quality, QA, and Testing
The sage foresaw not only the software industry and bugs, but also that we would be holding conferences
about the subject.

IV/26  Thegreat swarm of bees[bugs] will arise
But no one will know whence they have come, [that’s pretty typical]
The ambush by night, the sentinel under the vines,
A city handed over by tongues not naked.

Thisisal about bugs striking a municipal government’s software—or is Nostradamus giving warning for al municipa software?
He say’ sthat QA hasfailed in itstask — “the sentinel under the vines’ means that QA was drunk.
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V/93  When Mercury isat the height of his powers,
VII/72 Masters of the heavenly artsin Brussels gather
V/37  Three hundred will be of one agreement

And accord to the execution of their ends.

Thisis obviousdly about the QWE98 conference. Thereis consensus over how things should be done to improve software quality.

IV/18 Some of the most learned men in the heavenly arts
Will be reprimanded by ignorant Princes;
Punished by edicts, driven out as scoundrels,

And put to death wherever they are found.

Weall know this scenario. How many of usin SQA have been there?

IV/53  Thefugitives and the banished are recalled.
IV/69 Theexileswill hold the grest city.
They will promise to show them the entrance
By untrodden paths.

But eventually, the powers that be come to their senses and turn control over to people who know qudlity assurance. The QA leaders
and doers will show them the way to get things done. Note here that the key (the entrance) is to assure 100% coverage (untrodden
paths). But Nostradamus hasit wrong. He's calling for 100% path cover instead of 100% branch cover. But hey, that's a common
mistake among people today who should know better.

VI/17  After the penances are burned the ass drivers
Will be forced to change into different clothing.
Those of Saturn burnt by the Millers,
Except the greater part which will not be covered.

Eventually, 100% branch cover as fervently espoused by Edward Miller for so many years will be officially adopted but in practice,
most of the code will still not be tested (covered).

[11/67 A new set of philosopher, despising gold and riches
Will not be limited, even by mountains;
In their following will be crowds and support.
IV/16  From hundreds they will become thousands.

Thisis obvioudly about QW Europe. We must “despise gold and riches’ because we' re not getting any — anyhow, it speaks well
for the results of the message. Great supporting crowds going from hundreds to thousands.
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Abstract

One of the main problems with automating software testing is its complexity.
Genetic algorithms aim at such complex problems. For example, they address
the problem of test data generation without instructing them, step by step, on how
to do it. Instead of this, their learning algorithm is inspired by the theory of
evolution. Using this approach neatly sidesteps many of the problems
encountered by other systems in attempting to automate the test process. This
paper describes a test tool performing automatic coverage testing by means of
genetic algorithms including some key issues in software reliability assessment.
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Introduction

Software testing is an expensive component of software development. In safety
related applications it can take up to 80% of the costs of the software
development.

Automation seems to be an essential ingredient for both a cost-effective
approach to testing and a thorough approach. Manual software testing is very
time consuming. The same procedures have to be repeated again and again for
every release and every regression test. So it is a good idea to automate these
procedures. There are activities being relatively easy to automate, especially test
execution and the final check of the results against given rules. ldentifying test
conditions, designing test cases and implementing the tests are the more
intellectual parts of software testing. It is difficult to automate them at all.

This paper describes a test tool performing automatic coverage testing by means
of genetic algorithms. Without qualification, coverage usually means branch or
statement coverage [1]. Statement coverage, also called CO coverage, is a metric
of the number of source language statements executed under test. Branch
coverage, also called C1 coverage, measures the number of branch alternatives
executed. Usually these two coverage criteria are accepted as the minimum
mandatory testing requirement. However, for some applications condition
combination coverage is required. This strategy is stronger than C1 because it
requires that all combinations of conditions in every decision statement must take
both true and false values. As an example, Figure 1-1 shows the test cases
needed for a given decision statement.

/* Commrent: T...true, F...false
* Test cases with the follow ng constraints must be found:
* TTT, TTF, TFT, FTT, TFF, FTF, FFT, FFF
*/
IF (a <b) AND (a <c) AND (b < ¢)
a=o>b

Figure 1-1: Test Cases required for condition combination coverage.

The tool was developed by the author himself within the scope of his Ph.D. work
and is called GATester. GATester is implemented on Linux operating system and
primarily intended to support unit and module testing including regression testing.

The main goals of the project are as follows:

e Find a new approach for automating the test process in order to sidestep
many of the problems encountered by traditional approaches

e Automate test data generation in order to decrease costs of building new
tests

e Make the test data generation task repeatable in order to compare actual
results with previous ones

e Make the automated test process understandable by implementing a detailed
reporting procedure




In section 2, the testing process is divided into its generic tasks. Section 2 then
discusses which of these tasks can be partly or fully automated and which
cannot.

In section 3, the steps involved in the proposed testing process are described.

Section 4 presents first performance measures and gives an idea of the
effectiveness of this new approach.

In section 5 and 6, the author discusses the basic algorithms performing test data
generation and test data evaluation, respectively. These sections should reveal
why genetic algorithms are perfectly suited for software test automation.

Section 7 investigates how the test tool can contribute to software reliability
assessment calculations.

Finally, the author’s conclusions are presented and further research is outlined.



The Testing Process

According to [37], a test unit is a set of one or more computer program modules
together with associated control data, usage procedures, and operating
procedures that satisfy the following conditions:

- All modules are taken from a single computer program

- At least one of the new or changed modules in the set has not completed the
unit test

- The set of modules together with its associated data and procedures are the
sole object of a testing process

In Figure 2-1 the activities involved in a standard unit testing process are
presented [37]. The last column indicates if an activity must be carried out by
hand or if it can be automated by GATester. “Partially Automated” means that
there exist default values for this activity in order to proceed automatically.
However, the user may perform additional configuration steps within this activity,
e.g. choosing a particular coverage criterion as a termination condition. Note that
only activities concerning coverage testing are considered here. Tasks that add
unnecessary costs or do not add value are eliminated.

1 Perform Test Planning Phase

1A | Plan general approach, resources, and schedule | Manual process

1B | Determine features to be tested Partially Automated
1C | Refine the general plan Deleted

2 Acquire test set phase

2A | Design the set of tests Automated

2B | Implement the refined plan and design Automated

3 Measure test unit phase

3A | Execute the test procedures Automated

3B | Check for termination Automated

3C | Evaluate the test effort and unit Partially Automated

Figure 2-1: The unit test activities according to ANSI/IEEE Std 1008-1987 applied to

coverage testing using GATester

Under normal conditions, these activities are sequentially initiated except for an
Execute and Check cycle [37], no matter if they are automated or not.

Apart from the fact that some configuration steps must be taken, the process may
be fully automated if the goal is to satisfy some level of coverage. For example, if
the test should stop after reaching 100% statement coverage, the only manual
activity is to start GATester and provide the tool with the program, i.e. the unit
that is to be tested, and the information telling the tool which coverage is to be
met. The tool returns the test cases needed and some additional output like the
computation time. More details about the workflow are presented in the next
section.



If also the dynamic nature of software behaviour is of interest the user can
provide GATester with some additional constraints. These constraints are treated
as software requirements that must be satisfied during test execution. Every
constraint must be assigned to one or more statements. GATester will report any
violations of given constraints. The next section addresses this issue in more
detail.



How to use the Test Tool

This chapter describes the GATester’s basic functionality from the user’s point of
view. Although it is far away from being a user guide, it illustrates how to use the
tool. In Figure 3-1 the user’'s tasks are presented. Please refer to Figure 2-1 for
the relationship between the ID-column and the corresponding test activity.
Deleted or fully automated activities are eliminated here.

ID | The user’s tasks

1A | Identify units that are to be tested, choose a coverage criterion, specify a
new termination condition if the default one is not appropriate, and
optionally provide GATester also with user defined reliability
requirements

1B | Specify constraints if the dynamic nature of the software under test
should also be evaluated

3C | Complete the provided test summary report if necessary, ensure that the
testing products are collected, organized, and stored for reference and
reuse

Figure 3-1: The GATester’s workflow

Identify units that are to be tested and choose a coverage criterion:

The user provides a unit that is to be tested and selects a coverage criterion. This
may be one of the criteria presented in the first chapter, namely statement
coverage, branch coverage, or condition combination coverage. The default
criterion is statement coverage. If the primary goal is to meet the coverage
criterion by some test data the user's tasks are completed. However, it is
recommended to perform also the next step, namely checking the termination
condition. After a while, usually within a few seconds (see also chapter 4), the
tool will return the test cases needed to meet the desired coverage and additional
documentation, for example the paths traversed, for every statement the number
it has been executed under some test, and all the time intervals used for finding
“a better test case” than the best so far. For details about how to interpret these
time intervals please refer to section 5.

Check the termination condition:

After choosing an appropriate coverage criterion the user should check the
termination condition. The termination condition is a function of the maximum
number of test cases specified and the chosen coverage criterion. If either the
maximum number of test cases reached or the specified coverage criterion is met
the test execution will stop. For example, if the chosen coverage criterion is very
hard to meet the user must allow the testing tool to generate “very much” test
data.

Provide user defined reliability requirements:

Since software reliability assessment is a very advanced topic that cannot be
introduced by a few words it is left out here and discussed in chapter 7.



Specify constraints:

The tool allows to assign any expression to a set of statements. Precisely
speaking, the constraints are composed of variables, parentheses, and
programming language operators including user defined functions. Constraints
evaluate to one of the Boolean values TRUE or FALSE. During test execution,
GATester reports all violations of one of the given constraints. Figure 3-2 gives
some examples of constraints (representation: C programming language):

(a<b)&&(c == d) “all’
a==31,2,3
a=26

Figure 3-2: Some examples of constraints

Basically, a constraint specification consists of the constraint itself and a
definition telling the tool for which statements the constraint is relevant. For
example, a==3 is the constraint, and 1,2,3 is the definition.

The first line assigns a constraint to all statements of the unit under test. The
following line just assigns the constraint a==3 to the first three statements. An
interesting variant is the last line. Since the expression is an assignment rather
than a boolean compare, variable ‘a’ gets the new value 2 at the sixth statement.
So the user is able to force the traversal of some paths or test some unintended
side effects. As we will see in chapter 7, constraints can also be used for
specifying an operational profile.

3C-activities:
If the desired coverage could not be reached the user has to check manually if

- the chosen coverage criterion involves the traversal of infeasable statements
or paths

- the termination condition is set appropriately

The other activities associated with the identifier ‘3C’ are up to the overall
Verification & Validation (V&V) organisation. Since they do not serve as an input
for GATester, they are not discussed here.




4.

First Performance Measures

The author’s algorithm for software test data generation was tested on a number
of software units. The units’ cyclomatic complexity ranges from one to 70, their
lines of code vary between three and 213, and they are all written in the C
programming language.

Objectively measuring the performance of a genetic algorithm is not a trivial
matter. Factors to be taken into account are at least speed (how quickly the
algorithm completes) and success rate (what proportion of runs converge to an
optimal solution).

Test data generation in software testing is the process of identifying program test
data which satisfy selected testing criteria [17]. The testing criterion chosen for
the experiments discussed in this chapter is 100% statement coverage.
Assuming that the goal of running GATester is to solve the test data generation
problem, the algorithm completes after satisfying the given testing criterion.

The experiments clearly show that both factors speed and success rate are
determined by statement feasibility and decision statement complexity.
Statement feasibility may be defined as the execution probability of a statement.
Assuming random input variables of the software unit under test, a statement
with a high statement feasibility will be executed more often than a statement
with a lower one. The lower its feasibility the more iterations are necessary in
order to find an optimal solution, i.e. appropriate test data. Splitting complex
decisions into more and simpler ones is another way of contributing to a better
performance. The reason why GATester behaves this way is its learning
algorithm. The search direction within the set of all possible solutions is driven by
a function (usually called fitness function) evaluating current potential solutions.
This evaluation is based on current statement coverage. Since statement
coverage increases faster if more and simple instead of less and complex
statements are provided, software engineers can contribute to a better
performance of GATester by avoiding very complex decision statements. Figure
4-1 shows current performance values (586 CPU, 166 MHz, 32 MB RAM, Linux).

Computation time in clocks | Statement feasibility
149 1,5E-05
245 6,0E-08
9546 2,3E-10
379394 9,1E-13
3,6E-15

Figure 4-1: Computation time against statement feasibility

For software units having statement feasibilities of up to 9,1E-13 the success rate
was 100%. For statement feasibilities of about 3,6E-15 the algorithm didn't find
an optimal solution. But note that the runs were limited to 1000000 generations.
Without this constraint GATester is able to generate test data for such cases as
well. Current experiments focus on optimizing the evaluation function in order to
speed up the search process.



A more detailed analysis of GATester’'s performance including some charts can
be found in [34].



5.1.

Genetic Algorithms

One of the major problems with automating software testing is its complexity.
Genetic algorithms aim at such complex problems and have already been
applied quite successfully to optimization problems such as scheduling,
transportation problems, etc. [2][23].

This chapter is devoted to a discussion of genetic algorithms (GAs) in general.
The author answers the following questions:

e What are GAs?
e How do GAs work?

*  Why do GAs work?

What are GAs?

As stated in [23], there is a large class of interesting problems for which no
reasonably fast algorithms have been developed. Many of these problems are
optimization problems that arise frequently in applications.

Basically, GAs maintain a population of individuals. These individuals, also called
chromosomes, represent potential solutions to a given problem. In order to find
the best solution, they undergo an evolution process by applying rules of
selection, mutation, and reproduction, similar but far less complex than known
from natural genetics. GAs use fixed-length binary strings and only two basic
genetic operators, that are mutation and crossover.

The evolution process run on a population of chromosomes corresponds to a
search through a space of potential solutions. Such a search requires balancing
two (apparently conflicting) objectives: exploiting the best solutions and exploring
the search space [23]. Since GAs are a class of general purpose search
methods, the strength of GAs is to balance these two objectives stated above.

Applying genetic algorithms to a problem entails finding the proper representation
of the problem and a fitness function. The author’s representation is a bit stream
storing the actual test data. In other words, a chromosome contains the test data
needed for one test case. Since a chromosome is made of genes, arranged in
linear succession, one gene is a concrete variable of the software under test. The
fitness function determines the relative quality of the solutions of every
chromosome, i.e. their fithess. Chromosomes with a high fithess are the most
likely candidates for further reproduction.

The application we discuss is a software testing tool, and the main problem we
face is the generation of adequate test data. We use a GA to generate test data
that are able to test the software under test according to a given test strategy.

Going through the structure of the genetic algorithm in more detail, the basic
approach of the testing tool is revealed. First of all, the population containing the
first set of test cases must be initialized appropriately. Then, little by little all test
cases of the first generation are executed during the execution phase. Although
being unlikely after the first generation, the testing tool checks if the given
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5.2.

termination condition is already true. If so, the testing process will stop
successfully. Otherwise, the next generation must be initialized. This task is the
most critical one. The new generation is basically a new version of the last one.
More details about this selection process are presented in chapter 6. Afterwards
some changes are introduced that make the test cases doing a better job than
the prior ones. These changes are discussed in detail in the following chapter.
After executing the test cases of the actual generation again an evaluation step
decides whether or not the termination condition is true. After some loops (up to
several millions) the test process will stop according to the user defined
termination condition. The number of iterations depends on the termination
condition being specified prior to the tests. This may be a requirement like “stop if
90% statement coverage reached” or “in any case, do not generate more than
100000 generations”.

The next paragraphs illustrate the GAs' effectiveness by analyzing how and why
they really work.

How do GAs work?

First of all the initial population must be defined. This may be done randomly in a
bitwise fashion, since the chosen representation is a bit stream. If there is already
some knowledge about potential solutions or optima available, the initialization
process may be changed appropriately.

A large number of strategies exists for determining the contents of a new
generation. Mostly they only differ in some details. Basically, for each generation
the fitness function calculates the fitness of each chromosome. The detailed
algorithm is presented in chapter 6.

After the selection process the recombination operator, crossover, is applied to
the chromosomes. Crossover combines the features of two parent chromosomes
to form two offsprings by swapping corresponding chunks of the parents. The
position of the crossing point determining the size of the chunks is assigned
randomly.

There also exists a certain amount of mutation, where one bit of a chromosome
at random is replaced by a random value. More precisely speaking, a bit changes
from zero to one or vice versa, since we have a binary representation of the data.
Mutation introduces some extra variability by randomly changing a single position
of a selected chromosome and is performed on a bit by bit basis.

After selection, crossover, and mutation, again an evaluation procedure follows,
determining the fitness values of the chromosomes. The cyclic repetition will stop
after a defined termination condition turns out to be true. As already mentioned
above, the testing tool's termination condition can be configured in two ways.
There may be specified a defined maximum of generations, or a given problem
related termination condition like 100% statement coverage, or a combination of
both.
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5.3.

Why do GAs work?

GAs provide robust and powerful adaptive search mechanisms. More precisely,
they maintain a population of chromosomes that evolve according to the rules
presented above in order to find a solution to a given problem.

The structure of the information stored in a chromosome does not change from
one problem to the other. A chromosome always consists of several genes
storing information in a binary string.

But the representation of a problem in terms of parameters may be unique for
each problem to be solved by GAs. A potential solution to a problem is usually
represented as a set of parameters, known as genes. This transformation step
from the problem space into a set of parameters or genes is the most critical task
for the GA’s performance. Results will be most successful if the coding strategy
applied in the transformation step forces the creation of “tight” building blocks that
will not be destroyed by the genetic operators, i.e. crossover and mutation. In
other words, the genes should be as small as possible.

Here we have to deal with a new term called “schema”. A schema is built by
introducing a don't care symbol (x) into the alphabet of genes. Now we can
create strings or schemata over the ternary alphabet {0,1,x}. For example, the
string 101x matches two strings, namely 1010 and 1011. Whereas both the zero
and the one retain their normal meaning, the don't care symbol can be
interpreted as either a zero or a one. Notice that the don’t care symbol is just a
meta-symbol that is not explicitly processed by the genetic algorithm. There are
two important schema properties, order and defining length.

The order of a schema S is the number of 0 and 1 positions, i.e. fixed positions
(non-don’t care positions), present in the schema. In other words, it is the length
of the template minus the number of don't care symbols. The order defines the
speciality of a schema [23].

For instance, the order of the schema S=(x0x111x0x) is five.

The defining length of a schema S is the distance between the first and the last
fixed string positions. It defines the compactness of information contained in a
schema. [23]

For example, the defining length of the schema S=(x0x111x0x) is 8 - 2 or six
because the last fixed position is the 8", and the first is the 2"

A schema is a similarity template describing a subset of potential solutions with
similarities at certain positions. Schemata greatly simplify the analysis of the
performance of GAs. The key point here is that short, low order schemata having
an above average fitness receive exponentially increasing trials in subsequent
generations of a GA. This statement, known as the Schema Theorem gives an
immediate result, that is GAs explore the search space by short, low-order
schemata which, subsequently, are used for information exchange during
crossover [23]. Such “tight” building blocks having high fitness will most likely stay
alive and join the next generation. In other words, the best get more copies in the
next generation, the even stay even, and the worst die off.
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The combined effect of selection, crossover and mutation on a particular schema
of course increases the probability that this schema will be disrupted. But it still
receives an exponentially increasing number of strings in the next generations.
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The Evaluation Procedure

Genetic algorithms do not search only one path through the search space. On
the other hand, they do not conduct an exhaustive search of the space of all
possible solutions. Rather, they perform a type of beam search where the
population, i.e. the set of current potential solutions, is the beam [2]. An important
task is to decide which members of the population will be subject to the genetic
operators presented in chapter 5.

The evaluation procedure decides if the test cases performed were “good ones”.
Technically speaking, their fitness is evaluated. Good test cases are test cases
that meet the testing criterion, for example statement coverage. If so, the
termination condition is fulfilled and the test will stop. Otherwise, the test data will
be refined and the next test case executed. Recall that one test case is
represented by one chromosome. Basically, the following steps are performed by
the evaluation procedure [23]:

First part:

» Calculate the fitness value for each chromosome

» Find the total fithess of the population

» Calculate the probability of a selection for each chromosome

» Calculate a cumulative probability for each chromosome

Second part (loop x times, x is the population size in terms of chromosomes):
e Generate a random number from the range [0..1]

» Select the first chromosome whose cumulative probability is greater than the
random number

The evaluation procedure selects a new population with respect to the probability
distribution based on fitness values of chromosomes of the current population. It
also ensures that the best chromosomes get more copies, the average stay
even, and the worst die off. But note that the next generation consists of the
same number of individuals as the former one.

The chromosomes forming the new generation then are subjected to the genetic
operators crossover and mutation, respectively. Afterwards the test cases are
executed one by one. Their contribution to the overall testing goal, for example
statement coverage, determines their fithess value. And again a new iteration of
the evaluation procedure has started.
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Software Reliability Considerations

Reliability is the probability that a product or system will perform some specified
end user functions under specified operating conditions for a stated period of
time.

Making good reliability estimations or predictions depends on testing the product
as if it were in the field [24]. The operational profile is a set of end user functions
the product can perform with their probabilities of occurrence. It is clear that
estimating the operational profile is a non-trivial task. However, it is essential in
reliability engineering. Once a satisfactory operational profile is available, the
testing can begin, and reliability growth can be monitored.

To apply a reliability measurement approach to a system, it is important to
understand that both hardware components and software units have to be
considered. Only if both software and hardware reliability calculations are
combined reliability can serve as a high-level indicator of the operational
readiness of a system. Note that there is a fundamental difference in the dynamic
behaviour of hardware and software. Whereas initially failure-free hardware
components may show some defects later on because of wearing out, every
software unit already contains all of its faults at the time the software engineer
performs the last file save operation. In other words, all errors concerning
software engineering are made in time, and the testing can start. Clearly, neither
the customer nor the organization responsible for a product wishes to have
defective products. Nevertheless we can be sure that a system will fail some
time. Even if defect minimization strategies would have been able to establish a
failure free development process, the wear out phase introduces defects. But the
complexity of software systems combined with budget and schedule constraints
makes it practically impossible to ship zero-defect-software.

Today we are confronted with a plethora of models, techniques, and measures
for software reliability engineering in the literature. Nevertheless, it is still a matter
of fact that the user must decide which model is the most appropriate for a given
application. This decision is by no means an easy one because there does not
exist one single model that is able to produce reliable results in all contexts.
Further more, the outcomes of the models may also vary considerably. But
probably the main problem is that it does not seem possible to analyze the
particular context in order to decide a priori which model is likely to be trustworthy
[1]. But the author also believes that you can obtain reasonably accurate
reliability measures for relatively modest reliability levels. As stated in [5],
technigues that depend on reliability growth cannot assure very high reliability
without infeasibly large observation periods.

This section discusses only issues concerning software reliability. More precisely,
the author presents his approach of automatically producing a forecast for
acceptance testing results by means of a unit reliability measurement chart and a
unit run reliability calculation. The testing tool GATester calculates all the
primitives needed for the unit’'s reliability measurement chart or for its run
reliability calculation without manual assistance. The results may serve as a
helping hand for managerial decisions or as a parameter for software system
reliability assessment. Note that this kind of measurement information supports
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both technical and managerial activities. Note also that the tool calculates
reliability figures for the particular unit under test. Therefore, the results do not
represent software system reliability but just single software unit run reliabilities.
Actual research activities include the issue of combining all the unit’s results to
one big number called software system reliability.

The unit reliability measurement chart introduced above gives an idea of the
maturity of the software unit. For example, it can be used to determine software
readiness for acceptance testing. It plots the failure time against the failure
number and identifies five regions within the chart, telling you if the testing shall
proceed or not. Two areas, namely reject-area (R-area) and accept-area (A-
area), recommend to stop the testing because the test results are not acceptable
or the desired maturity has already been reached, respectively. The three
remaining regions recommend to continue testing. These are called probable-
reject-area (PR-area), probable-accept-area (PA-area), and continue-area (C-
area). If the required reliability rating is low the project management staff may
decide to perform an acceptance test although some of the software units have
not reached the A-area so far, but are still in the PA-area. On the other hand, if a
unit is in the PR-area and the required reliability rating is very high, it is
recommended to step back one or more life-cycle-phases and try to refine the
unit until the unit reliability measurement chart shows acceptable results.

The run reliabilty Ry is the probability that k randomly selected runs
(corresponding to a specified period of time) will produce correct results [39]. The
author adapted this measure and created a so-called unit run reliability.
Assuming a uniform probability distribution, Ry = nc/NR, where nc is the number
of correct runs in a given test sample and NR is the number of total runs made in
a given test sample. The unit’s input space is viewed as the set of all possible
combinations of inputs into the unit, for example global variables, parameter, or
user inputs. Generally speaking, you cannot test all theoretically possible
combinations of input variables because it would simply last too long, sometimes
up to several thousands of years. That's why the problem of minimizing the
number of test cases has to be addressed by a test tool. During runtime, the
genetic algorithm generates more and more test cases according to the evolution
strategy. GATester generates and executes a subset of all theoretically possible
test cases. These test cases form the sample space that is relevant for the unit
run reliability that is calculated at the end of an automatic unit test.

If the user provides GATester with some constraints as shown in chapter 3, the
corresponding unit run reliability is denoted by Ryc, where Cx is the x" constraint
provided by the user. As shown below, constraints are a necessity for reliability
calculations. This is a powerful enhancement of run reliability calculation because
it can be used to assess the reliability of an arbitrary subset of the unit's
functionality.

It appears clear that the operational profile cannot be calculated automatically by
GATester. How should the tool know about the end-user’s habits? Once again,
the constraints specification is used in order to solve this problem. As already
outlined in chapter 3, a constraint is basically an expression of whatever
complexity the user chooses. A set of constraints can also represent an
operational profile by controlling the input variables appropriately. Without
specifying any constraints, the user still gets a rough idea of the unit's maturity,
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but only in terms of coverage testing results. Constraints allow GATester to take
the dynamic behaviour into consideration. In other words, the testing tool itself is
able to decide if a failure occurred or not. Without this information GATester’s
calculated reliability figures would be meaningless. Reliablity assessment without
any kind of reasonable failure data will not work per definition.

Every testing technique is limited in its ability to detect failures. Starting with
technique A you usually will detect some failures. But after a while the detection
rate will decrease significantly. One might think that at this point almost all
failures are detected, therefore it is difficult to find any more. But more likely the
so-called saturation point of testing technique A has been reached. In other
words, there are still some failues waiting to be detected, but they cannot be
found by technique A. If you start using technique B afterwards, the scenario
might be very much the same. First, your detection rate is quite good, although
technique A was unable to find failures, but then it gets worse and worse, similar
to A because again the saturation point of B has been reached. In [21] the
potential danger of reliability overestimation is pointed out. Assuming that the
software is more reliable if failures are identified and fixed, it may be concluded
that it must be sufficiently reliable if there cannot be detected any more failures.
The danger now is that the reliability estimation is based on the saturation point,
rather then on the real failure data revealing when several testing techniques are
being used. That is one of the reasons why the reliability figures calculated by
GATester may serve as a parameter for system reliability assessment but in fact
cannot be the system reliability assessment. By the way, the operational profile is
the second reason. Further research is necessary in order to clarify how to
transform a given operational profile at system level into one at unit level without
loss of important information.
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Conclusions and Future Work

In this paper the author has presented an approach for software test automation
including some key issues in software reliability assessment. We have seen how
to use genetic algorithms for software testing, particularly for test data generation
and studied its performance and effectiveness.

The tool presented in this paper, GATester, supports the effort of reducing the
costs of software testing. All the test cases can be generated and executed
without user interaction at a rate of up to several hundreds per minute. In the
end, the software unit under test has passed sufficient test cases for a given
coverage requirement if it is feasible at all. The number of test cases is a
significant parameter for the overall testing effort. By automatically generating
test data you are able to apply a quantitative approach to software testing
detecting also failures that would not be found otherwise by applying
conventional testing techniques, for example EP (equivalence partioning) or BVA
(boundary value analysis). If the user provides GATester optionally with a so-
called constraint specification the tool is able to detect failures during test
execution and calculate some reliability figures.

At the moment, GATester accepts only units written in the C programming
language. It is intended to support also C++ and maybe some other languages
as well.

The tester should also be able to choose data flow criteria as a coverage
criterion. If the result of some computation has never been used, one has no
reason to believe that the correct computation has been performed [30].

But in the long run, the most challenging research project is the combination of
the approach presented in this paper with another approach that tries to generate
test cases for system testing automatically from a formal specification. Then
GATester could derive the constraints specification automatically and would also
be able to include self checking procedures for the generated test cases.
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S5ESS®-2000 Switch

» Digital Exchange

» Single System, Multiple
Applications
— ISDN voice & data
— Local & Long Distance calls
— Intelligent Network

e Distributed Architecture
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Challenges For Testers

» Growing complexity of feature
specifications

» Business needs require reduced development
intervals

» Find new test design approach
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Specific Problems Addressed
e Problem 1.
Effectively testing software with complex
requirements
* Problem 2:
Efficiently testing software with complex
requirements
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Behavioral Modeling

 Control Flow Testing - atechnique based on
a structural model

 Transaction Flow Testing - atechnique
based on a functional model

» Extended Finite State Testing - control and
transaction flow in a Mealy model
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Behavioral Lucent Techmologles 6
Modeling Advantages

» Quickly identifies redundant and invalid
requirements

 Quickly identifies discrepancies between
requirements and design

* Quickly determines the impact of new and
modified requirements

* Improves requirements converage
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Behavioral Lucent Technologies 6
Modeling Caveats

» Does not explicitly identify missing
requirements

 It'sunlikely to find problems if modeled from
the code itself

» Flowgraphs can contain hundreds of states or
nodes

» Tests are only as good as the model
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Behaviora Lucent Technologies 6
Modeling Difficulties

Manual model validation required

Manual mapping of scenarios and requirements
to tests

Manual update of tests and tables to reflect
changesin requirements

Models quickly becomes cumbersome
Effective technique isinefficient
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In Search of Automation.......

o Graphical User Interface (GUI)
Independent of execution environment
Supports behavioral modeling
Automatic generation of test cases
Supports constraints to limit test output
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TestMaster Subsystems™ ™™

| Debugger |
Test
Graphical Program Execution
Editor Generator Environment

Application

Test Under Test
Programs
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Model Reference  tucent recnoiogies
Technology

Predicate: An expression that

Transition describes the context that must exist
m for transition to be valid.
Current Next
State State Modify Edge Attributes

Constraint: Limitations imposed
to make the length and number
of test programs practical.

Test Info: test execution language to
be added to the Test being /

developed. O0o00000ggggd
O oOonOo
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Model Reference et ecmoiosies
Technology

Coverage is known & Tests are correct &
controllable consistent with model

Test
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/ Supports any
Focus on specific Tests generated rapidly test execution
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Manual vs. TestM aster

Lucent Technologies

Bell Labs Innovations

TEST

e O MANUAL TESTMASTER

Knowledge of Application |Knowledge of Application
Inputs Knowledge of Test Lab Knowledge of Test Lab
Schedule Schedule
Resources Resources
Static Test Strategy Model of Application’s
Outputs Static Set of Tests Behavior

Dynamic Test Set

Comparison

Higher Cost per Test
Higher Test Maintenance
Cost

No Dependency on
Technology

Lower Cost per Test
Lower Test Maintenance
Cost

Improved Coverage
Improved Fault
Prevention
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Determine how to formally review models
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Abstract

The chal lenge for testers: reduce the testing interval wthout reducing quality. Qe
answer: find a new way to approach test design and test generation. This paper wll
di scuss an ongoi ng Lucent Technol ogi es experinment in automated test generation froma
behavi oral model of the software product under test. Results indicate that our new
approach can increase the effectiveness of our testing while reducing the cost of
test design and generation.

Outline

1. Introduction

2. B5ESS™2000 Testing Background

3. Myjor Challenges for Testers

4. New Test Design Strategy — Behavi oral Mdel i ng
5. Autonmatic Test Generation

6. Case Studies

Case 1. Call Managenent Feature

Case 2: Nunber Portability Feature
7. oservations and CGoncl usi ons

1. Introduction

At Lucent Technol ogi es, Test Master ™aut onates the generation of tests for call
processi ng features devel oped for the 5ESS™2000 Saitch. The 5ESS-2000 Switch, a
digital exchange for use in the global swtching network, allows service providers,
such as tel ephone conpanies, to route | SDN voice and data, |ocal voice calls, |ong
distance calls, Internet access, wreless PCS, Advanced Intelligent Network services,
interactive video and multinmedi a services in a high-speed, reliable public network.
During the test devel opnent phase, a call processing feature' s specification docunent
(FSD) serves as the basis for a Test Master state-based nodel. The nodel describes the
behavi or of the switch/network when a call uses the associated feature. TestMaster
then perforns a path analysis on the nodel, generating a conprehensive set of tests
that are formatted and executed in the Lucent 5ESS-2000 testing environnent.

Inthis paper | will reviewthe testing problens we faced, the solutions we found and
the results of inplementing those sol utions.
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2. 5ESS®- 2000 Testing Background

The 5ESS-2000 Switch is a flexible digital exchange for use in the gl obal swtching
network. Dgital swtches replaced earlier electromechanical and anal og switching
systems. Adigital switchis a single systemw th nultiple applications such as
local, toll, and operator services. The 5ESS equi pnent switches | SDN voi ce and dat a,

| ocal voice calls, long distance calls, Advanced Intelligent Network services as wel |
as other nedia on the public swtched network. The switch architecture is a nodul ar,
distributed architecture that allows devel opers to inpl enent enhancenents easily and
al l ows service providers to change their communication network quickly.

The nodul ar design of the 5ESS-2000 Switch also carries through to its software
architecture. The software, prinarily witten in the C programm ng | anguage, extends
the nany advantages of a distributed processing environnment. Lucent Technol ogi es Bel l
Laboratories devel ops and tests the software for the 5ESS 2000 Switches that FOG
required quality nonitoring has shown to be four tinmes nore reliable than its nearest
conpetitor.

At one tine Lucent Technol ogies (at the tine a business unit of AT&T) viewed testing
as a standal one phase in the traditional waterfall process. Systemtesting was done
by a separate organization, and the testers became involved in a project only after
the specifications, design, and the ngjority of the coding was conplete. This nmade
for expensive and tinme consumng test plans. In fact, at one tinme it required al nmost
22 nonths to deliver a najor software rel ease for the 5ESS 2000 Saitch. Process and
organi zati onal changes have reduced that figure to approxi nately 10 nonths, but as
new f eat ures becone nore conplex, it has becone increasingly difficult to maintain
both an aggressive delivery schedule and the high | evel of software quality that our
custoners have cone to expect.

3. Major Challenges for Testers

The chal I enge now for test plan designers is to continue to achi eve the high degree
of testing coverage required to ensure that these increasingly conplex features
naintain quality standards. This requires the use of test devel opnent nethods that
are nore effective in managi ng the coverage of conplex functionality. Traditional
net hods, such as anal yzi ng each requi renent and devel opi ng test cases to verify
correct inplenentation, are not effective in understandi ng the software’s overall
conpl ex behavior. A so the cost pressures in a conpetitive industry add the constant
of cost reduction. This adds the need for efficiency in using nore effective test
devel oprent nethods. Wile initially these two goals, reduced testing costs and
nai ntai ni ng product quality, appeared to be mutual |y exclusive our automation test
generation initiatives have indicated that this is not necessarily the case.

A Feature Specification Docurent, witten by the systens engi neering organi zation,
details the requirements for the behavior of call processing features of the 5ESS.
The behavi or of the feature depends on inputs fromthe parties on the call and the
configuration and signaling input fromthe 5ESS network. Conplex interactions arise
between the calling parties, other features on the switch, and the network, and these
nust be understood to adequately test the new feature. To date, test generation has
relied on manual nethods to interpret the Feature Specification Document, state

di agrans, and cal | processi ng behavior of the switch. For a given call, the swtch
waits for input, e.g., a set of DIM- tones. The sw tch processes the input and
changes the state of the call in progress. (Different inputs fromthe caller and
network configurations cause the 5ESS switch to process calls differently.) For
exanple, if the user enters a valid tel ephone nunber, the call will be processed; if
not, an announcerent will play asking for a valid input. Advanced features in the
5ESS switch have so many variables that it is difficult for the test engi neer to
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identify themall, let alone generate a set of tests to verify that the feature works
inall cases.

4. New Test Design Strategy — Behavioral Modeling

The traditional test design nethods used to generate test cases becane too expensive
and | abor intensive when applied to these highly conpl ex features. V¢ had to enpl oy
adifferent strategy to adequately test new and existing functionality, while
keeping the testing interval fromgrow ng with the software conpl exity.

For the | ast year our strategy has been to use requirenents behavioral nodeling on a
nunber of features to determne the effectiveness of this approach as a test design
and generation strategy. The behavioral nodel ing we use conbi nes transaction-fl ow
control -flow and finite state machine (FSM testing techniques in an extended finite
state (EFSM) nodel . EFSM nodel i ng enpl oys a techni que known as predicate notation to
sinplify nodel s of conplex systens, and reduce the state expl osi on probl em comonly
encount ered wi th pure FSM nodel i ng.

The goal was to create a EFSMnodel that woul d capture the functional behavior of the
requirenents for a new 5ESS 2000 software feature. The nodels, if created during the
requi renents definition phase of the devel opnent cycle, would prevent different
interpretations of the requirenents by the devel opers and testers. Mnimzing these
differences will initself prevent sone faults fromever reaching the test execution
phase, helping to further reduce testing costs.

Qur initial results indicate that while behavioral modeling is very effective in
ensuri ng adequat e coverage during the test design phase and in providing the entire
devel oprment teamw th a conmon view of the requirenents, it quickly becones | abor
intensive during the test generation phase. Onh larger features the process of

nanual | y nodel i ng al so qui ckly becones too difficult and expensive. An obvi ous answer
was to find a tool that coul d automate sonme or all of this process. Wich autonation
tool to use was not as obvi ous.

5. Automating Test Generation Using Model Reference
Technology

To hel p deci de which tool to use, we devel oped a checklist of the characteristics and
functionality to rate automation tool s- characteristics such as execution environnent
i ndependence, support for EFSM flexible output format and the ability to

automatical |y generate uni que paths (tests) fromthe behavi oral nodel .

The tool with the best score based on our checklist is a product called TestMaster,
and Lucent Technol ogi es started a trial programwith to evaluate its ability to allow
test engineers to create and naintai n behavi oral nodel s of our products.

Test Mast er (produced by Teradyne, Inc.) uses nodel reference technology (MRT) to
provide automatic test generation driven froman EFSM nodel of the application under
test. TestMster conprises three najor conponents: a graphical editing tool, a test
programgenerator, and a nodel debugger.

Wsing the sane inputs used to nanual |y generate test scripts or manual ly create an
EFSM test engineers use the State Transition Editor to build a nodel of the

appl i cati ons behavior. The nodel is a series of states connected by transitions.

Each transition defines a state change based on inputs fromuser or swtch. Each
transition in the nodel contains the follow ng associ ated progranmabl e fields: the
predicate and constraint fields, which evaluate context in the nodel, and the test
information field that contains procedures or test code that will be included in any
test case that includes the transition as part of its path. Predi cates are bool ean
expressions that nust evaluate true in order for the transition to be a valid path

wi thin the behavioral nodel. The constraint field allows the user to limt the nunber
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of paths produced during test generation. A set of interactive debugging tools is
available to the test engineer as well.

The test programgenerator uses the nodel to autonatically find valid paths through
the nodel . These paths consist of transitions that represent the behavior of the
application that has been nodel ed. Each valid path through the nodel is converted
into a test case by replacing each transition in the path with its test infornation.
Thus a conpl ete test case is concatenation of all the test infornation field for sone
valid path. These test cases can be produced in any target |anguage.

6. Case Studies

This section will briefly discuss two cases in which we can conpare generating tests
with TestMaster to manual ly witing tests. In both cases the two nmethods were used to
create conparabl e type and nunber of test cases. Both of these cases are products
that are currently available on the 5ESS 2000 Switch.

Case 1. Call Management Feature

Backgr ound

This feature expands the capabilities of basic Call Wiiting to include a nunber of
call managenent features. |f you subscribe to Call Witing on your anal og phone
line, and a third party calls you while you are on a phone call, you receive tones
indicating that another call has arrived. A this point you only have two choi ces:
press the phone switch-hook and answer the new call or ignore the new call.

Call Managenent provides the ability to see the new call’s tel ephone nunber® and the
nane of the caller? A this point you can conference the two calls together, place
either call on hold (nusic optional), or forward the new call manually or
automatical ly to another tel ephone nunber.

Test Ceneration: Manual vs. Test Master

This product was delivered in two phases. Phase two testing required, nodifying sone
of phase one’s tests, using sone of phase one’s tests as is, and witing newtests.
Test generation is neasured by the Techni cal Head Count Year (THCY) effort required
to produce the test cases required. For exanple, if the test generation took an
engi neer one nonth to conplete, it would equal a 0.0833 THCY effort.

To generate the tests manual |y, we used traditional 5ESS 2000 cal | processing test
desi gn and generation nethods. Then, using TestMaster, we created an EFSMfor the
product and autoratically generated test cases. Table 1 conpares the THCY effort
required by these two nethods for this feature.

Manual Generati on Test Mast er CGeneration
Phase (ne 0.120 0.014
Phase Two 0. 050 0. 002
Tot al 0. 170 0.016

Table 1

The use of TestMaster in this case provided a test generation productivity
i mprovenent of just over 90% At this |evel of test generation productivity

' Caller ID Feature
2 Calling Nane Feature
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i mprovenent one test engi neer using TestMaster can be as productive as ten test
engi neers usi ng nmanual test generation.

Case 2: Number Portability Feature

Backgr ound

The conpetition to provide | ocal phone service is increasing every year. But nost
peopl e woul d probably decline to change their local service providers if changi ng
conpani es neant changi ng phone nunbers. The Nunber Portability (NP) feature, nandated
by the FOC to overcone this barrier, allows you to swtch service providers wthout
changi ng your tel ephone nunber.

Test Ceneration: Manual vs. Test Master

For this feature we nanual |y created an BEFSM behavi oral nodel of the requirenments and
nanual | y generated test cases using the nodel. Then, we created an EFSMof the
product in TestMaster and autonatically generated test cases. Table 2 conpares the
THCY effort required by these two nethods for this feature.

Test generation is agai n nmeasured by the Technical Head Count Year (THCY) effort
required to produce the test cases required.

Manual Test Mast er
O eat e Mode 0.21 0. 05
Generate Tests 0.24 0.00°
Tot al 0.45 0.05

Tabl e 2

In this case TestMaster provided a test generation productivity inprovenent of just
over 88% Additional functionality was added to this feature after the original
feature was rel eased. Editing the TestMaster nodel to create the new tests case took
hal f a day* conpared to the estimate of two and a half weeks® for nanual generation.

7. Observations and Conclusions

Test Mast er provides a single environnent to capture the behavior, input variables,
configuration, and 5ESS state information in the formof a nodel. TestMaster can
then autonatically process the nodel to quickly generate a conpl ete set of tests.
Thi s technol ogy provides the 5ESS-2000 cal | processing test teaman efficient and
ef fective method of generating feature tests for 5ESS devel opnent proj ects.

Since starting with TestMaster in Septenber of 1996, we have successful |y nodel ed,
generated, and executed test cases for a nunber of advanced cal |l processi ng features
in the 5ESS switch. To increase the reusability of the nodels, test engineers are
devel opi ng standardi zed met hods for anal yzing the Feature Specification Docunent and
creating TestMaster nmodels. W are al so investigating ways to fornmally review the
nodel s for conpl eteness. The test cases generated are in a standard fornat so they
can be used by both manual and aut omated test executors who have no know edge of the
Test Master nodel and who run the tests as if they were generated manual ly. V¢ can

® Autonated test generation, no THCY effort required.
4°0.00192 THCY effort
® 0.0288 THCY effort
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easily incorporate changes into the nodel s to keep pace with changing feature
requi renents.

Prelimnary data indicates that using TestMaster to autormate our test generation
process can increase our productivity by over 80% while providing a nore effective
way to anal yze conpl ex requirenents.
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Adequacy Criteria- Overview

Test Data Generation

Test Adequacy M easurement

Specification Based

Program Structure Based




Test Adequacy M easur ement

M anagement and control of softwaretesting

Structural Coverage analysistechniques

Static AnalysissDynamic Analysis

Supported by test tools

Criteriafor OO Software

Consider

choice of component for " unit" test

underlying structur e of component

structural coverage criteria development




OO Unit Testing

an "object" asbasic unit of test

structur e based on methods and data

new and inherited object components

new criteriarequired for object structure coverage

Object Structure

dynamic view

control flow based within methods

control flow AND data flow based between methods

unified " flow" based model developed




Graphical Representation

"Port" Object Graph (partial) for Multibuffer Program
Port::Port(;

0 v

.
Port::Initialise()

Test Modd Object Flows

tripleformat <M1,C,M2>

M1, M2 represent method points

C representsflow connection




Object Level Grammar

object_flow --> <m_point,connection,m_point>

m_point --> ancestor_m_point | local_m_point
ancestor_m_point -->'inh_m_point’ | 'inh_virtual_m_point’
local_m_point -->"new_m_point’ |’overriding_m_point’

connection --> data | 'direct’

data --> ancestor_d | local_d
ancestor_d -->'inh_d’
local_d -->"overriding_d’' | 'new_d’

Object Level Flow Types

ancestor_m_point 'direct’ ancestor_m_point
ancestor_m_point ’direct’ local_m_point
local_m_point ’'direct’” ancestor_m_point
local_m_point 'direct’ local_m_point

ancestor_m_point ancestor_d ancestor_m_point
ancestor_m_point ancestor_d local_m_point
local_m_point ancestor_d ancestor_m_point
local_m_point ancestor_d local_m_point

local_m_point local_d local_ m_point




Object Coverage Criteria

° intra-object method-method call flow coverage

° intra-object branch (decision/condition) flow coverage

° intra-object method-method indirect flow coverage

° intra-object all flows coverage

CriteriaHierarchy

All Flows

/

All method-method indirect flow coverage

T

All branch (condition/decision) flow coverage

e

All method-method call flow coverage




CriteriaHierarchy - refined

All Flows

o

All method-method indirect flow coverage

<a,a,a> <a,a,|> <l,a,a> <l,a,l> <I,I,I>

. ArI branch (condltlon/deC|S|on) flow coverage
N\
<a,d,a> <I d I>

/ All method method caII flow coverage

<a,d,a><a,d,|> <l,d,a> <l d, I>

Examples

Refer to Appendix A




Appendix A

// (c) 1997 Tiger Communications plc

1/
// TigStreamProcess constructor
1/
TigStreamProcess::TigStreamProcess
( char *conf_name // Name of config file.
)
{
// Nodes
// 1 SNode
//
conf_file = new CONF_FILE(conf_name); //
input = TigIOPort::CreatePort(conf_file, "Input"); //
output = TigIOPort::CreatePort(conf_file, "Output"); //

control = TigIOPort::CreatePort(conf_file, "Control"); // 1, def(control)
monitor = TigIOPort::CreatePort(conf_file, "Monitor");
rawdata = TigIOPort::CreatePort(conf_file, "RawData");
alarmport = TigIOPort::CreatePort(conf_file, "Alarm");

}
1/
// ProcessTick - idle process while nothing is happening.
// Override this to provide checks when no data received.
// But don’t forget to call it!
1/
void TigStreamProcess::ProcessTick(void)
{
// Call the idle method for all existing I/0 ports.
// Nodes
input->Tick(); // 1 SNode
if ( output != NULL ) // 2 PNode
output->Tick(); // 3 SNode
// 4 EndPNode
if ( control != NULL ) // 5 PNode with pp-use(control)
control->Tick();
if ( monitor != NULL )
monitor->Tick();
if ( rawdata != NULL )
rawdata->Tick();
if ( alarmport != NULL )
alarmport->Tick();
}

Figure 1: Indirect flow example for <a,a,a> type



// (c) 1997 Tiger Communications plc

//

// TigStreamProcess constructor

//

TigStreamProcess: :TigStreamProcess

( char *conf_name // Name of config file.

)

{
// Nodes
// 1 SNode
//

conf_file = new CONF_FILE(conf_name); // 1, def(conf_file)

input = TigIQOPort::CreatePort(conf_file, "Input");
output = TigIOPort::CreatePort(conf_file, "Output");
control = TigIOPort::CreatePort(conf_file, "Control");
monitor = TigIOPort::CreatePort(conf_file, "Monitor");
rawdata = TigIQPort::CreatePort(conf_file, "RawData");
alarmport = TigIOPort::CreatePort(conf_file, "Alarm");

// Multibuffer constructor

Multibuffer::Multibuffer(char *conf_name) : TigStreamProcess(conf_name),ports()
{

char *pname;

int 1;

//Nodes
action_on_unknown_port = conf_file->GetInt("Input", "OnUnknownPort", 0); //1, c-use(conf_file)
port_change_string = UnescapeString(conf_file->GetString("Input",

"PortChangeString")) ;

port_str_ptr = port_change_string;

Figure 2: Indirect flow example for <a,a,l> type



// (c) 1998 Tiger Communications plc

//
// ProcessStream - Open the input stream, then process it.
//
void Multibuffer::ProcessStream(void)
{
// Nodes
if ( input == NULL || outbuf == NULL || ident_buf == NULL ) // 1,2,3
return; // 4
// 5
if ( input->Open() ) // 6
{
terminate = FALSE; // 7 def(terminate)
for ( current_port = (MultibufferPort *)ports.Head();
current_port != NULL;
current_port = (MultibufferPort *)current_port->Next() )
{
if ( current_port->output == NULL || !current_port->output->Open() )
{
terminate = TRUE;
}
}
current_port = NULL;
while ( !terminate ) // 16 pp-use(terminate)
{
inbuf_count = input->Read(inbuf, inbuf_size);
ProcessAnyControlMessages();
}

Figure 3: Indirect flow example for <lLa,l> type
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//

(c) 1998 Tiger Communications plc

//
// Multibuffer constructor
//
Multibuffer::Multibuffer(char *conf_name) : TigStreamProcess(conf_name), ports()
{
char *pname;
int 1;
// Nodes
outbuf_len = conf_file->GetInt("Output", "BufferSize", 1024);
if ( outbuf_len < 20 )
outbuf_len = 20;
outbuf = new char[outbuf_len]; // 10, def(outbuf)
if ( outbuf == NULL )
{
logprintf("Failed to allocate memory for output buffer.");
}
//
// FlushOutput - write the buffered output to the port.
//
{
// Nodes
output->Write("\n", 1);
written_to_def = TRUE;
}
output->Write (outbuf, outbuf_count); // 11, c-use(outbuf)
output->Close();
}

Figure 4: Indirect flow example for <L1,1> type
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Abstract

In this report, criteria for adequacy measurement for
objects in OO software are presented. Coverage cri-
teria that address internal object structure have been
developed. These criteria include coverage of direct
and indirect inter-method flows in addition to inter-
nal method control flows. Results from the analysis of
a commercial system developed in C++ support the
theory that coverage analysis based on methods alone
is insufficient for object level coverage measurement.

keywords: object coverage analysis, adequacy crite-
ria, structural testing, object oriented

1 Introduction

Coverage analysis techniques are commonly ad-
vocated as a useful approach to assess test ad-
equacy. These techniques can be used to aid
the management and control of software test-
ing for projects [6]. Adequacy criteria can pro-
vide test managers with measures to use as in-
dicators of the thoroughness of the testing per-
formed. These criteria may be specified in terms
of coverage for the component that is subject
to test. The coverage analysis techniques may

apply to specification of the test component or
to the internal structure of the component [9].
Such techniques are still being explored for OO
systems [3][8]. In [8], graph representations for
the four types of classes defined in [1] are used
as a basis for the definition of specification based
criteria. In our earlier work [3], a 3-level model
upon which to base structural coverage criteria
was explored. In this earlier study, the motiva-
tion for the development of coverage techniques
based on method interactions in the form of flows
was confirmed. The model has since been refined
in order to improve the granularity at which the
flows are detected (by static analysis) and mea-
sured (by dynamic analysis). We now consider
the flow from the point in a method where it oc-
curs to a destination point in another (or the
same) method. This improves the earlier ap-
proach where only the originating method and
destination method were recorded. Based on the
extended model, a hierarchy of criteria for cov-
erage of objects has been defined. These cov-
erage criteria are defined in terms of flows that
are modelled as triples; this includes both con-
trol flow style flows and data flow style flows in a
single form. Using this common basis the criteria
may be compared using the “subsumes” relation-



ship as for example in [9]. Section 2 describes the
object level test model that is used as a basis for
the criteria. These criteria are defined together
with the relationship between them in section 3.
A code sample from a commercial development
in C++ is used in order to illustrate the types
of the criteria in section 4. Finally, results of
the static analysis given in section 4 are used to
present some conclusions.

2 Object Level Test Model

The test model for OO software has been de-
veloped in order to facilitate the development
of new testing techniques and adequacy crite-
ria. These are needed in order to provide the
tester with methods that are appropriate for use
in an object-oriented environment. In particu-
lar, the object level test model provides a view
of the internal object structure that may be used
to develop structural techniques and coverage
criteria for objects. For testing purposes, ob-
jects may be treated as components that can
be tested in isolation and therefore such tech-
niques and criteria need to address combinations
of methods and data in a way that current com-
ponent testing techniques do not. In addition,
the new techniques and criteria should in some
way account for inherited tested features, or at
least provide the mechanism to recognise when
tested features form part of the new component.
This is important when the efficiency of testing
object-oriented components needs to be consid-
ered. The structural view of objects and the ob-
ject level test model developed are described in
the following subsections.

2.1 Object Structure

An object is considered to have method com-
ponents and data components. Each of these
types of components and the connections be-
tween them provide the basis for a structural
view of objects. The components may be related
in a number of ways. Data components may
be connected to other data components, method
components may be connected directly to other
method components, or data and method com-
ponents may be interconnected. For example,
data components may be linked within an object
via data references, through use of aliases, point-
ers or arrays referring to object data. Meth-
ods may be connected by use of inter method
calls. Methods and data may be linked through
method definitions of, and references to, data.

For dynamic testing, the interconnections that
may be traversed during program execution pro-
vide the basic structures of interest. This in-
cludes both control flow paths and data flow
paths. Method control flow paths may be mod-
elled using flow graphs in the way that these
have been for functions and procedures. Between
methods within an object, inter method control
flows may be modelled by extending the program
graphs to include links between the node where a
call occurs and the corresponding start and end
node from the called method. Data flow style
connections may be modelled by including links
between nodes in methods where data definitions
occur and the object data defined and also be-
tween data object and the corresponding nodes
(c-use) or edges (p-use) in a method where a use
occurs. An object flow graph may be constructed
to model all of these flows providing a graphical
representation of the object in terms useful for
testing purposes. An example of such a graph is
shown in Figure 1.
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Figure 1: Intra-Object Flowpaths

The graph shows control flow graphs for three
methods in a “Port” object from the “Multi-
buffer” program that is used later in the exam-
ples section. The nodes in these graphs represent
sequences of executable code within the method
and the edges represent the flow control. “Port”
data elements “output” and “name” are repre-
sented by solid line rectangles. Edges occurring
between the method graphs and the data ele-
ments show the different interactions that oc-
cur. The method “Port::Port()” defines both of
the data elements during the object construc-
tion. This is shown by the edges labelled ‘def’
between the method and the data elements. The
“Port::Initialise()” method has a predicate use
of the data element “output” resulting in p-uses

on the emanating edges from its predicate node
number 2. Node number 4 has a c-use of the
data element “name”. Node number 7 shows a
direct call to the “Port::Log(...)” method. This
results in an edge labelled ‘call’ from node 7 of
“Port::Initialise()” to node 1 of “Port::Log(...)"
and a return edge from node 2 of “Port::Log(...)”
to node 7 of “Port::Initialise()”.

Previously, class graphs have been used to model
this flow information for individual classes [4] [7].
It is proposed to extend this through class hi-
erarchies by considering the flow internal to an
object. This differs from the incremental view
proposed in [4] and is based on the view that a
system’s objects represent the fundamental com-
ponents for testing purposes. In this case it is



preferred to have a single model that addresses
the testing of objects whether or not inherited
classes form part of the object structure.

2.2 Test Model Object Flows

A flow is represented by a triple in the form
<M1, C, M2> where M1 and M2 are method
points and C is a flow connection occurring be-
tween these method points. The flow connection
may be in the form of a control flow e.g. a di-
rect call from the point M1 to the point M2 or
a branch occurring at point M1 that is followed
by the point M2. Alternatively a flow may be in
the form of a data flow e.g. a data element is de-
fined at point M1 and used at point M2, and the
resulting flow path from M1 to M2 is definition
clear with respect to that data element.

In abstract terms the test model for an object is
viewed as a set of flows. The flows may be cate-
gorised in a way that aids the tester in the deter-
mination of test requirements for an object with
inherited tested features. This shows the tester
which of these inherited features may require fur-
ther testing due to interaction with newly de-
fined features. The extent to which inherited
object features are “preserved” i.e. are embed-
ded as is, can also be shown by these categories.
This information may be regarded as an indica-
tor of the “testability” of the implementation of
the object in the sense that it may be desirable
to limit interaction between the new features and
the inherited features to the inherited object’s
interface. This “preservation” of the inherited
object can reduce the testing effort for the new
object. This style of implementation retains the
generalisation/specialisation relationship that is
desirable in an OO system without compromis-
ing the integrity of the inherited object.

The categories for the flows are defined by the
view of the flow with respect to the current ob-
ject. The method points M1 and M2 are tagged
in accordance with the origin of their declara-
tion. These are either ancestor method points
i.e. declared in an inherited object or are local
method points i.e. declared in the current ob-
ject. The connection between the method points
may be direct or indirect via data. In the latter
case the connection is also categorised in accor-
dance with the origin of the declaration. The
data is either ancestor data or local data as in
the case of the method points. These terms are
more formally defined;

object_flow --> <m_point,connection,m_point>

m_point --> ancestor_m_point | local_m_point

ancestor_m_point --> ’inh_m_point’ |
’inh_virtual_m_point’

local_m_point --> ’new_m_point’ | ’overriding_m_point’

connection --> data | ’direct’

data --> ancestor_d | local_d

ancestor_d --> ’inh_d’

local_d --> ’overriding_d’ | ’new_d’

The number of possibilities of the types of flow
that may be determined from the grammar
above is, however, greater than the number that
can occur in practice. This may be restricted by
a set of categories i.e. we can define categories
of flows based on the legal options that are de-
termined by programming language rules. The
following restricted set of categories are thus de-
fined;

ancestor_m_point ’direct’ ancestor_m_point
ancestor_m_point ’direct’ local_m_point
local_m_point ’direct’ ancestor_m_point
local_m_point ’direct’ local_m_point
ancestor_m_point ancestor_d ancestor_m_point
ancestor_m_point ancestor_d local_m_point
local_m_point ancestor_d ancestor_m_point
local_m_point ancestor_d local_m_point
local_m_point local_d local_m_point



The test model instance for a particular object
consists of a set of these flows defined in the
form of a set of triples. This set of triples is
determined from source code using static analy-
sis techniques.The flows may then be categorised
in accordance with the restricted set described
above. These categories not only serve to spec-
ify legal types of flows occurring in objects but
also serve to provide type information within the
test model that may be used in determining cov-
erage requirements for an object that is subject
to test. Categories that are entirely inherited
i.e. with all ancestor components as for example
in flow types <a,d,a> and <a,a,a>, indicate an
opportunity to reduce testing effort in an object.
Test cases previously executed on flows of these
types may be omitted entirely without loss of
coverage of the object structure. Alternatively a
selection of cases may be re-used, for example in
the case where it is desirable to re-test inherited
features in their new context e.g. when testing
the impact of execution in an object with in-
creased memory requirements. In terms of cover-
age of program structure nothing more is gained
but there may be benefit from the re-test when
other such test objectives are considered. The
decision to re-test or not then becomes a mat-
ter for risk analysis where the additional costs of
re-test may outweigh the possible benefits from
doing so.

3 Criteria Definitions

The coverage criteria we propose for objects are;

e intra-object method-method call flow cover-
age

e intra-method branch (decision/condition)
flow coverage

e intra-object method-method indirect flow
coverage

e intra-object all flows coverage

Each of these criteria may be further refined
to account for the object level categories. This
shows how the impact of inheritance can be ad-
dressed in each case.

The criteria together with their refinements are
defined as follows;

3.1 Intra-object method-method call

flow coverage

This coverage criterion requires all internal
method-method calls to be executed at least
once;

Defn A set of execution paths P satisfies intra-
object method-method call flow coverage if for
each method M, for all nodes n in the method
control flow graph for M that contain an intra-
object method-method call, there is at least one
path p in P such that p contains n.

This criterion can be refined by considering the
following categories from the model:

ancestor_m_point ’direct’ ancestor_m_point
ancestor_m_point ’direct’ local_m_point
local_m_point ’direct’ ancestor_m_point
local_m_point ’direct’ local_m_point

The method-method call described in the crite-
rion can be replaced by these four types of pos-
sible call. The method-method call in general
maps to the idea of a triple in the form:

caller_method_point ’direct’ called_method_point



The caller_method_point occurs at a node on
the control flow graph where the method-method
call occurs. The called method point occurs at
the start node of the control flow graph for the
called method.

3.2 Intra-method  branch (deci-
sion/condition) flow coverage

This coverage criterion requires the method con-
trol flow graph to be constructed with separate
nodes for each condition in an expression used
in a decision.

Defn A set of execution paths P satisfies intra-
method branch (decision/condition) flow cover-
age if for all edges e in the method control flow
graph there is at least one path p in P such that
p contains e.

This criterion can be refined by considering the
following categories from the model:

ancestor_m_point ’direct’ ancestor_m_point
local_m_point ’direct’ local_m_point

In this case, a branch occurs on a direct flow
between two method points from within a single
method. This can be an inherited method giving
rise to <a,d,a> flows or a newly defined method
giving rise to <l,d,I> flows.

3.3 Intra-object method-method indi-
rect flow coverage

This coverage criterion requires all method-data-
method flows to be exercised at least once. These
flows occur on execution paths between meth-
ods in a definition-use style manner. The crite-
rion requires that the methods will be executed
in such a way that an execution path from the

point of definition of the object data to the point
of use of the object data will be executed. This
execution path must be definition clear with re-
spect to that object data.

Defn A set of paths P satisfies intra-object
method-method indirect flows coverage if for all
methods M1 and M2, M1 not necessarily dis-
tinct from M2, for all nodes nl in the method
control flow graph for M1 that contain an object
data definition, for all nodes n2 in the control
flow graph for M2 containing object data c-uses
and all edges e in the control flow graph for M2
containing object-data p-uses, there is at least
one path p in P such that p includes a subpath
through which the definition of the object data
reaches its use.

This criterion can be refined by considering the
following model categories:

ancestor_m_point ancestor_d ancestor_m_point
ancestor_m_point ancestor_d local_m_point
local_m_point ancestor_d ancestor_m_point
local_m_point ancestor_d local_m_point
local_m_point local_d local_m_point

3.4 Intra-object all flows coverage

This coverage criterion requires that all flows of
the forms identified above should be exercised at
least once. The indirect flows may in some cases
fail to subsume the branch (decision/condition)
coverage criterion. All flows requires indirect
flows and additional flows that ensure branch
coverage is achieved.

Defn A set of paths P satisfies intra-object all
flows coverage if for all methods M1, and M2, M1
not necessarily distinct from M2, for all nodes
nl in the method control flow graph for M1
that contain an object data definition and for
all nodes n2 in the method control flow graph
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Figure 2: Object Level coverage criteria - subsumes hierarchy

for M2 that contain object data c-uses and all
edges e in the graph for M2 that contain object
data p-uses, there is at least one path p in P
such that p includes a subpath through which
the definition of the object data reaches its use;
additionally, for all methods M, for all edges e in
the method control flow graph that do not con-
tain a p-use of object data, there is at least one
p in P such that p contains e.

In each of the criteria above the execution paths
must be feasibly executable.

3.5 Relationship between Criteria

The relationship between the criteria is defined
in terms of the coverage of object structure
achieved when test cases executed are adequate

with respect to given criteria. A subsumes rela-
tionship as defined in [9] is used to develop a hi-
erarchical view of the coverage criteria proposed
for objects.

The following subsumes relationship holds for
object level coverage analysis;

e intra-method level branch (deci-
sion/condition) coverage subsumes direct
method flows

e indirect method flow coverage sub-
sumes intra-method level branch (deci-
sion/condition) coverage if

— each condition of a decision in a
method has an object data reference
i.e. uses some object data to determine
the outcome of the decision



e all flows coverage subsumes all indirect
method flow coverage and also all intra-
method branch (decision/condition) cover-
age

The subsumes hierarchy is shown in Figure 2.
In this figure, the subsumes relation is depicted
by a solid arrow line. Dashed arrow lines show
the subsumes relation between criteria that holds
when the assumptions described above are true.

4 Examples

The analysis of a class hierarchy developed in
C++ is used here to illustrate the model con-
cepts and the criteria definitions. An overview
of the hierarchy is shown in Figure 3. Note that
lines with arrows denote the inheritance relation
while lines without arrows denote associations.
This overview includes those classes that form
part of the inheritance structure for the “Multi-
buffer” program.

MultibufferPort_| [ TigstreamProcess |

TigList

T Mutibffer |

{multibuffer)

Figure 3: Multibuffer class tree overview

The process used to determine flows for a “Multi-
buffer” object is described and is illustrated
in detail through the analysis of the “Multi-
buffer::FlushOutput” method. In the following
description, nodes of the control flow graph may
be

e SNodes i.e. representing a sequence of code
up to but excluding any expression part of
a predicate

e PNodes i.e. representing an expression that
determines some alternative control flow se-
quence

e EndPNode i.e. representing a point where
alternative control flow paths merge

The source for the “Multibuffer::FlushOutput”
method together with the control flow graph is
shown in Figures 4 and 5.

The notion of a potential p-use (pp-use) of a data
element is also used in the creation of the node
lists. This represents the use of a data element
in a predicate node PNode and which is usually
referred to as a p-use of the data but attributed
to the emanating edges from the PNode. This
pp-use is transformed to the possible alternative
p-uses in the step determining the triples.

4.1 Process steps

1. For each class in the object hierarchy;

1.1 For each method in each class;

1.1.1 construct the method control flow graph
with numbered nodes for each method point
1.1.2 for each node of the method control
flow graph construct an ordered list of data
definitions (def) uses (c-use, pp-use) and calls
1.1.3 for each node construct a next node list
1.1.4 tag each member documented in the lists
as ancestor if declared in a parent class or local
if declared in the current class

2. For each class

2.1 For each local data member in the class;
2.1.1 construct data flow triples from method
node lists



// (c) 1998 Tiger Communications plc

//
// FlushOutput - write the buffered output to the port.
//
void Multibuffer::FlushOutput(void) //Nodes
{
if ( current_port == NULL ) /11
{
if ( output != NULL && output->Open() ) // 2,3
{
if ( 'written_to_def ) // 4
{
// This is the first time we’ve written to the default
// output port this invocation, so we’ll write a
// date stamp to separate it from any previous stuff.
time_t now = time(NULL); // 5
char *str;
str = "\n\n========== ";
output->Write(str, strlen(str));
str = ctime(&now);
output->Write(str, strlen(str));
output->Write("\n", 1);
written_to_def = TRUE;
¥ // 6
output->Write(outbuf, outbuf_count); /] 7
output->Close();
} // 8
¥
else
{
current_port->output->Write(outbuf, outbuf_count); // 9
} // 10
outbuf_count = 0; // 11
outbuf_ptr = outbuf;
}

Figure 4: Multibuffer::FlushOutput source

2.2 For each inherited data member accessed in
the class;

2.2.1 construct data flow triples from node lists
of current class and inherited class

2.3 For each method in the class construct the
method-method direct calls from the node lists
2.4 For each method in the class construct the
branch list from the node lists

3. Determine the triples for the object

3.1 Determine triples blocked or changed by
scoping for the object

3.1.1 For each inherited triple representing
direct method-method calls

3.1.1.1 Examine method point 1 for points in a
virtual method that is overridden in the object
and mark for deletion unless there is an explicit
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Figure 5: Multibuffer::FlushOutput control flow
graph

call to the overridden method

3.1.1.2 Examine method point 2 for points in a
virtual method that is overridden in the object
and re-classify as a,d,l (this accounts for picking
up the overriding method due to the object
instance)

3.1.2 For each inherited triple representing
branch flows

3.1.2.1 Examine method points for points in a
virtual method that is overridden in the object
and mark for deletion unless there is an explicit
call to the overridden method

3.1.3 For each inherited triple with data connec-
tion

3.1.3.1 Examine method point 1 for points in
virtual functions that are overridden in the
object and mark for deletion unless there is an
explicit call to the overridden method

3.1.3.2 Examine method point 2 for points in
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virtual functions that are overridden in the
object and mark for deletion unless there is an
explicit call to the overridden method

3.2 Remove triples marked for deletion

4.2 Flows analysis

4.2.1 Multibuffer::FlushOutput node list

Node 1 : PNode, pp-use(current_port,l)

Nextnodes : 2,9

Node 2 : PNode, pp-use(output,a)

Nextnodes : 3,8

Node 3 : PNode, pp-use(output,a)

Nextnodes : 4,8

Node 4 : PNode, pp-use(written_to_def,l)

Nextnodes : 5,6

Node 5 : SNode, c-use(output,a), c-use(output,a),

c-use(output,a), def(written_to_def,1)

HI)

EndPNode
H

SNode, c-use(output,a), c-use(output,a)
: 8

EndPNode

10

SNode, c-use(current_port,l)

10

Nextnodes

Node 6 :

Nextnodes

Node 7 :

Nextnodes

Node 8 :

Nextnodes :

Node 9 :

Nextnodes :

Node 10 : EndPNode

Nextnodes : 11

Node 11 : SNode, def(outbuf_count,l), c-use(outbuf,l),
def (outbuf _ptr,1)

: 0

8

Nextnodes
Branches:

4.2.2 Flows examples

Each of the following flows are examples of the
different types may occur and that exist in the
C++ system. Direct calls and branch type flows
are easily seen within specific methods and are
not illustrated in this report. (Although the 1,d,1
type branch flow given below can be seen in the
FlushOutput method source in Figure 4.) Code
samples for the indirect flow types are given in
Appendix A, Figures 6 to 9.



Flows - direct calls Type
<ProcessControlBlock:5,direct,ProcessControlMsg><a,d,a>

<ProcessBlock:5,direct,ProcessChar> <a,d,1>
<Multibuffer:1,direct,TigStreamProcess:1> <l,d,a>
<ProcessChar:12,direct,FlushQutput:1> <1,d,1>
Flows - branches Type
<TigStreamProcess:2,direct,TigStreamProcess:3> <a,d,a>
<FlushQutput:2,direct,FlushOutput:8> <1l,d,1>
Flows - indirect Type
<TigStreamProcess:1,control,ProcessTick:5,6> <a,a,a>
<TigStreamProcess:1,conf_file,Multibuffer:1> <a,a,l>
none <l,a,a>

<ProcessStream:7,terminate,ProcessStream:16,17>
<Multibuffer:10,outbuf,FlushOutput:11>

<l,a,l>
<1,1,1>

4.2.3 Flows totals for Multibuffer object

The following summarises the totals for the
counts of flows found in the Multibuffer object.

Class Flows: direct - 12calls+195branches,

indirect - 247, total 454
Blocked Flows: direct - bcalls+1b5branches,

indirect - 33, total - 53
Object Flows: local 454, inherited - 161,

blocked - 53, total - 562

These counts show a significant number of flows
that should be covered during testing. However,
it is not proposed that a single test case is needed
for every flow. A test case executed for a single
method may cover several branches. Similarly,
a test case executed for an object that includes
calls to more than one method may cover several
indirect flows. The significance of the figures is
in the indication that there are many possibili-
ties for methods to interact indirectly via object
data. These interactions are not always obvious
and may be missed during test case design, espe-
cially in the case where the focus of the testing
and the coverage measurement is on individual
methods. The static analysis may be used to
drive the design of test cases in terms of the or-
dering needed for method invocations. In the

case where an object has many “simple” meth-
ods i.e. methods with few branches, it may be
more efficient to consider the testing of these
methods and their interactions together within
the context of the object rather than attempting
test case design focused on the individual meth-
ods. The criteria proposed in this report support
the coverage analysis requirements both for the
individual methods and for the interactions oc-
curring between them.

5 Conclusion

In this report a hierarchy of criteria for structural
coverage analysis of objects has been presented.
The analysis of a commercial system developed
in C++ was used to support the motivation for
the development of these criteria. This analysis
shows a significant number of object flows that
occur between methods that are not detectable
by method coverage analysis alone. These are
indirect flows between methods via object-level
data. Tool support for coverage analysis of OO
software primarily targets method coverage [2]
although method-method direct calls are trace-
able by some.

The flows detectable by static analysis can be
further analysed and used to assist in determin-
ing an ordering of execution of object methods.
This kind of “grey-box” approach is similar to
that described in [5].

The types used to categorise the flows in the
model developed here can provide useful infor-
mation for the management and control of the
testing process. Some savings can be made when
inherited tested features form part of a new ob-
ject. The profile of the object test model derived
from the static analysis may be used as an in-

11



dicator of testability and also to drive the test
strategy.

The information provided by the static analysis
may be traceable from detailed designs although
further work is needed in order to achieve this.
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Appendix A

// (c) 1997 Tiger Communications plc

1/
// TigStreamProcess constructor
1/
TigStreamProcess::TigStreamProcess
( char *conf_name // Name of config file.
)
{
// Nodes
// 1 SNode
//
conf_file = new CONF_FILE(conf_name); //
input = TigIOPort::CreatePort(conf_file, "Input"); //
output = TigIOPort::CreatePort(conf_file, "Output"); //
control = TigIOPort::CreatePort(conf_file, "Control"); // 1, def(control)
monitor = TigIOPort::CreatePort(conf_file, "Monitor");
rawdata = TigIOPort::CreatePort(conf_file, "RawData");
alarmport = TigIOPort::CreatePort(conf_file, "Alarm");
}
1/
// ProcessTick - idle process while nothing is happening.
// Override this to provide checks when no data received.
// But don’t forget to call it!
1/
void TigStreamProcess::ProcessTick(void)
{
// Call the idle method for all existing I/0 ports.
// Nodes
input->Tick(); // 1 SNode
if ( output != NULL ) // 2 PNode
output->Tick(); // 3 SNode
// 4 EndPNode
if ( control != NULL ) // 5 PNode with pp-use(control)
control->Tick();
if ( monitor != NULL )
monitor->Tick();
if ( rawdata != NULL )
rawdata->Tick();
if ( alarmport != NULL )
alarmport->Tick();
}

Figure 6: Indirect flow example for <a,a,a> type
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// (c) 1997 Tiger Communications plc

//
// TigStreamProcess constructor
//
TigStreamProcess::TigStreamProcess
( char *conf_name // Name of config file.
)
{
// Nodes
// 1 SNode
//
conf_file = new CONF_FILE(conf_name); // 1, def(conf_file)
input = TigIOPort::CreatePort(conf_file, "Input");
output = TigIOPort::CreatePort(conf_file, "Output");
control = TigIOPort::CreatePort(conf_file, "Control");
monitor = TigIOPort::CreatePort(conf_file, "Monitor");
rawdata = TigIOPort::CreatePort(conf_file, "RawData");
alarmport = TigIOPort::CreatePort(conf_file, "Alarm");
}
//
// Multibuffer constructor
//

Multibuffer::Multibuffer(char *conf_name) : TigStreamProcess(conf_name),ports()
{

char *pname;

int 1;

//Nodes
action_on_unknown_port = conf_file->GetInt("Input", "OnUnknownPort", 0); //1, c-use(conf_file)
port_change_string = UnescapeString(conf_file->GetString("Input",

"PortChangeString"));

port_str_ptr = port_change_string;

Figure 7: Indirect flow example for <a,a,l> type
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//
1/
//
1/

(c) 1998 Tiger Communications plc

ProcessStream - Open the input stream, then process it.

void Multibuffer::ProcessStream(void)

{

if ( input == NULL || outbuf == NULL || ident_buf == NULL )
return;

if ( input->Open() )

{

terminate = FALSE;

for ( current_port

}

= (MultibufferPort #*)ports.Head();
current_port != NULL;
current_port = (MultibufferPort *)current_port->Next() )

if ( current_port->output == NULL || !current_port->output->Open() )
{

terminate = TRUE;
¥

current_port = NULL;

while ( 'terminate )

{

inbuf_count = input->Read(inbuf, inbuf_size);

ProcessAnyControlMessages();

// Nodes
// 1,2,3
// 4
// 5
// 6

// 7 def(terminate)

// 16 pp-use(terminate)

Figure 8: Indirect flow example for <l,a,1> type
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(c) 1998 Tiger Communications plc

//
// Multibuffer constructor
//
Multibuffer::Multibuffer(char *conf_name) : TigStreamProcess(conf_name), ports()
{
char *pname;
int 1;
// Nodes
outbuf_len = conf_file->GetInt("Output", "BufferSize", 1024);
if ( outbuf_len < 20 )
outbuf_len = 20;
outbuf = new char[outbuf_len]; // 10, def(outbuf)
if ( outbuf == NULL )
{
logprintf("Failed to allocate memory for output buffer.");
}
//
// FlushOutput - write the buffered output to the port.
//
{
// Nodes
output->Write("\n", 1);
written_to_def = TRUE;
}
output->Write(outbuf, outbuf_count); // 11, c-use(outbuf)
output->Close();
}

Figure 9: Indirect flow example for <1,1,1> type
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INTRODUCTION

INTRA-CLASS TESTING

the central problem of object-oriented testing

© How to test an object (structurally)

© How to choose method sequences

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. Al
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INTRODUCTION

BACKGROUND

@ Currently, in OO testing, integration testing is
dominant and difficult

@ Industry trend is toward component software
(JavaBeans™)

@ Specification of client objects will be unknown
because even the client objects will be unknown.

@ Integration testing will not even be possible!

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. B1

INTRODUCTION

DYNAMIC INFORMATION FLOW ANALYSIS
an advanced form of path analysis

@ Facilitates visualization of intra-class paths

© Identifies fundamental method sequences
which under composition form necessary
test sequences

© Demonstrates that path coverage measurement

Is necessary for determining the effectiveness
of test sequences

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. c2
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INTRODUCTION

INTRODUCE mPATH

© Main contribution
© A new conceptual tool for testing

© Represents flows through methods

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. ccl

INTRODUCTION

SCOPE

@ Informal theory

@ Intuitive presentation using simple Java™ examples
© No automated tool (yet)

@ Simplified model

@ Limitations inherited from path testing and
static analysis

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. D1
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INTRODUCTION

STRATEGY IS BASED ON

“A Theory of Test Efficiency’ [Bently 1993]

@ Testing is a battle with combinatorics
@ Turns conventional testing theory upside down
© What tests are unnecessary?

© What are the fundamental elements of
necessary tests?

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. E2

THEORY

2-SEQUENCE
independent Java methods

Al B BilA

sequencing of methods does not affect behavior

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. F2
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THEORY

2-SEQUENCE
interactive Java methods

X

A == B

shared instance variables create flows

data flow is sufficient for representing flows
between methods

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. FF1

THEORY

N-SEQUENCE

path through methods is a p-path

A ‘—p>~—q>~ B

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. Gl
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THEORY

INFORMATION FLOW

builds on control flow and data flow analysis

composable elements

@ memory access elements
@ data flow elements
@ control flow element

two levels
© a intra-method
@ mintra-class

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. H1

THEORY

a LEVEL FLOW ANALYSIS EXAMPLE

public int addl(inta) { /* segment #1 */

int b=0; /* segment #1 */
if(a>0) /* segment #2 */

b=1+a; /* segment #3 */
return(b); /* segment #5 */

}

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. 13
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THEORY

DATA FLOW TESTING

data flow strategies are diverse and complex
[Clarke et al. 1986]

du-pair

A B

DEFINITION USE

o[09] == [ISI0Y)

DEF-CLEAR PATH

X=5: printin(x);

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. J3

THEORY

ELEMENTS OF INFORMATION FLOW
ANALYSIS

a memory access
@ definition value is bound to a variable d;(b)

© use value of variable is accessed us(b)

© p-use use contained in a predicate pu,(a)
a data flow

input element ===p output element

© du-pair definition m==p- use  d;(b) === us(b)

© ud-pair use ===p- definition  uz(a) === d;(b)

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. K2
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THEORY

THE NEED FOR A MORE GENERAL FLOW

ANALYSIS
data flow

OLOROLONOLO

example of flow relationship that is not data flow

o

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. L3

THEORY

ELEMENTS OF INFORMATION FLOW
ANALYSIS

a control flow

OLMOLOLOLOLO

a control flow

@ cd-pair p-use ===p 3 memory access element
puy(a) == d3(b)

p-use that can block information flows
complementary pair

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved.
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THEORY

ELEMENTS OF INFORMATION FLOW
ANALYSIS

mlevel

mmemaory acCcess element

@ m definition definition of an instance variable mdg(power)
© muse use of an instance variable mug(power)
© mp-use muse contained in a predicate  mpu,(safety)

mdata flow element

© mdu-pair mdefinition ====p muse
mds(safety) s==p mpu,(safety)

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. N3

THEORY

ELEMENTS OF INFORMATION FLOW
ANALYSIS

mlevel

mcontrol flow element

© mud-pair muse ==» mdefinition
mds(safety) = mu,(safety)
© mcd-pair  occurs when mud-path flows through a-cd-pair

mcomplementary pair

© if complement is also a m cd-pair

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. NN3
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THEORY

mPATH

mDEFINITION ‘ mUSE

md(x) RN mu(X)

generalization of def-clear path

types
@ static (structural)

@ dynamic (run-time)

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. o1

THEORY

DYNAMIC INFORMATION FLOW

Examples of dynamic mstates

disappearance of mu(x)
Y=l
if(y<0)
y=x+2,

disappearance of md(x)

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. P2
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THEORY

DYNAMIC INFORMATION FLOW

mflows are dynamic

@ - @

inter-method

mstates
md(x) |:> f change

dynamically
Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. QQ2

THEORY

DYNAMIC INFORMATION FLOW

mflows are dynamic

intra-method

mstates

appear 3 md(y)
and

disappear

at run-time mu(x) md(y)

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. Q2
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THEORY

3-SEQUENCE

Effective testing requires a run-time mpath between
and through methods

A B
o B

testing of mud-pair
M3 Strategy

C

mu(y)

md(x)

=)

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. R2

THEORY

DYNAMIC INFORMATION FLOW
intra-class test strategies

spectrum

m all Mmemory access elements
m all mdata/control flow elements
M, all m2 and 3-sequences

Math  all Mpaths

M,;  all Nt 2 and 3-sequences
Museq @l (necessary) sequences

each method in an effective test sequence is associated
with at least one mpath

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. S3

PAGE 12



THEORY

PRINCIPLES OF INFORMATION FLOW
INTRA-CLASS TESTING

#1 - an effective test is a run-time mpath

#2 - testing a run-time mpath requires that each
m cd-pair along path be tested
(insofar as this is possible through sequencing)

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. 1

EXAMPLE

MmLEVEL FLOW ANALYSIS EXAMPLE -1

/* PowerControl V10
ROUGH SPECIFICATION

This class simulates a simple power control (electric lawnmower etc.)
with 4 buttons:
PowerUp button turns power on.
PowerDown button turns power off.
Safety button toggles safety on (1) and off (O).
If safety is on, the PowerUp and MorePower buttons
are deactivated. The initial condition is safety on.
MorePower
Each time the MorePower button is pressed, power level
advances one level. There are four power levels: offQ),
low(1), medium(2) and high(3).
*/

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. u3
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EXAMPLE

MLEVEL FLOW ANALYSIS EXAMPLE - 2

public class PowerControl {

/* CLASS VARIABLES */
int power; public void PowerDown( ){
int safety; power = O;
PowerControl( ){ )

power = O; public void ToggleSafety(){

safety =1, if(safety == 0)
} safety = 1;

else

public void PowerUp(){ safety = O;

if(safety == 0) }

power =1,
}
Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved.
EXAMPLE

mLEVEL FLOW ANALYSIS EXAMPLE -3

public void MorePower( ){ /* segment#1 */

if(safety == 0) { /* segment# 2 */
if(power = 0) { /* segment# 4 */
power = power +1, /* segment#5 */
if(power > 3) /* segment# 6 */
power = 3; /* segment# 7 */
}
}

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved.
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EXAMPLE

STEP 1 - CONSTRUCT nmla GRAPHS

PowerControl PowerUp ToggleSafety
p-d,(p) p-pu,(s) H-pu,(s)
-d,(s 4
H-d,(s) J \‘ l( \‘
MorePower B pdg(p)  H-dy(s) p-dg(s)
H-pu(s)
e PowerDown
5 ¥ l H-d,(p)
U'pU4(p)
v 1
]
H-Ug(p)—> p-dg(p)—> pug(p)
4
PR Y
H-ds(p) p-d,(p)
Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. X4

EXAMPLE

STEP 2 - CONVERT mla GRAPHS
INTO mBOXES

PowerControl PowerUp PowerDown
dl(S) puz(s)—P dg(p) dl(p)
d,(p)
ToggleSafety MorePower
PU,(S) ===p d(S) puzgs; —d_(p)
pu,(p
d,(s) u5€p) e d,(p)
Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. Y3
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EXAMPLE

STEP 3 - DERIVE THE mPATHS

PowerControl
d(s)
d,(p)

ToggleSafety
pu2(s) — d3(s)

|

PowerUp
PU,(S) ==—=p d(P)

PowerDown
d,(p)

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved.

EXAMPLE

STEP 4 - CONSTRAIN TESTING TO RUN-

TIME mPATHS

PowerControl
d,(s)
d,(p)

MorePower

pu(s)
pu,(p)
ug(p)

MorePower
pu,(s) d.(p)
pu,(p)
us(p) d7(p)

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved.
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EXAMPLE

STEP 5 - TEST mcd-pairs

H-pU,(S) =A=p H-pu,(P) either test case below
H-puU,(P) =2=p H-U5(P) either test case below
pug(p) ===a p-do(p) PC TS PU MP MP

pug(p) == p-d,(p) PCTS PU MP MP MP MP

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved.

EXAMPLE

TEST CASES

PC PD MP
PC MP

PC PU

PC TS MP

PC TS PU MP

PC TS TS MP

PC TS TS PU

PC TS PU MP MP

PC TS PU MP MP MP MP

A simple static data flow strategy, such as all mdu-pairs, would miss the test cases in the box
and include unnecessary test cases (PC PU MP and PC MP MP)

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved.
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CONCLUSION

DYNAMIC INFORMATION FLOW TESTING

© elucidates the structure of intra-class paths

© identifies necessary fundamental subsequences
(but not all necessary sequences)

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. _b1

CONCLUSION

PRINCIPLE #3 OF INFORMATION FLOW
INTRA-CLASS TESTING

@ To assure effective intra-class testing, path
execution must be monitored at run-time

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. _E1
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MERGING INFORMATION FLOWS IN
MorePower

MorePower
PU,(S) ==p d5(P)

us(p)

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. _F3

MGRAPH OF ELEMENTARY p-INPUT
MPATHS FORMorePower

PowerControl ToggleSafety PowerUp MorePower
d,(s) PUL(S) =—p d(S) pUL(S) = d(p)] —— | [PU,(P)

7

d,(p) ~ d,(s) / ug(p)

PowerDown
d,(p)

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. _G4
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MGRAPH OF ELEMENTARY s-INPUT
MPATHS FORMorePower

PowerControl ToggleSafety MorePower
d(s) [——— [pu,(s) > d(s) pU,(S)

\ ~ d,(s) /

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. _H4

mGRAPH OF MorePowerWITH
COMBINATION OF ELEMENTARYMPATHS

MorePower
Pu S —» d ()

pu’ (p)
u_(p) ~ d,(P)

ToggleSafety
pu,(s) == d_(s)
TSae

PowerControl ToggleSafety PowerUp
A,(S) [z | PU(S) == d () | Fmms | PUL(S) —> (D)
d(p) TS ds)

PowerDown _/
d (p)

flows corresponding to n¥-ud-pairs are shown in blue

Copyright 1998 RBSC Corporation and p-Research. All Rights Reserved. _5
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The dynamic information flow testing of an object

William G. Bently Robert V. Binder
M-Research RBSC Corporation
wgb@earthlink.net rbinder@rbsc.com

ABSTRACT

The central problem of object-oriented testing is determining method activation
sequences for the testing of a class. In the literature, this is called the “intra-class” level
of testing. For object-oriented languages such as Java™, specification-based strategies
are further developed than structural test strategies. Although both are essential for
effective testing, structural strategies are especially well suited for the Javaenvironment,
where dynamic linking and bean technology make it virtually impossible to predict the
sequences that will be invoked by client objects at run-time.

A testable model of the interaction among class methods is needed for test design, at the
class interface level [6], [7]. An orthogonal model of intra-class interactions at the
implementation level is necessary to assess the adequacy of a test suite at class scope
[5]. This paper extends the class scope implementation model by developing
information-flow paths [4] from the class flow graph.

Information flow analysis elucidates the implicit paths that result as methods access
instance and class variables. This theory is capable of identifying fundamental
subsequences which can be composed to produce almost all necessary method
activation sequences.

A surprising result of this theory, is that a test that exercises a particular sequence may
not be an effective test of that sequence. The theory indicates that a special form of path
coverage must be performed during testing to assess the effectiveness of tests.

The exposition of the theory will be informal, using simple Java examples to
demonstrate the basic concepts.

INTRODUCTION

Integration testing predominates during the testing of applications written in object-
oriented languages such as Java. Integration testing could be eased and development
costs reduced if we had an effective technique for testing an object prior to integration.
But how should an object be tested?

In this paper, we introduce a new structural strategy for the testing of an object. It
addresses the central problem of object-oriented testing: the selection of method

Copyright 1998 RBSC Corporation and p-Research. All rights reserved.
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sequences. This strategy applies the basic concepts of dynamic information flow testing
[4] to the class scope implementation model [5].

The intra-class flow elements, introduced in this paper, are abstractions of the flow
elements described in earlier papers on information flow testing [2,3,4]. These new
elements yield insight into the structure of intra-class paths.

scope

As a form of path testing, dynamic information flow testing shares the primary
limitations of path testing strategies:

Sufficiency As compared to exhaustive testing, information flow
analysis greatly reduces the number of sequences to be tested, but it
cannot, in general, determine a sufficient set of test sequences.

Infeasibility It is often impossible to construct test cases that
execute a specific path.

Determining input conditions for the execution of a specific path
Even when a path is feasible, it may be very difficult to determine
how to execute a specific path.

Hypotheses of path testing We shall assume the well known
hypotheses underlying path testing: restriction to those errors that
are related to a certain pattern of control flow and that are
observable when those patterns are executed.

For clarity, our model does not account for the additional complexity introduced by
other features of object-oriented programs, such as inheritance, polymorphism,
recursion, instance creation, generic types, complex types, block scope, name scoping,
cloning and idiosyncrasies of specific object-oriented languages. Information flow
analysis is subject to the limitations of static analysis such as array indices that are
known only at run-time, members of structured data type that are known only at
run-time, aliasing, side effects, data flow anomalies and safe approximation.

The discussion is at the intuitive level. It is not rigorous and does not cover the details
of dynamic information flow theory. The topic of this paper is the testing of intra-class
flows through instance variables. It does not address inter-class testing nor the testing
of interprocedural flows due to argument passing and return values.

Simple, highly-contrived Java programs are used to illustrate basic concepts. Although
Java is the vehicle for describing our strategy in this paper, the strategy can be adapted
for testing programs written in other object-oriented languages and even procedural
languages. The terms “dynamic information flow testing” and “information flow
testing” will be used interchangeably.
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INTRA-CLASS TESTING - THE SEQUENCING OF METHODS

We distinguish three levels of Java testing:

a intra-method
H intra-class
T inter-class (applet, application, bean)

For later convenience, the Greek letters are used to designate structures associated with
the various levels. The intra-method level (a) is presented mainly as background for
generalizing and abstracting flow analysis for application at the level of object testing:
the intra-class (1) level. The inter-class level (1) will be the subject of a future paper.

The application of traditional structural test methods to the intra-method level is
straightforward, since it resembles the testing of a single procedure. The testing of
methods that send messages to each other within a class resembles conventional
interprocedural testing. But when we cross the class boundary and begin to examine
method interactions that are due to messages received from outside of the class, we
enter a new region of testing: intra-class testing. It is in this region that existing
structural test strategies appear to break down.

In intra-class testing, the input space consists of the method sequences for a class.
Method activation sequences imply paths among class variables. Conventional test
methods appear to provide little guidance in how to test these paths. At first glance, we
seem to be back to exhaustive testing: i.e., trying all the sequences of method
invocation.

PATH TESTING

terms
Program element is the code element being tested. It may be a complete
program, such as a Java application, or a single procedure, such as a Java

method.

Point in an execution thread is the state of program execution directly
preceding or following the execution of a program statement.

Entry point is the state directly preceding execution of first statement of a
program element. A program element has one entry point.

Exit point is the state directly following execution of a statement that exits a
program element. A program element may have one or more exit points.
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Basic block is a consecutive sequence of program statements with a single
entry point, the first statement, and a single exit point, the last statement.

Segment is a basic block, a conditional statement or the decision outcome of
a conditional statement.

Path is a consecutive sequence of segments.

Test case is a set of inputs which causes the execution of a specific path through
the program element.

analogy to path testing

The all-sequences strategy is analogous to the classical all-paths strategy which requires
a test case for each path in the program. The combinatorics inherent in non-trivial
programs makes brute force strategies such as all-sequences and all-paths impractical.
Over several decades, researchers have developed path testing strategies based on
control flow analysis, data flow analysis and information flow analysis. Each test
method represents a way of sampling the input space of a program with the goal of
approximating the effectiveness of all-paths. This analogy suggests that path testing
strategies, properly adapted, are applicable to intra-class testing.

TESTING SEQUENCES OF TWO METHODS

We begin by examining the simplest (non-trivial) sequence: two methods, which will
be designated as A and B. If the computation in A can have no effect on the
computation in B, then testing different sequences yields no new behavior.

AllB BilA

FIGURE 1

In information flow testing, program elements such as A and B are said to be
“independent.” The central principle of information flow testing is that, if A and B are
independent, then the two program elements can be tested separately. Any sequences
of A and B constitute unnecessary tests.

Is there a way that independence can be determined through an examination of the
structure of the program elements? The application of data flow analysis was an
important milestone [10] in the quest for a structural, intra-class testing strategy. In the
case of testing two methods, independence can be ascertained through this form of
analysis. Figure 2 illustrates how sequencing constraints are created by data flows
through shared instance variables.
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X

A == B

FIGURE 2

In progressing beyond two method sequences, the flow analysis must be capable of
dealing with intra-method flows. In the following sections, we explain how data flow
analysis is extended to form information flow analysis, which is capable of representing
all intra-class flows. Essentially, information flow analysis is a more general means for
establishing structural independence.

INFORMATION FLOW AT a LEVEL

Information flow analysis builds on its predecessors, control flow analysis and data
flow analysis. Like data flow analysis, information flow analysis models a program as a
set of definitions and uses of variables. Like control flow analysis, information flow

analysis models a program as a set of (control flow) paths. Information flow analysis
examines how information is transferred through program variables (memory
locations). Dynamic information flow analysis was developed as the foundation for a
new generation of structural testing strategies and associated coverage measures.

During a single execution thread from the entry point to an exit point of a non-trivial
program element, only one out of a possible multitude of control flow paths is taken.
The predicates in conditional statements select the single path by blocking all other
possible paths. In a similar manner, only a subset of possible data flows is executed.
This subset is selected by the ability of predicates to block all other possible data flows.
The novel aspect of information flow analysis is the incorporation of special structures
which model the ability of predicates to block flows.

composable information flow elements

Information Flow Analysis models a program as a collection of information flows. The
basic building blocks of information flows are the information flow elements:

= memory access elements
= data flow elements
< control flow elements

These elements are composable, so any information flow may be represented by a
sequence of information flow elements.
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FIGURE 3
o-level flow analysis example

The simple Java method listed in Figure 4 will be used to illustrate flow analysis
concepts.

publicint addl(inta) { /* segment #1 */

int b=0; /* segment #1 */
if(a>0) /* segment#2  */
b=1+a /* segment#3  */
return(b); /* segment#5  */
}
FIGURE 4

DATA FLOW TESTING

terms

Def-clear path A path from point A to point B is definition clear with respect
to a variable, X, if X is not assigned a value along the path (except
possibly at points A or B).

Reaches The value assigned to a variable at point A “reaches” the point B if
the path between A and B is a def-clear path for that variable.

intuitive concept of data flow

Data flow test strategies are myriad, complex and strewn with subtle differences [8].
The purpose of this section is to introduce the flow elements that are used in
information flow analysis. More general descriptions of data flow testing are contained
in [1].

PAGE 6



Let A and B be two points in an execution thread. Suppose X is assigned a value at
point A and that value is used at point B. The intuition underlying data flow analysis is
that there should be at least one test case which executes a path between the two points
[13].

A B

DEFINITION USE
d(X) il U (X)
DEF-CLEAR PATH
x=5; printin(x);
FIGURE 5

Some flow relationships between two points can be represented by a simple data flow.
With reference to the listing in Figure 4, a simple data flow exists between the
assignment of the value ‘0’ to variable ‘b’ in segment# 1 and the use of this value of ‘b’
in segment# 5.

This relationship is known by different names in the data flow literature and has been
defined in slightly different ways. Our construct (the du-pair) is essentially the same as
the concept presented in one of the earliest papers on data flow testing [11].

elements of information flow analysis - a memory access

The memory access elements form the basis for both data flow and information flow
analysis:

= definition point at which a value is bound to a variable.
example assignment of value ‘0’ to ‘b’ in segment# 1.
symbol  d,(b)

e use point at which the value of a variable is accessed.
example access of the value of ‘b’ in segment# 5.
symbol  u.(b)

e p-use a special type of use; a use which is contained in the predicate
of a conditional transfer statement.
example access of the value of ‘a’ in segment# 2.
symbol  pu,(a)

The symbolic representation of the a memory access element is subscripted by the
segment number in which the element occurs. Formally, the information flow elements

have a prefix indicating the level of program abstraction (o or ). For notational
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simplicity, the prefix is omitted for a-elements.
elements of information flow analysis - a data flow

The data flow elements are ordered pairs of memory access elements. The first memory
access element is the ‘input’ and the second is the ‘output’.

e du-pair input definition
output  use
example the simple data flow above
symbol  d,(D) === u.(b)

For a du-pair to exist, there must be a def-clear path from the definition to the use. A
du-pair represents information flow through a single variable.

= ud-pair input use
output  definition
example the relationship between the use of the variable ‘a’
and definition of variable ‘b’ in segment# 3.
symbol  u,(@) == d,(b)

The use and definition of a ud-pair are contained in a single statement. The value of the
variable in the use is employed in establishing the value of the definition. Since the
variable in the use may be different from the variable in the definition, the

ud-pair is one construct that is used to represent information flow between variables.

the need for a more general flow analysis

The data flow elements may be combined to represent more complex flow structures.
For example, k-dr interactions [15] have been proposed to capture indirect flows, i.e.
those which are propagated through a chain of du-pairs connected by ud-pairs.

But there exist flow relationships that cannot be represented by data flow relationships
alone. In the example, there is no data flow between the variable ‘a’ in segment# 2 and
the variable ‘b’ in segment# 5, yet the value of ‘a’ has a definite influence on the value of
‘b’. Such flows involve the interaction of the control structure and the data flow
structure of a program. In the compiler optimization [9] and dependency literature
[12,16], these are called “control” dependencies.

An arbitrary flow relationship may be made up of both data flow and control flow

relationships. Figure 6 schematically illustrates that data flow provides an incomplete
model of flow.
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FIGURE 6

Information Flow Analysis adds a fundamental element, the control flow element, to fill
these gaps.

INFORMATION FLOW TESTING
terms

a-graph is a graph in which the nodes are a memory access elements and the
edges are a information flow elements.

o-path is a connected sequence of a information flow elements, in which the
output of one element is the input of the next.

intuitive concept of information flow

The intuitive concept underlying information flow is a generalization of the concept
underlying data flow. Recall Figure 5. In data flow analysis, the memory access at
point A is a “write”. In information flow analysis, this memory access may be either a
“write” or “read”. In data flow analysis, memory access at both points is to the same
variable (X). In information flow analysis, the use at point B may access X or another
variable, Y. If the value of X at point A can affect the value of the variable accessed at
point B, then there is an information flow relationship between points A and B. The
intuition underlying information flow analysis is that there should be at least one test
case which executes each element of information flow between A and B.

elements of information flow analysis - a control flow

The control flow element is the unique flow element in information flow analysis. It is
an ordered pair of memory access elements, but the input is always a p-use.

e cd-pair input p-use
output  memory access element
example pu,(a) and the definition d,(b)

symbol  pu,(a) == d(b)
The input use appears in a conditional expression which can directly block:

= execution of the output definition or output use, or
= adef-clear path for the output definition which flows through the input

PAGE 9



p-use, or
e execution of the input p-use of other cd-pairs, or
* adef-clear path for definitions in the transitive closure of another cd-pair

Graphically, a cd-pair is represented by an arrow from the input p-use to the output
memory access element.

In the example, the input p-use is pu,(a) and the output definition is d,(b). The
predicate use of ‘a’ controls the execution of d,(b) and thereby determines whether or
not the definition of ‘b” in segment# 3 will reach the use of ‘b’ in segment# 5. Like the
ud-pair, the cd-pair can be used to represent information flow between different
variables.

Note that cd-pairs come in pairs. Each p-use generates two cd-pairs, since a predicate
has two outcomes. The cd-pair generated by the alternative outcome is called the
“complement” or “complementary pair.” When testing a path through a cd-pair, it is
necessary to test both the cd-pair and its complementary pair.

The examples in this paper have simple predicates (only one p-use in a conditional
expression). If a conditional expression contains multiple p-uses, then the logical
effectiveness of each p-use must be taken into consideration during testing [3].

The cd-pair is a refinement of the uu-pair, which was introduced in earlier papers on
dynamic information flow analysis [2]. The “cd” prefix refers to “Cd testing”, which
was invented by Edward Miller [14] and was the progenitor of dynamic information
flow testing.

INFORMATION FLOW AT p LEVEL

Information flow exists at several levels. We have already seen examples of a--level
flow. The information flows of interest for intra-class testing are at the p level.
Information flows at the method level are caused by argument passing, return values
and instance variables. Although the affect of argument passing and return values can
be represented in terms of information flow analysis, the following discussion is
restricted to flows through instance variables.

Information flow analysis is applied to intra-class testing by constructing suitable
abstractions of the a elements which operate at the p level.

elements of information flow analysis - L memory access
¢ p—definition definition of an instance variable.
example  the definition of power in segment# 5 of the
MorePower method in the p example below.

symbol  p-d(power)
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e p-use use of an instance variable.
example the use of in power in segment# 5 of MorePower.
symbol  p-u(power)

e -p-use a special type of p-use; a p-use which is contained in the
predicate of a conditional transfer statement.
example the p-use of safety in segment# 2 of MorePower.
symbol  p-pu,(safety)

A 1 memory access element is associated with the method in which it appears. Asina
elements, each p memory access element is subscripted by the segment number in
which the element occurs.

The p data flow and control flow elements are ordered pairs of | memory access
elements. The first p memory access element is the ‘input’ and the second is the
‘output’.

elements of information flow analysis - u data flow

e p-du-pair ordered pair of © memory access elements
input p-definition
output  p-use
example the definition of safety in segment# 3 of
Togglesafety and the use of safety in segment# 2
of the PowerUp.
symbol  p-d,(safety) == p-pu,(safety)

The p-du-pair occurs between methods.
elements of information flow analysis - p control flow

e p-ud-pair  ordered pair of 4 memory access elements.
input p-use
output  p-definition
example the use of safety in segment# 2 of PowerUp and the
definition of power in segment# 3 of PowerUp.
symbol  pru,(safety) == p-d,(power)

e p-cd-pair  described below

The p-ud-pair and the p-cd-pair occur within a single instance of a method.

In a p-ud-pair, an a-path from its input p-use to its output p-definition is called a
“p-ud-path”. A p-ud-pair must have at least one p-ud-path.
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A p-cd-pair occurs when a p-ud-path passes through an a-cd-pair. A p-ud-path passes
through an a-cd-pair if:

e the input p-use is either the input p-use of an a-cd-pair or is connected to the
input p-use of an 0-cd-pair via an a-path, and

e the output p-definition is either the output definition of the same
0-cd-pair or is connected to the output definition of the same a-cd-pair via an
o-path.

The complement of the p-cd-pair must be tested if the complement is also a p-cd-pair.

analogous structures

The p-path is a generalization of a def-clear path for an a-du-pair. A def-clear path for
an a-du-pair begins with an a-definition and ends with an a-use. Similarly, a p-path
begins with a p-definition and ends in a p-use. Whereas a def-clear path weaves
through the data flow structure of a single method, a p-path crosses method
boundaries and weaves through the information flow structure of one or more
methods. Just as an a-cd-pair can block an a-du-pair, a p-cd-pair can block a p-path.

p-box

Once we introduce information flow elements that can span the boundaries of methods
and classes, it becomes necessary to identify the scope within which information flows
occur. The notational device for this purpose is the “p-box”.

All visible effects of a single method call are grouped together in a p-box. The box
encloses all the p-elements associated with the method call. By convention, input uses
appear on the left hand side of the box and output definitions appear on the right. Since
any memory access element inside a p-box is a p-element, the p prefix is dropped. Any
link between a use and definition that appears within a p-box is a p-ud-pair.

p-graph

A p-graph is a flowgraph in which the nodes are p memory access elements, and the
edges are pinformation flow elements. Normally, p-elements are shown inside of
p-boxes.

p-path

Essentially, a p-path is a path in a p-graph. A p-path is a connected sequence of p
information flow elements, in which the output of one element is the input of the next.
A | test path begins with a p-definition and ends with a p-use. The p-path represents
an information flow at the p level. A p-subpath is a connected subsequence of p-
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elements in a p-path. A static p-path is called a “structural” path. Normally, the term
“P-path” refers to a dynamic (run-time) path. There are often structural paths in
programs that do not correspond to (dynamic) p-paths.

A p-path is composed of fundamental subpaths called elementary p-paths. A graph of
all p-paths in a particular objects has special nodes, p-nodes, where p-paths begin, end,
converge or diverge. Let A and B be two p-nodes. An elementary p-path is a maximal
element of the set of all p-paths that begin at A and end at B. (This means that an
elementary p-path is not a p-subpath of any other p-path from A to B.) Appendix A
provides examples of elementary p-paths. The elementary p-path structure
characterizes the information flow structure of an object, and therefore how it should be
tested.

A complete p-path is a maximal element of the set of all p-paths for a particular object.

DYNAMIC INFORMATION FLOW TESTING

Dynamic information flow testing reflects the changing nature of flows at run-time.
During execution, flows such as a-paths and p-paths appear and disappear, depending
on the transient states of predicates. Figure 7 illustrates how a predicate can cause a
pruse of ‘X’ to “disappear.”

y=1_

if (y<O)
y=Xx+2;

FIGURE 7

Figure 8 illustrates how a predicate can cause a p-definition of ‘x’ to disappear.

y=1_

if (y<O)
X=2;

FIGURE 8

These changing p-states cause p-du-pairs to dynamically appear and disappear, as
shown in Figure 9.
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FIGURE 9
Effective testing requires a (run-time) p-path between methods. A 2-sequence can be

tested, but if the p-path between methods is not executed, then the test is not effective.
This simple observation is the basis of a fundamental result of this research.

testing sequences of three methods

In a similar manner, changing p-states cause p-ud-pairs to appear and disappear at
run-time as illustrated in Figure 10.

H-u(x) L H-d(y)

H-u(x) u-d(y)

FIGURE 10
In the case of testing three or more methods, effective testing requires a p-path from the

initial p-definition to the final p-use. The p-path traverses not only p-du-pairs, but
p-ud-pairs within methods, as illustrated in Figure 11.

PAGE 14



B
oo B,

FIGURE 11

This figure illustrates that the testing of a p-ud-pair requires the execution of at least
three methods. The p-path through the p-ud-pair must contain a p-subpath which
begins at a p-definition in the preceding method, passes through the p-ud-pair, and
ends in a p-use in the succeeding method.

dynamic information flow intra-class test strategies
As in control flow and data flow testing, a family of test strategies and corresponding

coverage measures of increasing effectiveness can be defined at the pu level. For
instance:

COVERAGE MEASURE STRATEGY
My all 1 memory access elements
My all p data flow and p control flow elements
Hoath all p—paths
Hatiseqs all necessary sequences

Note that the strategy all p—paths is, in general, not equivalent to all necessary sequences.
All necessary sequences is more extensive than all p—paths since it includes combinations
of elementary p-paths (see example in Appendix A).

Although empirical studies will be necessary to determine the reliability level
associated with each coverage measure, our initial estimate is that i, should be a
realistic goal for normal commercial applications. A higher level of assurance could be
obtained with ,, coverage, which approximates [i,.,.. A H,; -CoOver consists of test cases
which completely test all feasible 2-method and 3-method sequences. A 2-method
sequence is completely tested if each p-du-pair between the methods has been executed
at least once. A 3-method sequence is completely tested by executing every p-subpath
that begins in the first method and ends in the third method.

PRINCIPLE #1 OF INFORMATION FLOW INTRA-CLASS TESTING

An effective test is a run-time [-path which begins at a [-definition and
ends at a J-use. Between methods, the path must pass through -du-pairs.
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Within methods, the path must pass through H-ud-pairs.

Principle #1 has a critical implication for intra-class testing which is discussed in the
section on dynamic monitoring.

A single test case may cause the execution of several complete p-paths. Each method in
an effective test sequence is associated with at least one complete p-path.

Principle #2 states that all p-cd-pairs in a p-ud-path should be tested.
PRINCIPLE #2 OF INFORMATION FLOW INTRA-CLASS TESTING

If a M-ud-path passes through a cd-pair, then it is a [{-cd-pair. The

M-cd-pair and its complement (if it is a -cd-pair) should be tested
(insofar as it is possible to do so through sequencing).

M LEVEL FLOW ANALYSIS EXAMPLE

A simple Java class will be used to illustrate information flow intra-class testing:

/*  PowerControl V10
ROUGH SPECIFICATION

This class simulates a simple power control (electric lawnmower etc.)
with 4 buttons:;
PowerUp button turns power on.
PowerDown button turns power off.
Safety button toggles safety on (1) and off (O).
If safety is on, the PowerUp and MorePower buttons
are deactivated. The initial condition is safety on.
MorePower
Each time the MorePower button is pressed, power level
advances one level. There are four power levels: offQ),
low(1), medium(2) and high(3).
*/
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public class PowerControl {
/* CLASS VARIABLES */
int power;
int safety;

PowerControl( ){
power = O;
safety =1

}

public void PowerUp( ){
if(safety == O)
power =1,

}

public void MorePower( ){

if(safety == 0) {
if(power 1= 0) {

power =power+1,  /
if(power > 3)
power = 3;

FIGURE 12
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public void PowerDown( ){
power = O;
}

public void ToggleSafety(){
if(safety == 0)
safety =1
else
safety = O;

>

[* segment#1 */

SE

/
/

segment# 2 */
segment# 4 */
segment# 5 */
segment# 6 */
segment# 7 */

>

>

SE

/
/

>



notation for test cases

There are five methods, which will be abbreviated for later convenience:

PC  PowerControl (constructor)
PU PowerUp

PD  PowerDown

TS ToggleSafety

MP  MorePower

A test case for this class, which is a sequence of method calls, will be designated by
listing the appropriate series of method calls (using the above abbreviations). For
example, the test case, “PowerControl, ToggleSafety, PowerUp, MorePower,
MorePower” would be abbreviated as:

PC TS PU MP MP

A brute force intra-class testing strategy would be to begin by executing all
permutations of these methods. The number of permutations is 4 factorial or 24. But,
this would not be sufficient, since exhaustive testing must also account for the
possibility of cycles. As cycles of subsequences are added, the number of test cases
quickly explodes, and it becomes apparent that exhaustive testing is impractical even
when there are only a small number of methods.

The initial goal of this analysis is to obtain the p-path structure of the object.

In the following graphs, the variable names power and safety will be abbreviated as
‘P’ and ‘s’ respectively.

step 1 - construct p/a graphs

First, the a-graphs of the individual methods (including the constructor) are converted

into a hybrid form called the p/a graph. This is accomplished by replacing each a
memory access element with its g4 counterpart. Output p-definitions that are not
contained in a method are replaced by the symbol ‘@, which represents an “empty”
definition. A p-ud-path cannot terminate ina ‘@.

The p/a graphs are shown in Figure 13.
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PowerControl PowerUp ToggleSafety
p-d,(p) H-puL(S) H-puL(S)

A

2} p-d;(p)  p-d,(s) p-dy(s)

MorePower
H-pu,(S)
e PowerDown
" ¥ l p-d,(p)
H-pu,(P)
i'l
]

H-Ug(p)—> K-dg(P)—> pug(P)
’ \
¥
H-dg(p) H-d,(p)
FIGURE 13
step 2 - convert W/a graphs into p-boxes
Next, we examine these methods from the viewpoint of a class sending messages to the

PowerControl object. From this external viewpoint, the methods are summarized as
p-boxes:

PowerControl PowerUp PowerDown
dy(s) || PU,(S)=—>d,(p) d,(p)
d,(p)
ToggleSafety MorePower
PU,(S) === d;(S) PUzES; —>d;(p)
u
dy(5) by | > )
FIGURE 14

The flow diagram in MorePower represents six p-ud-pairs. Only the two maximal
paths are shown. The inputs are grouped, since if any p-ud-path in MorePower is
executed, then all input uses will be executed.

step 3 - derive the p-paths
The structural p-paths may be derived in a simple manner. For each p-box, connect
each output definition to all the matching uses in other p-boxes. If there is a matching

input in the same box, a loop around that box is created. In the PowerControl example,
this approach results in the pu-graph shown in Figure 15.
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PowerControl ToggleSafety PowerUp MorePower

d,(S) [——— | pu,(s) = d(s) PU,(S) ==p d4(P) PUL(S) | —> d(P)
pu,(P) [~
d,(p) d,(s) u (p) d;(p)

//

PowerDown
d,(p)

FIGURE 15

RESULT #1

Information flow analysis allows us to visualize and thereby gain an intuitive
understanding of intra-class paths.

The structural p-paths are obtained by tracing paths in the above graph. This model can
serve as the basis for an all p-paths test strategy. A model suitable for more closely
approximating the all necessary sequences strategy is presented in Appendix A.

This p-graph illustrates only paths inside the receiving class that are created by class
variables. Method arguments (messages) and return values can create external paths
which are in the sending class.

Static analysis allows the structural paths to be summarized by the regular expression:

PC ((TS* (PU | £)) |PD) MP MP*

To simplify the analysis, we begin by excluding the expression containing further
repetitions of MP. This result is:

PC ((TS* (PU ] €)) |PD) MP
By limiting repetitions of TS to two, the initial test set is:

PC PD MP

PC MP

PC PU MP

PC TS MP

PC TS PU MP
PC TSTS MP
PC TS TS PU MP
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step 4 - constrain testing to run-time p-paths

This step illustrates the dynamic nature of information flow, and one of the results of
this research (Result #3).

The static analysis performed above provides a only a first approximation to a |,
cover. The resulting path set contains control flow paths that do not correspond to
p-paths at run time. These extraneous paths are the consequence of imprecision in static
analysis.

Consider the simple test case:

PC MP

The first pass through MorePower is illustrated in Figure 16.

PowerControl MorePower
d(s) | —> pquS; ds(P)
pu,(P
d,(p) u5€p) d.(p)
FIGURE 16

An examination reveals that no p-path through this method can be executed. In fact,
neither on the first pass nor on subsequent passes through MorePower, are any p-ud-
paths available. The loop created by the output definitions of power and input uses of
power is not available since safety is zero.

This restriction to only one execution of MorePower applies to all test cases in which
the incoming value of safety is ‘1’. In such test cases, all further repetitions of
MorePower are unnecessary paths according to information flow theory.
Similarly, all test cases in which the input value of power is zero (in MorePower) also
constitute unnecessary test cases. This quickly prunes the initial test set to only one test
case that can serve as the beginning subsequence of test cases with repetition of MP:

PC TS PU MP

The initial test set must be modified, since some test cases do not correspond to p-paths:

PC PU MP becomes PC PU, since there is no p-path through PU.
PC TS TS PU MP becomes PC TS TS PU, since there is no p-path through PU.

Note that PD is a special case, and does not require a p-path through it, since it is a
terminal method.
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step 5 - test p-cd-pairs
In this step, we apply Principle #2 of information flow intra-class testing.
The two p-cd-pairs in the ToggleSafety method are executed by the subsequences:

PC TSPU
PCTSTSPU

which are covered by the initial test set.

MorePower is more complex and has four p-cd-pairs. Principle #2 implies that all four
p-cd-pairs and their complements should be tested. The first two p-cd-pairs do not
have complements, since there are no p-ud-paths through the alternate decision
outcomes. The last two p-cd-pairs are complements of each other. The two test cases
shown (and the corresponding p-ud-paths) are adequate for testing all four p-cd-pairs.

H-pU,(S) =e=p H-pU,(P) either test case below
H-puU,(P) =A=p H-US(P) either test case below
pug(p) ===a p-d;(p) PC TS PU MP MP

pug(p) == p-d,(p) PC TS PU MP MP MP MP

FIGURE 17
Adding these two test cases to the current test set yields:

PC PD MP

PC MP

PC PU

PC TS MP

PC TS PU MP

PCTSTS MP

PCTSTS PU

PC TS PU MP MP

PC TS PU MP MP MP MP

RESULT #2

Information flow analysis is capable of determining the fundamental
sequences of methods to be tested.

It is instructive to compare this test set with a test set generated by a static data flow
criterion (all pu-du-pairs). The simple data flow approach would miss the last five
(necessary) test cases and include two unnecessary test cases (PC PU MP and PC MP
MP).
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limitations of information flow approach

Although information flow was able to significantly reduce the number of test cases in
the above simple example, we must caution that the approach is only capable of
identifying fundamental test sequences (or conversely, unnecessary test sequences).
Due to the presence of loops and the limitations of the static analysis underlying
information flow testing, it is not, in general, capable of identifying all necessary test
cases.

implications for dynamic monitoring

The simple test case (PC MP) in the above example illustrates how the structural paths
obtained by connecting the inputs and outputs of p-boxes may, in some cases, be
ineffective. But how do we know if a given test is effective (with respect to exercising
p-paths)? This could be determined through inspection, which was easy for a simple
example like the one above, but, in general, predicting path executions can be
technically very difficult. The only known general, practical solution is to monitor path
execution to assess if the paths corresponding to a set of tests are effective (in the
information flow sense).

RESULT #3
PRINCIPLE #3 OF INFORMATION FLOW INTRA-CLASS TESTING

To assure effective intra-class testing, path execution must
be monitored at run-time.

Coverage analysis is not a new concept in software testing. Branch coverage analysis is

becoming commonplace, and path coverage monitors have been developed by
researchers.

CONCLUSION

This paper has described an initial foray into the challenging area of object-oriented
testing utilizing path testing as a conceptual tool. This initial application of
information flow analysis to intra-class testing demonstrates that:

e information flow elucidates the structure of intra-class paths.

e information flow testing can be used to determine fundamental sequences
of methods to be tested.

e aspecial form of path coverage analysis is necessary to insure that
test sequences are effective.
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Although it has been known for many decades that path testing is a good option for
achieving high test effectiveness, this research is the first to indicate an application in
which path coverage analysis is a necessity for assuring the effectiveness of test results.
Even when necessary sequences of methods are executed, the tests are not effective
(with respect to the hypotheses of path testing) unless methods are in the proper
dynamic states.

Path testing has potential to help unravel other challenging facets of object-oriented
testing. Good testing practices require that a test plan incorporate both white-box
(structural) and black-box testing techniques. In this paper, we have examined how
information flow analysis can be applied to the structural testing of an object. We
believe that a systematic means for black box testing at class scope can be obtained in a
similar manner, through the application of information flow analysis to the state-model
of a class.
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APPENDIX A - DIRECTIONS FOR FURTHER RESEARCH

We are currently investigating how to “bridge the gap” between all p-paths and all
necessary sequences (insofar as this is possible with information flow testing). The gap
consists of necessary sequences that are not exercised by the execution of a complete
p-path. In this appendix, we will use PowerControl to illustrate a possible solution.

The p-graph in Figure 15 is capable of representing all p-paths in PowerControl. There
are necessary sequences that cannot be derived (directly) from this graph. These
sequences are generated by converging information flows. The convergence of
information flow within MorePower is portrayed in Figure 18, which shows one way in
which inputs involving the two variables, ‘s’ and ‘p’, combine to produce a single
output of ‘p’.
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MorePower
PU,(S) ==p d5(P)

us(p)

FIGURE 18

The sequences are represented by the simultaneous execution of elementary p-paths.
To more closely approximate all necessary sequences, it is necessary to test combinations
of converging elementary p-paths.

To construct a graph which represents these combinations, we first construct separate
p-graphs for the two sets of elementary p-paths that converge within MorePower. The
p-graph of all elementary p-paths that end at a p-use of ‘p’ in MorePower are shown in
Figure 19. Similarly, the p-graph of all elementary p-paths ending at a p-use of ‘s’ in
MorePower are shown in Figure 20.

PowerControl ToggleSafety PowerUp MorePower
d,(s) PUL(S) == d(S)| T [ pU,(S) == d(p)| — pu,(p)

d,(p) \ ~de / ug(p)

PowerDown
d,(p)

FIGURE 19

PowerControl ToggleSafety MorePower
\

d,(s) pu,(s) > d(s) pu,(s)

—)
\ d,(5) /

FIGURE 20

Each figure represents a set of elementary p-paths. The “product” of the two sets of
elementary p-paths is obtained by taking each path from one set and interleaving it
with each path from the other set. The “interleave” product will normally not be
unique, and it is possible for the product of two paths to be two or more paths.
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Incorporating the feedback path around MorePower leads to the resulting product,
shown as a p-graph in Figure 21. The representation is not unique, due to
commutativity of some path products.

In this case, the effect of the path product has been accounted for by adding a simple
construct, the p*-du-pair. We do not yet know if this is possible for all path products. If
it is, then simple approximations, such as p*, (all p-elements including all p*-du-pairs)
become available for testing path products. The coverage measure p*,,, which would
completely test all 2-sequences and 3-sequences, including those composed of p*-du-
pairs, would be a close approximation to all-sequences.

MorePower
PU,(S)|—nd (P)

> || puc ()
utpy | 9@

ToggleSafety
pu,(s) —=>d(s)
d,(s)

PowerControl ToggleSafety PowerUp
dy(s) pU(8) == d (S) | s | pUL(S) ——>d ,(P)
d,(p) d,(s)

v
PowerDown _/
d,(p)

flows corresponding to p*-ud-pairs are shown in blue

FIGURE 21
The regular expression is:
PC ((TS* PU) | € | PD) TS* MP (TS* MP)*
The initial path set is:

PC PD MP

PC MP

PC PU MP

PC TS PU MP
PC PD TS MP
PC TS MP

PC PU TS MP
PC TSPU TS MP
PCPD TS TS MP
PC TS TS MP
PD PU TS TS MP
PCTSPUTS TS MP
PC TS TS PU MP
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PCTSTSPU TS MP
PCTSTSPU TS TS MP

After removal of non-runtime [-paths and addition of feedback paths around MP, the
final test set is:

PC PD MP

PC MP

PC PU

PC TS PU MP

PC PD TS MP

PC TS MP

PC TS PU TS MP

PC PD TS TS MP

PC TS TS MP

PC TSPU TS TS MP
PC TS PU MP TS MP
PC TS PU MP MP
PC TS PU MP MP MP MP

Rev. L
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Component Reliability Introduction

|System Reliability‘

e probability of successful operation per usage, or time period in a given
environment

e statistical measure/models
e test results are the data for a model
e requires operational profile, e.g.; expected usage/input distribution

e typically at system level

Woit & Mason 2

Component Reliability Introduction

Estimation from Component Reliability]

e common in other engineering fields:

— statistical models to combine component reliabilities

— more cost/time effective (system testing, component reuse)
e interest for software:

— supports module reuse, COTS components
— more cost/time effective

— supports treatment of software development as engineering discipline

Woit & Mason 3




Component Reliability Hardware Reliability Models

‘Simple system

e A three component system

e For working system: component C and one of A or B must be working

Woit & Mason 4

Component Reliability Hardware Reliability Models

Markov Model|

PA A
(2) (3)
A+ Ao A+ Ac

Markov model for the simple system from previous slide

Woit & Mason
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Component Reliability Hardware Reliability Models

e Generally:
R(t) = Plin a success state at time ]

=1 — P] in failure state at time ¢]

e Here, because failures are independent:
R(t) = Pi(t) + P(t) + Ps(t)
=1— Py(t)

e Standard Markov analysis to calculate Pj(t)
e Markov assumptions:

— state transitions independent: A4 constant, regardless of how system
arrived in state 1

— failure rates independent: P[A fail | B fail]= P[A fail|

Woit & Mason 6

Component Reliability Software Models

[Various Markov Software Models|

e nodes: components;
e sequential execution;
e arc; j : Pltransition from component ¢ to j]

. Rgys(t) = Plin a success state at time ]
=1— P[in F at time ¢

. Rgys = Pltransition from “start” to “success”|
= 1 — Pltransition from “start” to F]

e uses typical Markov analysis as above

Woit & Mason 7




Component Reliability Software Models

e Same Markov assumptions:
— state transitions independent
— component /state failures independent
e Software system problems:
1. component independence: if A calls B A4 depends on \p
2. component independence: B might change A’s state, affecting A

3. Markov diagrams assumed similar to system flow diagrams
(Parnas invoke v.s. use)

e Solutions:

— (1,3) impose rules governing “structure” of system, components, model.
Employ invoke rather than use

— (2) later...

Woit & Mason

Component Reliability Software Models

|Simple Program - Module A]

void AQ) { (define (A)
int x=0; (define x 0)
do { (define (loop)
if (x%2==0) (if (even? x)
B(x); (B x)
else (C x))
C(x); (set! x (+ x 1))
x=x+1; (if (< x 10)
} while (x<10); (loop)))
(loop)
y=D(x); (set! y (D x))
printf ("y=%d\n",y); (format #t "y="a"%" y))
}

Woit & Mason




Component Reliability Software Models

Simplistic Flow Diagram for Module A|

|
TS

Success

e Problem: sequence of control lost;
same R attributed to different fragments of A

e Solution: divide A into fragments to model system components

Woit & Mason 10

Component Reliability Software Models

|Correct Flow Diagram for Module A|

7N
AQ 1 Al A2 D = A3 FSucceed
\ C / 9

Woit & Mason 11




Component Reliability

Reliability Model for Module A|

Software Models

PHH:?;;T\\_l \\0

A2 — D — A3

A0

Succeed

.864

Woit & Mason

Component Reliability

|CPS Version - Module Al

(define (A)
(define (al)
(if (even? x)
(B a2 x)
(C a2 x)))
(define (a2 result)
(set! x (+ x 1))

(if (< x 10)
(a1)
(D a3 x)))

(define (a3 result)

(set! y result)

(format #t "y="a"%" y))
(define x 0)
(al))

Woit & Mason

Software Models
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Component Reliability Issue of Independence

‘Issues of Component Independence‘

Markov model requires independence of component reliabilities

e if module A invokes a broken module B, and thereby produces a wrong
result, that is not a failure of A

e if a broken module A invokes module B with erroneous parameters and B
thereby produces a wrong result, that is not a failure of B

e if module A and correct module B are incorrectly connected such that B
fails, that is not a dependence between the modules, it is a design failure

e if module A invokes module B and it changes some state that module A
depends upon, then A and B are dependent (Problem 2)

Woit & Mason 14

Component Reliability Issue of Independence

[Program State|

e state includes:

— files
—1/0 registers
— cursor position on screen

— main memory
e atomicity is a desirable characteristic
e we discount the following from state:

— stack /heap/disk space
— CPU time

— require separate proof that usage bounded

Woit & Mason 15




Component Reliability Rules for Software Independence

[Rules for Software Independence]

e 1o external state mutation/call-by-reference

e all accesses/updates to a variable are grouped as a sequence of critical
sections

e restrict each critical section to a single fragment
How?
e pure functional programming (Erlang — Ericson, SML/NJ — Lucent), or

e use no global variables and ensure all updates to any variable are in a
single fragment

Woit & Mason 16

Component Reliability Experimental Results

‘ Experimental Results‘

e version of grep written in the functional subset of Scheme
e arbitrarily defined module boundaries (5 modules)
e broke it into fragments (6 new continuations)

e calculated reliability values

Woit & Mason 17




Component Reliability Experimental Results

(Original Data|

Bug Component | 11 fragments
Name Reliability
compare range 79.23 7.39

e system reliability with this bug was about 75%

e recursive call from C to A creates an apparent path from A to C1 (the
fragment containing the error)

Al C1
Succeed Fail
Woit & Mason 18
Component Reliability Experimental Results

(¢ )

~ A+ B+ C A B C

v v

Al C1 AT Cr

:
Fail J

e by unrolling, frequency of the phantom path is reduced and true system
reliability is better approximated

Succeed

e diagram above is unrolled once, producing the 35 fragment version in the
table on the next slide

e problem only arises with mutally recursive modules

Woit & Mason 19




Component Reliability Experimental Results

Unrolling

Bug Component | 11 fragments 35 fragments 131 fragments
Name Reliability separate | combined
’ compare_range 79.23 7.39 63.65 63.64 67.89

e unrolling an additional time produced some improvement

e the operational profile seen by the module has little effect on the
calculated reliability

e the calculated reliability is always conservative, so safety is preserved,
even if the desired reliability cannot be attained.

e unrolling can be done at calculation time and does not have to be done to
the program itself

e a better approach, “conditional paths”, was described in Quality Week
Europe’97

Woit & Mason 20

Component Reliability Conclusion

Conclusion

e it is possible to build software modules that are independent, and therefore
usable in Markov models

e presently restricted to purely functional module fragments

|Future Work]

e getting data on more programs

e extend to handle critical fragment groups (to support mutation)

Woit & Mason 21







Component Independence for Software System Reliability

Denise M. Woit David V. Mason
dwoit@scs.ryerson.ca dmason@scs.ryerson.ca

School of Computer Science
Ryerson Polytechnic University
350 Victoria Street
Toronto, Ontario
Canada M5B 2K3

Abstract component independence, hardware components are
designed to be as independent as possible; any remain-
For a typical software system, itis generally consid- ing dependencies are factored into the models [6, 7].
ered infeasible to calculate system reliability from the  Unfortunately, the hardware models of reliability
reliabilities of its constituent components because soft-composition are considered inapplicable in the soft-
ware systems, unlike hardware systems, tend to violatevare realm because software components tend to vi-
the underlying independence assumptions inherent irolate the component independence assumption of the
the usual reliability calculations. We present a set of pasic model. It is widely considered impossible or in-
component design and interaction rules which, if fol- tractable to design software components to meet this
lowed in software development, can produce systemsequirement [7].
with the highly independent components necessary in  \We have constructed design rules that allow the
order to legitimately calculate system reliability from development of software components with the nec-
component reliability. We present a system which fol- essary independence, and with interaction properties
lows our rules, and show that in this case system relia- that parallel those of physical systems, so that they are
bility calculated from component reliabilities was very amenable to analysis with Markov models. The use of
close to the true system reliability. functional programming languages facilitates the con-
struction of these highly independent components. We
show that application of our rules can result in systems

1 Introduction which do not violate the underlying assumptions of the
typical reliability composition models.

Software system reliability estimates are typically = We also discuss the limitations of first-order
based upon data collected while testing the system adarkov models of software systems, as outlined in
a whole [7, 10]. However, there is growing interest in [12]. We explore techniques to mitigate these limita-
estimating system reliability from the reliabilities of its tions. Conditional statements are specified and then
constituent components. This technique is both prag-used to automatically transform basic models into
matically appealing, and supportive of the treatment of those that more accurately describe software compo-
software development as an engineering discipline. nent interaction. We present an example for which our

In the hardware realm, Markov-based models aretransformations produce reliability estimates that are
commonly used to calculate system reliability from far more accurate than are possible with the traditional
component reliabilities; this approach is preferred be- model.
cause of its cost-effectiveness. Because the underly- The design rules and the model transformation tools
ing mathematical models for such calculations assumecombine to allow Markov models to be usable in de-



riving reasonable estimates of system reliability from C functioning, but B not. State 4 corresponds to C not

the reliabilities of system components. functioning with all combinations of A and B func-
tioning/not. \; is the failure rate for componeit p; is
2 Hardware Models the repair rate for componentGenerally: R(t)=P[in a

success state at time t] = 1-P[in failure state at time t].
dlere, R(t) =Pi(t) + P»(t) + P3(t) = 1 — P4(t), and
standard Markov analysis is used to calcul&ét).
Assumptions of the Markov model are:

For hardware systems, or systems that are som
combination of hardware and software, estimations
of overall system reliability from constituent compo-

nent reliabilities are obtained via Markov or semi- o state transitions are independehf; constant, re-
Markov models [6, 5, 4, 8, 3]. In Markov models, gardless of how system arrived in state 1
system behavior is modeled by a set of systtates _ . _
{51,855,...,5,}, and transition rates/probabilities . fallure_rates are independent: P[X faiY fail] =
among statesT; ;,i,j,= 1,2,...n. The Markov P[X fail]

model assumeq; ; dependsonly upon S;. This is
known as theMarkov property.

A

A PA

A+ Ac A+ Ac

Figure 1. A simple 3 component system @

In hardware systems, a$j is usually considered
some distinct combination of working and failed com- Figure 2. A Markov model for figure 1
ponents. For eacsi;, eachr’; ; is composed of the fail-
ure rates or repair rates of its components. States are
partitioned into those representing system failure, and3 Software Models
those not. Reliability is calculated as the probability of
the system residing in a non-failure state [6]. Consider A similar approach has been presented for systems
the simple three component hardware system of fig-comprised entirely or partly of software components
ure 1. Suppose that for this system to be functioning,[2, 3, 5]. A state,S; is a set of components under
it must be the case that component C and one of comexecution. T; ; is the probability of execution transi-
ponents A or B must be functioning. A Markov model tion from S; to S;. For systems with sequential exe-
for this simple system is presented in figure 2. In this cution properties, af; contains only one component;
model, states 1, 2 and 3 aseccess statgsystem can  for systems with hon-sequential execution properties,
function) and state 4 isfailure state(system does not an.S; contains more than one component. In the se-
function). State 1 corresponds to all components, A,quel, we consider sequential systems, without loss of
B and C, functioning. State 2 corresponds to B and Cgenerality; thus,S; = C;, whereC; is thei'* com-
functioning, but A not. State 3 corresponds to A and ponent of the system, arifi; ; is the probability of

Woit/Mason QWE'98 2



execution transition fronC; to C;. The ordering of  system; (2) component independence in the given sys-
the components is not relevant except thatmust be  tem. We believe that typical systems involving soft-
distinguished as thetart component—that which is ini- ware components have properties such that modeling
tially executed upon system start-up. A “termination”, these systems in a Markovian fashion is not feasi-
or “system success” staté, is included to represent ble. Because the underlying Markov property is vio-
successful termination of the software. lated, the resulting system reliability estimations are
For systems comprised entirely or partly of soft- not meaningful. In the sequel, we will describe how
ware components Markov models have been used tda System can be designed or modified so that the tran-
calculate measures such as steady-state system avaiition propertiesare amenable to Markovian analysis.
ability and system reliability from the reliabilities of ~We will also outline our rules which can be used to cre-
constituent hardware/software components [5, 3, 2].ate system components with the independence proper-
First, the model is modified by including a “fail” state, ties required for Markovian analysis.
F. Arcs are included from each component of the sys-
tem (except the termination component)fo Anarc 4 Transition Properties and CPS
from C; to F represents a failure of componefy.
If componentC; has reliabilityr;, then the probabil- In this section we identify inconsistencies between
ity of failure is T; p = 1 — r;. The probabilities on  software systems and the Markov models typically
the remaining arcs emanating frafj are each modi-  used to represent them. We outline how these prob-

fied by multiplying them byr;, as each of their prob-  |ems can be overcome by using Continuation Passing
abilities is now reduced because of the addition of the Style (CPS)[1].

new arc toF'. Thus, the arc fronf’; to F' corresponds Parnas [11] differentiates between the mutually ex-
to the probability thaCC; will fail; the remaining arcs  clusive relations “uses” and “invokes”. USHES(C;)
from C; correspond to the probabilities thét will = iff C; calls C; and C; will be considered incorrect

successfully pass control on to another component ofjf C; does not function properly. INV{;, C;) = iff

the system. When a graphical version of system com-¢; passes control t¢; but does not us€;. Thus,

ponent interaction is thus modified, the only absorb- if USES(X,Y), then the reliability of component X

ing states in the graph are the termination state and Fwill incorporate the reliability of Y. Their reliabili-

Therefore, any path through the graph beginning with ties (and thus failure rates, as reliability 1—failure-

the start state, and ending with the termination state,rate) will be dependent, and we write RelUSES(X,Y).

represents a failure-free execution of the system. Anyan assumption of the Markov model is tha}; =

path through the graph starting with the start state, andinv(¢;, C;).

ending with the failure statdy, represents a failed sys- A software component often uses the results of

tem execution. other components to transform its input to output.
When a continuous measure is desired, the systenConsider component A, which is presented in pro-

reliability is P[in a non-failure state at time t] = 1-P[in gramming language€ and Scheme in Figure 3. A

F at time t]. For a discrete measure, system reliability typical Markov model for A is given in Figure 4.

is P[absorption a5] = 1-P[absorption atF']. These A problem is apparent when comparing the model
measures can be calculated by solving a system of linof Figure 4 to the system in Figure 3. Figure 4 is
ear equations. modeling component interactions for whidj; =

When Markov and semi-Markov models are uti- INV(C;, C;) holds. However, in the actual compo-
lized for systems with software components, the re-nent interactions of the system given in Figure 3, it
sulting reliability estimations are not meaningful un- is not true thatT; ; = INV(C;, C;). Figure 4 in-
less the Markov model is a good representation ofdicates INV(A,B), but the system of Figure 3, indi-
the actual system. Because they relate to establishingates USES(A,B): an inconsistency between system
the Markov property, the following two factors signif- and model. Thus, the typical Markov model is not an
icantly influence the adequacy of the representation:accurate description of the actual system.

(1) the nature of transition properties within the given  There is a further problem apparent when compar-
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void A() { (define (A)

1 int x=0; (define x 0)

2 do { (define (loop)
3 if (x%2==0) (if (even? x)
4 B(X); (B x)

5 else

6 C(x); (C x)

7 X=x+1; (set! x (+ x 1))
8 } while (x<10); (if (< x 10)

9 (loop)))
10 (loop)

11 y=D(x); (set! y (D x))
12 printf( (format #t

13 "y=%d\n"y);} "y="am %" )

Figure 3. Component A

D p A3pSuccegs

Figure 5. Markov model after CPS conversion

The problems described above are solved if the flow
of information in the software system is via Continua-
tion Passing Style (CPS), described below. It is impor-
tant to note that a system cantbensformednto CPS;
it need not be initiallydesignedusing CPS principles.
When a system is in CPS form, all of the component
relations will be INV; none will be USES. Each com-
ponent will perform an atomic transformation from in-

ing the model of Figure 4 to the system in Figure 3. Put to output. The component, A, of Figure 3, can
RelUSES(A,B), RelUSES(A,C), and RelUSES(A,D) be transformed into CPS by dividing it infagments

hold by Figure 3. Thus, the reliability of A will al-

A0, Al, A2, and A3 as follows.

ready incorporate the reliabilities of components B, C, ' '
and D. In fact, for any system thus modeled, the reli- AO: setx=0 and invoke Al (line 1)

ability of the start component(;, will already incor-
porate the reliabilities of component%, whereC; is
the transitive closure of USES ar. Thus, the reli-
ability for C is the overall system reliability, making

Al. depending on result of if statement, invoke B or
C (lines 3-6)

moot the entire exercise of calculating system reliabil- A2: increment x; depending on result of decision,

ity from component reliabilities.

/TN

Y

Success

Figure 4. Simplistic model of A

Woit/Mason

invoke Al or D (lines 2,7-10)
A3. setyand print (lines 11-13)

Components B and C must be modified to invoke their
continuation, A2. Component D must be modified to
invoke its continuation, A3. The components of the
CPS-converted system are thus A0, Al, A2, A3, B, C,
D, and the corresponding Markov model is given in
Figure 5. Note that the two problems above are now
solved. Each component performs an atomic trans-
formation of input to output, and uses the results of
no other component in its transformation. Thus, INV
holds for all component interactions. The reliability of
any component is not dependent on that of other com-
ponents because no USES relation exists among com-
ponents and because the components use no global
variables!

!The relationship between reliability and program state is pre-
sented in Section 5.
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4.1 CPS Transformation )
(define (A)

(define (al)
(if (even? x)

When the system is CPS converted (or designed) (B a2 x)
all of the components are related by INV, none of the (C a2 x))
components are related by USES, and each component (define (a2 result)
performs an atomic transformation of its input to out- (set! x (+ x 1))
put. The Markov model is thus applicable to software (if (< x 10)
components in terms of component transformations. (al)

To CPS convert a procedure/function, one partitions (D a3 x)))
the component intfragmentswhich are sequences of (define (a3 result)
instructions that do not involve a call to a component. (set! y result)
Each fragment may be considered to be a function. (format #t "y="a"%" y))
Fragments become components in the CPS converted (define x 0)
system. The new set of componeirsokeother com- (al))

ponents, passing along relevant program state and the
next component to be executed. For example, consider
component C in Figure 6. The section prior to the call
to F becomes a fragment, C1. The section following
the call to F becomes a fragment (function), C2. A
must execute in the state, S1, that is visible in C before
the call to F. C2 must execute in the state, S2, that is5 Component Independence
visible in C after the call to F. The components of CPS
conversion are C1, F and C2. C1 passes F both C2 and
S1. A will perform its function in state S1, and it in
turn will pass control and S2 (including the result of
F) to C2. C2 will perform its function in state S2.

Figure 7. CPS conversion of component A
from Figure 3

When components are developed as, or converted
to, CPS, the transition properties among components
are consistent with those required for Markov model-
ing. CPS compliance, however, is not a sufficient con-
dition for the Markov model to apply—-the components
of the system must also fail independently. When only
the INV relation exists among components, it is im-
C1 { possible for component A to fail because of a failure
F( ) of a component B which it calls. Thus CPS mitigates
this issue of dependence. It is important to note that
Cc2 { if A calls B with erroneous parameters, causing B to
produce an incorrect result, this ®t an indication
that A and B are dependent. If A and B are incorrectly
Figure 6. Component C connected such that B fails, thatnst a dependence
between A and B, it is a system design failure. A and
B aredependent, however, if A calls B, and B modifies
We have found CPS conversion straightforward some state that A depends upon. The state of a system
when using functional programming languages be-includes global variables, mutable data-structures, and
cause of the high-level data-structure facilities. In a I/O state such as the position of file read/write point-
language such a§, it is slightly more complicated, ers, values in device registers, segments of files that
but can be facilitated using macros. CPS conversioncan be read/written, etc. State also includes system
of component A from Figure 3 using the programming parameters such as the amount of free memory or the
languageSchemeis given in Figure 7. time of day. If these are relevant to the given system,

Woit/Mason QWE'98 5



it must be proven by the system designer that they dothe system as a whole. The operational profile expe-
not compromise the independence of the componentsrienced by any given fragment during system testing
Rules that will help establish component indepen- was identical to that it experienced during individual
dence are as follows: fragment testing. This was important in order to be
able to compare true vs. calculated system reliabilities
1. Design the system in (or convert the system into) jn a meaningful way.
CPS. Initial results showed that calculated system relia-
. . ) . bility was much lower than the true system reliability.
2. Code in a programming that constrains point- The discrepancy was traced to spurious paths through
ers and automates memory management, such a3ur Markov model of fragment interaction. Although
Java, ML, Scheme or Ada. the Markov property held for our system model, sev-
eral fragment paths were modeled that were impos-
sible, or improbable, in the actual system. This is a
shortcoming of the Markov model, and was first dis-
cussed in [12]. The solution to this problem requires
state-splitting, as outlined in [12]. One round of state-

4. Updates to I/O state must be within a single com- Splitting created 35 fragments. With the new model,
ponent. Further, the Component cannot make anycalculated SyStem rellablllty was Very Close to true SyS'
assumptiongbout the current state. Any knowl- tem reliability (a difference of about 5%.) We obtained
edge about the existing state must be establishedqnoderate improvement when the state was split into
by the component intending to modify it. 135 fragments (a difference of about 1%). It is impor-

tant to note that state-splitting need not be performed

Systems which conform to our design rules above manually. With the tools described in [12], conditional

will not violate the Markov properties. Thus, using statements can be defined abstractly describing com-
Markovian analysis to derive system reliability esti- ponent interaction. The tool can automatically trans-
mates from component reliabilities will be legitimate. form these conditional statements into the correspond-
We note, however, that many systems cannot conforming first-order Markov model, as required. There is
to our rules because they require maintenance of somdittle correlation between the final number of states in
I/O state. For such systems, state must be incorporatedhe calculated Markov model and the number of con-

3. Use the functional-programming paradigm at the
component level. Within a component, the func-
tional paradigm is not required, but no mutable
data-structures can exisetweercomponents.

into the reliability calculations, as outlined in [13]. ditions required to specify them. It is possible to accu-
rately describe a system of several hundred states with
6 Experimental Results only a handful of conditional statements.

Besides using state-splitting to obtain a more ac-
We developed a version of the Unix utilirep curate Markov model, we also experimented with re-
which conforms to all of our rules for indepen- calculating reliabilities of fragments based on their

dence. It is CPS-compliant and uses the functional-NoW different operational profiles. Surprisingly, we

programming paradigm between components, but not@und only negligible improvements in our calculated

within single components. The code was originally rella_blllty espmates. Th!s is empirical evidence sup-
written functionally, but not CPS-compliant, using POrting previous theoretical work which showed that
five components. It was subsequently CPS-converted@lterations in the operational profile result in much
When divided into fragments, six new continuations smaller relative changes in the reliability estimates [9].
were created, giving a total of eleven fragments. In

order to calculate system reliability, we seeded errors7 Conclusions

into four fragments, and calculated the ensuing relia-

bility of each fragment. System reliability was calcu-  We outlined ways in which typical software sys-

lated with standard Markov methods. It was comparedtems, unlike hardware or combination systems, violate
to the “true” reliability, which was obtained by testing the underlying assumptions of Markov models. We

Woit/Mason QWE'98 6



described why such models are inappropriate for cal-[10]
culating system reliability from reliabilities of system
components. We then outlined rules which, if followed
in software development, could produce system com-
ponents which are independent, and systems whict11]
thus are amenable to Markovian analysis. We created
a system which corresponded to our rules, and applied
the typical Markov analysis to determine system relia- 12]
bility from component reliabilities. Our experimental
results were promising, with calculated system relia-
bility being close to true system reliability.
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Goal: High quality reguirements
Expectation:

High quality requirements ==>
More effective testing (better, cheaper, faster)

Questions:
What constitutes quality in requirements?
How does requirement quality relate to testing?
What metrics are applicable?
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|EEE:
Quality - Degree requirements possesses desired combination of

Quality Attribute - Characteristic of the requirements that
affects the quality and is measurable using quality metrics

Evaluation of quality => measurable attributes of requirements

Test case - to verify compliance with a specific reguirement

Test coverage - degree to which a set of tests addresses all
specified requirements for a given system
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Requirements Attributes

Ambiguity - Requirements with potential
multiple meanings.

~* Completeness - [tems |eft to be specified
/® Understandability - The readability/structure

® Volatility - The rate and time within the life
cycle changes are made to the requirements.

® Traceability - The traceability of the
requirements upward to higher level
documents and downward to code and tests.

Verification™
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o Ambiguity = Weak Phrases (adequate, as appropriate, as
applicable, but not limited to, normal, if practical, timely, as
aminimum) + Options (can, may, optionally)

Completeness=TBD + TBA + TBS+ TBR
e Understandability = Numbering Scheme

o Traceability = Number of Items traced to tests, between
builds, between levels of detail

Number of Requirements. = Imperatives (shall, must, will,
required, responsible for, should, are to, are applicable) +
Continuances (below:, asfollows:;, following:, listed:, in
particular, support:, : )
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@Tj Requirement Verification

|ssues critical to testing:

Volatility:
— Isreguirement volatility zero?
|S requirement movement between builds stable?

Traceability:
— Do all requirements trace to higher and lower level documents?
Are all requirements tested? Do they trace to atest?
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Word Spreadsheet  Relational Requirement

Pr ocessor Database Tool
Document size X
Dynamic changes over time X
Release size X X X X
Requirement expansion profile X X
Requirement types X X X X
Requirement verification X X
Requirement volatility X X X X
Test coverage X X
Test span X X
Test types X X X X
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o Specification Quality (from the ARM Tooal) :
- Prototyping, Special Studies
- Later refinement and allocation to later build

Requirement Expansion and Volatility (from Requirement
Management Tools):

- Reassessment

- Prototyping, Special Studies, Reallocation

and Coverage (from Requirement M anagement

- Completion of test matrix incrementally
- Focused review of test procedures
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e Quality documentation: complete, concise, clear ==>
leads to quality testing program
Requirement volatility impacts testing and must be

Verification program: fully traceable and structured

Effective requirement management: appropriate
application of requirement database tool through
which the requirements are maintained through the

Metrics are a powerful tool that provide insight into
testing of requirements.
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Testing Metricsfor Requirement Quality
Dr. Linda H. Rosenberg, Ph. D., Theodore Hammer, Lenore Huffman
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1. INTRODUCTION

It is generally accepted that requirements are the foundation upon which the entire system is
built. And that requirement verification and validation is needed to assure that the functionality
representing the requirements has indeed been delivered. However, all too often requirements
are not satisfied, leading to a process of fixing what you can and accepting the fact that certain
functionality will not be there. A better approach is to develop requirements that are complete,
concise and clear, and that provide the implementer a clear blueprint with which to build the
system. This is not done by magic but through the application of tools and metric analysis
techniques in the areas of requirement specification and requirement verification.

Because both parties must understand requirements that the acquirer expects the provider to
contractually satisfy, specifications are usually written in natural language. The use of natural
language to prescribe complex, dynamic systems has at least two severe problems. ambiguity
and inaccuracy. Many words and phrases have dual meanings that can be altered by the context
in which they are used. Defining a large, multi-dimensional capability within the limitations
imposed by the two dimensiona structure of a document can obscure the relationships between
individual groups of requirements. It isimportant to know the attributes for requirement quality:

Ambiguity - Requirements with potential multiple meanings.

Completeness - Items | eft to be specified.

Understandability - The readability of the document.

Volatility - The rate and time within the life cycle changes are made to the requirements.
Traceability - The traceability of the requirements upward to higher level documents and
downward to code and tests.

Requirements based testing is critical in the implementation of software systems. Automated
tools, if properly used, open the door to assessing the scope and potential effectiveness of the test
program. Proper implementation of a database to not only track requirements at each level of
decomposition, but also the tests associated with the verification of these requirements affords
the project a wealth of information. From this database the project can gain important insight
into the relationship between the test and requirements.

This paper will demonstrate how metrics can help in these three areas of requirement
development. Examples will be provided how metrics can identify areas of weakness that should
be corrected, through the use of data from alarge NASA project, Project X. Lessons learned will
also be listed to aid in keeping a project, large or small, on track.



2. REQUIREMENT SPECIFICATION

The importance of correctly documenting requirements has caused the software industry to
produce a significant number of aids [1] to the creation and management of the reguirements
specification documents and individual specifications statements. However very few of these
aids assist in evaluating the quality of the requirements document or the individual specification
statements themselves. The SATC has developed a tool to parse requirements documents. The
Automated Requirements Measurement (ARM) software was developed for scanning afile that
contains the text of the requirements specification. During this scan process, it searches each
line of text for specific words and phrases. These search arguments (specific words and phrases)
are indicated by the SATC's studies to be an indicator of the document’s quality as a
specification of requirements. ARM has been applied to 56 NASA requirement documents.
Seven measures were devel oped, as shown below.

1. Linesof Text - Physical lines of text as a measure of size.

2. Imperatives - Words and phases that command that something must be done or
provided. The number of imperativesis used as a base requirements count. [Shall,
must or must not, is required to, are applicable, responsible for, will, should]

3. Continuances -Phrases that follow an imperative and introduce the specification of
requirements at alower level, for a supplemental requirement count. [As follows,
below, following, in particular, listed, support]

4. Directives — References provided to figures, tables, or notes.

5. Weak Phrases - Clauses that are apt to cause uncertainty and leave room for multiple
interpretations measure of ambiguity. [Adequate, as applicable, as appropriate, as a
minimum, be able to, but not limited to, be capable of, effective, easy, effective, if
effective, if practical, not limited to, normal, timely]

6. Incomplete — Statements within the document that have TBD (To be Determined) or
TBS (To Be Supplied).

7. Options - Words that seem to give the developer latitude in satisfying the
specifications but can be ambiguous. [Can, may, optionally]

It must be emphasized that the tool does not attempt to assess the correctness of the requirements
specified. It assesses individual specification statements and the vocabulary used to state the
requirements, and also has the capability to assess the structure of the requirements document.*

To see how this tool would be used to assess the “quality” of the requirements document, the
Project X Derived requirements document was analyzed using the ARM Tool. Table 1 shows
the results.

! Thistool is available at no cost from the SATC web site http://satc.gsfc.nasa.gov
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Table 1 - Requirements Specification Analysis Example

Several things can be seen from this analysis. First, the document shows some strengths.
There appears to be a good number of imperatives, and the number of weak phrases is low as
compared to the family of NASA documents processed through the ARM tool to date. However,
the document shows some significant weaknesses. The document has a large amount of text
given the number of imperatives. This gives an indication of being a wordy document, which
can have the effect of obscuring the requirements, preventing the requirements from being clear
and concise. The document also has a large number of incomplete requirements, containing
TBDs and TBSs. It could even be said that this document is not ready for use on this point
alone, as this implies that there is still uncertainty about what the system is required to do. It is
very difficult to build a system that has undefined requirements. Also this document has a large
number of options, which increases the uncertainty about what is really required of the system
that is to be developed. Options leave decisions about what the system is to do to the
implementers, many times without sufficient direction or instruction about option selection
criteria. As aresult the implementation varies widely, anything from some of the options to none
at all (especialy since these items are options and not “really” required).

A further understanding of the requirements documentation can be achieved by looking at the
document structure. Figure 2 shows the expected structure, based on other NASA
documentation, and actual structure for documentation from Project X. The expected structure is
a graphical representation of the numbering structure used within the requirements
documentation. The levels represent sub tiers within a section. For example four sub tiers would
be 1.0, 1.1, 1.1.1, and 1.1.1.1. The expected graph for the Derived Specification indicates that
there are many more high level requirements than detailed requirement expansions. This makes
sense, as the Derived Specification is to define the overall requirements of the system and not
provide details. The expected graph for the Detailed Specification shows the opposite. There
are many more detailed expansions of the requirements than of high level statements. Again this
makes sense, as the detailed requirements document is to be the basis for the implementation of
the system. The Project X documentation show some disturbing weaknesses. The Derived
Specification shows a trend to over specify some of the requirements too early in the life cycle.
The Detailed Specification shows not enough detail. The weakness of the Detailed Specification



may be resultant from the trend to over specify requirements in the parent, Derived Specification,
or most probably is the result of the Derived Specification having too many incomplete
requirements and options (as seen from the first analysis using the ARM Tooal).

. Detailed
Derived

Expected

Derived Detailed

Actual

00 much detail Insufficient
too soon in S detail
development

Figure 2 - Structure Level at Which Imperative Occurs

Obtaining a good quality specification has always been a desire of engineers but there has been
little available in terms of analysis tools that would allow them to visualize the quality of the
documentation. Now with the ARM Tool the quality aspects of the documentation can be
visualized in such away asto allow actions to be taken to improve the documentation.

3. REQUIREMENT VERIFICATION

Requirements testing is another important aspect of the requirements phase. Though this
may not be seen as directly to related to the issue of developing quality requirements, it is crucial
because delivered capability cannot be determined without an effective verification program. In
looking at the verification program, a further understanding of the nature of the requirements
must be attained. Thisis done by looking at requirement stability and expansion. The linkage of
requirements to test cases is reviewed, and then a test profile is made to characterize the entire
test program. Again, data from Project X is used to demonstrate the utility of metrics in
understanding requirement verification.

Requirement stability impacts the verification effort in that testing can not be planned or
designed with the requirements continually in a state of flux.
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Figure 3 show how metrics can be used to gain insight into requirement stability and the
importance of looking a particular issue in more than one way. This figure shows that the total
number of requirements stabilized in time for the Critical Design Review (CDR), which is what
is desired. However, when one looks at requirement stability in terms of new, modified, and
deleted requirements one notices that the requirements are not that stable. There is amost
constant change occurring in the modification of requirements. This will endanger the
verification program. Another way of viewing requirement stability isto look at the allocation of
requirements to the individual builds or releases. Figure 4 show the allocation of Detailed
requirements to Build A and Build B for Project X.
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Figure 4 - Requirement Stabilization by Build



What can be seen is that requirements are continually being moved or reallocated from Build A
to Build B. Thisinstability will make the implementation and verification of Build B difficult, as
many requirements have been pushed into the last build in the development effort.

Requirement stability can be viewed in terms of requirement traceability and expansion.
Requirements traceability is the linkage of the requirements at one level to the requirements at
the next lower level. If there is missing linkage, a case can be made that possibly more
requirements need to be written. Requirement expansion is the measure of how many
requirements at the Detailed level were written to completely satisfy the Derived requirements.
If there is little expansion in the number of requirements, a case may again be made again that
there should be more requirements written to provide the level of detail necessary to implement
the system. Figure 5 shows the linkage of Derived requirements to Detailed requirements.

Derived to Detailed

1800

1638
1600

B T1otal

1400 Linked
[] unlinked

1200

1000

Number of Records/Links

Build A Build B

Figure5 - Requirement Traceability

In both cases there is missing linkage (white bar of graph) between Derived and Detailed
requirements, indicating that the Detailed requirements are potentially incomplete if a CDR was
held for any one of these builds.

In reviewing requirement expansion, a comparison is made with data compiled from NASA
projects which leads to an expected curve for requirement expansion that is bell shaped. This
reflects that few requirements are expected to have little expansion or be expanded to a large
number of requirements at the next lower level. Asaresult, there tends to be an average number
of requirements written to decompose the Derived requirements to the next level. Figure 6
shows the situation for Project X.



Derived to Detailed Requirements
Expansion: Empirical

Derived

______ Detailed

Figure 6 - Requirement Decomposition

Here we see that the Derived requirements for the most part have not been expanded while there
are a few that have many requirements written to expand on the Derived requirements. This
situation correlates very well with the metrics developed from the analysis of the documentation
structure mentioned above, where the structure of the Detailed requirements specification
showed a lack of detail. This lack of detail not only jeopardizes the implementation effort but
also the development of effective verification procedures.

The objective of an effective verification program is to ensure that every requirement is tested,
the implication being that if the system passes the test, the requirement’s functionality in
included in the delivered system [1,2]. An assessment of the traceability of the requirements to
test casesis needed. It is expected that a requirement will be linked to a test case, and may well
be linked to more that one test case as shown in Figure 7 [3,4].

The important aspect of this analysis is to determine which requirements have not been linked to
any test cases at all.

Reguirement |+ Tested &y I Test

Requiremnent 2 +——— Tested by =1 Test

8
Test & @
< Regquirement 3
HESRE: < Requirement 4
@ Requirement 5
@ Requirement 6 +———— Uhtested - PROBLEM

Sample Linfage

Figure 7 - Requirement Verification - Traceto Test Linkage



Figure 8 shows that the traceability of requirements to test cases for Project X around the CDR
time frame for Build A. The information was extracted from the requirements management
database used in support of the development effort. The profiles show severa problems.

The test program for Build B is further along than that for Build A, when it is Build A that will
be developed and tested before Build B. Resources may have been inappropriately allocated to
the development of the test program for Build A. Lastly, the test program for the Detailed
requirements is behind that for the test program for the Derived requirements. Again, this is
backwards. The first tests to be executed will be that for the Detailed requirements, the system
tests, and after that tests for the Derived requirements will be executed, the acceptance tests. An
explanation for this problem may be found is a previously presented metric. Remember the
metric showing the push of Detailed requirement from Build A to Build B. This movement of
requirements from Build A to Build B may well be the cause of the lack of traceability of
requirements to test cases. The test case developers may be having difficulty in keeping up with
the changes in requirements resulting in a number of requirements in each build without alink to
atest case.
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Figure 8 - Requirement Verification Traceto Test



Not only is it important to understand whether all the requirements are linked to test cases, but
also to understand the character of the test program. This can be done by looking at the profile
and relationship of requirements to test cases. This provides an understanding of the nature of
the test program. Figure 9 shows an expected profile of unigque requirements per test case based
on data from NASA projects [5].

Number of unique requirements per test
Expected
Distribution

# Unique Requirernerts

# Test Cazes

Some regriremeitts will be tested only once or can be group tested
Complex reguiremerits need muliiple tests

Figure9 - Test Program Characterization Tests per Requirement

This profile shows that there is an expectation that there will be a large number of requirements
tested by only one test case, and that there will be some number of requirements that will be
tested by a multiple number of test cases. It is expected that the upper bound of multiple test
cases will range in the tens. This makes sense, as more complicated requirements may require
different test cases to thoroughly verify all aspects of the requirement. However, there is a limit
on the number of test cases. As the number of test cases increases the difficulty in verifying the
requirement increases, due to the complication in data analysis, understanding the results of the
multiple tests cases, and understanding the impact of multiple test case results on the verification
of the requirement. Figure 10 shows the requirement to test case profile for Project X. Thereis
agood indication that there are a large number of requirements covered by just one test, making
for a smple, easy to evaluate test program for a significant part of the system requirements.
However, there are several instances for both Build A and B where the are several tests for
unigue requirements. Notice that for Build A that one requirement has been linked to 25 test
cases, and in Build B that one requirement is linked to 51 test cases. This large number of test
cases may well make it impossible to verify that these requirements have been implemented.

In summary the verification program for Project X has some strengths; the total number of new
requirements is stable, and the Derived requirements have good linkage to tests for the
acceptance test program. But there are adso significant weaknesses. There was a shifting of
requirements between builds late in the requirement phase. Requirements were not completely
decomposed from the Derived requirements to the Detailed requirements. The Detailed test
program showed a significant number of requirements without links to tests. Test programs for
both Derived and Detailed requirements showed some excessive testing of requirements.



445 requirements are each tested by only 1 test

sssss

Figure 10 - Test Program Characterization Tests per Requirement

4. REQUIREMENT MANAGEMENT

The use of tools to aid in the management of requirements has become an important
aspect of system engineering and design. Considering the size and complexity of development
efforts, the use of reguirements management tools has become essential. The tools which
requirement managers use for automating the requirements engineering process have reduced the
drudgery in maintaining a project’s requirement set and added the benefit of significant error
reduction. Tools aso provide capabilities far beyond those obtained from text-based
maintenance and processing of requirements. Requirements management tools are sophisticated
and complex — since the nature of the material for which they are responsible is finely detailed,
time-sensitive, highly internaly dependent, and can be continuously changing. Tools that
simplify complex tasks require skill and a thorough understanding of their capabilities if they are
to perform effectively over the lifetime of a project [6].

There are many requirement management tools to choose from. These range from simple word
processors, to spreadsheets, to relational dbs, to tools designed specifically for the management
of requirements such as DOORS (Quality Systems & Software - Mt. Arlington, NJ) or RTM
Requirements Traceability Management (Integrated Chipware, Inc. - Reston, VA). The key to
selecting the appropriate tool is the functionality (See Table 2 for a comparison of tool
capabilities) provided and the capability to develop metrics from the data, secondary contained in
the tool.
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Word Spreadsheet  Relational Requirement
Pr ocessor Database Tool
Document config. mgt X X
Document preparation X
Function decomposition
Report preparation
Requirement allocation X
Requirement config. mgt X
Requirement expansion
Requirement importation
Requirement simplification
Requirement storage X X
Requirement traceability
Test coverage/adequacy
Metrics

X X X X X

X X X X X X X X X X X X X

X X X X

Table 2 - Requirement Repository Capabilities

The metric capability of the tool isimportant. It should be noted that most of the metrics
presented in this paper to demonstrate how to do requirements the right way were developed
from the data contained in a requirement management tool. Table 3 shows a comparison of the
metric capability associated with the different tools. Clearly, the relational database and
requirements management tool provide the capabilities needed to effectively support the
management of requirements.

Word Spreadsheet Relational Reguirement

Processor Database Tool
Document size hid
Dwnamic changes over time i
Eelease size b 3L b 3
Fequrement expansion profile A i
Eequrement types H b X i
Eequirement venification 3 3
Eequrement volatility H b X i
Test coverage 3 3
Test span X i
Test types s 3 3 3

Table 3 - Requirement Repository metric Capabilities
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5. METRICSAPPLICATION

The examples cited above from the experiences with Project X provide some sense of how
metrics could be applied to real project experiences. The following provide further examples
how the application of metrics can and have been used to improve product quality and test
processes in support of projects.

The ARM tool not only provides an overview of the requirements specification quality but also
provides valuable ancillary information on specifically where in the requirements specification
the quality problems (e.g., options, ambiguities) exits. With this information the project has
several options available to solve the identified problem. A prototype effort could be established
with the ultimate end result of removing the uncertainties of specific functional requirements. A
specia studies effort could be formed to resolve TBD (To Be Determined) and TBS (To Be
Supplied) uncertainties from the specification. Another avenue could be to assign the problem
functional areato alater build with a requirement baseline review established to support the later
build schedule. The review is critical. Assigning TBD and TBS requirement uncertainties to a
later build without an established resolution date for the issues will only jeopardize the success
of the later build and possibly the total system delivery.

Through the use of requirement management and configuration management tools the project
can develop metrics on requirement expansion and requirement volatility. Information can be
developed to determine which functional areas are the least understood (lack of adequate
reguirement expansion) or are the most volatile (unsettled or confused user needs). This can lead
to strategies of focused prototyping, special studies, allocation of the functiona area to later
builds, reassessing the need for the unsettled functional area, or an adaptive approach to define
functionality that can be adaptable to the kinds of changes experienced to date.

Again using requirement management tools metric insights can be obtained of the test program.
The completeness of test traceability to requirements, the coverage of the testing (how many
tests are traced to a requirement), complexity of the testing (how many requirements are traced to
tests), and overall characterization of the test program (does look fairly consistent with expected
curves). Detailed insight can help the project to develop strategies for focused assessment of test
procedures (do specific procedures redly verify the requirements mapped to them), ensure test
traceability is complete by the test review for each build, and with understanding of the
complexities of the test program establish test priorities.

6. LESSONSLEARNED

The most important lesson learned is that metrics are available and can be an effective tool for
the project early in the development life-cycle, specificaly the requirements phase. As stated
earlier in this paper the return on investment for efforts to remove as many errors as possible
from the requirements is very significant. Another lesson learned is the significant benefits from
the use of requirement management tools. Many of the metrics presented in this presentation
were developed from requirement management tool databases. These tools should be used on
any size project if at al possible. And lastly metrics must be thoroughly integrated into the
project management processes. The metrics collected must be meaningful and used by the
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project to make decisions bout the requirements and test program. If metrics are not a part of
these processes, then there will be no benefit obtained from the effort expended to develop and
report the metrics. Only be using metrics as one of the windows into the quality of products and
effectivity of processes can the project receive the return on investment in a metrics program.

7. CONCLUSION

Quality documentation is complete, clear and concise. This used to be considered ethereal
concepts, difficult to measure or visualize. Now with the advent of tools, like ARM, metrics can
be developed to see the strengths and weaknesses of the requirement documentation. The
completeness of the verification program used to be the only aspect that was easily understood.
Now through the use of metrics, a project can gain insight into not only the completeness of the
test program but to understand the overall characteristics of the verification program. Effective
requirement management now demands the appropriate use of management tools and/or
databases through the development life cycle. It is through their use that enables the
development of metrics to gain insight into the quality of the requirements, take effective action
to correct deficiencies, manage requirement volatility and ensure that a complete and effective
test program is established to verify the total set of requirements.
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1 Introduction: testing and quality

testing with action words

organisation of the process

(c) CMG Finance BV, 1998




faults are risks until they are found

finding them later will cost you more

(c) CMG Finance BV, 1998




PUT tESHING Ofiten gers Under pressure

planning and
specification development

;

DEADLINE
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guality Is a general property

testing is an activity (you can choose not to do it)

(c) CMG Finance BV, 1998




testing Is an important instrumtent to establish the
guality

but you must be able to establish the quality of the

testing
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costly
time consuming
boring to do

difficult to manage:
what is the progress
what is the quality

the proper resources (users, specialists) are not
available when needed

often neglected
automated scripts hard to maintain
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TIME TO MARKET
QUALITY TO MARKET
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RE-USABLE TESTPRODUCTS
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Sepaaiien el testdevelopmentand
lestrexecuiion

* test development aimed at the
production of “clusters” A B

— Input and expected results .
o transfer Houston Black @ $210
— testlanguage with “action check balance Black $210
words”

— In spreadsheets

* automatic execution by a

“navigation script”
— written in the script language of case action of
the cast tool “transfer”; ...
— general part: the engine “check balance”: ...
— specific part: the action words end case
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organisation

test design

test clusters

« test conditions
. test lines

 Input data
« expected outcomes
« documentation

automation

test plan

navigation script

CAST tool

ZR

(text file)

separation

(c) CMG Finance BV, 1998

organisation

end users

management
QA/Auditors

system
development

actual results
comparison with
expectations
management
Information




action words test data examplie oira clusier

cluster
version
author

section

enter client
enter client

section

transfer
transfer

section

check name
check name

check balance 458473948
check balance 422087596

/\

EXAMPLE OF A TEST CLUSTER
1.0
Hans Buwalda

documentary

1. Entering clients and balances
last name first name account nr balance
Green John 458473948 1500

Wood Anna 422087596 2100

2. Money Transfers
from to sum

458473948 422087596 500
422087596 785793025 1201

3. Checking names and numbers
account nr last name first name

458473948 Green John

422087596 Wood Anna
expected output

account nr

.
e
.
e
I
/
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exaniplereira clusierievel e poim L)

cluster name : EXAMPLE OF A CLUSTER
cluster version : 1.0

cluster author : Hans Buwalda

script name : Example Navigation Script
script version : 1.0

script release date : February 1997

run date and time : 3-03-97 13:39:16

1 (6): enter client Green John 458473948

2 (7): enter client Wood Anna 422087596

(c) CMG Finance BV, 1998




exaniplereira clusierieveliepoii2)

11 (20): check name 422087596 Wood Anna
12 (23): check balance 458473948 1000

13 (24): check balance 422087596
->FAILED:

end of cluster : EXAMPLE OF A CLUSTER
finished at : 3-03-97 13:39:26
time used : 15

number of cluster lines 26
number of test lines ) 13
number of checks ) 10
number passed : 9
number failed : 1
percentage passed : 90 %

failed at test lines (see above report):

(c) CMG Finance BV, 1998
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less sensitive to target system changes

better accessible tests

test development better plannable

less costs, especially for repeated testing

higher motivation participants

better organisational embedding possible:

clearer separation of tasks

tangible products
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Winrunner/XRunner
QA Run
Hiperstation
MS/Visual Test

SQA Teamtest
ATF

Autotester
FEPI

(c) CMG Finance BV, 1998




(c) CMG Finance BV, 1998




one or more pilots

training and handbooks
resourcing (pooling, hiring)
auditing and reviewing

r&d
development of common products
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ImplEementaien

 three dimensions for successful testing:
— organisation (fitting)
— test development (structuring)
— test automation (tooling)

Test Organisation

processes and
activities

structure

management

Test Development

realisation

execution

Test Automation

(c) CMG Finance BV, 1998
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performance and multi user testing
testing of batch systems

testing of large scale conversion like year 2000 and
euro

regression testing
test generation
test result analysis
fault tracking
Interface testing

(c) CMG Finance BV, 1998
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Abstract

Testing of information systemsis amajor concern for many organizations. It is of-
ten experienced as costly, time consuming, boring to do and difficult to manage.
But testing is unavoidable to avoid even greater problems in production.

Automation of the test process with test toolsis drawing alot of attention in the
market as a possible relief. These tools are known as CAST: Computer Aided
Software Testing. But without a proper approach things will get worse instead of
better.

In this paper a method is lined out, working with action words, which takes the
automation of testing a step further than the commonly used record & playback
approach. It isamethod for test development, test automation and test organiza-
tion. Tests are divided into clusters. Every cluster is devel oped and automated

Separately.

First the existing approaches for test automation are described, including some of
the pitfalls they present. Then the new method is described in general. Next the ef-
fect of the method on test automation is described. Finally the application of the
method for specific testsis outlined, like batch and performance tests.
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1. INTRODUCTION

Automated testing is an area which is getting increasing attention in the industry. In essence it
is not a new technique. Programmers have created solutions, ad hoc or structural, to test their
products automatically as long as there are computers. Already for many years there are prod-
ucts, on platforms like mainframes, Unix systems, and PCs, which assist in the automation of
testing.

The reason for the recent attention is twofold. Firstly client server applications with graphical
users interfaces are very complex and contain many aspects that can and should be tested. For
example the objects of one client screen of medium complexity contain together typically 2 to
3 thousand different properties, like colors, x and y pixels co-ordinates, visibility and access-
bility or underlying database events. There is no way that such amounts of (meta) data can be
tested manually.

Secondly PC’ s are becoming more and more powerful and taking over the role of terminals,
getting connected with mini and mainframe platforms using terminal emulators or client server
like applications, apart from the applications that run on the PC platforms itself. The PC
therefore is becoming an ideal platform for Cast tools, even the applications under test run
elsewhere.

An increasing amount of good test products has become available. The core of most of these
toolsisaimed on test execution. The number of tools for test generation is limited, because this
usually does not lead to good tests. Practically every tool set contains modules for test plan-
ning, test management and bug tracking. Other features, like performance testing, complete the
picture.

In essence two techniques are available for specifying the tests:

Record and playback

Test actions are carried out by hand and recorded by atest tool, invisible for the tester and
the application under test. The record process can be interrupted to introduce checks,
specifying that whatever is on the screen or part of the screen at a certain point during the
recording should also be there at the same point during the playback.

Test programming

Most tools contain a script language, which can be used like a normal third or fourth gen-
eration programming language, extended with special features for testing like functions for
simulating mouse and keyboard events and capturing screen data. The script language can
be used to program tests. One of the ways to do thisisto take the recorded scripts and em-
bedding them in aloop, which is reading records from a data file. This approach is often
referred to as “data driven record and playback”.

Both methods, if used prudently, can lead to improvements of the test process, especially when
tests are to be repeated more than once. Still pitfalls can arise. In essence the record and play-
back isin fact automation of the existing manual process. A good comparison is that of the
first cars, which looked like carriages with a motor attached to the place of the horses. It isa
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first step but not an optimal design. The best use for record & playback isfor small ad hoc
tests that have to be repeated only afew times. Test programming is an effective doubling of
the programming effort, the system design has to be repeated in the test design. The logic of
the test is hidden in the script code of atest tool. In both approaches there is alack of flexibil-
ity: maintenance on the underlying system, like changing a menu structure or the location of a
result on a screen, means an substantial effort to keep the tests running.

A second potential problem with existing approaches for test automation is accessibility of
both the tests and the test results. Because actions and data are mixed and represented in a
technical form, it is difficult to understand what exactly is tested, especialy for a non-technical
person like an end-user or an auditor. It is therefore hard to get a commitment for a system
using automated tests.

More practical considerations are the difficulties to start early with the test preparations, one
has to wait until there is aworking system, and, for the record & playback method, the appli-
cability on only on-line systems.

2. DESCRIPTION OF THE ACTION WORD APPROACH

The tests are not registered in the test tool, neither as record playback scripts, nor as test pro-
grams. Instead the tests are put separately in spreadsheets. These spreadsheets are called test
clusters. To implement this approach atest language is introduced, specifying actions to be
taken and data to take that action with. The data can be either test input or (expected) test
outcomes. The actions are specified as action words, short commands to the test tool.

An example:
................................................ this row will be skipped when the test is
executed
last first date of birth
enter client | Buwalda Hans 2-jun-57 |.... | )
.......................................................................... input data
check age 40
expected result
ationwords | ee— pect

This example describes a part of a functional acceptance test for an imaginary client manage-
ment system. The action words used are “enter client” and “check age”. The first one enters
some client data, the second one specifies an expected outcome, in this case the age.

The action words are usually specific for the application that is tested. So there will be other
action words for a stock trading system and for a mortgage system. The first line in this exam-
ple contains column headers, meant to enhance the readability. Because there is no action word
in front of them, they are skipped during test execution. Lay out properties like the italic
printing of the action words have also no effect on the test itself.

In order to process the tests from the test cluster into the test tool, the clusters are first ex-
ported to atext file. Thisis done in the form of “tab delimited ASCII”, meaning that the fields
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in the spreadsheet are separated by tab characters. Thisis a standard export format of popular
Spreadsheet programs.

The test automation is regarded as a separate activity, apart from the test design. To interpret
and execute the commands in the test cluster a specia script iswritten, so called navigation
script. This navigation script is usually written in the script language of a standard test tool.
Most test tools in the market have a script language build in powerful enough to make imple-
mentation of a navigation script possible.

The navigation script consists of several components, some of which are general, others must
be specifically written for the application that is being tested. The general functions read the
test lines from the tab separated ASCI| text file, which was exported from the test cluster. The
lines are interpreted one by one. The first field, the action word, is used to call afunction for
that action word. The action word functions are specific to the application.

In the above mentioned example there will be specific procedures for the action words used.
The procedure for “enter client” will go to aclient screen and fill al fieldsin the right order.
Thisis not necessarily the order used in the test cluster. Even the number of fieldsis not neces-
sarily the same. The navigation procedure can replace not specified fields with relevant default
values. After entering the fields the navigation will close the entry screen by using enter or any
other means necessary in the system under test.

The procedure for second action word in the example, “check age”, will follow a similar path.
It will select a screen were the value for the age can be found and capture this value from the
screen. Next it will compare this value to the expected value which was specified, in this case
39. Theresult, “pass’ or “fail”, will be written into the test report. If it is not possible to cap-
ture a value from the screen other means can be used to obtain like SQL queries or internal
API cals.

The report for our example will ook something like this:

cluster: example

version: 1O e report header, con-
date: December 1st, 1997 o taining general info
21 enter clientBuwalda Hans 2-jun-57 ...
35 check age 39
check of type: age
expected value: 39 .
recorded value: 38 e detailed results of
result: FAILED input and checks (on-
line number in the test
cluster)
.rlllt;mber of checks: 257
number passed: 252 percentagepassed:  98% e rst:?maw of the test

number failed: 5 lines: 10, 35, 52, 134, 201
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The report consists of a header, a detail part and a summary. What is exactly listed in the re-
port depends on the project. In our example the test has failed. The fail is marked, with the
expected and recorded value, and in the summary the fail is marked again with aline number so
that it can be easily found back for analysis.

Test results reported as “failed” are input for further analysis. They do not necessarily mean
that the system iswrong. Like with other test methods also the tests themselves can contain
errors. The faills must be regarded as signals.

Using a second example, atest on small banking system called Minibank, the cluster, naviga-
tion script and report are related as can be seen in the following picture.

Navigation Script Action Word Functions

[ CheckName |
RunTest (Testld) g EnterClient |55 TransferSum

open cluster (ClusterName) - |LunfCheckBalance - |..........
while readTestLine OK , EEEEREET IR
case action !
"enter client”: EnterClient
"check balance": CheckBalance Test Cluster (spreadsheet)
"transfer sum": TransferSum
"check name": CheckName
"section": StartSection cluster EXAMPLE OF A TEST CLUSTER
version 1.0
else author Hans Buwalda
warning("unknown: ", action)
end while section 1. Entering clients and balances
close cluster last name first name account nr balance
enter client Green John 458473948 1500
close report
P enter client Wood Anna 422087596 2100
section 2. Money Transfers
from to sum

transfer sum 458473948 422087596 500
transfer sum 422087596 785793025 1201

(text file)
section 3. Checking names and numbers
account nr last name first name
check name 458473948 Green John
check name 422087596 Wood Anna
account nr sum

check balance 458473948 1000
check balance 422087596 1399

Thelinesin the cluster are interpreted one by one by the navigation script. Every action word
is carried out by a action word function in the navigation script.

The test report, produced under control of the navigation script, contains besides the compari-
son results other data relevant to assess the test. It will usually contain a print of the test lines
interpreted, version information in the header and a summary of the test results. It is also pos-
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sible to report the test results in an alternative form, for example to collect them into a data-
base or into a specialized system for fault tracking.

In the above example the navigation was displayed as one loop reading the test lines and inter-
preting them. In practice a navigation scripts consists of severa layers, dealing with tasks like
interpretation of test lines, execution of action words, reporting and interfacing with the target
system (for example through a GUI interface or aterminal emulator).

3. APPLICABILITY ON OTHER TESTS

The example in the last paragraph dealt mainly with acceptance testing. The method is aso
applicable for a number of other kinds of tests.

Tests earlier in the project, like the module test, the system test and integration test, can be
automated with the described method as well. There are two considerations to make. Firstly
the tests usually have similar input cases, but want to test also intermediate results, for example
the contents of a database not accessible for an end user. Introducing additional action words
for that purpose can do this. The navigation script will then access the relevant data using an
appropriate means like aterminal emulator. It is even thinkable to access a debug tool, in
which case expected values can be specified for variables within a program.

A second consideration is the moment in the project that the tests are necessary. Especialy an
early program test comes at atime when there are no implemented action words yet. Also it
can be too much work to implement an action for every program in asystem. In that caseit is
possible to use so-called “low level action words’. These words, like “push button” or “select
menu item”, have the relevant button to push or menu item to select as an argument in the
cluster. Although this has a great disadvantage of being more sensitive to system changes it can
be a solution for tests that are only used once.

Apart from on-line systems a so batch systems can be tested. Thisisamain difference with
record & playback testing. The test clusters for a batch system are similar to those for an on-
line system. They start with a number of test lines with input data. The action words depict in
which tables or files the test data should go before the batch is started. For large records only
those fields, which are relevant for the test, are specified, the action word will fill in the rest of
the fields with relevant defaults. The input lines are followed by a specid action word, like
"start overnight", that will trigger the start of the batch process that has to be tested. Then the
output lines are specified, with the action words specifying which tables or reports contain the
data which to compare it with.

The processing of batch test can still be done with atest tool on a PC. The test tool will, under
control of the navigation script, route the input data in the correct tables or files. This can ei-
ther be done by using on-line screens (for example with the use of a 3270 emulator) or col-
lecting in alocal file which is uploaded. The test tool, acting as a “director” of the process, will
start the batch process and, after it is has detected that the process is ready, will test the out-
comes. This can be done by either accessing the outcome record by record or by collecting the
expected values in reference files and comparing these with a matching program either local or
on the mainframe. There are a so test tools available on the mainframe itself, which can be
equally well used with the method.
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A special application of the method is for testing performance. In these tests the focusis on the
behavior of a system under a specified load. Figures that are measured are typically response
times and the usage of system components. Those values can be compared to specified de-
mands. This can be done in the test cluster introducing action words like "response time 10",
meaning that atime of 10 seconds is the maximum allowed for the system to respond since the
latest system entry. Thetest failsif the actual time exceeds these 10 seconds, in which case the
actual timeis reported.

Similar solutions are devised for load generation. A typical form is“generate load 10 order-
entry”, meaning that a cluster “order-entry” should be executed simulating 10 simultaneous
users. This can be done on physical machines or as processes in a multi-tasking environment.
The action word “generate load” does not do much more than starting the 10 processes.
Within the earlier mentioned cluster “order-entry” other performance issues are specified with
proper action words, for instance measuring response times and synchronization with other
processes.

The method was developed in 1994 and used in many projects since then. In present days a
large part of the work with the method is in millennium projects and the euro currency con-
version. The method can be used to generate test cases efficiently, but also to automate tasks
like the “time travel” which is necessary for many of the millennium tests.

4. EFFECTS OF THE METHOD

The method described in the previous paragraphs is used in a growing number of large and
small projects, both for on-line and batch systems. The method has a number of effects on the
test automation process.

Thefirst effect ison flexibility. A test set (test clusters and navigation script) is much less sen-
sitive to maintenance than for example record & playback scripts. When a changeis made in
the underlying system, this will usually lead to a change in the tests but this change is limited.
Most of the times a change has only consequences for the navigation. For example a change in
the menu structure of a system or the place of an output result means a change to the relevant
action word procedures. By changing only alimited number of action word procedure a much
larger set of tests will run again on the new version of the system.

When there is a change in the business processes implemented by the system, the change will
effect the test cluster. For example a change in the tax laws will have an effect on a payroll
system and therefore on the clusters testing that payroll system. But these changes are logical,
adirect consequence of the functional change and therefore usually very straightforward to
implement.

A second effect is on the accessibility of the test clusters and the reports. Although they are
direct input for an automated test process the test clusters can be designed in away that also
non-1T people can understand them. It is even possible to let end users directly prepare the test
cases in the spreadshests.
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A next effect concerns the planning. The preparation of the test clusters can start in an early
stage in a project, without knowing all functional details of the system. Especially the business
oriented test cases for functions like payrolls, life insurance's or mortgage calculations can be
produced when a system is still in the definition phase. The navigation script can be developed
when asystem isin its detail design and early building phases.

Thereis an effect in cost effectiveness. The implementation of the navigation script is an extra
activity in aproject. This activity must be compared with the manual testing effort for the first
test. An important difference in this respect with the record & playback method is that also the
first run of the tests is automatic, there is no recording phase. Usually the cost for the naviga-
tion script isin the same order as the saving on the first test 