
INTERNATIONAL SOFTWARE

Sponsored by

Software Research

Brussels, BELGIUM
9 - 13 November 1998

EURO & Y2K: The Industrial Impact

&RQIHUHQFHV
2nd International Software Quality Week Europe

.H\QRWH�3UHVHQWDWLRQV

7HFKQRORJ\�7UDFN

7RROV�	�6ROXWLRQV�7UDFN

3URFHVV�	�0DQDJHPHQW�7UDFN

9HQGRU�7HFKQLFDO�7UDFN

([WUD�3UHVHQWDWLRQV

([KLELWRUV�,QIRUPDWLRQ

$XWKRUV�,QGH[

7XWRULDO�6HVVLRQV

.H\QRWH�3UHVHQWDWLRQV
Plenary Session

Conference
Welcome

Dr. Edward Miller, Software Research
Conference Overview

Plenary Keynote
#1

(DAy 1)

Dr. John D. Musa, Consultant
Applying Operational Profiles to Testing: ISSRE
Results

Plenary Keynote
#2

(DAy 1)

Mr. Bill Eldridge, Barclays’ EURO Advisor
EMU: The Impact on Firms’ Global Operations

Plenary Keynote
#3

(DAy 2)

Mrs. Dorothy G. Graham, Grove Consultants
Inspection: Myths and Misconceptions

Plenary Keynote
#4

(DAy 2)

Mr. David Talbot, European Commission
EU Commission Actions for Y2K and EURO

Plenary Keynote
#5

(DAy 3)

Dr. Boris Beizer, Analysis, Inc.
Nostradamus Redux

Conference
Conclusion

(DAy 3)

Dr. Edward Miller, Software Research
Lessons Learned
QWE’98 Best Paper Award

2nd International Software Quality Week Europe

7HFKQRORJ\�7UDFN

Conference Day #1 (1T - 5T)
Wednesday, 11 November, 1998

Conference Day #2 (6T - 10T)
Thursday, 12 November, 1998

Conference Day #3 (11T -12T)
Friday, 13 November, 1998

2nd International Software Quality Week Europe

7RROV�	�6ROXWLRQV�7UDFN

Conference Day #1 (1S - 5S)
Wednesday, 11 November, 1998

Conference Day #2 (6S - 10S)
Thursday, 12 November, 1998

Conference Day #3 (11S -12S)
Friday, 13 November, 1998

2nd International Software Quality Week Europe

3URFHVV�	�0DQDJHPHQW�7UDFN

Conference Day #1 (1M - 5M)
Wednesday, 11 November, 1998

Conference Day #2 (6M - 10M)
Thursday, 12 November, 1998

Conference Day #3 (11M -12M)
Friday, 13 November, 1998

2nd International Software Quality Week Europe

7HFKQRORJ\�7UDFN

Conference Day #1 (Wednesday, 11 November, 1998)

1T Mr. Rene Weichselbaum, Frequentis Nachrichtentechnik
GesmbH
Software Test Automation

2T Mr. James Clarke, Lucent Technologies
Automated Test Generation From a Behavioral Model

3T Ms. Brigid Haworth, Bournemouth University
Adequacy Criteria for Object Testing

4T Mr. Bill Bently & Mr. Robert V. Binder, mu-Research /
RBSC Corporation
The Dynamic Information Flow Testing of Objects: When
Path Testing Meets Object-Oriented Testing

5T Dr. Denise Woit & Prof. David Mason, Ryerson Polytechnic
University
Component Independence for Software System Reliability

2nd International Software Quality Week Europe

7HFKQRORJ\�7UDFN
Conference Day #2 (Thursday, 12 November, 1998)

6T Dr. Linda Rosenberg, Mr. Ted Hammer & L. Hoffman,
GSFC NASA / Unisys
Testing Metrics for Requirement Quality

7T Mr. Hans Buwalda, CMG Finance BV
Testing with Action Worlds, A Quality approach to
(Automated) Software Testing

8T Mr. Jon Huber, Hewlett Packard
Software Defect Analysis: Real World Testing Implications
& A Simple Model for Test Process Defect Analysis

9T Prof. Antonia Bertolino & Ms. E. Marchetti, CNR-IEI
A Simple Model to Predict How Many More Failures Will
Appear in Testing

10T Dr. Stacy J. Prowell, Q-Labs, Inc.
Impact of Sequence-Based Specification on Statistical
Software Testing

2nd International Software Quality Week Europe

7HFKQRORJ\�7UDFN

Conference Day #3 (Friday, 13 November, 1998)

11T Dr. Matthias Grochtmann & Mr. Joachim Wegener,
Daimler-Benz AG
Evolutionary Testing of Temporal Correctness

12T Ms. Martina Marre, Ms. Monica Bobrowski & Mr. Daniel
Yankelevich, Universidad de Buenos Aires
A Software Engineering View of Data Quality

2nd International Software Quality Week Europe

7RROV�	�6ROXWLRQV�7UDFN

Conference Day #1 (Wednesday, 11 November, 1998)

1S Mr. Manuel Gonzalez, Hewlett Packard
System Test Server Through the Web

2S Mr. Istvan Forgacs & Mr. Akos Hajnal, Hungarian
Academy of Sciences
Automated Test Data Generation to Solve the Y2K
Problem

3S Mr. Felix Silva, Hewlett Packard
Product Quality Profiling: A Practical Model to Capture
the Experiences of Software Users

4S Mr. Otto Vinter, Bruil & Kjaer
Improved Requirements Engineering Based On Defect
Analysis

5S Mr. Robert J. Poston, AONIX
Making Test Cases From Use Cases Automatically

2nd International Software Quality Week Europe

7RROV�	�6ROXWLRQV�7UDFN
Conference Day #2 (Thursday, 12 November, 1998)

6S Dr. Avi Ziv & Dr. Shmuel Ur, IBM Research Lab in Haifa
Off-The-Shelf vs. Custom Made Coverage Models, Which
Is The One For You?

7S Mr. Howard Chorney, Process Software Corporation
A Practical Approach to Using Software Metrics

8S Mr. Lionel Briand, Mr. Bernd G. Freimut, Mr. Oliver
Laitenberger, Dr. Gunther Ruhe & Ms. Brigitte Klein ,
Fraunhofer IESE/Allianz Life Assurance
Quality Assurance Technologies for the EURO Coversion
Industrial Experience at Allianz Life Assurance

9S Mr. Jakob-Lyng Petersen, ScanRail Consult
An Experience In Automatic Verification for Railway
Interlocking Systems

10S Mr. Tom Gilb, Result Planning Limited
Risk Management Technology: A rich practical toolkit for
identifying, documenting analyzing and coping with
project risks.

2nd International Software Quality Week Europe

7RROV�	�6ROXWLRQV�7UDFN

Conference Day #3 (Friday, 13 November, 1998)

11S Dr. Peter Liggesmeyer, Mr. Michael Rettelbach &
Michael Greiner, Siemens AG
Prediction of Project Quality by Applying Stochastical
Techniques to Metrics Based on Accounting Data:
An Industrial Case Study

12S Mr. John Corden, CYRANO
Year 2000 - Hidden Dangers

2nd International Software Quality Week Europe

3URFHVV�	�0DQDJHPHQW�7UDFN

Conference Day #1 (Wednesday, 11 November, 1998)

1M Mr. Leslie A. Little, Aztek Engineering
Requirements Management-Simple Tools-Simple Processes

2M Mr. Nathan Petschenik, Bellcore
Year 2000: Catalyst for Better Ongoing Testing

3M Mr. Juan Jaliff, Mr. Wolfgang Eixelsberger, Mr. Arne
Iversen & Mr. Roland Revesjf, ABB
Making Industrial Plants Y2K-Ready: Concept and
Experience at ABB

4M Mr. Stale Amland, Avenir (UK) Ltd.
Risk Based Testing

5M Mr. Graham Titterington, Ovum, Ltd
A Comparison of the IT Implications of the Y2K and the
EURO Issues

2nd International Software Quality Week Europe

3URFHVV�	�0DQDJHPHQW�7UDFN
Conference Day #2 (Thursday, 12 November, 1998)

6M Mr. L. Daniel Crowley, IDX Corporation
Cost of Quality - The Bottom Line of Quality

7M Dr. Erik P. Van Veenendaal, Improve Quality Services
Questionnaire Based Usability Testing

8M Mr. Gorka Benguria, Ms. Luisa Escalante, Ms. Elisa Gallo,
Ms. Elizabete Ostolaza & Mr. Mikel Vergasa,
European Software Institute
Staged Model for SPICE: How to Reduce Time to Market -
TTM

9M Dr. Antonio Cicu, Mr. Domenico Tappero Merlo, Mr.
Francesco Bonelli, Mr. Fabrizio Conicella & Mr. Fabio
Valle, QualityLab Consortium/MetriQs
Managing Customer’s Requirements in a SME: A Process
Improvement Initiative Using a IT-Based Methodoloty
and Tool.

10
M

Mr. Thomas Drake, Coastal Research & Technology, Inc.
The EURO Conversion - Myth versus Reality?
Panelists: Mr. John Corden, Mr. Patrick O’Beirne
 Mr. Jens Pas, and Mr. Graham Titterington

2nd International Software Quality Week Europe

3URFHVV�	�0DQDJHPHQW�7UDFN

Conference Day #3 (Friday, 13 November, 1998)

11M Mr. Mark Buenen, GiTek Software n.v.
Introducing Structured Testing in a Dynamic,
Low-Mature Organisation

12M Ms. Elisa Gallo, Mr. Pablo Ferrer, Mr. Mikel Vergara &
Mr. Chema Sanz, European Software Institute
SW CMM Level2: The Hidden Structure

2nd International Software Quality Week Europe

9HQGRU�7HFKQLFDO�7UDFN

1V
Day#1

Mr. Charles J. Crawford, Blackstone & Cullen
Year 2000 and the EURO: Compliance Testing and
Data Management

3V
Day#1

Dr. Edward Miller, Software Research, Inc.
Remote Testing Technology

5V
Day#1

Mr. Gordon Tredgold, The Testing Consultancy.
Year 2000 Functional Testing

6V
Day#2

Mr. Luc Van Hamme, OM Partners n.v.
Results of the ESSI PIE Project OMP/CAST

7V
Day#2

Dr. Boudewijn Schokker, VAC Software Engineering
Visions and Tools

8V
Day#2

Dr. Edward Miller, Software Research, Inc.
WebSite Validation Technology:
Assuring E-Commerce Quality

9V
Day#2

Mr. Bob Bartlett, SIM Group Ltd.
Building Re-usable Test Environments for Y2K and
EMU / EURO Testing

10V
Day#2

Mr. Ido Sarig, Mercury Interactive
EMU Conversion - Test Reality Before Reality Tests You...

2nd International Software Quality Week Europe

([WUD�3UHVHQWDWLRQV

Conference Day #1 and Day #2

1E Mr. Bogdan Bereza-Jarocinski, ENEA Data AB
Is Software Testing Scientific?

2E Mr. Patrick O’Beirne, Modelling Ltd.
Managing Risk in EURO Currency Conversion

3E Mr. Jens Pas, Ms. Ethel Verbiest, Mr. Wim Blommaert &
Mr. Steven Patry, ps_testware
Testing the Year 2000

4E Mr. Richard Tinker & Mr. Ron Walters, BT Labs
System Integration and VV&T Strategies

2nd International Software Quality Week Europe

([KLELWRUV

2nd International Software Quality Week Europe

Software Research, Inc.
Co-Sponsors:

 Gold Sponsors:
 CMG Information Technology
 SIM Group Ltd.

 Silver Sponsors:
 IQUIP Informatica B.V.
 Mercury Interactive
 The Testing Consultancy

 Golden Leaf Sponsor:
 GiTek Software n.v.

Blackstone & Cullen, Inc.
CMG Information Technology
CYRANO (UK) Ltd.
IQUIP Informatica B.V.
McCabe & Associates
McGraw-Hill Publishing Com-
pany
Mercury Interactive
OM Partners
SIM Group Ltd.
Software Research, Inc.
VAC Software Engineering
John Wiley & Sons

VendorsSponsors

Amland, Staale (4M)
Bartlett, Bob (9V)
Bazzana, Gualtiero (C1)
Beizer, Boris (A1A2)
Beizer, Boris (P3)
Bently, Bill (4T)
Bereza-Jarocinski, B. (1E)
Bertolino, Antonia (9T)
Binder, Robert (F1F2)
Bobrowski, Monica (12T)
Broekman, Bart (E2)
Buenen, Mark (11M)
Buwalda, Hans (7T)
Chorney, Howard (7S)
Cicu, Antonio (9M)
Clarke, James (2T)
Corden, John (12S)
Corden, John (10M)
Crawford, Charles (1V)
Crowley, L. Daniel (6M)
Drake, Thomas (C2)
Drake, Thomas (10M)
Eldrige, Bill (P1)
Forgacs, Istvan (2S)

2nd International Software Quality Week Europe

6SHDNHUV�,QGH[
Freimut, Bernd (8S)
Gilb, Tom (10S)
Gonzalez, Manuel (1S)
Graham, Dorothy (E1)
Graham, Dorothy (P2)
Grochtmann, Matthias (11T)
Hammer, Ted (G1)
Haworth, Brigid (3T)
Huber, Jon (8T)
Jaliff, Juan (3M)
Kent, John (1RT)
Kit, Ed (H1H2)
Liggesmeyer, Peter (11S)
Little, Leslie A. (1M)
Miller, Edward (P1)
Miller, Edward (3V)
Miller, Edward (8V)
Miller, Edward (P3)
Musa, John (G2)
Musa, John (P1)
O'Beirne, Patrick (10M)
O'Beirne, Patrick (2E)
Ostolaza, Elixabete (8M)

Pas, Jens (10M)
Pas, Jens, (3E)
Petersen, Jakob-Lyng (9S)
Petschenik, Nathan (2M)
Pol, Martin (D1D2)
Poston, Robert (5S)
Prowell, Stacy (10T)
Robertson, Suzanne (B1B2)
Rosenberg, Linda (6T)
Sanz, Chema (12M)
Sarig, Ido (10V)
Schokker, Boudewijn (7V)
Shaham-Gafni, Yael (6S)
Silva, Felix (3S)
Talbot, David (P2)
Tinker, Richard (4E)
Titterington, Graham (5M)
Titterington, Graham (10M)
Tredgold, Gordon (5V)
Van hamme, Luc (6V)
VanVeenendaal, Erik (7M)
Vinter, Otto (4S)
Weichselbaum, Rene (1T)
Woit, Denise (5T)

A1: Dr. Boris Beizer,
 Analysis, Inc.

A2: Dr. Boris Beizer,
 Analysis, Inc.

B1: Dr. Suzanne Robertson,
 The Atlantic Systems Guild

B2: Dr. Suzanne Robertson,
 The Atlantic Systems Guild

C1: Dr. Gualtiero Bazzana,
 ONION s.r.l.

C2: Mr. Thomas Drake,
 Coastal Research & Technology, Inc.

D1: Dr. Martin Pol,
 GITEK Software N.V.

D2: Dr. Martin Pol,
 GITEK Software N.V.

E1: Mrs. Dorothy G. Graham,
 Software Inspection

E2: Mr. Bart Broekman,
 IQUIP Informatica B.V.

F1: Dr. Robert V. Binder,
 RBSC Corporation

F2: Dr. Robert V. Binder,
 RBSC Corporation

G1: Dr. Linda Rosenberg &
Ted Hammer, GSFC NASA/Unisys

G2: Dr. John D. Musa,
 Consultant

H1: Mr. Ed Kit,
 Software Development Technologies

H2: Mr. Ed Kit,
 Software Development Technologies

The Tutorial Notes and prior Conference Publications are available
from Software Research Institute
Click here for an order form

For more information about the Quality Week Conferences series,
please visit our web site at: http://www.soft.com/QualWeek/

Slide 1

Theme: EURO & Y2K:
 The Industrial Impact
Theme: EURO & Y2K:Theme: EURO & Y2K:
 The Industrial Impact The Industrial Impact

Software Research Institute

2nd International Software Quality Week Europe22ndnd International Software Quality Week Europe International Software Quality Week Europe

QWE’98QWE’QWE’9898

Organized by SR/Institute

Slide 2

Dr. Boris Beizer, Analysis, USA

Mr. William Bently, u-Research, USA

Dr. Antonia Bertolino, CNR-IEI, Italy

Mr. Robert Binder, RBSC Corp., USA

Dr. Juris Borzovs, Univ. of Riga, Latvia

Ms. Rita Bral, SR. Institute, USA
Mr. Bart Broekman, IQUIP, Netherlands

Mr. Adrian Burr, tMSc, England

Mr. Gunther Chrobok, Siemens, Germany

Ms. Ann Combelles, Objectif, France

2nd International Software Quality Week Europe - QWE ‘98
Advisory Board Members

Mr. Dirk Craeynest, OFFIS nv. Belgium

Mr. Tom Drake, CRTI, USA

Mr. Franz Engelmann, Synlogic, Switzerland

Mr. John Favaro, Intecs, Italy
Prof. Mario Fusani, IEI/CNR, Italy

Prof. Leon Osterweil, Univ. of Massachusetts, USA

Dr. Tony Wasserman, Software Methods & Tools, USA

Dr. Otto Vinter, Bruel & Kjaer, Denmark

 Dr. Erik V. Veenendaal, Impr. Qual. Serv. & TUE. Ne.

Dr. Tor Staalhane, SINTEF., Norway

Prof. Andreas Spillner, Hochs.-Bremen, Germany

Dr. Torbjorn Skramstad, NUST, Norway

Mr. Giuseppe Satriani, ESI, Spain

Dr. Suzane Robertson, Atlantic Systems Guild, Eng.
Dr. Martin Pol, GITEK, Belgium

Dr. Edward Miller, Software Research, Inc. USA

Dr. Peter Liggesmeyer, Siemens, Germany

Dr. Guenter Koch, ARCS, Austria

Prof. Marie-Claude Gaudel, LRI, France

Software Research Institute

Slide 3

Track Chairs

Tobjorn Skramsta, NUST, Norway
Process/Management Track Chair

Boris Beizer, Analysis, Inc. USA
Technology Track Chair

Juris Borzovs, Riga, Latvia
Tools and Solutions Track Chair

Otto Vinter, Brel & Kjaer, Denmark
Vendor Technical Track Chair

Software Research Institute

2nd International Software Quality Week Europe - QWE ‘98

Slide 4

SponsorSponsor::
Software Research, Inc. (SR)

2nd International Software Quality Week Europe - QWE ‘98

Co-sponsors:Co-sponsors:
Gold Sponsors: CMG Information Technology

GiTek Software n.v.
Leaf Sponsors:

SIM Group Ltd.

Silver Sponsors:
IQUIP Informatica B.V.

Mercury Interactive

Software Research Institute

Slide 5

Cooperating OrganizationsCooperating Organizations

Association for Computing Machinery (ACM)

European Systems and Software Initiative (ESSI)

European Software Institute (ESI)

De Koninklijke Vlaamse Ingenieursvereniging (KVIV)

Studiecentrum voor Automatische Informatieverwerking (SAI)

Software Research Institute

2nd International Software Quality Week Europe - QWE ‘98

Applying Operational Profiles to Testing,
with Updates from ISSRE

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

39 Hamilton Road
Morristown, NJ 07960-5341

j.musa@ieee.org

Copyright  1998 by John D. Musa

ALL RIGHTS RESERVED. No part of this document may be reproduced in any form,
hard copy or electronic, without written permission of John D. Musa. No part of any
accompanying presentation may be recorded (audio or video) without similar written
permission.

Slide 1

‘The Euro and its Impact on
Firms’ Global Operations’

Bill Eldridge
E. U. Adviser’s Office, Director.

Barclays Bank PLC

Slide 2

Agenda

• The Details of EMU
• Business Issues

Slide 3

What is EMU?

• Single Currency
• One Politically Independent Bank - ECB
• One Monetary Policy

Slide 4

Why?

• Consistency in Single Market
• Reduces Cross Frontier Transaction Costs
• Eliminates Exchange Risk
• Lower Interest Rates
• Political Cohesion

Slide 5

• Inflation - 2.7%
• Exchange Rate Stability
• Government Budget Deficit - 3% GDP
• Government Debt - 60% of GDP
• Convergent Interest Rates

Joining Criteria

Slide 6

Staying In

• Stability and Growth Pact
– Preventative
– Dissuasive

Slide 7

Candidates
“1st Wave”“1st Wave”
 CountriesCountries

 Austria
 Belgium
 Finland
 France
 Germany
 Ireland
 Italy
 Luxembourg
 Netherlands
 Portugal
 Spain

LaterLater
 countries countries

Denmark - opt out
Greece-convergence
Sweden-convergence
UK - choice

Slide 8

Timetable

• 1-3 May Decision Announced
• 1st January 1999 Day One

– No compulsion, No prohibition

• 1st January 2002 Notes and Coin
• 1st July 2002 End of Legacy Currencies

Slide 9

 C A N 2 %

J A P A N - 2 3 %

UK -
6 %

"EURO" AREA-
3 5 %

U S - 3 3 %

Government DebtGovernment Debt

Slide 10

Comparable to USA - GDP, Trade

% OECD GDP % Global Trade

EU 15 38 20

USA 31 18

Japan 23 8

E. U. Globally

Slide 11

What will it mean for Firms’
Global Operations?

• IT an Essential Building Block
• Business Strategy

– Price
– Markets
– Economics
– New Currency
– Financing

Slide 12

What Does it Mean for EU
Banking?

• FX trading
• Systems
• Pan European Benchmarks
• Loss of Domestic Franchise
• Catalyst for Change

Slide 13

What Does it Mean for UK
Banking?

• Ready for 1/1/99
– Financial Markets
– Asset Management
– Corporates
– European Retail

• UK Retail next wave?

Slide 14

UK Banks and UK Entry

• Lead Time - 3 Years
• Short Transition
• Timetable

Slide 15

What Has Barclays Been Doing?

• 1991 Maastricht Treaty
• 1995 Task Force
• 1997 Customer Road Shows
• 1998 Final Preparations

Slide 16

Conclusions

• Good Objectives
• There is a Price to Pay
• Huge Experiment
• Preparation is Key

Slide 1

Inspection:
myths and misconceptions

Dorothy R. Graham

Grove Consultants
Grove House

40 Ryles Park Road
Macclesfield, Cheshire

 SK11 8AH U.K.

Tel: +44 1625 616279
Fax: +44 1625 619979

www.grove.co.uk

email: dorothy@grove.co.uk

© Grove Consultants, 1998

Slide 2

Myths and misconceptions

n Myth
-- A plausible story about a supernatural phenomenonA plausible story about a supernatural phenomenon

n Misconception
-- a false or mistaken view, opinion or attitudea false or mistaken view, opinion or attitude

Slide 3

Contents

n What Inspection is
n How Inspection is misunderstood
n What Inspection can & cannot do

Slide 4

The Inspection Process
Software

Development
Stage

.

.

Kick
 off

Ind
Chk Meet Edit

Change
Request

Process
Improvement

Entry

Next Software
Development

Stage

Exit

Slide 5

Contents

n What Inspection is

n How Inspection is misunderstood
-- Inspection is time-consuming & expensiveInspection is time-consuming & expensive

-- Every page should be Inspected - with limited time, look atEvery page should be Inspected - with limited time, look at
more pages / hourmore pages / hour

-- Inspection is subjective and detailed (“nit-picking”)Inspection is subjective and detailed (“nit-picking”)

-- The main part is the meetingThe main part is the meeting

-- The main focus is on finding defectsThe main focus is on finding defects

n What Inspection can & cannot do

Slide 6

Benefits of Inspections

n Development productivity improvement
n Reduced development timescales
n Reduced testing time and cost
n Lifetime cost reductions
n Reduced fault levels
n Improved customer relations
n etc.

Slide 7

Expensive?

n “high-priced, costly”
-- How long is actually spent doing reviews /How long is actually spent doing reviews /

Inspections?Inspections?

n Compared to what?
-- What value do they achieve? (quantified)What value do they achieve? (quantified)

-- What is the cost of defects NOT found?What is the cost of defects NOT found?

n Are they value for money?
-- “Expensive” can be much cheaper“Expensive” can be much cheaper

Slide 8

Inspections are cost-effective

n 25% reduction in schedules
n remove 80% - 95% of errors at each stage
n 28 times reduction in maintenance cost

n Major conversion project recovered a 4 times
slippage (another 3 wks early in 1 yr project)

n A software warranty offered to customers

Slide 9

Contents

n What Inspection is

n How Inspection is misunderstood
-- Inspection is time-consuming & expensiveInspection is time-consuming & expensive

-- Every page should be Inspected - with limited time, look atEvery page should be Inspected - with limited time, look at
more pages / hourmore pages / hour

-- Inspection is subjective and detailed (“nit-picking”)Inspection is subjective and detailed (“nit-picking”)

-- The main part is the meetingThe main part is the meeting

-- The main focus is on finding defectsThe main focus is on finding defects

n What Inspection can & cannot do

Slide 10

At first glance ..

Here’s a document: review this (or Inspect it)

Slide 11

Reviews: time and size determine rate

Time

Checking
Rate

Size

2 hrs?

100 pages?

50 pages per hour

Checking
Rate

Slide 12

Review “Thoroughness”?

ordinary “review” - finds some defects, one major, fix them,
consider the document now corrected and OK

major
minor

minor

Slide 13

Inspection: time and rate determine size

Time

Checking
Rate

Size

2 hrs?

Optimum:
1 page*
per hour

2 pages (at optimum rate)

Size

Slide 14

Inspection Thoroughness

Inspection can find deep-seated defects:
all of that type can be corrected, but needs optimum checking rate

Slide 15

Contents

n What Inspection is

n How Inspection is misunderstood
-- Inspection is time-consuming & expensiveInspection is time-consuming & expensive

-- Every page should be Inspected - with limited time, look atEvery page should be Inspected - with limited time, look at
more pages / hourmore pages / hour

-- Inspection is subjective and detailed (“nit-picking”)Inspection is subjective and detailed (“nit-picking”)

-- The main part is the meetingThe main part is the meeting

-- The main focus is on finding defectsThe main focus is on finding defects

n What Inspection can & cannot do

Slide 16

What are the important defects?

n Defects which
-- cause the most severe problemscause the most severe problems

-- cost the most moneycost the most money

-- cause greatest embarrassmentcause greatest embarrassment

n What often gets checked?
-- mis mis--spelingsspelings, , indentationindentation

-- “standards”“standards”

Slide 17

Rules: the foundation of Inspection

n A defect is a potential violation of a Rule
-- Rules are aimed at major defectsRules are aimed at major defects

-- Rules are accepted by authorRules are accepted by author

-- Rules make Inspection objective, not subjectiveRules make Inspection objective, not subjective

n Good Rulesets are critical to success
-- ambiguity, clarity, sources, risks, versions,ambiguity, clarity, sources, risks, versions,

structure, generalitystructure, generality

Slide 18

Contents

n What Inspection is

n How Inspection is misunderstood
-- Inspection is time-consuming & expensiveInspection is time-consuming & expensive

-- Every page should be Inspected - with limited time, look atEvery page should be Inspected - with limited time, look at
more pages / hourmore pages / hour

-- Inspection is subjective and detailed (“nit-picking”)Inspection is subjective and detailed (“nit-picking”)

-- The main part is the meetingThe main part is the meeting

-- The main focus is on finding defectsThe main focus is on finding defects

n What Inspection can & cannot do

Slide 19

“Inspection is a meeting”

n Preparation is probably good to do
n The meeting is 2 hours
n “Discussion meeting” - discuss defects,

agree which are real defects, discuss how to
fix them

Slide 20

The meeting

n Minor part of the process
-- 80% of defects found in checking80% of defects found in checking

n Only held if economic
-- value determines duration (may be 0)value determines duration (may be 0)

n Highly efficient if held
-- “no discussion” rule“no discussion” rule

n Raise issues, not agree or solve them
-- power to the editor / authorpower to the editor / author

Slide 21

Contents

n What Inspection is

n How Inspection is misunderstood
-- Inspection is time-consuming & expensiveInspection is time-consuming & expensive

-- Every page should be Inspected - with limited time, look atEvery page should be Inspected - with limited time, look at
more pages / hourmore pages / hour

-- Inspection is subjective and detailed (“nit-picking”)Inspection is subjective and detailed (“nit-picking”)

-- The main part is the meetingThe main part is the meeting

-- The main focus is on finding defectsThe main focus is on finding defects

n What Inspection can & cannot do

Slide 22

Learn about products

Task product

Inspection

exited
product

(to improve products)

all products can be
cleaned up by Insp

Tasksame task
done in the
same way

Slide 23

Learn about the process

Task product

exited
product

Inspection
to improve the
process (task)

Task done
better next

product

fewer defects

defects
prevented

next
exited
product

less Insp needed even cleaner products

Slide 24

Contents

n What Inspection is

n How Inspection is misunderstood
-- Inspection is time-consuming & expensiveInspection is time-consuming & expensive

-- Every page should be Inspected - with limited time, look atEvery page should be Inspected - with limited time, look at
more pages / hourmore pages / hour

-- Inspection is subjective and detailed (“nit-picking”)Inspection is subjective and detailed (“nit-picking”)

-- The main part is the meetingThe main part is the meeting

-- The main focus is on finding defectsThe main focus is on finding defects

n What Inspection can & cannot do
-- Limitations of InspectionLimitations of Inspection

-- A myth?A myth?

Slide 25

When Inspection will not work

n in a “blame culture”

n manager wants to use Inspection metrics for
individual performance evaluation (or rumour)

n deadlines always rewarded, poor quality
never penalised

Slide 26

When Inspection will work

n management wants to know the real truth
about quality, and really wants to improve

n quality is important to the business

n software development is a defined process,
based on written documents

Slide 27

What Inspection can do

n Find deep-seated important defects
n Teach people how to perform their work

better
n Kick-start and invigorate a process

improvement initiative
n Improve quality and productivity
n Shorten delivery schedules
n Make testing easier to estimate and plan

Slide 28

What Inspection cannot do

n Find all defects
-- not economic to be 100% effectivenot economic to be 100% effective

n Replace all other forms of review
-- reviews for decision-making, discussion,reviews for decision-making, discussion,

walkthroughs for educationwalkthroughs for education

n Decide whether this is the right system
-- Inspection can verify, only partially validateInspection can verify, only partially validate

(against written sources)(against written sources)

n Inspection is “document-bound”
-- limitation of the techniquelimitation of the technique

Slide 29

A myth?

n Supernatural influence
-- it was OK beforeit was OK before

-- Inspection disturbed the powersInspection disturbed the powers

-- defects suddenly appeardefects suddenly appear

n Not a myth, another misconception

Slide 30

Perception versus reality

actual
defects
in work

perceived
defects
in work

Inspection

Slide 31

Summary: Key Points

n Inspection is a well-defined, proven technique
-- to identify major defects in written documentsto identify major defects in written documents

n Inspection has many misconceptions
-- expensive, rates, rules, meeting, defects/processexpensive, rates, rules, meeting, defects/process

improvement, makes it worseimprovement, makes it worse

n Inspection is document-bound
-- but is the most cost-effective quality techniquebut is the most cost-effective quality technique

-- (if carried out correctly!)(if carried out correctly!)

Slide 32

Rue de la Loi 200, B-1049 Bruxelles/Wetstraat 200, B-1049 Brussel - Belgium - Office: N105 3/25.
Telephone: direct line (+32-2)2968103, switchboard 299.11.11. Fax: 2968364.
Telex: COMEU B 21877. Telegraphic address: COMEUR Brussels.

EUROPEAN COMMISSION
DIRECTORATE-GENERAL III
INDUSTRY
R&TD: Information technologies
Software and advanced information processing

Software Quality Week Conference – Brussels 12 November 1998

EU Commission actions for Y2K and euro

By: David Talbot

• The two issues have both similarities (at the technical level) but also major
differences.

• Amongst the similarities both are:

– Major challenges for IT management

– Significant users of scarce human resources

– World wide in their impact (the euro is not just a European issue, for example 1
trillion ecu’s worth of trade is conducted between the EU and US alone)

• However, a recognition of the differences is essential.

– Y2K is substantially a technical IT matter with possibly profound business
impacts in terms of the consequences of any failure to correct the problem; it is
essentially a “distress purchase” with limited/little added value.

 The euro is essentially a business matter with the potential to transform the
business landscape and the way in which an enterprise will operate; this has a
clear and significant impact on the enterprises’ IT systems; in this regard the
adaptation of IT systems is not a “technical” matter, it must be driven by business
considerations.

• The Commission position and actions reflect these important differences. The speaker
will aim to develop the above points in more detail and outline the “political”,
practical and technical steps that have been taken to address these issues.

NOSTRADAMUS REDUX

Dr. Boris Beizer

Presentation at Quality Week Europe, 1998
Brussels, Belgium, November 13, 1998

Prepared By:
Boris Beizer, PhD
1232 Glenbrook Road
Huntingdon Valley, PA 19006
PHONE: 215-572-5580
FAX : 215-886-0144
Email: bbeizer@sprintmail.com, bbeizer@acm.org

Prepared For: File
Copyright 1998, Boris Beizer

This is a notice of copyright. No part of this document may be reproduced or converted to any other form by any
electronic, manual, and/or mechanical means, including but not limited to: photocopy, recording, taping, facsimile
transmission, scanning, storage in a computer and/or memory and/or any other storage media--without the written
permission of the author. The material therein remains the sole intellectual property of the author who retains all
beneficial rights thereto.

Nostradamus Reudx Closing address at Quality Week Europe, November 13, 1998
Copyright 1998, Boris Beizer August 6, 1998

Page 1 of 6

1. Nostradamus Redux
We live in confusing and troubled times: who better to guide us than Nostradamus? Some newly discovered
predictions from the missing parts of his section VII, and some new translation of previous ones are provided
here for your entertainment and amusement. My interjections for the sake of clarification are in brackets.
Nostradamus’ predictions take the form of four-line stanzas called “quatrains.” He often bundles several
predictions within one quatrain and sometimes a prediction is given in parts of several different quatrains.
 Where appropriate, I have edited out the parts that do not concern us and merged parts to make the
predictions more sensible. Nostradamus is inconsistent when it comes to dates: sometimes he refers to years
after his birth, sometimes to years after publication of his predictions, and sometimes to absolute years in the
common calendar. I have adjusted all dates to the common calendar.

Nostradamus, viewing our times through the eyes of the 16th century, did not have words for ideas
such as “president” or “software bug.” So we must interpret “king” to mean any leader, “country” or
“kingdom” to also apply to corporations, and any kind of insect to mean software bug.

2. Y2K
The Internet newsgroup, comp.software.year-2000 is (in)famous for it’s gloomy Y2K predictions.
Nostradamus foresaw the Y2K bug, the associated social problems, the resolution, and the aftermath.
Nostradamus is certainly as credible as most of the Y2K predictions we hear these days.

III/34. Then when the eclipse of the sun
Will in broad daylight the monster [Y2K bugs] be seen.
It [year representation] will be interpreted quite differently [that’s the crux of the problem, isn’t it?];
They will not care about expense, none will have provided for it.

Is there any doubt that this refers to the Y2K problem? And how about...

I/22 A thing existing without any senses [obviously he means computer programs]
Will cause its own end to happen through artifice [good description of an ABEND].

I/44. In a short time sacrifices [taxes] will be resumed,
Those opposed will be put to death like martyrs.

The remediation effort of the United States Internal Revenue Service does not succeed at first—plagued by ABENDs. The resulting
chaos prompts a short-lived tax revolt. But the software is repaired and tax collection resumed. Those who did not pay their taxes
are dealt with severely. Nostradamus isn’t always to be taken literally; e.g., “put to death...”; but then considering how tax departments
often behave, I’m not sure that the literal interpretation isn’t correct.

VII-14 He will come to expose the false topography,
The urns of the tomb will be opened.
Sect and holy philosophy to thrive,
Black for White and the new for the old.

This is a very detailed predictions that refers to my talk on Y2K at the 1998 Quality Week Conference. “He” refers to Boris Beizer.
 The key point is in the last line which clearly refers to remediation of legacy code and the fact that for Y2K testing, we must rely
mainly on behavioral (i.e., Black Box testing) and forego detailed coverage testing.

I/47 The speeches of Lake Leman will become angered,
The days will drag out into weeks,
Then months, then years, then all will fail [Sounds like Y2K, doesn’t it?].
The authorities will condemn their useless powers.

IV/13 New of the great loss is brought;
The report will astonish the camp.

IV/9 When Geneva in trouble and distress

Nostradamus Reudx Closing address at Quality Week Europe, November 13, 1998
Copyright 1998, Boris Beizer August 6, 1998

Page 2 of 6

Is betrayed by the Swiss.
V/85 Through the Swiss and surrounding areas

They will war because of the clouds [of bugs].
A swarm of locusts and gnats [Nostradamus for “bug”],
The faults of Geneva will be laid quite bare.

I/61 The wretched, republic will be ruined
By a new authority.
The great amount of ill will accumulated in exile
Will make the Swiss break their important agreement.

An emergency global Y2K political conference is held in Geneva, Switzerland. It is a rancorous conference, in part as a
result of all the delegates being unable to get their credit cards accepted—which is a special hardship in Switzerland. Meanwhile,
remediation drags out for weeks, months, and even years — but there are still massive software failures at the end. The politicians
are frustrated by their inability to find political solutions to the problem. The collapse of the global monetary system is attributed to
Y2K bugs in Swiss banking software. Switzerland closes their international banks and cancels all agreements.

X/72 In the year 1999 and seven months,
From the sky will come the great King of Terror.

I/80 Then a monster will be born of a very hideous beast:
In March, April, May and June great wounding and worrying.

Dire predictions for July 1999, which is when we can expect many of the first Y2K bugs to strike. Expect the Y2K problems to peak
between March-June 2000, with even greater impact than previously expected — the use of “then” makes it clear that he’s talking
about the following year (2000).

VI/8 Those who were in the kingdom for knowledge
Will become impoverished by a royal change.
Some exiled without support, having no gold,
Neither learning nor the learned will be held of much value.

Nostradamus tells us that there will be a new administration in the US, following the 1999 election but he doesn’t tell us
which party will win. However, whatever the party, the new president puts the blame on the data processing community and initiates
harsh measures in punishment. We can certainly expect this kind of behavior on the part of politicians who have to have someone
to blame and who better to blame than programmers and SQA people. A big drop in programmer salaries after Y2K. A note of
caution by the seer for Y2K consultants—Don’t expect the current billing levels to hold forever.

VI/2 In the year one-thousand, nine-hundred and eighty more or less
One will await a very strange century.
In the year two-thousand and three,
The skies as witness that several kingdoms (one to five) will make a change.

Although Y2k remediation began in the early 1980's he predicts that by 2003 only 1 in 5 countries will have completed the task.

VII/44 After a generation and a bit, from a few bits
Anew a plague of midges, mites, and locusts rises from Xanthus
To plague the unwary and uncaring
Who heeded not the previous holocaust.

The timing makes this right for the UNIX 2028 rollover bug. “Xanthus” is probably an anagram for “UNIX.” There it is all over
again. Just like Y2K, the problem will be ignored.

3. Euro
Conversion to the Euro, coming as it does simultaneously with Y2K is another problem that was much on
Nostradamus’s mind.

Nostradamus Reudx Closing address at Quality Week Europe, November 13, 1998
Copyright 1998, Boris Beizer August 6, 1998

Page 3 of 6

I/40 The false trumpet concealing madness [apparently his opinions of the Euro]
Will cause Byzantium to change its laws.
From Egypt there will go forth a man
Who wants the edict withdrawn, changing money and standards.

Turkey and Egypt are conditionally accepted into the European Economic Union. Turkey willingly changes monetary policies in order
to achieve compliance, but Egypt objects to the schedule because it cannot change its software in time and in accordance to the
specified standards.

IV/48 The plains of Europe, rich and wide,
Will produce so many gadflies and grasshoppers [bugs]
That the light of the sun will be clouded over.
Devouring everything, a great pestilence will come from them.

Oh-oh! Looks like there’s going to be a lot of turmoil from the Euro conversion.

I/73 France shall be accused of neglect by her five partners ... [What else is new?].
The Outer Three will adamant remain, [Norway, Denmark, and Sweden, obviously]

IV-21 The change will be very difficult.
Both city and province will gain by it.

Business as usual in EEU. Conversion will not be easy, but all’s well that ends well.

4. The Computer Industry, Microsoft, Gates
Nostradamus is credited with predicting Napoleon and Hitler. You didn’t think he would leave out Microsoft
and Bill Gates, did you?

IV/31 The moon, in the middle of the night of the high mountain
The young wise man alone with brains has seen it.
Invited by his disciples to become immortal,
His eyes to the south, his hands on his breast, his body in the fire.

Who else but Bill Gates? But what about that “body in the fire?” Perhaps the following quatrain sheds light on this.

VII/45 The Newest Testament [Anagram for NT?] again delayed
Held closeted in secrets deep.
The multitudes play into his wily hands
By their intemperate impatience.

By once again delaying the release of WIN NT5, Gates assures total saturation of WIN98, capturing the last holdouts under DOS,
WIN 3.1, and WIN 95 who are forced into WIN 98 as the only Y2K compliant operating system. But Gates takes a lot of heat over
this ploy (“his body in the fire”).

V/75 He will rise high over his wealth, move to the right,
He will remain seated on the square stone;
Towards the south placed at the Window,
A crooked staff in his hands, his mouth sealed.

Gates will get even richer and more powerful. As he does, he will increasingly adopt conservative politics. The use of
Windows will increase significantly in Africa and South America as the next big market for personal computers. More trouble from
the US Justice Department because of predatory business practices by his staff (a staff which he completely controls). Gates will
refuse to testify before a grand jury.

VII/61 From Gates through the Window, air and wheels combine,
The aging sage foresees the union.
Timid judges rise in righteous anger,

Nostradamus Reudx Closing address at Quality Week Europe, November 13, 1998
Copyright 1998, Boris Beizer August 6, 1998

Page 4 of 6

But soon to sleep they go again.
An aging Bill Gates argues before the U.S. supreme court that the absorption of United Airlines by Microsoft (“air and wheels
combine”) is a natural evolution of the operating system (WIN NT8.0) that began with virtual flight in Flight Simulator XXIII.
Similarly, the proposed absorption of General Motors is argued as an inevitable evolution from virtual travel on the Internet to physical
travel. The US Supreme Court judges make politically correct verbal opposition but let the case die when they refuse to provide an
opinion on the question.

VII/52 The antipodal names inverted
The king, his colors true revealed.
Leviathan, his mighty gorge extended,
Sweeps the smaller sea.

Microsoft’s name is changed to “Megahard.” “We’re no longer “micro” and we were never “soft.”, Gates explains. “The new name
is in keeping with what we have always been.” Megahard buys the entire list of the NASDAQ stock exchange.

II/89 One day the two great leaders will be friends;
Their great power will be seen to grow.
The new land will be at the height of its power,
To the man of blood the number is reported.

Microsoft and Oracle merge as Gates and Ellison shake hands. “The man of blood”(Gates) is the new CEO of the combined
companies who asks for an immediate financial statement.

IV/75 He who was ready to fight will desert,
The chief adversary will win the victory.
The rear guard will make a defense,
But will falter and die.

Lou Gerstner (IBM’s CEO) fights a hostile takeover bid by Microsoft, but eventually bails out with his golden parachute. The Lotus
Notes loyalists attempt to take their product private, but do not succeed.

II/11 The following son the elder will succeed,
Very greatly raised to a kingdom of privilege.
His bitter renown will be feared by all,
But his children will be thrown out of the kingdom.

Bill Gates IV, succeeds Bill Gates III as chairman of Macrohard/IBM/Oracle/UNITED/GM (known in the industry as
“MACROMUG”). He botches the job by changing the company into a repressive hell more regimented than IBM at its worst.
Eventually, the next generation (Bill Gates V) loses control of the conglomerate.

5. Clinton, American politics, and L’affair Lewinski
As of the time of this writing (August 4, 1998) the Clinton/Lewinski affair is still unresolved. Apparently, like
many American politicians (in the opposition party) Nostradamus believed it to be one of the great scandals
of history. We have already seen some of these, and others have been hinted about.

VIII/23 Letters are found in the queen’s chests,
No signature and no name of the author.
The ruse will conceal the offers;
So that they do not know who the lover is.

Sounds familiar? Anonymous letters that possibly are an invitation by Clinton to an intern for a very private meeting are found in
Hillary Clinton’s files; but key sections are missing so that it’s impossible to prove to whom the letters refer or who wrote them.

IV/57 Ignorant envy supported by the great king,
He will propose forbidding the writings.
His wife, not his wife, [Hillary?] tempted by another,

Nostradamus Reudx Closing address at Quality Week Europe, November 13, 1998
Copyright 1998, Boris Beizer August 6, 1998

Page 5 of 6

No longer will the double-dealing couple protest against it.
Clinton proposes a cover up by censorship. Hillary is tempted to have her own affair in retribution — but, finally, the letters are
turned over to the grand jury as the Clintons agree to their release.

VIII/14 The offence of the adulterer will become known
Which will occur to his great dishonor.

VIII/95 The seducer will be placed in a ditch
And will be tied up for some time.

A clear reference to the final resolution of the Clinton/Lewinski affair. Clinton certainly seems to be “tied-up and in a ditch” over this
affair.

VI/59 The lady, furious in an adulterous rage,
Will come to conspire to not speak to her Prince.
But the culprit will soon be known,
So that seventeen will be martyred.

This happened a while ago. Clinton white house. Hillary is furious and won’t speak to Clinton. The news gets out. Nostradamus has
Lewinski’s age wrong: She was older than seventeen.

VI/72 Through feigned fury of a divine emotion
The wife of the great one will be badly violated.
The judges wishing to condemn such a doctrine,
The victim is sacrificed to the ignorant people.

Trouble for Hillary. She acts furious about Clinton’s disclosures. It’s an act, because she knew about it all along. Nevertheless, she
has to take a lot of abuse for speaking out. The supreme court wants to act against the president. Clinton turns it about by getting
Lewinski indicted. Special prosecutor Starr backs off from the immunity pledge and Lewinski is charged with perjury.
VI/13 A doubtful one will not come far from the kingdom,

The greater part will wish to support him.
A Capitol will not want him to reign:
He will not be able to bear his great burden.

Despite everything, Clinton’s popularity in the polls continues. Congress wants to impeach him. He considers resigning.

X/76 The Senate will see the parade for one
Who afterwards will be driven out, vanquished.
His adherents will be there at the sound of a trumpet,
Their possessions for sale, the enemies driven out.

Oh, oh! It looks like the US senate will successfully impeach Clinton, after all. His whole administration will go out with him.

6. Software Quality, QA, and Testing
The sage foresaw not only the software industry and bugs, but also that we would be holding conferences
about the subject.

IV/26 The great swarm of bees [bugs] will arise
But no one will know whence they have come, [that’s pretty typical]
The ambush by night, the sentinel under the vines,
A city handed over by tongues not naked.

This is all about bugs striking a municipal government’s software—or is Nostradamus giving warning for all municipal software?
 He say’s that QA has failed in its task — “the sentinel under the vines” means that QA was drunk.

Nostradamus Reudx Closing address at Quality Week Europe, November 13, 1998
Copyright 1998, Boris Beizer August 6, 1998

Page 6 of 6

V/93 When Mercury is at the height of his powers,
VII/72 Masters of the heavenly arts in Brussels gather
V/37 Three hundred will be of one agreement

And accord to the execution of their ends.

This is obviously about the QWE98 conference. There is consensus over how things should be done to improve software quality.

IV/18 Some of the most learned men in the heavenly arts
Will be reprimanded by ignorant Princes;
Punished by edicts, driven out as scoundrels,
And put to death wherever they are found.

We all know this scenario. How many of us in SQA have been there?

IV/53 The fugitives and the banished are recalled.
IV/69 The exiles will hold the great city.

They will promise to show them the entrance
By untrodden paths.

But eventually, the powers that be come to their senses and turn control over to people who know quality assurance. The QA leaders
and doers will show them the way to get things done. Note here that the key (the entrance) is to assure 100% coverage (untrodden
paths). But Nostradamus has it wrong. He’s calling for 100% path cover instead of 100% branch cover. But hey, that’s a common
mistake among people today who should know better.

VI/17 After the penances are burned the ass drivers
Will be forced to change into different clothing.
Those of Saturn burnt by the Millers,
Except the greater part which will not be covered.

Eventually, 100% branch cover as fervently espoused by Edward Miller for so many years will be officially adopted but in practice,
most of the code will still not be tested (covered).

III/67 A new set of philosopher, despising gold and riches
Will not be limited, even by mountains;
In their following will be crowds and support.

IV/16 From hundreds they will become thousands.

This is obviously about QW Europe. We must “despise gold and riches” because we’re not getting any — anyhow, it speaks well
for the results of the message. Great supporting crowds going from hundreds to thousands.

Slide 1

COPYRIGHT FREQUENTIS 1998 Rev. 1.0
File: qwe98v10.PPT Page: 1 Author: René Weichselbaum
QFM 01140, Rev. 3

Genetic Algorithms

Perfectly suited for Software Test A utomation

Dipl. Ing. René Weichselbaum

Slide 2

COPYRIGHT FREQUENTIS 1998 Rev. 1.0
File: qwe98v10.PPT Page: 2 Author: René Weichselbaum
QFM 01140, Rev. 3

Outline

n Testing activities

n Goals/concept

n The tool: GATester
n The algorithm and its performance

n Software reliability considerations

n Benefits

n Future work

Slide 3

COPYRIGHT FREQUENTIS 1998 Rev. 1.0
File: qwe98v10.PPT Page: 3 Author: René Weichselbaum
QFM 01140, Rev. 3

Testing A ctivities

n Plan
n Determine
n Refine

n Design
n Implement

n Execute
n Check
n Evaluate

Slide 4

COPYRIGHT FREQUENTIS 1998 Rev. 1.0
File: qwe98v10.PPT Page: 4 Author: René Weichselbaum
QFM 01140, Rev. 3

M ain Goals

n A utomate test data generation

n Sidestep problems encountered by traditional
approaches

n M ake it repeatable

n Implement detai led reporting procedures

n FAT & SAT forecast

Slide 5

COPYRIGHT FREQUENTIS 1998 Rev. 1.0
File: qwe98v10.PPT Page: 5 Author: René Weichselbaum
QFM 01140, Rev. 3

The Concept

- What is to be tested
- Measurement criteria
- Constraints
- Termination condition

Test Data

Test Results

Test Data
Generation

Test ExecutionMeasurement

Start

Stop

Manual
Process

Automated

Slide 6

COPYRIGHT FREQUENTIS 1998 Rev. 1.0
File: qwe98v10.PPT Page: 6 Author: René Weichselbaum
QFM 01140, Rev. 3

The Tool: GATester

Source Code Constraints Specification

Evolution
Module

Test Results Database Reliability Database

Debug Information
Computation Time

Database

Slide 7

COPYRIGHT FREQUENTIS 1998 Rev. 1.0
File: qwe98v10.PPT Page: 7 Author: René Weichselbaum
QFM 01140, Rev. 3

GATester’ s Workflow

n Identify software units

n Choose a coverage criterion (opt.)

n Check the termination condition (opt.)

n Specify constraints (opt.)

n Provide user def ined rel iability requirements (opt.)

n “Touch the button”

Slide 8

COPYRIGHT FREQUENTIS 1998 Rev. 1.0
File: qwe98v10.PPT Page: 8 Author: René Weichselbaum
QFM 01140, Rev. 3

Performance Considerations

n 586, 166 MHz, 32 MB RAM, L inux

n 100% statement coverage

Computation Time in
clocks

Statement feasibility

149 1,53E-05
245 5,96E-08

9546 2,33E-10
379394 9,09E-13

Slide 9

COPYRIGHT FREQUENTIS 1998 Rev. 1.0
File: qwe98v10.PPT Page: 9 Author: René Weichselbaum
QFM 01140, Rev. 3

Terminology

n Gene
A gene controls the inheritance of one or several characters. We use it
as the basic unit storing a variable’ s test data.

n Chromosome
A Chromosome is made of genes, arranged in linear succession.

n Population
A population is a set of chromosomes.

n GA = Genetic A lgorithm

Slide 10

COPYRIGHT FREQUENTIS 1998 Rev. 1.0
File: qwe98v10.PPT Page: 10 Author: René Weichselbaum
QFM 01140, Rev. 3

The Genetic A lgorithm

Initialize first population P(0)

Evaluate P(0)

W hile not termination condition

Increment population

Select new population from last one

Alter population (Crossover, Mutation)

Evaluate population

Slide 11

COPYRIGHT FREQUENTIS 1998 Rev. 1.0
File: qwe98v10.PPT Page: 11 Author: René Weichselbaum
QFM 01140, Rev. 3

GA’s Components

n Genetic representation for potential solutions

n A way to create an initial population of potential
solutions

n A n evaluation function, rating solutions in terms of
their “ fitness”

n Genetic operators that alter the composition of
children

n V alues for various parameters

Slide 12

COPYRIGHT FREQUENTIS 1998 Rev. 1.0
File: qwe98v10.PPT Page: 12 Author: René Weichselbaum
QFM 01140, Rev. 3

Genetic Representation 1/2

How the software under
test maintains its data.

The way the testing tool
processes the data.

Input Variables
(Data Type Level)

Transform Input
Variables

Retrieve Input
Variables

Input Variables
(Representation Level)

Slide 13

COPYRIGHT FREQUENTIS 1998 Rev. 1.0
File: qwe98v10.PPT Page: 13 Author: René Weichselbaum
QFM 01140, Rev. 3

Genetic Representation 2/2

1 10 1110110

Transform Retrieve

iGlobal cPar1 iPar2

Input variables Type Size Name
global integer 4 iGlobal
parameter char 1 cPar1
parameter integer 4 iPar2

Slide 14

C O P Y R I G H T F R E Q U E N T I S 1 9 9 8 Rev . 1 .0
F i l e : qwe98v10 .PPT Page : 1 4 Au tho r : René W eichselbaum
Q F M 0 1 1 4 0 , R e v . 3

W hy do G A s work?

n Building blocks

n Schema

n Order of a schema

n D efining length of a schema

n Schema theorem

Slide 15

COPYRIGHT FREQUENTIS 1998 Rev. 1.0
File: qwe98v10.PPT Page: 15 Author: René Weichselbaum
QFM 01140, Rev. 3

Software Reliabi l i ty

n Def init ion

n Qual i f ication testing vs. rel iability testing

n Operational profile

n Saturation point

n System rel iability

Slide 16

COPYRIGHT FREQUENTIS 1998 Rev. 1.0
File: qwe98v10.PPT Page: 16 Author: René Weichselbaum
QFM 01140, Rev. 3

0

2

4

6

8

10

Failure time

F
ai

lu
re

 n
um

be
r

Unit Rel iabi l i ty M easurement Chart

C
PR

Reject

PA

Accept

Slide 17

COPYRIGHT FREQUENTIS 1998 Rev. 1.0
File: qwe98v10.PPT Page: 17 Author: René Weichselbaum
QFM 01140, Rev. 3

Unit Run Rel iabil ity

n Def inition
– A ssumption: uniform probability distribution

– Rk = nc/NR

n Primitives
– nc...number of correct runs

– NR...number of total runs

n Input space handl ing
– Evolution strategy

Slide 18

COPYRIGHT FREQUENTIS 1998 Rev. 1.0
File: qwe98v10.PPT Page: 18 Author: René Weichselbaum
QFM 01140, Rev. 3

Benefits

n A utomated test data generation

n Repeatable testing process
– A utomated regression tests

– No test data maintenance effort needed

n Thorough testing

n A chieving a level of coverage automatically

n Software rel iabil ity assessment

Slide 19

COPYRIGHT FREQUENTIS 1998 Rev. 1.0
File: qwe98v10.PPT Page: 19 Author: René Weichselbaum
QFM 01140, Rev. 3

Future Work

n GA configuration

n Self checking test cases

n Software rel iabil ity estimation/prediction

1

*HQHWLF�$OJRULWKPV
Perfectly suited for Software Test Automation

René Weichselbaum

FREQUENTIS GesmbH
Software Quality Management

Spittelbreitengasse 34, A-1120 Vienna, Austria
Tel: +43 1 81150 1210
Fax: +43 1 81150 1299

e-mail: rweichse@frequentis.com

Copyright 1998 FREQUENTIS. All rights reserved.

Abstract

One of the main problems with automating software testing is its complexity.
Genetic algorithms aim at such complex problems. For example, they address
the problem of test data generation without instructing them, step by step, on how
to do it. Instead of this, their learning algorithm is inspired by the theory of
evolution. Using this approach neatly sidesteps many of the problems
encountered by other systems in attempting to automate the test process. This
paper describes a test tool performing automatic coverage testing by means of
genetic algorithms including some key issues in software reliability assessment.

Keywords:

Software testing, test data generation, coverage testing, software reliability,
genetic algorithms

2

��� ,QWURGXFWLRQ

Software testing is an expensive component of software development. In safety
related applications it can take up to 80% of the costs of the software
development.

Automation seems to be an essential ingredient for both a cost-effective
approach to testing and a thorough approach. Manual software testing is very
time consuming. The same procedures have to be repeated again and again for
every release and every regression test. So it is a good idea to automate these
procedures. There are activities being relatively easy to automate, especially test
execution and the final check of the results against given rules. Identifying test
conditions, designing test cases and implementing the tests are the more
intellectual parts of software testing. It is difficult to automate them at all.

This paper describes a test tool performing automatic coverage testing by means
of genetic algorithms. Without qualification, coverage usually means branch or
statement coverage [1]. Statement coverage, also called C0 coverage, is a metric
of the number of source language statements executed under test. Branch
coverage, also called C1 coverage, measures the number of branch alternatives
executed. Usually these two coverage criteria are accepted as the minimum
mandatory testing requirement. However, for some applications condition
combination coverage is required. This strategy is stronger than C1 because it
requires that all combinations of conditions in every decision statement must take
both true and false values. As an example, Figure 1-1 shows the test cases
needed for a given decision statement.

/* Comment: T...true, F...false
 * Test cases with the following constraints must be found:
 * TTT, TTF, TFT, FTT, TFF, FTF, FFT, FFF
 */
IF (a < b) AND (a < c) AND (b < c)
 a = b

)LJXUH������7HVW�&DVHV�UHTXLUHG�IRU�FRQGLWLRQ�FRPELQDWLRQ�FRYHUDJH�

The tool was developed by the author himself within the scope of his Ph.D. work
and is called GATester. GATester is implemented on Linux operating system and
primarily intended to support unit and module testing including regression testing.

7KH�PDLQ�JRDOV�RI�WKH�SURMHFW�DUH�DV�IROORZV�

● Find a new approach for automating the test process in order to sidestep
many of the problems encountered by traditional approaches

● Automate test data generation in order to decrease costs of building new
tests

● Make the test data generation task repeatable in order to compare actual
results with previous ones

● Make the automated test process understandable by implementing a detailed
reporting procedure

3

In section 2, the testing process is divided into its generic tasks. Section 2 then
discusses which of these tasks can be partly or fully automated and which
cannot.

In section 3, the steps involved in the proposed testing process are described.

Section 4 presents first performance measures and gives an idea of the
effectiveness of this new approach.

In section 5 and 6, the author discusses the basic algorithms performing test data
generation and test data evaluation, respectively. These sections should reveal
why genetic algorithms are perfectly suited for software test automation.

Section 7 investigates how the test tool can contribute to software reliability
assessment calculations.

Finally, the author’s conclusions are presented and further research is outlined.

4

��� 7KH�7HVWLQJ�3URFHVV

According to [37], a test unit is a set of one or more computer program modules
together with associated control data, usage procedures, and operating
procedures that satisfy the following conditions:

- All modules are taken from a single computer program

- At least one of the new or changed modules in the set has not completed the
unit test

- The set of modules together with its associated data and procedures are the
sole object of a testing process

In Figure 2-1 the activities involved in a standard unit testing process are
presented [37]. The last column indicates if an activity must be carried out by
hand or if it can be automated by GATester. “Partially Automated” means that
there exist default values for this activity in order to proceed automatically.
However, the user may perform additional configuration steps within this activity,
e.g. choosing a particular coverage criterion as a termination condition. Note that
only activities concerning coverage testing are considered here. Tasks that add
unnecessary costs or do not add value are eliminated.

1 Perform Test Planning Phase
1A Plan general approach, resources, and schedule Manual process
1B Determine features to be tested Partially Automated
1C Refine the general plan Deleted
2 Acquire test set phase
2A Design the set of tests Automated
2B Implement the refined plan and design Automated
3 Measure test unit phase
3A Execute the test procedures Automated
3B Check for termination Automated
3C Evaluate the test effort and unit Partially Automated

)LJXUH������7KH�XQLW�WHVW�DFWLYLWLHV�DFFRUGLQJ�WR�$16,�,(((�6WG�����������DSSOLHG�WR
FRYHUDJH�WHVWLQJ�XVLQJ�*$7HVWHU

Under normal conditions, these activities are sequentially initiated except for an
Execute and Check cycle [37], no matter if they are automated or not.

Apart from the fact that some configuration steps must be taken, the process may
be fully automated if the goal is to satisfy some level of coverage. For example, if
the test should stop after reaching 100% statement coverage, the only manual
activity is to start GATester and provide the tool with the program, i.e. the unit
that is to be tested, and the information telling the tool which coverage is to be
met. The tool returns the test cases needed and some additional output like the
computation time. More details about the workflow are presented in the next
section.

5

If also the dynamic nature of software behaviour is of interest the user can
provide GATester with some additional constraints. These constraints are treated
as software requirements that must be satisfied during test execution. Every
constraint must be assigned to one or more statements. GATester will report any
violations of given constraints. The next section addresses this issue in more
detail.

6

��� +RZ�WR�XVH�WKH�7HVW�7RRO

This chapter describes the GATester’s basic functionality from the user’s point of
view. Although it is far away from being a user guide, it illustrates how to use the
tool. In Figure 3-1 the user’s tasks are presented. Please refer to Figure 2-1 for
the relationship between the ID-column and the corresponding test activity.
Deleted or fully automated activities are eliminated here.

ID The user’s tasks
1A Identify units that are to be tested, choose a coverage criterion, specify a

new termination condition if the default one is not appropriate, and
optionally provide GATester also with user defined reliability
requirements

1B Specify constraints if the dynamic nature of the software under test
should also be evaluated

3C Complete the provided test summary report if necessary, ensure that the
testing products are collected, organized, and stored for reference and
reuse

)LJXUH������7KH�*$7HVWHU¶V�ZRUNIORZ

,GHQWLI\�XQLWV�WKDW�DUH�WR�EH�WHVWHG�DQG�FKRRVH�D�FRYHUDJH�FULWHULRQ�

The user provides a unit that is to be tested and selects a coverage criterion. This
may be one of the criteria presented in the first chapter, namely statement
coverage, branch coverage, or condition combination coverage. The default
criterion is statement coverage. If the primary goal is to meet the coverage
criterion by some test data the user’s tasks are completed. However, it is
recommended to perform also the next step, namely checking the termination
condition. After a while, usually within a few seconds (see also chapter 4), the
tool will return the test cases needed to meet the desired coverage and additional
documentation, for example the paths traversed, for every statement the number
it has been executed under some test, and all the time intervals used for finding
“a better test case” than the best so far. For details about how to interpret these
time intervals please refer to section 5.

&KHFN�WKH�WHUPLQDWLRQ�FRQGLWLRQ�

After choosing an appropriate coverage criterion the user should check the
termination condition. The termination condition is a function of the maximum
number of test cases specified and the chosen coverage criterion. If either the
maximum number of test cases reached or the specified coverage criterion is met
the test execution will stop. For example, if the chosen coverage criterion is very
hard to meet the user must allow the testing tool to generate “very much” test
data.

3URYLGH�XVHU�GHILQHG�UHOLDELOLW\�UHTXLUHPHQWV�

Since software reliability assessment is a very advanced topic that cannot be
introduced by a few words it is left out here and discussed in chapter 7.

7

6SHFLI\�FRQVWUDLQWV�

The tool allows to assign any expression to a set of statements. Precisely
speaking, the constraints are composed of variables, parentheses, and
programming language operators including user defined functions. Constraints
evaluate to one of the Boolean values TRUE or FALSE. During test execution,
GATester reports all violations of one of the given constraints. Figure 3-2 gives
some examples of constraints (representation: C programming language):

(a<b)&&(c == d) “all”
a==3 1,2,3
a=2 6

)LJXUH������6RPH�H[DPSOHV�RI�FRQVWUDLQWV

Basically, a constraint specification consists of the constraint itself and a
definition telling the tool for which statements the constraint is relevant. For
example, a==3 is the constraint, and 1,2,3 is the definition.

The first line assigns a constraint to all statements of the unit under test. The
following line just assigns the constraint a==3 to the first three statements. An
interesting variant is the last line. Since the expression is an assignment rather
than a boolean compare, variable ‘a’ gets the new value 2 at the sixth statement.
So the user is able to force the traversal of some paths or test some unintended
side effects. As we will see in chapter 7, constraints can also be used for
specifying an operational profile.

�&�DFWLYLWLHV�

If the desired coverage could not be reached the user has to check manually if

- the chosen coverage criterion involves the traversal of infeasable statements
or paths

- the termination condition is set appropriately

The other activities associated with the identifier ‘3C’ are up to the overall
Verification & Validation (V&V) organisation. Since they do not serve as an input
for GATester, they are not discussed here.

8

���)LUVW�3HUIRUPDQFH�0HDVXUHV

The author’s algorithm for software test data generation was tested on a number
of software units. The units’ cyclomatic complexity ranges from one to 70, their
lines of code vary between three and 213, and they are all written in the C
programming language.

Objectively measuring the performance of a genetic algorithm is not a trivial
matter. Factors to be taken into account are at least speed (how quickly the
algorithm completes) and success rate (what proportion of runs converge to an
optimal solution).

Test data generation in software testing is the process of identifying program test
data which satisfy selected testing criteria [17]. The testing criterion chosen for
the experiments discussed in this chapter is 100% statement coverage.
Assuming that the goal of running GATester is to solve the test data generation
problem, the algorithm completes after satisfying the given testing criterion.

The experiments clearly show that both factors speed and success rate are
determined by statement feasibility and decision statement complexity.
Statement feasibility may be defined as the execution probability of a statement.
Assuming random input variables of the software unit under test, a statement
with a high statement feasibility will be executed more often than a statement
with a lower one. The lower its feasibility the more iterations are necessary in
order to find an optimal solution, i.e. appropriate test data. Splitting complex
decisions into more and simpler ones is another way of contributing to a better
performance. The reason why GATester behaves this way is its learning
algorithm. The search direction within the set of all possible solutions is driven by
a function (usually called fitness function) evaluating current potential solutions.
This evaluation is based on current statement coverage. Since statement
coverage increases faster if more and simple instead of less and complex
statements are provided, software engineers can contribute to a better
performance of GATester by avoiding very complex decision statements. Figure
4-1 shows current performance values (586 CPU, 166 MHz, 32 MB RAM, Linux).

Computation time in clocks Statement feasibility
149 1,5E-05
245 6,0E-08

9546 2,3E-10
379394 9,1E-13

--- 3,6E-15

)LJXUH������&RPSXWDWLRQ�WLPH�DJDLQVW�VWDWHPHQW�IHDVLELOLW\

For software units having statement feasibilities of up to 9,1E-13 the success rate
was 100%. For statement feasibilities of about 3,6E-15 the algorithm didn't find
an optimal solution. But note that the runs were limited to 1000000 generations.
Without this constraint GATester is able to generate test data for such cases as
well. Current experiments focus on optimizing the evaluation function in order to
speed up the search process.

9

A more detailed analysis of GATester’s performance including some charts can
be found in [34].

10

��� *HQHWLF�$OJRULWKPV

One of the major problems with automating software testing is its complexity.
Genetic algorithms aim at such complex problems and have already been
applied quite successfully to optimization problems such as scheduling,
transportation problems, etc. [2][23].

This chapter is devoted to a discussion of genetic algorithms (GAs) in general.
The author answers the following questions:

• What are GAs?

• How do GAs work?

• Why do GAs work?

����� :KDW�DUH�*$V"

As stated in [23], there is a large class of interesting problems for which no
reasonably fast algorithms have been developed. Many of these problems are
optimization problems that arise frequently in applications.

Basically, GAs maintain a population of individuals. These individuals, also called
chromosomes, represent potential solutions to a given problem. In order to find
the best solution, they undergo an evolution process by applying rules of
selection, mutation, and reproduction, similar but far less complex than known
from natural genetics. GAs use fixed-length binary strings and only two basic
genetic operators, that are PXWDWLRQ and FURVVRYHU.

The evolution process run on a population of chromosomes corresponds to a
search through a space of potential solutions. Such a search requires balancing
two (apparently conflicting) objectives: exploiting the best solutions and exploring
the search space [23]. Since GAs are a class of general purpose search
methods, the strength of GAs is to balance these two objectives stated above.

Applying genetic algorithms to a problem entails finding the proper representation
of the problem and a fitness function. The author’s representation is a bit stream
storing the actual test data. In other words, a chromosome contains the test data
needed for one test case. Since a chromosome is made of genes, arranged in
linear succession, one gene is a concrete variable of the software under test. The
fitness function determines the relative quality of the solutions of every
chromosome, i.e. their fitness. Chromosomes with a high fitness are the most
likely candidates for further reproduction.

The application we discuss is a software testing tool, and the main problem we
face is the generation of adequate test data. We use a GA to generate test data
that are able to test the software under test according to a given test strategy.

Going through the structure of the genetic algorithm in more detail, the basic
approach of the testing tool is revealed. First of all, the population containing the
first set of test cases must be initialized appropriately. Then, little by little all test
cases of the first generation are executed during the execution phase. Although
being unlikely after the first generation, the testing tool checks if the given

11

termination condition is already true. If so, the testing process will stop
successfully. Otherwise, the next generation must be initialized. This task is the
most critical one. The new generation is basically a new version of the last one.
More details about this selection process are presented in chapter 6. Afterwards
some changes are introduced that make the test cases doing a better job than
the prior ones. These changes are discussed in detail in the following chapter.
After executing the test cases of the actual generation again an evaluation step
decides whether or not the termination condition is true. After some loops (up to
several millions) the test process will stop according to the user defined
termination condition. The number of iterations depends on the termination
condition being specified prior to the tests. This may be a requirement like “stop if
90% statement coverage reached” or “in any case, do not generate more than
100000 generations”.

The next paragraphs illustrate the GAs' effectiveness by analyzing how and why
they really work.

����� +RZ�GR�*$V�ZRUN"

First of all the initial population must be defined. This may be done randomly in a
bitwise fashion, since the chosen representation is a bit stream. If there is already
some knowledge about potential solutions or optima available, the initialization
process may be changed appropriately.

A large number of strategies exists for determining the contents of a new
generation. Mostly they only differ in some details. Basically, for each generation
the fitness function calculates the fitness of each chromosome. The detailed
algorithm is presented in chapter 6.

After the selection process the recombination operator, crossover, is applied to
the chromosomes. Crossover combines the features of two parent chromosomes
to form two offsprings by swapping corresponding chunks of the parents. The
position of the crossing point determining the size of the chunks is assigned
randomly.

There also exists a certain amount of mutation, where one bit of a chromosome
at random is replaced by a random value. More precisely speaking, a bit changes
from zero to one or vice versa, since we have a binary representation of the data.
Mutation introduces some extra variability by randomly changing a single position
of a selected chromosome and is performed on a bit by bit basis.

After selection, crossover, and mutation, again an evaluation procedure follows,
determining the fitness values of the chromosomes. The cyclic repetition will stop
after a defined termination condition turns out to be true. As already mentioned
above, the testing tool’s termination condition can be configured in two ways.
There may be specified a defined maximum of generations, or a given problem
related termination condition like 100% statement coverage, or a combination of
both.

12

����� :K\�GR�*$V�ZRUN"

GAs provide robust and powerful adaptive search mechanisms. More precisely,
they maintain a population of chromosomes that evolve according to the rules
presented above in order to find a solution to a given problem.

The structure of the information stored in a chromosome does not change from
one problem to the other. A chromosome always consists of several genes
storing information in a binary string.

But the representation of a problem in terms of parameters may be unique for
each problem to be solved by GAs. A potential solution to a problem is usually
represented as a set of parameters, known as genes. This transformation step
from the problem space into a set of parameters or genes is the most critical task
for the GA’s performance. Results will be most successful if the coding strategy
applied in the transformation step forces the creation of “tight” building blocks that
will not be destroyed by the genetic operators, i.e. crossover and mutation. In
other words, the genes should be as small as possible.

Here we have to deal with a new term called “schema”. A schema is built by
introducing a don’t care symbol (x) into the alphabet of genes. Now we can
create strings or schemata over the ternary alphabet {0,1,x}. For example, the
string 101x matches two strings, namely 1010 and 1011. Whereas both the zero
and the one retain their normal meaning, the don’t care symbol can be
interpreted as either a zero or a one. Notice that the don’t care symbol is just a
meta-symbol that is not explicitly processed by the genetic algorithm. There are
two important schema properties, RUGHU and GHILQLQJ�OHQJWK.

7KH�RUGHU�RI�D�VFKHPD�6 is the number of 0 and 1 positions, i.e. fixed positions
(non-don’t care positions), present in the schema. In other words, it is the length
of the template minus the number of don’t care symbols. The order defines the
speciality of a schema [23].

For instance, the order of the schema S=(x0x111x0x) is five.

7KH�GHILQLQJ�OHQJWK�RI�D�VFKHPD�6 is the distance between the first and the last
fixed string positions. It defines the compactness of information contained in a
schema. [23]

For example, the defining length of the schema S=(x0x111x0x) is 8 - 2 or six
because the last fixed position is the 8th, and the first is the 2nd.

A schema is a similarity template describing a subset of potential solutions with
similarities at certain positions. Schemata greatly simplify the analysis of the
performance of GAs. The key point here is that short, low order schemata having
an above average fitness receive exponentially increasing trials in subsequent
generations of a GA. This statement, known as the 6FKHPD�7KHRUHP gives an
immediate result, that is GAs explore the search space by short, low-order
schemata which, subsequently, are used for information exchange during
crossover [23]. Such “tight” building blocks having high fitness will most likely stay
alive and join the next generation. In other words, the best get more copies in the
next generation, the even stay even, and the worst die off.

13

The combined effect of selection, crossover and mutation on a particular schema
of course increases the probability that this schema will be disrupted. But it still
receives an exponentially increasing number of strings in the next generations.

14

��� 7KH�(YDOXDWLRQ�3URFHGXUH

Genetic algorithms do not search only one path through the search space. On
the other hand, they do not conduct an exhaustive search of the space of all
possible solutions. Rather, they perform a type of beam search where the
population, i.e. the set of current potential solutions, is the beam [2]. An important
task is to decide which members of the population will be subject to the genetic
operators presented in chapter 5.

The evaluation procedure decides if the test cases performed were “good ones”.
Technically speaking, their fitness is evaluated. Good test cases are test cases
that meet the testing criterion, for example statement coverage. If so, the
termination condition is fulfilled and the test will stop. Otherwise, the test data will
be refined and the next test case executed. Recall that one test case is
represented by one chromosome. Basically, the following steps are performed by
the evaluation procedure [23]:

First part:

• Calculate the fitness value for each chromosome

• Find the total fitness of the population

• Calculate the probability of a selection for each chromosome

• Calculate a cumulative probability for each chromosome

Second part (loop x times, x is the population size in terms of chromosomes):

• Generate a random number from the range [0..1]

• Select the first chromosome whose cumulative probability is greater than the
random number

The evaluation procedure selects a new population with respect to the probability
distribution based on fitness values of chromosomes of the current population. It
also ensures that the best chromosomes get more copies, the average stay
even, and the worst die off. But note that the next generation consists of the
same number of individuals as the former one.

The chromosomes forming the new generation then are subjected to the genetic
operators crossover and mutation, respectively. Afterwards the test cases are
executed one by one. Their contribution to the overall testing goal, for example
statement coverage, determines their fitness value. And again a new iteration of
the evaluation procedure has started.

15

��� 6RIWZDUH�5HOLDELOLW\�&RQVLGHUDWLRQV

Reliability is the probability that a product or system will perform some specified
end user functions under specified operating conditions for a stated period of
time.

Making good reliability estimations or predictions depends on testing the product
as if it were in the field [24]. The operational profile is a set of end user functions
the product can perform with their probabilities of occurrence. It is clear that
estimating the operational profile is a non-trivial task. However, it is essential in
reliability engineering. Once a satisfactory operational profile is available, the
testing can begin, and reliability growth can be monitored.

To apply a reliability measurement approach to a system, it is important to
understand that both hardware components and software units have to be
considered. Only if both software and hardware reliability calculations are
combined reliability can serve as a high-level indicator of the operational
readiness of a system. Note that there is a fundamental difference in the dynamic
behaviour of hardware and software. Whereas initially failure-free hardware
components may show some defects later on because of wearing out, every
software unit already contains all of its faults at the time the software engineer
performs the last file save operation. In other words, all errors concerning
software engineering are made in time, and the testing can start. Clearly, neither
the customer nor the organization responsible for a product wishes to have
defective products. Nevertheless we can be sure that a system will fail some
time. Even if defect minimization strategies would have been able to establish a
failure free development process, the wear out phase introduces defects. But the
complexity of software systems combined with budget and schedule constraints
makes it practically impossible to ship zero-defect-software.

Today we are confronted with a plethora of models, techniques, and measures
for software reliability engineering in the literature. Nevertheless, it is still a matter
of fact that the user must decide which model is the most appropriate for a given
application. This decision is by no means an easy one because there does not
exist one single model that is able to produce reliable results in all contexts.
Further more, the outcomes of the models may also vary considerably. But
probably the main problem is that it does not seem possible to analyze the
particular context in order to decide a priori which model is likely to be trustworthy
[1]. But the author also believes that you can obtain reasonably accurate
reliability measures for relatively modest reliability levels. As stated in [5],
techniques that depend on reliability growth cannot assure very high reliability
without infeasibly large observation periods.

This section discusses only issues concerning software reliability. More precisely,
the author presents his approach of automatically producing a forecast for
acceptance testing results by means of a unit reliability measurement chart and a
unit run reliability calculation. The testing tool GATester calculates all the
primitives needed for the unit’s reliability measurement chart or for its run
reliability calculation without manual assistance. The results may serve as a
helping hand for managerial decisions or as a parameter for software system
reliability assessment. Note that this kind of measurement information supports

16

both technical and managerial activities. Note also that the tool calculates
reliability figures for the particular unit under test. Therefore, the results do not
represent software system reliability but just single software unit run reliabilities.
Actual research activities include the issue of combining all the unit’s results to
one big number called software system reliability.

The unit reliability measurement chart introduced above gives an idea of the
maturity of the software unit. For example, it can be used to determine software
readiness for acceptance testing. It plots the failure time against the failure
number and identifies five regions within the chart, telling you if the testing shall
proceed or not. Two areas, namely reject-area (R-area) and accept-area (A-
area), recommend to stop the testing because the test results are not acceptable
or the desired maturity has already been reached, respectively. The three
remaining regions recommend to continue testing. These are called probable-
reject-area (PR-area), probable-accept-area (PA-area), and continue-area (C-
area). If the required reliability rating is low the project management staff may
decide to perform an acceptance test although some of the software units have
not reached the A-area so far, but are still in the PA-area. On the other hand, if a
unit is in the PR-area and the required reliability rating is very high, it is
recommended to step back one or more life-cycle-phases and try to refine the
unit until the unit reliability measurement chart shows acceptable results.

The run reliability Rk is the probability that k randomly selected runs
(corresponding to a specified period of time) will produce correct results [39]. The
author adapted this measure and created a so-called unit run reliability.
Assuming a uniform probability distribution, Rk = nc/NR, where nc is the number
of correct runs in a given test sample and NR is the number of total runs made in
a given test sample. The unit’s input space is viewed as the set of all possible
combinations of inputs into the unit, for example global variables, parameter, or
user inputs. Generally speaking, you cannot test all theoretically possible
combinations of input variables because it would simply last too long, sometimes
up to several thousands of years. That’s why the problem of minimizing the
number of test cases has to be addressed by a test tool. During runtime, the
genetic algorithm generates more and more test cases according to the evolution
strategy. GATester generates and executes a subset of all theoretically possible
test cases. These test cases form the sample space that is relevant for the unit
run reliability that is calculated at the end of an automatic unit test.

If the user provides GATester with some constraints as shown in chapter 3, the
corresponding unit run reliability is denoted by RkCx where Cx is the xth constraint
provided by the user. As shown below, constraints are a necessity for reliability
calculations. This is a powerful enhancement of run reliability calculation because
it can be used to assess the reliability of an arbitrary subset of the unit’s
functionality.

It appears clear that the operational profile cannot be calculated automatically by
GATester. How should the tool know about the end-user’s habits? Once again,
the constraints specification is used in order to solve this problem. As already
outlined in chapter 3, a constraint is basically an expression of whatever
complexity the user chooses. A set of constraints can also represent an
operational profile by controlling the input variables appropriately. Without
specifying any constraints, the user still gets a rough idea of the unit’s maturity,

17

but only in terms of coverage testing results. Constraints allow GATester to take
the dynamic behaviour into consideration. In other words, the testing tool itself is
able to decide if a failure occurred or not. Without this information GATester’s
calculated reliability figures would be meaningless. Reliablity assessment without
any kind of reasonable failure data will not work per definition.

Every testing technique is limited in its ability to detect failures. Starting with
technique A you usually will detect some failures. But after a while the detection
rate will decrease significantly. One might think that at this point almost all
failures are detected, therefore it is difficult to find any more. But more likely the
so-called saturation point of testing technique A has been reached. In other
words, there are still some failues waiting to be detected, but they cannot be
found by technique A. If you start using technique B afterwards, the scenario
might be very much the same. First, your detection rate is quite good, although
technique A was unable to find failures, but then it gets worse and worse, similar
to A because again the saturation point of B has been reached. In [21] the
potential danger of reliability overestimation is pointed out. Assuming that the
software is more reliable if failures are identified and fixed, it may be concluded
that it must be sufficiently reliable if there cannot be detected any more failures.
The danger now is that the reliability estimation is based on the saturation point,
rather then on the real failure data revealing when several testing techniques are
being used. That is one of the reasons why the reliability figures calculated by
GATester may serve as a parameter for system reliability assessment but in fact
cannot be the system reliability assessment. By the way, the operational profile is
the second reason. Further research is necessary in order to clarify how to
transform a given operational profile at system level into one at unit level without
loss of important information.

18

��� &RQFOXVLRQV�DQG�)XWXUH�:RUN

In this paper the author has presented an approach for software test automation
including some key issues in software reliability assessment. We have seen how
to use genetic algorithms for software testing, particularly for test data generation
and studied its performance and effectiveness.

The tool presented in this paper, GATester, supports the effort of reducing the
costs of software testing. All the test cases can be generated and executed
without user interaction at a rate of up to several hundreds per minute. In the
end, the software unit under test has passed sufficient test cases for a given
coverage requirement if it is feasible at all. The number of test cases is a
significant parameter for the overall testing effort. By automatically generating
test data you are able to apply a quantitative approach to software testing
detecting also failures that would not be found otherwise by applying
conventional testing techniques, for example EP (equivalence partioning) or BVA
(boundary value analysis). If the user provides GATester optionally with a so-
called constraint specification the tool is able to detect failures during test
execution and calculate some reliability figures.

At the moment, GATester accepts only units written in the C programming
language. It is intended to support also C++ and maybe some other languages
as well.

The tester should also be able to choose data flow criteria as a coverage
criterion. If the result of some computation has never been used, one has no
reason to believe that the correct computation has been performed [30].

But in the long run, the most challenging research project is the combination of
the approach presented in this paper with another approach that tries to generate
test cases for system testing automatically from a formal specification. Then
GATester could derive the constraints specification automatically and would also
be able to include self checking procedures for the generated test cases.

19

��� 5HIHUHQFHV

1 Abdel-Ghaly A. A., Chan P. Y., Littlewood B., "Evaluation of Competing Software
Reliability Predictions", IEEE Trans Software Engineering, vol. SE-12, no. 9, September
1986, pp. 950-967

2 Banzhaf W., Nordin P., Keller R. E., Francone F. D., "Genetic Programming", Morgan
Kaufmann Publishers, Inc. and dpunkt-Verlag für digitale Technologie GmbH, 1998

3 Beizer B., Software Testing Techniques, 2nd ed., Chapman & Hall, 1990
4 Bird D. L., Munoz C. U., "Automatic generation of random self-checking test cases", IBM

Systems Journal, vol 22, no. 3, 1983, pp. 229-245
5 Brocklehurst S., Chan P. Y., Littlewood B., Snell J., "Recalibrating Software Reliability

Models", IEEE Trans Software Engineering, vol 16, no 4, April 1990, pp. 458-470
6 Brocklehurst S., Littlewood B., "New Ways to Get Accurate Reliaility Measures", IEEE

Software: Special issue on Software Reliability Modelling, July 1992, pp. 34-42
7 Davey S., Huxford D., Liddiard J., Powley M., Smith A., "Metrics Collection in Code and

Unit Test as Part of Continuous Quality Improvement", Software Testing, Verification and
Reliability, vol. 3, 1993, 125-148 (1993)

8 DeMillo R. A., Offutt A. J., "Constraint-Based Automatic Test Data Generation", IEEE
Trans Software Engineering, vol. 17, no. 9, September 1991, pp. 900-910

9 Ehrlich W. K., Lee S. K., Molisani R. H., "Applying Reliability Measurement: A Case
Study", IEEE Software, pp. 56-64, March 1990

10 Ehrlich W., Prasanna B., Stampfel J., Wu J., "Determining the Cost of a Stop-Test
Decision", IEEE Software, March 1993, pp. 33-42

11 Everett W. W., "Reliability and Safety of Real-Time Systems", IEEE Software, Guest
Editors' Instruction, May 1995, pp. 13-16

12 Fewster M., "The Managing Director Wants 100% Automated Testing. A Case History",
Journal of Software Testing, Verification and Reliability, vol 1, no 2, 1991, pp. 43-55

13 Graham D., "Software Testing Tools: A New Classification Scheme", Journal of Software
Testing, Verification and Reliability, vol. 1, no. 2, ???, pp. 17-34

14 Hamlet D., "Are We Testing for True Reliability?", IEEE Software, July 1992, pp. 21-27
15 Hamlet D., "Partition Testing Does Not Inspire Confidence", IEEE Trans Software

Engineering, vol. 16, no. 12, December 1990, pp. 1402-1411
16 Harrold M. J., Soffa M. L., "Selecting and Using Data for Integration Testing", IEEE

Software, March 1991, pp. 58-65
17 Korel B., "Automated Software Test Data Generation", IEEE Trans Software

Engineering, vol. 16, no. 8, August 1990, pp. 870-879
18 Korel B., "Dynamic Method for Software Test Data Generation", Software Testing,

Verification and Reliability, vol. 2, 203-213 (1992)
19 Littlewood B., "Software reliability modelling", Software engineer's reference book,

chapter 31, Butterworth-Heinemann, 1991
20 Littlewood B., "Stochastic Reliability-Growth: A Model for Fault-Removal in Computer-

Programs and Hardware-Designs", IEEE Trans Reliability, Vol. R-30, no. 4, October
1981, pp. 313-320

21 Lyu M. R., Handbook of Software Reliability Engineering, McGraw-Hill/IEEE Computer
Society Press, 1996

22 Lyu M. R., Nikora A., "Applying Reliability Models More Effectively", IEEE Software, July
1992, pp. 43-52

23 Michalewicz Z., Genetic Algorithms + Data Structures = Evolution Programs, 2nd ed.,
Springer-Verlag, 1994

20

24 Musa J. D., "Operational Profiles in Software-Reliability Engineering", IEEE Software,
March 1993, pp. 14-32

25 Musa J. D., "Software-Reliability-Engineered Testing", Computer, November 1996, pp.
61-68

26 Musa J. D., Ackermann A. F., "Quantifying Software Validation: When to Stop Testing?",
IEEE Software, May 1989, pp. 19-27

27 Musa J. D., Everett W. W., "Software-Reliability Engineering: Technology for the 1990s",
IEEE Software, Nov 1990, pp.36-43

28 Paradker A., Tai K. C., Vouk M. A., "Automatic Test-Generation for Predicates", IEEE
Trans Reliability, vol. 45, no. 4, December 1996, pp. 515-530

29 Ramamoorthy C. V., "On the Automated Generation of Program Test Data", IEEE Trans
Software Engineering, vol. SE-2, no. 4, December 1976, pp. 293-300

30 Rapps S., Weyuker E. J., "Selecting Software Test Data Using Data Flow Information",
IEEE Trans Software Engineering, vol. SE-11, no. 4, April 1985, pp. 367-375

31 Roper M., "Automatic test data generation", in Software TESTING ’96, June 1996, Paris
32 Veevers A., "Some Issues in Software Reliability Assessment", Journal of Software

Testing, Verification and Reliability, vol. 1, no. 1, 1991, pp. 17-22
33 Voas J., Morell L., Miller K., "Predicting Where Faults Can Hide from Testing", IEEE

Software, March 1991, pp. 41-47
34 Weichselbaum R., "Software Test Automation - By Means of Genetic Algorithms",

EuroSTAR98 Proceedings, 6th European International Conference, Munich, 1998
35 Weyuker E., Goradia T., Singh A., "Automatically Generating Test Data from a Boolean

Specification", IEEE Trans Software Engineering, vol. 20, no. 5, May 1994, pp. 353-363
36 Wood A., "Predicting Software Reliability", Computer, November 1996, pp. 69-77
37 ANSI/IEEE Std 1008-1987, IEEE Standard for Software Unit Testing
38 IEEE Std 1012-1998, IEEE Standard for Software Verification and Validation
39 IEEE Std 982.1-1988, IEEE Standard Dictionary of Measures to Produce Reliable

Software

1 © 1998 Lucent Technologies Quality Week Europe ‘98

Automated Test Generation
From a Behavioral Model

Jim Clarke
Member of Technical Staff

Lucent Technologies
jmclarke@lucent.com

2 © 1998 Lucent Technologies Quality Week Europe ‘98

Outline
• 5ESS®-2000 Switch
• Challenges for Testers
• Requirements Behavioral Modeling
• Automated Test Generation
• Case Studies
• Conclusions

3 © 1998 Lucent Technologies Quality Week Europe ‘98

5ESS®-2000 Switch
• Digital Exchange
• Single System, Multiple

Applications
– ISDN voice & data
– Local & Long Distance calls
– Intelligent Network

• Distributed Architecture

4 © 1998 Lucent Technologies Quality Week Europe ‘98

Challenges For Testers

• Growing complexity of feature
specifications

• Business needs require reduced development
intervals

• Find new test design approach

5 © 1998 Lucent Technologies Quality Week Europe ‘98

Specific Problems Addressed
• Problem 1:
 Effectively testing software with complex

requirements
• Problem 2:
 Efficiently testing software with complex

requirements

6 © 1998 Lucent Technologies Quality Week Europe ‘98

Behavioral Modeling
• Control Flow Testing - a technique based on

a structural model
• Transaction Flow Testing - a technique

based on a functional model
• Extended Finite State Testing - control and

transaction flow in a Mealy model

7 © 1998 Lucent Technologies Quality Week Europe ‘98

Behavioral
Modeling Advantages
• Quickly identifies redundant and invalid

requirements
• Quickly identifies discrepancies between

requirements and design
• Quickly determines the impact of new and

modified requirements
• Improves requirements converage

8 © 1998 Lucent Technologies Quality Week Europe ‘98

• Does not explicitly identify missing
requirements

• It’s unlikely to find problems if modeled from
the code itself

• Flowgraphs can contain hundreds of states or
nodes

• Tests are only as good as the model

Behavioral
Modeling Caveats

9 © 1998 Lucent Technologies Quality Week Europe ‘98

• Manual model validation required
• Manual mapping of scenarios and requirements

to tests
• Manual update of tests and tables to reflect

changes in requirements
• Models quickly becomes cumbersome
• Effective technique is inefficient

Behavioral
Modeling Difficulties

10 © 1998 Lucent Technologies Quality Week Europe ‘98

In Search of Automation.......
• Graphical User Interface (GUI)
• Independent of execution environment
• Supports behavioral modeling
• Automatic generation of test cases
• Supports constraints to limit test output

11 © 1998 Lucent Technologies Quality Week Europe ‘98

TestMaster Subsystems

Graphical
Editor

Program
Generator

Debugger
Test

 Execution
 Environment

Application
Under TestModel

of AUT
Test

Programs

AUT
Specification

12 © 1998 Lucent Technologies Quality Week Europe ‘98

Model Reference
 Technology

Current
State

Next
State

Transition

Modify Edge Attributes

EVENT
PREDICATE
CONSTRAINT
ACTION
ARGUMENTS
COMMENTS

TEST INFO

Predicate: An expression that
describes the context that must exist
for transition to be valid.

Predicate: An expression that
describes the context that must exist
for transition to be valid.

Constraint: Limitations imposed
to make the length and number
of test programs practical.

Constraint: Limitations imposed
to make the length and number
of test programs practical.

Test Info: test execution language to
be added to the Test being
developed.

Test Info: test execution language to
be added to the Test being
developed.

13 © 1998 Lucent Technologies Quality Week Europe ‘98

Test
Programs

Model of
AUT

Test Generation
Engine

Coverage is known &
controllable

Focus on specific
areas of model

Tests are correct &
consistent with model

Supports any
test execution
environment

Tests generated rapidly
(100’s - 1000’s per minute)

Viewgraph Information Courtesy of Teradyne, Inc.

Model Reference
 Technology

14 © 1998 Lucent Technologies Quality Week Europe ‘98

TestMaster Model ExampleTestMaster Model Example

15 © 1998 Lucent Technologies Quality Week Europe ‘98

Case Study 1

0 .1 7

0 .0 1 6

0 .0 5

0 .0 0 2

0 .1 2

0 .0 1 4

0 0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 0 . 1 2 0 . 1 4 0 . 1 6 0 . 1 8
T H C Y

T o ta l

T e s t S e t (p h a s e 2)

T e s t S e t (p h a s e 1)

T e s tM a s te r G e n e ra te d

M a n u a lly G e n e ra te d

16 © 1998 Lucent Technologies Quality Week Europe ‘98

0 .4 50 .0 7 6 9

0 .2 4

0

0 .2 1

0 .0 7 6 9

0 0 .05 0 .1 0 .15 0 .2 0 .25 0 .3 0 .35 0 .4 0 .45
T H C Y

T o tal

G e nerate T e s ts

M o d e l F e ature

T e s tMaster

Manual

Case Study 2

17 © 1998 Lucent Technologies Quality Week Europe ‘98

TEST
GENERATION

METHOD MANUAL TESTMASTER

Inputs
Knowledge of Application
Knowledge of Test Lab
Schedule
Resources

Knowledge of Application
Knowledge of Test Lab
Schedule
Resources

Outputs
Static Test Strategy
Static Set of Tests

Model of Application’s
Behavior
Dynamic Test Set

Comparison
Higher Cost per Test
Higher Test Maintenance
Cost
No Dependency on
Technology

Lower Cost per Test
Lower Test Maintenance
Cost
Improved Coverage
Improved Fault
Prevention

Manual vs. TestMaster

18 © 1998 Lucent Technologies Quality Week Europe ‘98

What’s Next ??

• Formalize modeling standards

• Determine how to formally review models

• Integrate with automatic execution

• Develop new coverage metrics

 1998 Lucent Technologies Page 1

Automated Test Generation from a
Behavioral Model

James M. Clarke
Lucent Technologies
2000 Naperville Road

Naperville, IL 60666-7033
(630) 979-1861

jmclarke@lucent.com

Abstract

The challenge for testers: reduce the testing interval without reducing quality. One
answer: find a new way to approach test design and test generation. This paper will
discuss an ongoing Lucent Technologies experiment in automated test generation from a
behavioral model of the software product under test. Results indicate that our new
approach can increase the effectiveness of our testing while reducing the cost of
test design and generation.

Outline
1. Introduction
2. 5ESS®-2000 Testing Background
3. Major Challenges for Testers
4. New Test Design Strategy – Behavioral Modeling
5. Automatic Test Generation
6. Case Studies

• Case 1: Call Management Feature

• Case 2: Number Portability Feature
7. Observations and Conclusions

1. Introduction

At Lucent Technologies, TestMaster™ automates the generation of tests for call
processing features developed for the 5ESS®-2000 Switch. The 5ESS-2000 Switch, a
digital exchange for use in the global switching network, allows service providers,
such as telephone companies, to route ISDN voice and data, local voice calls, long
distance calls, Internet access, wireless PCS, Advanced Intelligent Network services,
interactive video and multimedia services in a high-speed, reliable public network.
During the test development phase, a call processing feature's specification document
(FSD) serves as the basis for a TestMaster state-based model. The model describes the
behavior of the switch/network when a call uses the associated feature. TestMaster
then performs a path analysis on the model, generating a comprehensive set of tests
that are formatted and executed in the Lucent 5ESS-2000 testing environment.

In this paper I will review the testing problems we faced, the solutions we found and
the results of implementing those solutions.

 1998 Lucent Technologies Page 2

2. 5ESS- 2000 Testing Background

The 5ESS-2000 Switch is a flexible digital exchange for use in the global switching
network. Digital switches replaced earlier electromechanical and analog switching
systems. A digital switch is a single system with multiple applications such as
local, toll, and operator services. The 5ESS equipment switches ISDN voice and data,
local voice calls, long distance calls, Advanced Intelligent Network services as well
as other media on the public switched network. The switch architecture is a modular,
distributed architecture that allows developers to implement enhancements easily and
allows service providers to change their communication network quickly.

The modular design of the 5ESS-2000 Switch also carries through to its software
architecture. The software, primarily written in the C programming language, extends
the many advantages of a distributed processing environment. Lucent Technologies Bell
Laboratories develops and tests the software for the 5ESS-2000 Switches that FCC-
required quality monitoring has shown to be four times more reliable than its nearest
competitor.

At one time Lucent Technologies (at the time a business unit of AT&T) viewed testing
as a standalone phase in the traditional waterfall process. System testing was done
by a separate organization, and the testers became involved in a project only after
the specifications, design, and the majority of the coding was complete. This made
for expensive and time consuming test plans. In fact, at one time it required almost
22 months to deliver a major software release for the 5ESS-2000 Switch. Process and
organizational changes have reduced that figure to approximately 10 months, but as
new features become more complex, it has become increasingly difficult to maintain
both an aggressive delivery schedule and the high level of software quality that our
customers have come to expect.

3. Major Challenges for Testers

The challenge now for test plan designers is to continue to achieve the high degree
of testing coverage required to ensure that these increasingly complex features
maintain quality standards. This requires the use of test development methods that
are more effective in managing the coverage of complex functionality. Traditional
methods, such as analyzing each requirement and developing test cases to verify
correct implementation, are not effective in understanding the software’s overall
complex behavior. Also the cost pressures in a competitive industry add the constant
of cost reduction. This adds the need for efficiency in using more effective test
development methods. While initially these two goals, reduced testing costs and
maintaining product quality, appeared to be mutually exclusive our automation test
generation initiatives have indicated that this is not necessarily the case.

A Feature Specification Document, written by the systems engineering organization,
details the requirements for the behavior of call processing features of the 5ESS.
The behavior of the feature depends on inputs from the parties on the call and the
configuration and signaling input from the 5ESS network. Complex interactions arise
between the calling parties, other features on the switch, and the network, and these
must be understood to adequately test the new feature. To date, test generation has
relied on manual methods to interpret the Feature Specification Document, state
diagrams, and call processing behavior of the switch. For a given call, the switch
waits for input, e.g., a set of DTMF tones. The switch processes the input and
changes the state of the call in progress. (Different inputs from the caller and
network configurations cause the 5ESS switch to process calls differently.) For
example, if the user enters a valid telephone number, the call will be processed; if
not, an announcement will play asking for a valid input. Advanced features in the
5ESS switch have so many variables that it is difficult for the test engineer to

 1998 Lucent Technologies Page 3

identify them all, let alone generate a set of tests to verify that the feature works
in all cases.

4. New Test Design Strategy – Behavioral Modeling

The traditional test design methods used to generate test cases became too expensive
and labor intensive when applied to these highly complex features. We had to employ
a different strategy to adequately test new and existing functionality, while
keeping the testing interval from growing with the software complexity.

For the last year our strategy has been to use requirements behavioral modeling on a
number of features to determine the effectiveness of this approach as a test design
and generation strategy. The behavioral modeling we use combines transaction-flow,
control-flow and finite state machine (FSM) testing techniques in an extended finite
state (EFSM) model. EFSM modeling employs a technique known as predicate notation to
simplify models of complex systems, and reduce the state explosion problem commonly
encountered with pure FSM modeling.
The goal was to create a EFSM model that would capture the functional behavior of the
requirements for a new 5ESS-2000 software feature. The models, if created during the
requirements definition phase of the development cycle, would prevent different
interpretations of the requirements by the developers and testers. Minimizing these
differences will in itself prevent some faults from ever reaching the test execution
phase, helping to further reduce testing costs.

Our initial results indicate that while behavioral modeling is very effective in
ensuring adequate coverage during the test design phase and in providing the entire
development team with a common view of the requirements, it quickly becomes labor
intensive during the test generation phase. On larger features the process of
manually modeling also quickly becomes too difficult and expensive. An obvious answer
was to find a tool that could automate some or all of this process. Which automation
tool to use was not as obvious.

5. Automating Test Generation Using Model Reference
Technology

To help decide which tool to use, we developed a checklist of the characteristics and
functionality to rate automation tools- characteristics such as execution environment
independence, support for EFSM, flexible output format and the ability to
automatically generate unique paths (tests) from the behavioral model.

The tool with the best score based on our checklist is a product called TestMaster,
and Lucent Technologies started a trial program with to evaluate its ability to allow
test engineers to create and maintain behavioral models of our products.

TestMaster (produced by Teradyne, Inc.) uses model reference technology (MRT) to
provide automatic test generation driven from an EFSM model of the application under
test. TestMaster comprises three major components: a graphical editing tool, a test
program generator, and a model debugger.

Using the same inputs used to manually generate test scripts or manually create an
EFSM, test engineers use the State Transition Editor to build a model of the
applications behavior. The model is a series of states connected by transitions.
Each transition defines a state change based on inputs from user or switch. Each
transition in the model contains the following associated programmable fields: the
predicate and constraint fields, which evaluate context in the model, and the test
information field that contains procedures or test code that will be included in any
test case that includes the transition as part of its path. Predicates are boolean
expressions that must evaluate true in order for the transition to be a valid path
within the behavioral model. The constraint field allows the user to limit the number

 1998 Lucent Technologies Page 4

of paths produced during test generation. A set of interactive debugging tools is
available to the test engineer as well.

The test program generator uses the model to automatically find valid paths through
the model. These paths consist of transitions that represent the behavior of the
application that has been modeled. Each valid path through the model is converted
into a test case by replacing each transition in the path with its test information.
Thus a complete test case is concatenation of all the test information field for some
valid path. These test cases can be produced in any target language.

6. Case Studies

This section will briefly discuss two cases in which we can compare generating tests
with TestMaster to manually writing tests. In both cases the two methods were used to
create comparable type and number of test cases. Both of these cases are products
that are currently available on the 5ESS-2000 Switch.

Case 1: Call Management Feature

Background

This feature expands the capabilities of basic Call Waiting to include a number of
call management features. If you subscribe to Call Waiting on your analog phone
line, and a third party calls you while you are on a phone call, you receive tones
indicating that another call has arrived. At this point you only have two choices:
press the phone switch-hook and answer the new call or ignore the new call.

Call Management provides the ability to see the new call’s telephone number1 and the
name of the caller2. At this point you can conference the two calls together, place
either call on hold (music optional), or forward the new call manually or
automatically to another telephone number.

Test Generation: Manual vs. TestMaster

This product was delivered in two phases. Phase two testing required, modifying some
of phase one’s tests, using some of phase one’s tests as is, and writing new tests.
Test generation is measured by the Technical Head Count Year (THCY) effort required
to produce the test cases required. For example, if the test generation took an
engineer one month to complete, it would equal a 0.0833 THCY effort.

To generate the tests manually, we used traditional 5ESS-2000 call processing test
design and generation methods. Then, using TestMaster, we created an EFSM for the
product and automatically generated test cases. Table 1 compares the THCY effort
required by these two methods for this feature.

Manual Generation TestMaster Generation
Phase One 0.120 0.014
Phase Two 0.050 0.002
Total 0.170 0.016

Table 1

The use of TestMaster in this case provided a test generation productivity
improvement of just over 90%. At this level of test generation productivity

1 Caller ID Feature
2 Calling Name Feature

 1998 Lucent Technologies Page 5

improvement one test engineer using TestMaster can be as productive as ten test
engineers using manual test generation.

Case 2: Number Portability Feature

Background

The competition to provide local phone service is increasing every year. But most
people would probably decline to change their local service providers if changing
companies meant changing phone numbers. The Number Portability (NP) feature, mandated
by the FCC to overcome this barrier, allows you to switch service providers without
changing your telephone number.

Test Generation: Manual vs. TestMaster

For this feature we manually created an EFSM behavioral model of the requirements and
manually generated test cases using the model. Then, we created an EFSM of the
product in TestMaster and automatically generated test cases. Table 2 compares the
THCY effort required by these two methods for this feature.

Test generation is again measured by the Technical Head Count Year (THCY) effort
required to produce the test cases required.

Manual TestMaster
Create Model 0.21 0.05
Generate Tests 0.24 0.003

Total 0.45 0.05

Table 2

In this case TestMaster provided a test generation productivity improvement of just
over 88%. Additional functionality was added to this feature after the original
feature was released. Editing the TestMaster model to create the new tests case took
half a day4 compared to the estimate of two and a half weeks5 for manual generation.

7. Observations and Conclusions
TestMaster provides a single environment to capture the behavior, input variables,
configuration, and 5ESS state information in the form of a model. TestMaster can
then automatically process the model to quickly generate a complete set of tests.
This technology provides the 5ESS-2000 call processing test team an efficient and
effective method of generating feature tests for 5ESS development projects.

Since starting with TestMaster in September of 1996, we have successfully modeled,
generated, and executed test cases for a number of advanced call processing features
in the 5ESS switch. To increase the reusability of the models, test engineers are
developing standardized methods for analyzing the Feature Specification Document and
creating TestMaster models. We are also investigating ways to formally review the
models for completeness. The test cases generated are in a standard format so they
can be used by both manual and automated test executors who have no knowledge of the
TestMaster model and who run the tests as if they were generated manually. We can

3 Automated test generation, no THCY effort required.
4 0.00192 THCY effort
5 0.0288 THCY effort

 1998 Lucent Technologies Page 6

easily incorporate changes into the models to keep pace with changing feature
requirements.

Preliminary data indicates that using TestMaster to automate our test generation
process can increase our productivity by over 80%, while providing a more effective
way to analyze complex requirements.

Brigid Haworth

brigid@bournemouth.ac.uk

Adequacy Criteria for Object Testing

Specification Based

Test Data Generation

Test Adequacy Measurement

Adequacy Criteria - Overview

Program Structure Based

1

Test Adequacy Measurement

Management and control of software testing

Structural Coverage analysis techniques

Static Analysis/Dynamic Analysis

Supported by test tools

Consider

underlying structure of component

structural coverage criteria development

choice of component for "unit" test

Criteria for OO Software

2

new criteria required for object structure coverage

an "object" as basic unit of test

structure based on methods and data

new and inherited object components

OO Unit Testing

Object Structure

control flow based within methods

control flow AND data flow based between methods

dynamic view

unified "flow" based model developed

3

p-use

p-use

def

c-use

def

Port::Initialise()

Port::Port()

call

return

2

1

3 4

5

6 7

8
9

10

1

2

1

2

Port::Log(...)

output

name

"Port" Object Graph (partial) for Multibuffer Program

Graphical Representation

Test Model Object Flows

triple format <M1,C,M2>

M1, M2 represent method points

C represents flow connection

4

Object Level Grammar

object_flow --> <m_point,connection,m_point>

local_d --> ’overriding_d’ | ’new_d’

ancestor_d --> ’inh_d’

data --> ancestor_d | local_d

connection --> data | ’direct’

local_m_point --> ’new_m_point’ | ’overriding_m_point’

ancestor_m_point --> ’inh_m_point’ | ’inh_virtual_m_point’

m_point --> ancestor_m_point | local_m_point

Object Level Flow Types

ancestor_m_point ancestor_d ancestor_m_point
ancestor_m_point ancestor_d local_m_point
local_m_point ancestor_d ancestor_m_point
local_m_point ancestor_d local_m_point

local_m_point local_d local_m_point

ancestor_m_point ’direct’ ancestor_m_point

ancestor_m_point ’direct’ local_m_point
local_m_point ’direct’ ancestor_m_point
local_m_point ’direct’ local_m_point

5

intra-object method-method call flow coverage

intra-object branch (decision/condition) flow coverage

intra-object method-method indirect flow coverage

intra-object all flows coverage

Object Coverage Criteria

Criteria Hierarchy

All branch (condition/decision) flow coverage

All method-method call flow coverage

All Flows

All method-method indirect flow coverage

6

All Flows

Criteria Hierarchy - refined

All branch (condition/decision) flow coverage

All method-method call flow coverage

<a,d,a> <a,d,l> <l,d,a> <l,d,l>

<a,a,a> <a,a,l> <l,a,a> <l,a,l> <l,l,l>

<a,d,a> <l,d,l>

All method-method indirect flow coverage

Examples

Refer to Appendix A

7

Appendix A

// (c) 1997 Tiger Communications plc

//==

// TigStreamProcess constructor

//==

TigStreamProcess::TigStreamProcess

(char *conf_name // Name of config file.

)

{

. // Nodes

. // 1 SNode

. //

conf_file = new CONF_FILE(conf_name); //

input = TigIOPort::CreatePort(conf_file, "Input"); //

output = TigIOPort::CreatePort(conf_file, "Output"); //

control = TigIOPort::CreatePort(conf_file, "Control"); // 1, def(control)

monitor = TigIOPort::CreatePort(conf_file, "Monitor");

rawdata = TigIOPort::CreatePort(conf_file, "RawData");

alarmport = TigIOPort::CreatePort(conf_file, "Alarm");

.

.

.

}

//==

// ProcessTick - idle process while nothing is happening.

// Override this to provide checks when no data received.

// But don't forget to call it!

//==

void TigStreamProcess::ProcessTick(void)

{

// Call the idle method for all existing I/O ports.

// Nodes

input->Tick(); // 1 SNode

if (output != NULL) // 2 PNode

output->Tick(); // 3 SNode

// 4 EndPNode

if (control != NULL) // 5 PNode with pp-use(control)

control->Tick();

if (monitor != NULL)

monitor->Tick();

if (rawdata != NULL)

rawdata->Tick();

if (alarmport != NULL)

alarmport->Tick();

}

Figure 1: Indirect
ow example for <a,a,a> type

8

// (c) 1997 Tiger Communications plc

//==

// TigStreamProcess constructor

//==

TigStreamProcess::TigStreamProcess

(char *conf_name // Name of config file.

)

{

. // Nodes

. // 1 SNode

. //

conf_file = new CONF_FILE(conf_name); // 1, def(conf_file)

input = TigIOPort::CreatePort(conf_file, "Input");

output = TigIOPort::CreatePort(conf_file, "Output");

control = TigIOPort::CreatePort(conf_file, "Control");

monitor = TigIOPort::CreatePort(conf_file, "Monitor");

rawdata = TigIOPort::CreatePort(conf_file, "RawData");

alarmport = TigIOPort::CreatePort(conf_file, "Alarm");

.

.

.

}

//===

// Multibuffer constructor

//===

Multibuffer::Multibuffer(char *conf_name) : TigStreamProcess(conf_name),ports()

{

char *pname;

int l;

//Nodes

action_on_unknown_port = conf_file->GetInt("Input", "OnUnknownPort", 0); //1, c-use(conf_file)

port_change_string = UnescapeString(conf_file->GetString("Input",

"PortChangeString"));

port_str_ptr = port_change_string;

.

.

.

}

Figure 2: Indirect
ow example for <a,a,l> type

9

// (c) 1998 Tiger Communications plc

//==

// ProcessStream - Open the input stream, then process it.

//==

void Multibuffer::ProcessStream(void)

{

// Nodes

if (input == NULL || outbuf == NULL || ident_buf == NULL) // 1,2,3

return; // 4

// 5

if (input->Open()) // 6

{

terminate = FALSE; // 7 def(terminate)

for (current_port = (MultibufferPort *)ports.Head();

current_port != NULL;

current_port = (MultibufferPort *)current_port->Next())

{

if (current_port->output == NULL || !current_port->output->Open())

{

terminate = TRUE;

}

}

current_port = NULL;

while (!terminate) // 16 pp-use(terminate)

{

inbuf_count = input->Read(inbuf, inbuf_size);

ProcessAnyControlMessages();

.

.

.

}

Figure 3: Indirect
ow example for <l,a,l> type

10

// (c) 1998 Tiger Communications plc

//==

// Multibuffer constructor

//==

Multibuffer::Multibuffer(char *conf_name) : TigStreamProcess(conf_name), ports()

{

char *pname;

int l;

// Nodes

.

.

.

outbuf_len = conf_file->GetInt("Output", "BufferSize", 1024);

if (outbuf_len < 20)

outbuf_len = 20;

outbuf = new char[outbuf_len]; // 10, def(outbuf)

if (outbuf == NULL)

{

logprintf("Failed to allocate memory for output buffer.");

.

.

.

}

//==

// FlushOutput - write the buffered output to the port.

//==

{

// Nodes

.

.

.

output->Write("\n", 1);

written_to_def = TRUE;

}

output->Write(outbuf, outbuf_count); // 11, c-use(outbuf)

output->Close();

.

.

.

}

Figure 4: Indirect
ow example for <l,l,l> type

11

Adequacy Criteria for Object Testing

Brigid Haworth

Department of Computing, Bournemouth University,

Talbot Campus, Fern Barrow,

Poole. BH12 5BB.

brigid@bournemouth.ac.uk

Abstract

In this report, criteria for adequacy measurement for

objects in OO software are presented. Coverage cri-

teria that address internal object structure have been

developed. These criteria include coverage of direct

and indirect inter-method
ows in addition to inter-

nal method control
ows. Results from the analysis of

a commercial system developed in C++ support the

theory that coverage analysis based on methods alone

is insu�cient for object level coverage measurement.

keywords: object coverage analysis, adequacy crite-

ria, structural testing, object oriented

1 Introduction

Coverage analysis techniques are commonly ad-
vocated as a useful approach to assess test ad-
equacy. These techniques can be used to aid
the management and control of software test-
ing for projects [6]. Adequacy criteria can pro-
vide test managers with measures to use as in-
dicators of the thoroughness of the testing per-
formed. These criteria may be speci�ed in terms
of coverage for the component that is subject
to test. The coverage analysis techniques may

apply to speci�cation of the test component or
to the internal structure of the component [9].
Such techniques are still being explored for OO
systems [3][8]. In [8], graph representations for
the four types of classes de�ned in [1] are used
as a basis for the de�nition of speci�cation based
criteria. In our earlier work [3], a 3-level model
upon which to base structural coverage criteria
was explored. In this earlier study, the motiva-
tion for the development of coverage techniques
based on method interactions in the form of
ows
was con�rmed. The model has since been re�ned
in order to improve the granularity at which the

ows are detected (by static analysis) and mea-
sured (by dynamic analysis). We now consider
the
ow from the point in a method where it oc-
curs to a destination point in another (or the
same) method. This improves the earlier ap-
proach where only the originating method and
destination method were recorded. Based on the
extended model, a hierarchy of criteria for cov-
erage of objects has been de�ned. These cov-
erage criteria are de�ned in terms of
ows that
are modelled as triples; this includes both con-
trol
ow style
ows and data
ow style
ows in a
single form. Using this common basis the criteria
may be compared using the \subsumes" relation-

1

ship as for example in [9]. Section 2 describes the
object level test model that is used as a basis for
the criteria. These criteria are de�ned together
with the relationship between them in section 3.
A code sample from a commercial development
in C++ is used in order to illustrate the types
of the criteria in section 4. Finally, results of
the static analysis given in section 4 are used to
present some conclusions.

2 Object Level Test Model

The test model for OO software has been de-
veloped in order to facilitate the development
of new testing techniques and adequacy crite-
ria. These are needed in order to provide the
tester with methods that are appropriate for use
in an object-oriented environment. In particu-
lar, the object level test model provides a view
of the internal object structure that may be used
to develop structural techniques and coverage
criteria for objects. For testing purposes, ob-
jects may be treated as components that can
be tested in isolation and therefore such tech-
niques and criteria need to address combinations
of methods and data in a way that current com-
ponent testing techniques do not. In addition,
the new techniques and criteria should in some
way account for inherited tested features, or at
least provide the mechanism to recognise when
tested features form part of the new component.
This is important when the e�ciency of testing
object-oriented components needs to be consid-
ered. The structural view of objects and the ob-
ject level test model developed are described in
the following subsections.

2.1 Object Structure

An object is considered to have method com-
ponents and data components. Each of these
types of components and the connections be-
tween them provide the basis for a structural
view of objects. The components may be related
in a number of ways. Data components may
be connected to other data components, method
components may be connected directly to other
method components, or data and method com-
ponents may be interconnected. For example,
data components may be linked within an object
via data references, through use of aliases, point-
ers or arrays referring to object data. Meth-
ods may be connected by use of inter method
calls. Methods and data may be linked through
method de�nitions of, and references to, data.

For dynamic testing, the interconnections that
may be traversed during program execution pro-
vide the basic structures of interest. This in-
cludes both control
ow paths and data
ow
paths. Method control
ow paths may be mod-
elled using
ow graphs in the way that these
have been for functions and procedures. Between
methods within an object, inter method control

ows may be modelled by extending the program
graphs to include links between the node where a
call occurs and the corresponding start and end
node from the called method. Data
ow style
connections may be modelled by including links
between nodes in methods where data de�nitions
occur and the object data de�ned and also be-
tween data object and the corresponding nodes
(c-use) or edges (p-use) in a method where a use
occurs. An object
ow graph may be constructed
to model all of these
ows providing a graphical
representation of the object in terms useful for
testing purposes. An example of such a graph is
shown in Figure 1.

2

p-use

p-use

def

c-use

def

Port::Initialise()

Port::Port()

call

return

"Port" Object Graph (partial) for Multibuffer Program

2

1

3 4

5

6 7

8

9

10

1

2

1

2

Port::Log(...)

output

name

Figure 1: Intra-Object Flowpaths

The graph shows control
ow graphs for three
methods in a \Port" object from the \Multi-
bu�er" program that is used later in the exam-
ples section. The nodes in these graphs represent
sequences of executable code within the method
and the edges represent the
ow control. \Port"
data elements \output" and \name" are repre-
sented by solid line rectangles. Edges occurring
between the method graphs and the data ele-
ments show the di�erent interactions that oc-
cur. The method \Port::Port()" de�nes both of
the data elements during the object construc-
tion. This is shown by the edges labelled `def'
between the method and the data elements. The
\Port::Initialise()" method has a predicate use
of the data element \output" resulting in p-uses

on the emanating edges from its predicate node
number 2. Node number 4 has a c-use of the
data element \name". Node number 7 shows a
direct call to the \Port::Log(...)" method. This
results in an edge labelled `call' from node 7 of
\Port::Initialise()" to node 1 of \Port::Log(...)"
and a return edge from node 2 of \Port::Log(...)"
to node 7 of \Port::Initialise()".

Previously, class graphs have been used to model
this
ow information for individual classes [4] [7].
It is proposed to extend this through class hi-
erarchies by considering the
ow internal to an
object. This di�ers from the incremental view
proposed in [4] and is based on the view that a
system's objects represent the fundamental com-
ponents for testing purposes. In this case it is

3

preferred to have a single model that addresses
the testing of objects whether or not inherited
classes form part of the object structure.

2.2 Test Model Object Flows

A
ow is represented by a triple in the form
<M1, C, M2> where M1 and M2 are method
points and C is a
ow connection occurring be-
tween these method points. The
ow connection
may be in the form of a control
ow e.g. a di-
rect call from the point M1 to the point M2 or
a branch occurring at point M1 that is followed
by the point M2. Alternatively a
ow may be in
the form of a data
ow e.g. a data element is de-
�ned at point M1 and used at point M2, and the
resulting
ow path from M1 to M2 is de�nition
clear with respect to that data element.

In abstract terms the test model for an object is
viewed as a set of
ows. The
ows may be cate-
gorised in a way that aids the tester in the deter-
mination of test requirements for an object with
inherited tested features. This shows the tester
which of these inherited features may require fur-
ther testing due to interaction with newly de-
�ned features. The extent to which inherited
object features are \preserved" i.e. are embed-
ded as is, can also be shown by these categories.
This information may be regarded as an indica-
tor of the \testability" of the implementation of
the object in the sense that it may be desirable
to limit interaction between the new features and
the inherited features to the inherited object's
interface. This \preservation" of the inherited
object can reduce the testing e�ort for the new
object. This style of implementation retains the
generalisation/specialisation relationship that is
desirable in an OO system without compromis-
ing the integrity of the inherited object.

The categories for the
ows are de�ned by the
view of the
ow with respect to the current ob-
ject. The method points M1 and M2 are tagged
in accordance with the origin of their declara-
tion. These are either ancestor method points
i.e. declared in an inherited object or are local
method points i.e. declared in the current ob-
ject. The connection between the method points
may be direct or indirect via data. In the latter
case the connection is also categorised in accor-
dance with the origin of the declaration. The
data is either ancestor data or local data as in
the case of the method points. These terms are
more formally de�ned;

object_flow --> <m_point,connection,m_point>

m_point --> ancestor_m_point | local_m_point

ancestor_m_point --> 'inh_m_point' |

'inh_virtual_m_point'

local_m_point --> 'new_m_point' | 'overriding_m_point'

connection --> data | 'direct'

data --> ancestor_d | local_d

ancestor_d --> 'inh_d'

local_d --> 'overriding_d' | 'new_d'

The number of possibilities of the types of
ow
that may be determined from the grammar
above is, however, greater than the number that
can occur in practice. This may be restricted by
a set of categories i.e. we can de�ne categories
of
ows based on the legal options that are de-
termined by programming language rules. The
following restricted set of categories are thus de-
�ned;

ancestor_m_point 'direct' ancestor_m_point

ancestor_m_point 'direct' local_m_point

local_m_point 'direct' ancestor_m_point

local_m_point 'direct' local_m_point

ancestor_m_point ancestor_d ancestor_m_point

ancestor_m_point ancestor_d local_m_point

local_m_point ancestor_d ancestor_m_point

local_m_point ancestor_d local_m_point

local_m_point local_d local_m_point

4

The test model instance for a particular object
consists of a set of these
ows de�ned in the
form of a set of triples. This set of triples is
determined from source code using static analy-
sis techniques.The
ows may then be categorised
in accordance with the restricted set described
above. These categories not only serve to spec-
ify legal types of
ows occurring in objects but
also serve to provide type information within the
test model that may be used in determining cov-
erage requirements for an object that is subject
to test. Categories that are entirely inherited
i.e. with all ancestor components as for example
in
ow types <a,d,a> and <a,a,a>, indicate an
opportunity to reduce testing e�ort in an object.
Test cases previously executed on
ows of these
types may be omitted entirely without loss of
coverage of the object structure. Alternatively a
selection of cases may be re-used, for example in
the case where it is desirable to re-test inherited
features in their new context e.g. when testing
the impact of execution in an object with in-
creased memory requirements. In terms of cover-
age of program structure nothing more is gained
but there may be bene�t from the re-test when
other such test objectives are considered. The
decision to re-test or not then becomes a mat-
ter for risk analysis where the additional costs of
re-test may outweigh the possible bene�ts from
doing so.

3 Criteria De�nitions

The coverage criteria we propose for objects are;

� intra-object method-method call
ow cover-
age

� intra-method branch (decision/condition)

ow coverage

� intra-object method-method indirect
ow
coverage

� intra-object all
ows coverage

Each of these criteria may be further re�ned
to account for the object level categories. This
shows how the impact of inheritance can be ad-
dressed in each case.

The criteria together with their re�nements are
de�ned as follows;

3.1 Intra-object method-method call

ow coverage

This coverage criterion requires all internal
method-method calls to be executed at least
once;

Defn A set of execution paths P satis�es intra-
object method-method call
ow coverage if for
each method M, for all nodes n in the method
control
ow graph for M that contain an intra-
object method-method call, there is at least one
path p in P such that p contains n.

This criterion can be re�ned by considering the
following categories from the model:

ancestor_m_point 'direct' ancestor_m_point

ancestor_m_point 'direct' local_m_point

local_m_point 'direct' ancestor_m_point

local_m_point 'direct' local_m_point

The method-method call described in the crite-
rion can be replaced by these four types of pos-
sible call. The method-method call in general
maps to the idea of a triple in the form:

caller_method_point 'direct' called_method_point

5

The caller method point occurs at a node on
the control
ow graph where the method-method
call occurs. The called method point occurs at
the start node of the control
ow graph for the
called method.

3.2 Intra-method branch (deci-
sion/condition)
ow coverage

This coverage criterion requires the method con-
trol
ow graph to be constructed with separate
nodes for each condition in an expression used
in a decision.

Defn A set of execution paths P satis�es intra-
method branch (decision/condition)
ow cover-
age if for all edges e in the method control
ow
graph there is at least one path p in P such that
p contains e.

This criterion can be re�ned by considering the
following categories from the model:

ancestor_m_point 'direct' ancestor_m_point

local_m_point 'direct' local_m_point

In this case, a branch occurs on a direct
ow
between two method points from within a single
method. This can be an inherited method giving
rise to <a,d,a>
ows or a newly de�ned method
giving rise to <l,d,l>
ows.

3.3 Intra-object method-method indi-
rect
ow coverage

This coverage criterion requires all method-data-
method
ows to be exercised at least once. These

ows occur on execution paths between meth-
ods in a de�nition-use style manner. The crite-
rion requires that the methods will be executed
in such a way that an execution path from the

point of de�nition of the object data to the point
of use of the object data will be executed. This
execution path must be de�nition clear with re-
spect to that object data.

Defn A set of paths P satis�es intra-object
method-method indirect
ows coverage if for all
methods M1 and M2, M1 not necessarily dis-
tinct from M2, for all nodes n1 in the method
control
ow graph for M1 that contain an object
data de�nition, for all nodes n2 in the control

ow graph for M2 containing object data c-uses
and all edges e in the control
ow graph for M2
containing object-data p-uses, there is at least
one path p in P such that p includes a subpath
through which the de�nition of the object data
reaches its use.

This criterion can be re�ned by considering the
following model categories:

ancestor_m_point ancestor_d ancestor_m_point

ancestor_m_point ancestor_d local_m_point

local_m_point ancestor_d ancestor_m_point

local_m_point ancestor_d local_m_point

local_m_point local_d local_m_point

3.4 Intra-object all
ows coverage

This coverage criterion requires that all
ows of
the forms identi�ed above should be exercised at
least once. The indirect
ows may in some cases
fail to subsume the branch (decision/condition)
coverage criterion. All
ows requires indirect

ows and additional
ows that ensure branch
coverage is achieved.

Defn A set of paths P satis�es intra-object all

ows coverage if for all methods M1, and M2, M1
not necessarily distinct from M2, for all nodes
n1 in the method control
ow graph for M1
that contain an object data de�nition and for
all nodes n2 in the method control
ow graph

6

<a,a,a> method-method

indirect flow coverage

<a,a,l> method-method

indirect flow coverage

<l,d,l> method-method

call flow coverage

<l,a,l> method-method

indirect flow coverage

<l,l,l> method-method

indirect flow coverageindirect flow coverage

<l,a,a> method-method

<a,d,a> method-method

call flow coverage

<l,d,a> method-method

call flow coveragecall flow coverage

<a,d,l> method-method

All flows coverage

All branch (decision/condition) flow coverage

<a,d,a> branch (decision/condition) flow coverage

All method-method call flow coverage

<l,d,l> branch (decision/condition) flow coverage

All method-method indirect flow coverage

Figure 2: Object Level coverage criteria - subsumes hierarchy

for M2 that contain object data c-uses and all
edges e in the graph for M2 that contain object
data p-uses, there is at least one path p in P
such that p includes a subpath through which
the de�nition of the object data reaches its use;
additionally, for all methods M, for all edges e in
the method control
ow graph that do not con-
tain a p-use of object data, there is at least one
p in P such that p contains e.

In each of the criteria above the execution paths
must be feasibly executable.

3.5 Relationship between Criteria

The relationship between the criteria is de�ned
in terms of the coverage of object structure
achieved when test cases executed are adequate

with respect to given criteria. A subsumes rela-
tionship as de�ned in [9] is used to develop a hi-
erarchical view of the coverage criteria proposed
for objects.

The following subsumes relationship holds for
object level coverage analysis;

� intra-method level branch (deci-
sion/condition) coverage subsumes direct
method
ows

� indirect method
ow coverage sub-
sumes intra-method level branch (deci-
sion/condition) coverage if

{ each condition of a decision in a
method has an object data reference
i.e. uses some object data to determine
the outcome of the decision

7

� all
ows coverage subsumes all indirect
method
ow coverage and also all intra-
method branch (decision/condition) cover-
age

The subsumes hierarchy is shown in Figure 2.
In this �gure, the subsumes relation is depicted
by a solid arrow line. Dashed arrow lines show
the subsumes relation between criteria that holds
when the assumptions described above are true.

4 Examples

The analysis of a class hierarchy developed in
C++ is used here to illustrate the model con-
cepts and the criteria de�nitions. An overview
of the hierarchy is shown in Figure 3. Note that
lines with arrows denote the inheritance relation
while lines without arrows denote associations.
This overview includes those classes that form
part of the inheritance structure for the \Multi-
bu�er" program.

TigNode

TigList MultibufferPort TigStreamProcess

Multibuffer multibuffer

Figure 3: Multibu�er class tree overview

The process used to determine
ows for a \Multi-
bu�er" object is described and is illustrated
in detail through the analysis of the \Multi-
bu�er::FlushOutput" method. In the following
description, nodes of the control
ow graph may
be

� SNodes i.e. representing a sequence of code
up to but excluding any expression part of
a predicate

� PNodes i.e. representing an expression that
determines some alternative control
ow se-
quence

� EndPNode i.e. representing a point where
alternative control
ow paths merge

The source for the \Multibu�er::FlushOutput"
method together with the control
ow graph is
shown in Figures 4 and 5.

The notion of a potential p-use (pp-use) of a data
element is also used in the creation of the node
lists. This represents the use of a data element
in a predicate node PNode and which is usually
referred to as a p-use of the data but attributed
to the emanating edges from the PNode. This
pp-use is transformed to the possible alternative
p-uses in the step determining the triples.

4.1 Process steps

1. For each class in the object hierarchy;
1.1 For each method in each class;
1.1.1 construct the method control
ow graph
with numbered nodes for each method point
1.1.2 for each node of the method control

ow graph construct an ordered list of data
de�nitions (def) uses (c-use, pp-use) and calls
1.1.3 for each node construct a next node list
1.1.4 tag each member documented in the lists
as ancestor if declared in a parent class or local
if declared in the current class
2. For each class
2.1 For each local data member in the class;
2.1.1 construct data
ow triples from method
node lists

8

// (c) 1998 Tiger Communications plc

//==

// FlushOutput - write the buffered output to the port.

//==

void Multibuffer::FlushOutput(void) //Nodes

{

if (current_port == NULL) // 1

{

if (output != NULL && output->Open()) // 2,3

{

if (!written_to_def) // 4

{

// This is the first time we've written to the default

// output port this invocation, so we'll write a

// date stamp to separate it from any previous stuff.

time_t now = time(NULL); // 5

char *str;

str = "\n\n========== ";

output->Write(str, strlen(str));

str = ctime(&now);

output->Write(str, strlen(str));

output->Write("\n", 1);

written_to_def = TRUE;

} // 6

output->Write(outbuf, outbuf_count); // 7

output->Close();

} // 8

}

else

{

current_port->output->Write(outbuf, outbuf_count); // 9

} // 10

outbuf_count = 0; // 11

outbuf_ptr = outbuf;

}

Figure 4: Multibu�er::FlushOutput source

2.2 For each inherited data member accessed in
the class;
2.2.1 construct data
ow triples from node lists
of current class and inherited class
2.3 For each method in the class construct the
method-method direct calls from the node lists
2.4 For each method in the class construct the
branch list from the node lists

3. Determine the triples for the object
3.1 Determine triples blocked or changed by
scoping for the object
3.1.1 For each inherited triple representing
direct method-method calls
3.1.1.1 Examine method point 1 for points in a
virtual method that is overridden in the object
and mark for deletion unless there is an explicit

9

3

4

5

6

1

2

7

9

10

11

8

Figure 5: Multibu�er::FlushOutput control
ow
graph

call to the overridden method
3.1.1.2 Examine method point 2 for points in a
virtual method that is overridden in the object
and re-classify as a,d,l (this accounts for picking
up the overriding method due to the object
instance)
3.1.2 For each inherited triple representing
branch
ows
3.1.2.1 Examine method points for points in a
virtual method that is overridden in the object
and mark for deletion unless there is an explicit
call to the overridden method
3.1.3 For each inherited triple with data connec-
tion
3.1.3.1 Examine method point 1 for points in
virtual functions that are overridden in the
object and mark for deletion unless there is an
explicit call to the overridden method
3.1.3.2 Examine method point 2 for points in

virtual functions that are overridden in the
object and mark for deletion unless there is an
explicit call to the overridden method
3.2 Remove triples marked for deletion

4.2 Flows analysis

4.2.1 Multibu�er::FlushOutput node list

Node 1 : PNode, pp-use(current_port,l)

Nextnodes : 2,9

Node 2 : PNode, pp-use(output,a)

Nextnodes : 3,8

Node 3 : PNode, pp-use(output,a)

Nextnodes : 4,8

Node 4 : PNode, pp-use(written_to_def,l)

Nextnodes : 5,6

Node 5 : SNode, c-use(output,a), c-use(output,a),

c-use(output,a), def(written_to_def,l)

Nextnodes : 6

Node 6 : EndPNode

Nextnodes : 7

Node 7 : SNode, c-use(output,a), c-use(output,a)

Nextnodes : 8

Node 8 : EndPNode

Nextnodes : 10

Node 9 : SNode, c-use(current_port,l)

Nextnodes : 10

Node 10 : EndPNode

Nextnodes : 11

Node 11 : SNode, def(outbuf_count,l), c-use(outbuf,l),

def(outbuf_ptr,l)

Nextnodes : 0

Branches: 8

4.2.2 Flows examples

Each of the following
ows are examples of the
di�erent types may occur and that exist in the
C++ system. Direct calls and branch type
ows
are easily seen within speci�c methods and are
not illustrated in this report. (Although the l,d,l
type branch
ow given below can be seen in the
FlushOutput method source in Figure 4.) Code
samples for the indirect
ow types are given in
Appendix A, Figures 6 to 9.

10

Flows - direct calls Type

<ProcessControlBlock:5,direct,ProcessControlMsg><a,d,a>

<ProcessBlock:5,direct,ProcessChar> <a,d,l>

<Multibuffer:1,direct,TigStreamProcess:1> <l,d,a>

<ProcessChar:12,direct,FlushOutput:1> <l,d,l>

Flows - branches Type

<TigStreamProcess:2,direct,TigStreamProcess:3> <a,d,a>

<FlushOutput:2,direct,FlushOutput:8> <l,d,l>

Flows - indirect Type

<TigStreamProcess:1,control,ProcessTick:5,6> <a,a,a>

<TigStreamProcess:1,conf_file,Multibuffer:1> <a,a,l>

none <l,a,a>

<ProcessStream:7,terminate,ProcessStream:16,17> <l,a,l>

<Multibuffer:10,outbuf,FlushOutput:11> <l,l,l>

4.2.3 Flows totals for Multibu�er object

The following summarises the totals for the
counts of
ows found in the Multibu�er object.

Class Flows: direct - 12calls+195branches,

indirect - 247, total 454

Blocked Flows: direct - 5calls+15branches,

indirect - 33, total - 53

Object Flows: local 454, inherited - 161,

blocked - 53, total - 562

These counts show a signi�cant number of
ows
that should be covered during testing. However,
it is not proposed that a single test case is needed
for every
ow. A test case executed for a single
method may cover several branches. Similarly,
a test case executed for an object that includes
calls to more than one method may cover several
indirect
ows. The signi�cance of the �gures is
in the indication that there are many possibili-
ties for methods to interact indirectly via object
data. These interactions are not always obvious
and may be missed during test case design, espe-
cially in the case where the focus of the testing
and the coverage measurement is on individual
methods. The static analysis may be used to
drive the design of test cases in terms of the or-
dering needed for method invocations. In the

case where an object has many \simple" meth-
ods i.e. methods with few branches, it may be
more e�cient to consider the testing of these
methods and their interactions together within
the context of the object rather than attempting
test case design focused on the individual meth-
ods. The criteria proposed in this report support
the coverage analysis requirements both for the
individual methods and for the interactions oc-
curring between them.

5 Conclusion

In this report a hierarchy of criteria for structural
coverage analysis of objects has been presented.
The analysis of a commercial system developed
in C++ was used to support the motivation for
the development of these criteria. This analysis
shows a signi�cant number of object
ows that
occur between methods that are not detectable
by method coverage analysis alone. These are
indirect
ows between methods via object-level
data. Tool support for coverage analysis of OO
software primarily targets method coverage [2]
although method-method direct calls are trace-
able by some.

The
ows detectable by static analysis can be
further analysed and used to assist in determin-
ing an ordering of execution of object methods.
This kind of \grey-box" approach is similar to
that described in [5].

The types used to categorise the
ows in the
model developed here can provide useful infor-
mation for the management and control of the
testing process. Some savings can be made when
inherited tested features form part of a new ob-
ject. The pro�le of the object test model derived
from the static analysis may be used as an in-

11

dicator of testability and also to drive the test
strategy.

The information provided by the static analysis
may be traceable from detailed designs although
further work is needed in order to achieve this.

Bibliography

[1] R. V. Binder. Modal Testing Strategies for
Object-Oriented Software. IEEE Computer,
Vol. 29 (11), pages 97{99, July 1997.

[2] R. V. Binder. Object-Oriented Testing:
What's New? Object Magazine, pages 21{
23, July 1997.

[3] B. Haworth, C. Kirsopp, M. Roper, M.
Shepperd and S. Webster. Towards the de-
velopment of adequacy criteria for object-
oriented systems. In Proceedings of the 5th
European Conference on Software Testing
Analysis and Review, pages 417{427, Edin-
burgh, Scotland, Nov. 1997.

[4] M. J. Harrold and G. Rothermel. Perform-
ing Data Flow Testing on Classes. Technical
Report 94-114, Clemson University, Clem-
son, 1994.

[5] P. J�uttner, S. Kolb, U. Naumann, and
P. Zimmerer. A Complete Test Process
in Object-Oriented Software Development.
In Proc. 7th International Quality Week,
San Francisco, CA, May 1994. Software Re-
search Institute.

[6] E. Kit. Software testing in the real world :
improving the process. ACM Press, 1995.

[7] A. S. Parrish, R. B. Borie, and D. M.
Cordes. Automated Flow Graph-based

Testing of Object-Oriented Software Mod-
ules. Journal of Systems and Software, Vol.
23 (2), pages 95{103, Nov 1993.

[8] A. Spillner. Four Kinds of Class Modality
Four Kinds of Class Testing? In Proceedings
of the 6th European Conference on Software
Testing Analysis and Review, Munich, Ger-
many. To be published Nov/Dec 1998.

[9] H. Zhu, P. A. V. Hall and J. H. R. May.
Software Test Coverage and Adequacy. In
Technical Report No 94/15, Open Univer-
sity, Milton Keynes, UK, 1994.

[10] H. Zhu. A Formal Analysis of the Subsume
Relation between software Test Adequacy
Criteria. In Technical Report No 94/18,
Open University, Milton Keynes, UK, 1994.

12

Appendix A

// (c) 1997 Tiger Communications plc

//==

// TigStreamProcess constructor

//==

TigStreamProcess::TigStreamProcess

(char *conf_name // Name of config file.

)

{

. // Nodes

. // 1 SNode

. //

conf_file = new CONF_FILE(conf_name); //

input = TigIOPort::CreatePort(conf_file, "Input"); //

output = TigIOPort::CreatePort(conf_file, "Output"); //

control = TigIOPort::CreatePort(conf_file, "Control"); // 1, def(control)

monitor = TigIOPort::CreatePort(conf_file, "Monitor");

rawdata = TigIOPort::CreatePort(conf_file, "RawData");

alarmport = TigIOPort::CreatePort(conf_file, "Alarm");

.

.

.

}

//==

// ProcessTick - idle process while nothing is happening.

// Override this to provide checks when no data received.

// But don't forget to call it!

//==

void TigStreamProcess::ProcessTick(void)

{

// Call the idle method for all existing I/O ports.

// Nodes

input->Tick(); // 1 SNode

if (output != NULL) // 2 PNode

output->Tick(); // 3 SNode

// 4 EndPNode

if (control != NULL) // 5 PNode with pp-use(control)

control->Tick();

if (monitor != NULL)

monitor->Tick();

if (rawdata != NULL)

rawdata->Tick();

if (alarmport != NULL)

alarmport->Tick();

}

Figure 6: Indirect
ow example for <a,a,a> type

13

// (c) 1997 Tiger Communications plc

//==

// TigStreamProcess constructor

//==

TigStreamProcess::TigStreamProcess

(char *conf_name // Name of config file.

)

{

. // Nodes

. // 1 SNode

. //

conf_file = new CONF_FILE(conf_name); // 1, def(conf_file)

input = TigIOPort::CreatePort(conf_file, "Input");

output = TigIOPort::CreatePort(conf_file, "Output");

control = TigIOPort::CreatePort(conf_file, "Control");

monitor = TigIOPort::CreatePort(conf_file, "Monitor");

rawdata = TigIOPort::CreatePort(conf_file, "RawData");

alarmport = TigIOPort::CreatePort(conf_file, "Alarm");

.

.

.

}

//===

// Multibuffer constructor

//===

Multibuffer::Multibuffer(char *conf_name) : TigStreamProcess(conf_name),ports()

{

char *pname;

int l;

//Nodes

action_on_unknown_port = conf_file->GetInt("Input", "OnUnknownPort", 0); //1, c-use(conf_file)

port_change_string = UnescapeString(conf_file->GetString("Input",

"PortChangeString"));

port_str_ptr = port_change_string;

.

.

.

}

Figure 7: Indirect
ow example for <a,a,l> type

14

// (c) 1998 Tiger Communications plc

//==

// ProcessStream - Open the input stream, then process it.

//==

void Multibuffer::ProcessStream(void)

{

// Nodes

if (input == NULL || outbuf == NULL || ident_buf == NULL) // 1,2,3

return; // 4

// 5

if (input->Open()) // 6

{

terminate = FALSE; // 7 def(terminate)

for (current_port = (MultibufferPort *)ports.Head();

current_port != NULL;

current_port = (MultibufferPort *)current_port->Next())

{

if (current_port->output == NULL || !current_port->output->Open())

{

terminate = TRUE;

}

}

current_port = NULL;

while (!terminate) // 16 pp-use(terminate)

{

inbuf_count = input->Read(inbuf, inbuf_size);

ProcessAnyControlMessages();

.

.

.

}

Figure 8: Indirect
ow example for <l,a,l> type

15

// (c) 1998 Tiger Communications plc

//==

// Multibuffer constructor

//==

Multibuffer::Multibuffer(char *conf_name) : TigStreamProcess(conf_name), ports()

{

char *pname;

int l;

// Nodes

.

.

.

outbuf_len = conf_file->GetInt("Output", "BufferSize", 1024);

if (outbuf_len < 20)

outbuf_len = 20;

outbuf = new char[outbuf_len]; // 10, def(outbuf)

if (outbuf == NULL)

{

logprintf("Failed to allocate memory for output buffer.");

.

.

.

}

//==

// FlushOutput - write the buffered output to the port.

//==

{

// Nodes

.

.

.

output->Write("\n", 1);

written_to_def = TRUE;

}

output->Write(outbuf, outbuf_count); // 11, c-use(outbuf)

output->Close();

.

.

.

}

Figure 9: Indirect
ow example for <l,l,l> type

16

 PAGE 1

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved.

How to test an object (structurally)

How to choose method sequences

 A1

INTRODUCTION

INTRA-CLASS TESTING
the central problem of object-oriented testing

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. AA2

THE DYNAMIC INFORMATION FLOW
TESTING OF AN OBJECT

QUALITY WEEK EUROPE 1998

Bill Bently
m -Research

http://www.mu-research.com
wgb@earthlink.net

Bob Binder
RBSC Corporation

http://www.rbsc.com
rbinder@rbsc.com

 PAGE 2

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. B1

INTRODUCTION

BACKGROUND

Currently, in OO testing, integration testing is
dominant and difficult

Industry trend is toward component software
(JavaBeansTM)

Specification of client objects will be unknown
because even the client objects will be unknown.

Integration testing will not even be possible!

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. C2

INTRODUCTION

DYNAMIC INFORMATION FLOW ANALYSIS
an advanced form of path analysis

Facilitates visualization of intra-class paths

Identifies fundamental method sequences
which under composition form necessary
test sequences

Demonstrates that path coverage measurement
is necessary for determining the effectiveness
of test sequences

 PAGE 3

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. CC1

INTRODUCTION

INTRODUCE m -PATH

Main contribution

A new conceptual tool for testing

Represents flows through methods

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. D1

INTRODUCTION

SCOPE

Informal theory

Intuitive presentation using simple JavaTM examples

No automated tool (yet)

Simplified model

Limitations inherited from path testing and
static analysis

 PAGE 4

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved.

Testing is a battle with combinatorics

Turns conventional testing theory upside down

What tests are unnecessary?

What are the fundamental elements of
necessary tests?

 E2

INTRODUCTION

STRATEGY IS BASED ON
“A Theory of Test Efficiency” [Bently 1993]

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. F2

THEORY

2-SEQUENCE
independent Java methods

A B B A=

sequencing of methods does not affect behavior

 PAGE 5

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. FF1

THEORY

2-SEQUENCE
interactive Java methods

shared instance variables create flows

A B
x

data flow is sufficient for representing flows
between methods

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved.

path through methods is a µ-path

 G1

THEORY

N-SEQUENCE

p q
A B

 PAGE 6

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved.

builds on control flow and data flow analysis

 H1

THEORY

INFORMATION FLOW

composable elements

memory access elements
data flow elements
control flow element

two levels
a intra-method
m intra-class

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. I3

THEORY

a LEVEL FLOW ANALYSIS EXAMPLE

public int add1(int a)	 {	 /*	 	 segment #1	 	 */
	 int b=0;	 	 	 	 	 /* 	 	 segment #1	 	 */
	 	 	 	 	 	 	
	 if(a > 0)	 	 	 	 	 /* 	 	 segment #2 	 */
	 	 b = 1 + a;	 	 	 	 /* 	 	 segment #3 	 */
	 return(b);	 	 	 	 /* 	 	 segment #5 	 */
}

 PAGE 7

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved.

data flow strategies are diverse and complex
[Clarke et al. 1986]

 J3

THEORY

DATA FLOW TESTING

du-pair

A

d(x)
DEFINITION

u(x)
USE

DEF-CLEAR PATH

x = 5; println(x);

B

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved.

a memory access

 K2

THEORY

ELEMENTS OF INFORMATION FLOW
ANALYSIS

a data flow

definition 		 value is bound to a variable 	 d1(b)
use 	 	 	 	 value of variable is accessed u5(b)
p-use 	 	 	 use contained in a predicate pu2(a)

input element output element

du-pair 	 	 definition use 		 d1(b) u5(b)
ud-pair 	 	 use definition 		 u3(a) d3(b)

 PAGE 8

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved.

data flow

 L3

THEORY

THE NEED FOR A MORE GENERAL FLOW
ANALYSIS

example of flow relationship that is not data flow

A Bq r s t

pu2(a) u5(b)

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. M3

THEORY

ELEMENTS OF INFORMATION FLOW
ANALYSIS

A Bq r s t

a control flow

a control flow

cd-pair 	 p-use a memory access element
	 	 	 	 pu2(a) d3(b)

p-use that can block information flows

complementary pair

 PAGE 9

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. N3

THEORY

ELEMENTS OF INFORMATION FLOW
ANALYSIS

m level

m memory access element

m- definition	 	 definition of an instance variable	 m -d5(power)

m data flow element

m- du-pair	 	 m -definition	 	 	 m -use
	 	 	 	 	 m -d3(safety)		 	 m -pu2(safety)

m- use		 	 	 use of an instance variable		 	 m -u5(power)

m- p-use	 	 	 m -use contained in a predicate		 m -pu2(safety)

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. NN3

THEORY

ELEMENTS OF INFORMATION FLOW
ANALYSIS

m level

m control flow element

m- ud-pair	 m -use m -definition
	 	 	 	 m -d3(safety) m -u2(safety)

m- cd-pair		 occurs when m -ud-path flows through a -cd-pair

m complementary pair

if complement is also a m- cd-pair

 PAGE 10

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. O1

THEORY

m PATH

generalization of def-clear path

static (structural)

types

dynamic (run-time)

A B

m -u(x)

m -USE

m -d(x)

m -DEFINITION

m -PATH

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. P2

THEORY

DYNAMIC INFORMATION FLOW
Examples of dynamic m -states

y=1;
if(y < 0)
	 y=x+2;

y=1;
if(y < 0)
	 x=2;

disappearance of m -u(x)

disappearance of m -d(x)

 PAGE 11

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. Q2

THEORY

DYNAMIC INFORMATION FLOW
m -flows are dynamic

m -u(x) m -d(y)

m -u(x) m -d(y)

intra-method
m -states
appear

and
disappear
at run-time

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. QQ2

THEORY

DYNAMIC INFORMATION FLOW
m -flows are dynamic

m -d(x) m -u(x)

m -d(x) f

f m -u(x)

inter-method
m -states
change
dynamically

 PAGE 12

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. S3

THEORY

DYNAMIC INFORMATION FLOW
intra-class test strategies

spectrum
m 0

m 1

m 23

m path

m *23

m allseq

each method in an effective test sequence is associated
with at least one m -path

all m memory access elements

all m data/control flow elements

all m 2 and 3-sequences

all m -paths

all m * 2 and 3-sequences

all (necessary) sequences

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. R2

THEORY

3-SEQUENCE

m -d(x)

A CB

m -u(x) m -d(y) m -u(y)

Effective testing requires a run-time m -path between
and through methods

m 23 strategy
testing of m -ud-pair

 PAGE 13

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. T1

THEORY

PRINCIPLES OF INFORMATION FLOW
INTRA-CLASS TESTING

#1 - an effective test is a run-time m -path

#2 - testing a run-time m -path requires that each
	 m- cd-pair along path be tested
	 (insofar as this is possible through sequencing)

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. U3

EXAMPLE

m LEVEL FLOW ANALYSIS EXAMPLE - 1

/*	 PowerControl V 1.0
ROUGH SPECIFICATION

This class simulates a simple power control (electric lawnmower etc.)
with 4 buttons:
	 PowerUp button turns power on.
	 PowerDown button turns power off.
	 Safety button toggles safety on (1) and off (0).
 	 	 If safety is on, the PowerUp and MorePower buttons
	 	 are deactivated. The initial condition is safety on.
 	 MorePower
 	 	 Each time the MorePower button is pressed, power level
 	 	 advances one level. There are four power levels: off(0),
 	 	 low(1), medium(2) and high(3).
*/

 PAGE 14

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. V4

EXAMPLE

m LEVEL FLOW ANALYSIS EXAMPLE - 2

public class PowerControl {
	 /* CLASS VARIABLES */
	 int power;
	 int safety;

	 PowerControl() {
	 	 power = 0;
	 	 safety = 1;
	 }
	
	 public void PowerUp() {
	 	 if(safety == 0)
 	 	 	 power = 1;
	 }

public void PowerDown() {
	 power = 0;
}

public void ToggleSafety() {
	 if(safety == 0)
	 	 safety = 1;
	 else
	 	 safety = 0;
}

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. W4

EXAMPLE

m LEVEL FLOW ANALYSIS EXAMPLE - 3

	 public void MorePower() {	 	 /* segment# 1 */

	 	 if(safety == 0) {	 	 	 	 /* segment# 2 */
	 	 	 if(power != 0) {		 	 	 /* segment# 4 */
	 	 	 	 power = power + 1;		 /* segment# 5 */
	 	 	 	 if(power > 3)	 	 	 /* segment# 6 */
	 	 	 	 	 power = 3;	 	 	 /* segment# 7 */
	 	 	 }
	 	 }
	 }
}

 PAGE 15

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. Y3

EXAMPLE

STEP 2 - CONVERT m /a GRAPHS
INTO m -BOXES

PowerControl PowerUp PowerDown

ToggleSafety

d1(s)

d1(p)

d1(p)

d3(s)

d3(p)pu2(s)

pu2(s)

MorePower

d5(p)pu2(s)
pu4(p)

d7(p)u5(p)d4(s)

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. X4

EXAMPLE

STEP 1 - CONSTRUCT m /a GRAPHS

PowerControl

µ-d1(p)

µ-d1(s)

µ-d1(p)
PowerDown

PowerUp ToggleSafety

µ-pu2(s) µ-pu2(s)

ø µ-d3(p) µ-d4(s) µ-d3(s)
MorePower
µ-pu2(s)

ø
µ-pu4(p)

ø
µ-u5(p) µ-d5(p) pu6(p)

µ-d5(p) µ-d7(p)

 PAGE 16

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. Z3

EXAMPLE

STEP 3 - DERIVE THE m -PATHS

PowerDown

MorePowerPowerControl
d

1
(s)

d
1
(p)

d
1
(p)

d
5

(p)pu
2

(s)
pu

4
(p)

PowerUp
d

3
(p)pu

2
(s)

ToggleSafety
d

3
(s)pu

2
(s)

d
4

(s) d
7

(p)u
5

(p)

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. _A3

EXAMPLE

STEP 4 - CONSTRAIN TESTING TO RUN-
TIME m -PATHS

PowerControl MorePower
d1(s)

d1(p)

d5(p)pu2(s)
pu4(p)
u5(p) d7(p)

 PAGE 17

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. _B2

EXAMPLE

STEP 5 - TEST m -cd-pairs

µ-pu2(s) µ-pu4(p)

µ-pu4(p) µ-u5(p)

pu6(p) µ-d5(p)

pu6(p) µ-d7(p)

either test case below

either test case below

PC TS PU MP MP

PC TS PU MP MP MP MP

A simple static data flow strategy, such as all m -du-pairs, would miss the test cases in the box
and include unnecessary test cases (PC PU MP and PC MP MP)

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. _C3

EXAMPLE

TEST CASES

PC PD MP
PC MP
PC PU
PC TS MP
PC TS PU MP
PC TS TS MP
PC TS TS PU
PC TS PU MP MP
PC TS PU MP MP MP MP

 PAGE 18

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. _E1

CONCLUSION

PRINCIPLE #3 OF INFORMATION FLOW
INTRA-CLASS TESTING

To assure effective intra-class testing, path
execution must be monitored at run-time

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. _D1

CONCLUSION

DYNAMIC INFORMATION FLOW TESTING

elucidates the structure of intra-class paths

identifies necessary fundamental subsequences
(but not all necessary sequences)

 PAGE 19

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. _F3

MERGING INFORMATION FLOWS IN
MorePower

MorePower
d5(p)pu2(s)

u5(p)

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. _G4

m -GRAPH OF ELEMENTARY p-INPUT
m -PATHS FOR MorePower

PowerDown

MorePowerPowerControl
d

1
(s)

d
1
(p)

d
1
(p)

pu
4

(p)
PowerUp

d
3

(p)pu
2

(s)
ToggleSafety

d
3

(s)pu
2

(s)

d
4

(s)
u

5
(p)

 PAGE 20

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. _H4

m -GRAPH OF ELEMENTARY s-INPUT
m -PATHS FOR MorePower

MorePowerPowerControl
d

1
(s) pu

2
(s)

ToggleSafety
d

3
(s)pu

2
(s)

d
4

(s)

Copyright 1998 RBSC Corporation and µ-Research. All Rights Reserved. _I5

m -GRAPH OF MorePower WITH
COMBINATION OF ELEMENTARY m -PATHS

PowerDown

MorePowerPowerControl
d

1
(s)

d
1
(p)

d
1
(p)

d
5

(p)pu
2

(s)
pu

4
(p)

PowerUp
d

3
(p)pu

2
(s)

ToggleSafety
d

3
(s)pu

2
(s)

d
4

(s) d
7

(p)

ToggleSafety
d

3
(s)pu

2
(s)

d
4

(s) u
5

(p)

flows corresponding to m *-ud-pairs are shown in blue

The dynamic information flow testing of an object

 William G. Bently Robert V. Binder
 µ-Research RBSC Corporation
 wgb@earthlink.net rbinder@rbsc.com

ABSTRACT

The central problem of object-oriented testing is determining method activation
sequences for the testing of a class. In the literature, this is called the “intra-class” level
of testing. For object-oriented languages such as JavaTM, specification-based strategies
are further developed than structural test strategies. Although both are essential for
effective testing, structural strategies are especially well suited for the Java environment,
where dynamic linking and bean technology make it virtually impossible to predict the
sequences that will be invoked by client objects at run-time.

A testable model of the interaction among class methods is needed for test design, at the
class interface level [6], [7]. An orthogonal model of intra-class interactions at the
implementation level is necessary to assess the adequacy of a test suite at class scope
[5]. This paper extends the class scope implementation model by developing
information-flow paths [4] from the class flow graph.

Information flow analysis elucidates the implicit paths that result as methods access
instance and class variables. This theory is capable of identifying fundamental
subsequences which can be composed to produce almost all necessary method
activation sequences.

A surprising result of this theory, is that a test that exercises a particular sequence may
not be an effective test of that sequence. The theory indicates that a special form of path
coverage must be performed during testing to assess the effectiveness of tests.

The exposition of the theory will be informal, using simple Java examples to
demonstrate the basic concepts.

INTRODUCTION

Integration testing predominates during the testing of applications written in object-
oriented languages such as Java. Integration testing could be eased and development
costs reduced if we had an effective technique for testing an object prior to integration.
But how should an object be tested?

In this paper, we introduce a new structural strategy for the testing of an object. It

Copyright 1998 RBSC Corporation and µ-Research. All rights reserved.
PAGE 1

addresses the central problem of object-oriented testing: the selection of method

sequences. This strategy applies the basic concepts of dynamic information flow testing
[4] to the class scope implementation model [5].

The intra-class flow elements, introduced in this paper, are abstractions of the flow
elements described in earlier papers on information flow testing [2,3,4]. These new
elements yield insight into the structure of intra-class paths.

scope

As a form of path testing, dynamic information flow testing shares the primary
limitations of path testing strategies:

Sufficiency As compared to exhaustive testing, information flow
analysis greatly reduces the number of sequences to be tested, but it
cannot, in general, determine a sufficient set of test sequences.

Infeasibility It is often impossible to construct test cases that
execute a specific path.

Determining input conditions for the execution of a specific path
Even when a path is feasible, it may be very difficult to determine
how to execute a specific path.

Hypotheses of path testing We shall assume the well known
hypotheses underlying path testing: restriction to those errors that
are related to a certain pattern of control flow and that are
observable when those patterns are executed.

For clarity, our model does not account for the additional complexity introduced by
other features of object-oriented programs, such as inheritance, polymorphism,
recursion, instance creation, generic types, complex types, block scope, name scoping,
cloning and idiosyncrasies of specific object-oriented languages. Information flow
analysis is subject to the limitations of static analysis such as array indices that are
known only at run-time, members of structured data type that are known only at
run-time, aliasing, side effects, data flow anomalies and safe approximation.

The discussion is at the intuitive level. It is not rigorous and does not cover the details
of dynamic information flow theory. The topic of this paper is the testing of intra-class
flows through instance variables. It does not address inter-class testing nor the testing
of interprocedural flows due to argument passing and return values.

Simple, highly-contrived Java programs are used to illustrate basic concepts. Although
Java is the vehicle for describing our strategy in this paper, the strategy can be adapted
for testing programs written in other object-oriented languages and even procedural
languages. The terms “dynamic information flow testing” and “information flow

PAGE 2

testing” will be used interchangeably.

INTRA-CLASS TESTING - THE SEQUENCING OF METHODS

We distinguish three levels of Java testing:

α intra-method
µ intra-class
π inter-class (applet, application, bean)

For later convenience, the Greek letters are used to designate structures associated with
the various levels. The intra-method level (α) is presented mainly as background for
generalizing and abstracting flow analysis for application at the level of object testing:
the intra-class (µ) level. The inter-class level (π) will be the subject of a future paper.

The application of traditional structural test methods to the intra-method level is
straightforward, since it resembles the testing of a single procedure. The testing of
methods that send messages to each other within a class resembles conventional
interprocedural testing. But when we cross the class boundary and begin to examine
method interactions that are due to messages received from outside of the class, we
enter a new region of testing: intra-class testing. It is in this region that existing
structural test strategies appear to break down.

In intra-class testing, the input space consists of the method sequences for a class.
Method activation sequences imply paths among class variables. Conventional test
methods appear to provide little guidance in how to test these paths. At first glance, we
seem to be back to exhaustive testing: i.e., trying all the sequences of method
invocation.

PATH TESTING

terms

Program element is the code element being tested. It may be a complete
program, such as a Java application, or a single procedure, such as a Java
method.

Point in an execution thread is the state of program execution directly
preceding or following the execution of a program statement.

Entry point is the state directly preceding execution of first statement of a
program element. A program element has one entry point.

Exit point is the state directly following execution of a statement that exits a
program element. A program element may have one or more exit points.

PAGE 3

Basic block is a consecutive sequence of program statements with a single
entry point, the first statement, and a single exit point, the last statement.

Segment is a basic block, a conditional statement or the decision outcome of
a conditional statement.

Path is a consecutive sequence of segments.

Test case is a set of inputs which causes the execution of a specific path through
 the program element.

analogy to path testing

The all-sequences strategy is analogous to the classical all-paths strategy which requires
a test case for each path in the program. The combinatorics inherent in non-trivial
programs makes brute force strategies such as all-sequences and all-paths impractical.
Over several decades, researchers have developed path testing strategies based on
control flow analysis, data flow analysis and information flow analysis. Each test
method represents a way of sampling the input space of a program with the goal of
approximating the effectiveness of all-paths. This analogy suggests that path testing
strategies, properly adapted, are applicable to intra-class testing.

TESTING SEQUENCES OF TWO METHODS

We begin by examining the simplest (non-trivial) sequence: two methods, which will
be designated as A and B. If the computation in A can have no effect on the
computation in B, then testing different sequences yields no new behavior.

FIGURE 1

In information flow testing, program elements such as A and B are said to be
“independent.” The central principle of information flow testing is that, if A and B are
independent, then the two program elements can be tested separately. Any sequences
of A and B constitute unnecessary tests.

Is there a way that independence can be determined through an examination of the
structure of the program elements? The application of data flow analysis was an
important milestone [10] in the quest for a structural, intra-class testing strategy. In the
case of testing two methods, independence can be ascertained through this form of
analysis. Figure 2 illustrates how sequencing constraints are created by data flows

PAGE 4

through shared instance variables.

A B B A=

FIGURE 2

In progressing beyond two method sequences, the flow analysis must be capable of
dealing with intra-method flows. In the following sections, we explain how data flow
analysis is extended to form information flow analysis, which is capable of representing
all intra-class flows. Essentially, information flow analysis is a more general means for
establishing structural independence.

INFORMATION FLOW AT α LEVEL

Information flow analysis builds on its predecessors, control flow analysis and data
flow analysis. Like data flow analysis, information flow analysis models a program as a
set of definitions and uses of variables. Like control flow analysis, information flow
analysis models a program as a set of (control flow) paths. Information flow analysis
examines how information is transferred through program variables (memory
locations). Dynamic information flow analysis was developed as the foundation for a
new generation of structural testing strategies and associated coverage measures.

During a single execution thread from the entry point to an exit point of a non-trivial
program element, only one out of a possible multitude of control flow paths is taken.
The predicates in conditional statements select the single path by blocking all other
possible paths. In a similar manner, only a subset of possible data flows is executed.
This subset is selected by the ability of predicates to block all other possible data flows.
The novel aspect of information flow analysis is the incorporation of special structures
which model the ability of predicates to block flows.

composable information flow elements

Information Flow Analysis models a program as a collection of information flows. The
basic building blocks of information flows are the information flow elements:

• memory access elements
• data flow elements
• control flow elements

These elements are composable, so any information flow may be represented by a
sequence of information flow elements.

PAGE 5

A B
x

FIGURE 3

α-level flow analysis example

The simple Java method listed in Figure 4 will be used to illustrate flow analysis
concepts.

FIGURE 4

DATA FLOW TESTING

terms

Def-clear path A path from point A to point B is definition clear with respect
to a variable, X, if X is not assigned a value along the path (except
possibly at points A or B).

Reaches The value assigned to a variable at point A “reaches” the point B if
the path between A and B is a def-clear path for that variable.

intuitive concept of data flow

Data flow test strategies are myriad, complex and strewn with subtle differences [8].
The purpose of this section is to introduce the flow elements that are used in
information flow analysis. More general descriptions of data flow testing are contained
in [1].

PAGE 6

A Bq r s t

public int add1(int a)	 {	 /*	 	 segment #1	 	 */
	 int b=0;	 	 	 	 	 /* 	 	 segment #1	 	 */
	 	 	 	 	 	 	
	 if(a > 0)	 	 	 	 	 /* 	 	 segment #2 	 */
	 	 b = 1 + a;	 	 	 	 /* 	 	 segment #3 	 */
	 return(b);	 	 	 	 /* 	 	 segment #5 	 */
}

Let A and B be two points in an execution thread. Suppose X is assigned a value at
point A and that value is used at point B. The intuition underlying data flow analysis is
that there should be at least one test case which executes a path between the two points
[13].

FIGURE 5

Some flow relationships between two points can be represented by a simple data flow.
With reference to the listing in Figure 4, a simple data flow exists between the
assignment of the value ‘0’ to variable ‘b’ in segment# 1 and the use of this value of ‘b’
in segment# 5.

This relationship is known by different names in the data flow literature and has been
defined in slightly different ways. Our construct (the du-pair) is essentially the same as
the concept presented in one of the earliest papers on data flow testing [11].

elements of information flow analysis - α memory access

The memory access elements form the basis for both data flow and information flow
analysis:

• definition point at which a value is bound to a variable.
example assignment of value ‘0’ to ‘b’ in segment# 1.
symbol d1(b)

• use point at which the value of a variable is accessed.
example access of the value of ‘b’ in segment# 5.
symbol u5(b)

• p-use a special type of use; a use which is contained in the predicate
of a conditional transfer statement.

example access of the value of ‘a’ in segment# 2.
symbol pu2(a)

The symbolic representation of the a memory access element is subscripted by the
segment number in which the element occurs. Formally, the information flow elements

PAGE 7

have a prefix indicating the level of program abstraction (α or µ). For notational

A

d(x)
DEFINITION

u(x)
USE

DEF-CLEAR PATH

x = 5; println(x);

B

simplicity, the prefix is omitted for α-elements.

elements of information flow analysis - α data flow

The data flow elements are ordered pairs of memory access elements. The first memory
access element is the ‘input’ and the second is the ‘output’.

• du-pair input definition
output use
example the simple data flow above
symbol d1(b) u5(b)

For a du-pair to exist, there must be a def-clear path from the definition to the use. A
du-pair represents information flow through a single variable.

• ud-pair input use
output definition
example the relationship between the use of the variable ‘a’

and definition of variable ‘b’ in segment# 3.
symbol u3(a) d3(b)

The use and definition of a ud-pair are contained in a single statement. The value of the
variable in the use is employed in establishing the value of the definition. Since the
variable in the use may be different from the variable in the definition, the
ud-pair is one construct that is used to represent information flow between variables.

the need for a more general flow analysis

The data flow elements may be combined to represent more complex flow structures.
For example, k-dr interactions [15] have been proposed to capture indirect flows, i.e.
those which are propagated through a chain of du-pairs connected by ud-pairs.

But there exist flow relationships that cannot be represented by data flow relationships
alone. In the example, there is no data flow between the variable ‘a’ in segment# 2 and
the variable ‘b’ in segment# 5, yet the value of ‘a’ has a definite influence on the value of
‘b’. Such flows involve the interaction of the control structure and the data flow
structure of a program. In the compiler optimization [9] and dependency literature
[12,16], these are called “control” dependencies.

An arbitrary flow relationship may be made up of both data flow and control flow
relationships. Figure 6 schematically illustrates that data flow provides an incomplete
model of flow.

PAGE 8

FIGURE 6

Information Flow Analysis adds a fundamental element, the control flow element, to fill
these gaps.

INFORMATION FLOW TESTING

terms

α-graph is a graph in which the nodes are α memory access elements and the
edges are α information flow elements.

α-path is a connected sequence of α information flow elements, in which the
output of one element is the input of the next.

intuitive concept of information flow

The intuitive concept underlying information flow is a generalization of the concept
underlying data flow. Recall Figure 5. In data flow analysis, the memory access at
point A is a “write”. In information flow analysis, this memory access may be either a
“write” or “read”. In data flow analysis, memory access at both points is to the same
variable (X). In information flow analysis, the use at point B may access X or another
variable, Y. If the value of X at point A can affect the value of the variable accessed at
point B, then there is an information flow relationship between points A and B. The
intuition underlying information flow analysis is that there should be at least one test
case which executes each element of information flow between A and B.

elements of information flow analysis - α control flow

The control flow element is the unique flow element in information flow analysis. It is
an ordered pair of memory access elements, but the input is always a p-use.

• cd-pair input p-use
output memory access element
example pu2(a) and the definition d3(b)
symbol pu2(a) d3(b)

The input use appears in a conditional expression which can directly block:

• execution of the output definition or output use, or

PAGE 9

• a def-clear path for the output definition which flows through the input

A Bq r s t

p-use, or
• execution of the input p-use of other cd-pairs, or
• a def-clear path for definitions in the transitive closure of another cd-pair

Graphically, a cd-pair is represented by an arrow from the input p-use to the output
memory access element.

In the example, the input p-use is pu2(a) and the output definition is d3(b). The
predicate use of ‘a’ controls the execution of d3(b) and thereby determines whether or
not the definition of ‘b’ in segment# 3 will reach the use of ‘b’ in segment# 5. Like the
ud-pair, the cd-pair can be used to represent information flow between different
variables.

Note that cd-pairs come in pairs. Each p-use generates two cd-pairs, since a predicate
has two outcomes. The cd-pair generated by the alternative outcome is called the
“complement” or “complementary pair.” When testing a path through a cd-pair, it is
necessary to test both the cd-pair and its complementary pair.

The examples in this paper have simple predicates (only one p-use in a conditional
expression). If a conditional expression contains multiple p-uses, then the logical
effectiveness of each p-use must be taken into consideration during testing [3].

The cd-pair is a refinement of the uu-pair, which was introduced in earlier papers on
dynamic information flow analysis [2]. The “cd” prefix refers to “Cd testing”, which
was invented by Edward Miller [14] and was the progenitor of dynamic information
flow testing.

INFORMATION FLOW AT µ LEVEL

Information flow exists at several levels. We have already seen examples of α--level
flow. The information flows of interest for intra-class testing are at the µ level.
Information flows at the method level are caused by argument passing, return values
and instance variables. Although the affect of argument passing and return values can
be represented in terms of information flow analysis, the following discussion is
restricted to flows through instance variables.

Information flow analysis is applied to intra-class testing by constructing suitable
abstractions of the α elements which operate at the µ level.

elements of information flow analysis - µ memory access

• µ−definition definition of an instance variable.
example the definition of power in segment# 5 of the

MorePower method in the µ example below.

PAGE 10

symbol µ-d5(power)

• µ−use use of an instance variable.
example the use of in power in segment# 5 of MorePower.
symbol µ-u5(power)

• µ-p-use a special type of µ-use; a µ-use which is contained in the
predicate of a conditional transfer statement.

example the p-use of safety in segment# 2 of MorePower.
symbol µ-pu2(safety)

A µ memory access element is associated with the method in which it appears. As in α
elements, each µ memory access element is subscripted by the segment number in
which the element occurs.

The µ data flow and control flow elements are ordered pairs of µ memory access
elements. The first µ memory access element is the ‘input’ and the second is the
‘output’.

elements of information flow analysis - µ data flow

• µ-du-pair ordered pair of µ memory access elements
input µ-definition
output µ-use
example the definition of safety in segment# 3 of

Togglesafety and the use of safety in segment# 2
of the PowerUp.

symbol µ-d3(safety) µ-pu2(safety)

The µ-du-pair occurs between methods.

elements of information flow analysis - µ control flow

• µ-ud-pair ordered pair of µ memory access elements.
input µ-use
output µ-definition
example the use of safety in segment# 2 of PowerUp and the

definition of power in segment# 3 of PowerUp.
symbol µ-u2(safety) µ-d3(power)

• µ-cd-pair described below

The µ-ud-pair and the µ-cd-pair occur within a single instance of a method.

In a µ-ud-pair, an α-path from its input µ-use to its output µ-definition is called a

PAGE 11

“µ-ud-path”. A µ-ud-pair must have at least one µ-ud-path.

A µ-cd-pair occurs when a µ-ud-path passes through an α-cd-pair. A µ-ud-path passes
through an α-cd-pair if:

• the input µ-use is either the input p-use of an α-cd-pair or is connected to the
 input p-use of an α-cd-pair via an α-path, and

• the output µ-definition is either the output definition of the same
 α-cd-pair or is connected to the output definition of the same α-cd-pair via an
 α-path.

The complement of the µ-cd-pair must be tested if the complement is also a µ-cd-pair.

analogous structures

The µ-path is a generalization of a def-clear path for an α-du-pair. A def-clear path for
an α-du-pair begins with an α-definition and ends with an α-use. Similarly, a µ-path
begins with a µ-definition and ends in a µ-use. Whereas a def-clear path weaves
through the data flow structure of a single method, a µ-path crosses method
boundaries and weaves through the information flow structure of one or more
methods. Just as an α-cd-pair can block an α-du-pair, a µ-cd-pair can block a µ-path.

µ-box

Once we introduce information flow elements that can span the boundaries of methods
and classes, it becomes necessary to identify the scope within which information flows
occur. The notational device for this purpose is the “µ-box”.

All visible effects of a single method call are grouped together in a µ-box. The box
encloses all the µ-elements associated with the method call. By convention, input uses
appear on the left hand side of the box and output definitions appear on the right. Since
any memory access element inside a µ-box is a µ-element, the µ prefix is dropped. Any
link between a use and definition that appears within a µ-box is a µ-ud-pair.

µ-graph

A µ-graph is a flowgraph in which the nodes are µ memory access elements, and the
edges are µ information flow elements. Normally, µ-elements are shown inside of
µ-boxes.

µ-path

Essentially, a µ-path is a path in a µ-graph. A µ-path is a connected sequence of µ
information flow elements, in which the output of one element is the input of the next.
A µ test path begins with a µ-definition and ends with a µ-use. The µ-path represents

PAGE 12

an information flow at the µ level. A µ-subpath is a connected subsequence of µ-

elements in a µ-path. A static µ-path is called a “structural” path. Normally, the term
“µ-path” refers to a dynamic (run-time) path. There are often structural paths in
programs that do not correspond to (dynamic) µ-paths.

A µ-path is composed of fundamental subpaths called elementary µ-paths. A graph of
all µ-paths in a particular objects has special nodes, µ-nodes, where µ-paths begin, end,
converge or diverge. Let A and B be two µ-nodes. An elementary µ-path is a maximal
element of the set of all µ-paths that begin at A and end at B. (This means that an
elementary µ-path is not a µ-subpath of any other µ-path from A to B.) Appendix A
provides examples of elementary µ-paths. The elementary µ-path structure
characterizes the information flow structure of an object, and therefore how it should be
tested.

A complete µ-path is a maximal element of the set of all µ-paths for a particular object.

DYNAMIC INFORMATION FLOW TESTING

Dynamic information flow testing reflects the changing nature of flows at run-time.
During execution, flows such as α-paths and µ-paths appear and disappear, depending
on the transient states of predicates. Figure 7 illustrates how a predicate can cause a
µ-use of ‘x’ to “disappear.”

 y = 1;
 if (y<0)

 y = x + 2;

FIGURE 7

Figure 8 illustrates how a predicate can cause a µ-definition of ‘x’ to disappear.

 y = 1;
 if (y<0)

 x = 2;

FIGURE 8

These changing µ-states cause µ-du-pairs to dynamically appear and disappear, as
shown in Figure 9.

PAGE 13

FIGURE 9

Effective testing requires a (run-time) µ-path between methods. A 2-sequence can be
tested, but if the µ-path between methods is not executed, then the test is not effective.
This simple observation is the basis of a fundamental result of this research.

testing sequences of three methods

In a similar manner, changing µ-states cause µ-ud-pairs to appear and disappear at
run-time as illustrated in Figure 10.

FIGURE 10

In the case of testing three or more methods, effective testing requires a µ-path from the
initial µ-definition to the final µ-use. The µ-path traverses not only µ-du-pairs, but
µ-ud-pairs within methods, as illustrated in Figure 11.

PAGE 14

µ-d(x) µ-u(x)

µ-d(x) φ

φ µ-u(x)

µ-u(x) µ-d(y)

µ-u(x) µ-d(y)

FIGURE 11

This figure illustrates that the testing of a µ-ud-pair requires the execution of at least
three methods. The µ-path through the µ-ud-pair must contain a µ-subpath which
begins at a µ-definition in the preceding method, passes through the µ-ud-pair, and
ends in a µ-use in the succeeding method.

dynamic information flow intra-class test strategies

As in control flow and data flow testing, a family of test strategies and corresponding
coverage measures of increasing effectiveness can be defined at the µ level. For
instance:

COVERAGE MEASURE STRATEGY

µ0 all µ memory access elements
µ1 all µ data flow and µ control flow elements
µpath all µ−paths
µallseqs all necessary sequences

Note that the strategy all µ−paths is, in general, not equivalent to all necessary sequences.
All necessary sequences is more extensive than all µ−paths since it includes combinations
of elementary µ-paths (see example in Appendix A).

Although empirical studies will be necessary to determine the reliability level
associated with each coverage measure, our initial estimate is that µ1 should be a
realistic goal for normal commercial applications. A higher level of assurance could be
obtained with µ23 coverage, which approximates µpath. A µ23 -cover consists of test cases
which completely test all feasible 2-method and 3-method sequences. A 2-method
sequence is completely tested if each µ-du-pair between the methods has been executed
at least once. A 3-method sequence is completely tested by executing every µ-subpath
that begins in the first method and ends in the third method.

PRINCIPLE #1 OF INFORMATION FLOW INTRA-CLASS TESTING

An effective test is a run-time µ-path which begins at a µ-definition and

PAGE 15

ends at a µ-use. Between methods, the path must pass through µ-du-pairs.

µ-d(x)

A CB

µ-u(x) µ-d(y) µ-u(y)

Within methods, the path must pass through µ-ud-pairs.

Principle #1 has a critical implication for intra-class testing which is discussed in the
section on dynamic monitoring.

A single test case may cause the execution of several complete µ-paths. Each method in
an effective test sequence is associated with at least one complete µ-path.

Principle #2 states that all µ-cd-pairs in a µ-ud-path should be tested.

PRINCIPLE #2 OF INFORMATION FLOW INTRA-CLASS TESTING

If a µ-ud-path passes through a cd-pair, then it is a µ-cd-pair. The
µ-cd-pair and its complement (if it is a µ-cd-pair) should be tested
(insofar as it is possible to do so through sequencing).

µ LEVEL FLOW ANALYSIS EXAMPLE

A simple Java class will be used to illustrate information flow intra-class testing:

PAGE 16

/*	 PowerControl V 1.0
ROUGH SPECIFICATION

This class simulates a simple power control (electric lawnmower etc.)
with 4 buttons:
	 PowerUp button turns power on.
	 PowerDown button turns power off.
	 Safety button toggles safety on (1) and off (0).
 	 	 If safety is on, the PowerUp and MorePower buttons
	 	 are deactivated. The initial condition is safety on.
 	 MorePower
 	 	 Each time the MorePower button is pressed, power level
 	 	 advances one level. There are four power levels: off(0),
 	 	 low(1), medium(2) and high(3).
*/

FIGURE 12

PAGE 17

public class PowerControl {
	 /* CLASS VARIABLES */
	 int power;
	 int safety;

	 PowerControl() {
	 	 power = 0;
	 	 safety = 1;
	 }
	
	 public void PowerUp() {
	 	 if(safety == 0)
 	 	 	 power = 1;
	 }

public void PowerDown() {
	 power = 0;
}

public void ToggleSafety() {
	 if(safety == 0)
	 	 safety = 1;
	 else
	 	 safety = 0;
}

	 public void MorePower() {	 	 	 /* segment# 1 */

	 	 if(safety == 0) {	 	 	 	 /* segment# 2 */
	 	 	 if(power != 0) {	 	 	 /* segment# 4 */
	 	 	 	 power = power + 1;	 	 /* segment# 5 */
	 	 	 	 if(power > 3)	 	 	 /* segment# 6 */
	 	 	 	 	 power = 3;	 	 /* segment# 7 */
	 	 	 }
	 	 }
	 }
}

notation for test cases

There are five methods, which will be abbreviated for later convenience:

PC PowerControl (constructor)
PU PowerUp
PD PowerDown
TS ToggleSafety
MP MorePower

A test case for this class, which is a sequence of method calls, will be designated by
listing the appropriate series of method calls (using the above abbreviations). For
example, the test case, “PowerControl, ToggleSafety, PowerUp, MorePower,
MorePower” would be abbreviated as:

PC TS PU MP MP

A brute force intra-class testing strategy would be to begin by executing all
permutations of these methods. The number of permutations is 4 factorial or 24. But,
this would not be sufficient, since exhaustive testing must also account for the
possibility of cycles. As cycles of subsequences are added, the number of test cases
quickly explodes, and it becomes apparent that exhaustive testing is impractical even
when there are only a small number of methods.

The initial goal of this analysis is to obtain the µ-path structure of the object.

In the following graphs, the variable names power and safety will be abbreviated as
‘p’ and ‘s’ respectively.

step 1 - construct µ/α graphs

First, the α-graphs of the individual methods (including the constructor) are converted
into a hybrid form called the µ/α graph. This is accomplished by replacing each a
memory access element with its µ counterpart. Output µ-definitions that are not
contained in a method are replaced by the symbol ‘φ’, which represents an “empty”
definition. A µ-ud-path cannot terminate in a ‘φ’.

The µ/α graphs are shown in Figure 13.

PAGE 18

FIGURE 13

step 2 - convert µ/α graphs into µ-boxes

Next, we examine these methods from the viewpoint of a class sending messages to the
PowerControl object. From this external viewpoint, the methods are summarized as
µ-boxes:

FIGURE 14

The flow diagram in MorePower represents six µ-ud-pairs. Only the two maximal
paths are shown. The inputs are grouped, since if any µ-ud-path in MorePower is
executed, then all input uses will be executed.

step 3 - derive the µ-paths

The structural µ-paths may be derived in a simple manner. For each µ-box, connect
each output definition to all the matching uses in other µ-boxes. If there is a matching
input in the same box, a loop around that box is created. In the PowerControl example,
this approach results in the µ-graph shown in Figure 15.

PAGE 19

PowerControl

µ-d1(p)

µ-d1(s)

µ-d1(p)
PowerDown

PowerUp ToggleSafety

µ-pu2(s) µ-pu2(s)

ø µ-d3(p) µ-d4(s) µ-d3(s)
MorePower
µ-pu2(s)

ø
µ-pu4(p)

ø
µ-u5(p) µ-d5(p) pu6(p)

µ-d5(p) µ-d7(p)

PowerControl PowerUp PowerDown

ToggleSafety

d1(s)

d1(p)

d1(p)

d3(s)

d3(p)pu2(s)

pu2(s)

MorePower

d5(p)pu2(s)
pu4(p)

d7(p)u5(p)d4(s)

FIGURE 15

RESULT #1

Information flow analysis allows us to visualize and thereby gain an intuitive
understanding of intra-class paths.

The structural µ-paths are obtained by tracing paths in the above graph. This model can
serve as the basis for an all µ-paths test strategy. A model suitable for more closely
approximating the all necessary sequences strategy is presented in Appendix A.

This µ-graph illustrates only paths inside the receiving class that are created by class
variables. Method arguments (messages) and return values can create external paths
which are in the sending class.

Static analysis allows the structural paths to be summarized by the regular expression:

PC ((TS* (PU | ε)) |PD) MP MP*

To simplify the analysis, we begin by excluding the expression containing further
repetitions of MP. This result is:

PC ((TS* (PU | ε)) |PD) MP

By limiting repetitions of TS to two, the initial test set is:

PC PD MP
PC MP
PC PU MP
PC TS MP
PC TS PU MP
PC TS TS MP
PC TS TS PU MP

PAGE 20

PowerDown

MorePowerPowerControl
d

1
(s)

d
1
(p)

d
1
(p)

d
5

(p)pu
2

(s)
pu

4
(p)

PowerUp
d

3
(p)pu

2
(s)

ToggleSafety
d

3
(s)pu

2
(s)

d
4

(s) d
7

(p)u
5

(p)

step 4 - constrain testing to run-time µ-paths

This step illustrates the dynamic nature of information flow, and one of the results of
this research (Result #3).

The static analysis performed above provides a only a first approximation to a µpath

cover. The resulting path set contains control flow paths that do not correspond to
µ-paths at run time. These extraneous paths are the consequence of imprecision in static
analysis.

Consider the simple test case:

PC MP

The first pass through MorePower is illustrated in Figure 16.

FIGURE 16

An examination reveals that no µ-path through this method can be executed. In fact,
neither on the first pass nor on subsequent passes through MorePower, are any µ-ud-
paths available. The loop created by the output definitions of power and input uses of
power is not available since safety is zero.

This restriction to only one execution of MorePower applies to all test cases in which
the incoming value of safety is ‘1’. In such test cases, all further repetitions of
MorePower are unnecessary paths according to information flow theory.

Similarly, all test cases in which the input value of power is zero (in MorePower) also
constitute unnecessary test cases. This quickly prunes the initial test set to only one test
case that can serve as the beginning subsequence of test cases with repetition of MP:

PC TS PU MP

The initial test set must be modified, since some test cases do not correspond to µ-paths:

PC PU MP becomes PC PU, since there is no µ-path through PU.
PC TS TS PU MP becomes PC TS TS PU, since there is no µ-path through PU.

Note that PD is a special case, and does not require a µ-path through it, since it is a
terminal method.

PAGE 21

PowerControl MorePower
d1(s)

d1(p)

d5(p)pu2(s)
pu4(p)
u5(p) d7(p)

step 5 - test µ-cd-pairs

In this step, we apply Principle #2 of information flow intra-class testing.

The two µ-cd-pairs in the ToggleSafety method are executed by the subsequences:

PC TS PU
PC TS TS PU

which are covered by the initial test set.

MorePower is more complex and has four µ-cd-pairs. Principle #2 implies that all four
µ-cd-pairs and their complements should be tested. The first two µ-cd-pairs do not
have complements, since there are no µ-ud-paths through the alternate decision
outcomes. The last two µ-cd-pairs are complements of each other. The two test cases
shown (and the corresponding µ-ud-paths) are adequate for testing all four µ-cd-pairs.

FIGURE 17

Adding these two test cases to the current test set yields:

PC PD MP
PC MP
PC PU
PC TS MP
PC TS PU MP
PC TS TS MP
PC TS TS PU
PC TS PU MP MP
PC TS PU MP MP MP MP

RESULT #2

Information flow analysis is capable of determining the fundamental
sequences of methods to be tested.

It is instructive to compare this test set with a test set generated by a static data flow
criterion (all µ-du-pairs). The simple data flow approach would miss the last five
(necessary) test cases and include two unnecessary test cases (PC PU MP and PC MP

PAGE 22

MP).

µ-pu2(s) µ-pu4(p)

µ-pu4(p) µ-u5(p)

pu6(p) µ-d5(p)

pu6(p) µ-d7(p)

either test case below

either test case below

PC TS PU MP MP

PC TS PU MP MP MP MP

limitations of information flow approach

Although information flow was able to significantly reduce the number of test cases in
the above simple example, we must caution that the approach is only capable of
identifying fundamental test sequences (or conversely, unnecessary test sequences).
Due to the presence of loops and the limitations of the static analysis underlying
information flow testing, it is not, in general, capable of identifying all necessary test
cases.

implications for dynamic monitoring

The simple test case (PC MP) in the above example illustrates how the structural paths
obtained by connecting the inputs and outputs of µ-boxes may, in some cases, be
ineffective. But how do we know if a given test is effective (with respect to exercising
µ-paths)? This could be determined through inspection, which was easy for a simple
example like the one above, but, in general, predicting path executions can be
technically very difficult. The only known general, practical solution is to monitor path
execution to assess if the paths corresponding to a set of tests are effective (in the
information flow sense).

RESULT #3
PRINCIPLE #3 OF INFORMATION FLOW INTRA-CLASS TESTING

To assure effective intra-class testing, path execution must
be monitored at run-time.

Coverage analysis is not a new concept in software testing. Branch coverage analysis is
becoming commonplace, and path coverage monitors have been developed by
researchers.

CONCLUSION

This paper has described an initial foray into the challenging area of object-oriented
testing utilizing path testing as a conceptual tool. This initial application of
information flow analysis to intra-class testing demonstrates that:

• information flow elucidates the structure of intra-class paths.

• information flow testing can be used to determine fundamental sequences
 of methods to be tested.

• a special form of path coverage analysis is necessary to insure that
 test sequences are effective.

PAGE 23

Although it has been known for many decades that path testing is a good option for
achieving high test effectiveness, this research is the first to indicate an application in
which path coverage analysis is a necessity for assuring the effectiveness of test results.
Even when necessary sequences of methods are executed, the tests are not effective
(with respect to the hypotheses of path testing) unless methods are in the proper
dynamic states.

Path testing has potential to help unravel other challenging facets of object-oriented
testing. Good testing practices require that a test plan incorporate both white-box
(structural) and black-box testing techniques. In this paper, we have examined how
information flow analysis can be applied to the structural testing of an object. We
believe that a systematic means for black box testing at class scope can be obtained in a
similar manner, through the application of information flow analysis to the state-model
of a class.

REFERENCES

[1] Beizer, B. Software Testing Techniques (second edition). New York: Van Nostrand
Reinhold, 1990.

[2] Bently, W.G. Moving toward data use testing. In Proceedings, 3rd annual Software
Quality Week. San Francisco: Software Research, Inc., May 1990.

[3] Bently, W.G. An introduction to Cd testing. In Proceedings, 4th annual Software
Quality Week. San Francisco: Software Research, Inc., May 1991.

[4] Bently, W. G. Software test efficiency and information flow analysis. In
Proceedings, 6th annual Software Quality Week. San Francisco: Software Research, Inc.,
May 1993.

[5] Binder, R.V. The FREE-flow graph: implementation-based testing of objects using
state-determined flows. In Proceedings, 8th annual Software Quality Week. San
Francisco: Software Research, Inc., May 1995.

[6] Binder, R.V. State-based testing. Object Magazine 5(4):75-78, July-August 1995.

[7] Binder, R.V. State-based testing: sneak paths and conditional transitions. Object
Magazine 5(6): 87-89, October 1995.

[8] Clarke,L.A., Podgurski, A., Richardson, D.J., and Zeil, S.J. An investigation of data
flow path selection criteria. Workshop on Software Testing, Banff, Canada, July 1986,
pp. 23-31.

[9] Ferrante, J., Ottenstein, K.J., and Warren, J.D. The program dependence graph and

PAGE 24

its use in optimization. ACM Trans. Program. Lang. Syst., Vol. 9(3), (July 1987), pp.

319-349.

[10] Harrold, M.J. and Rothermel G. Performing Data Flow Testing on Classes. Second
ACM SIGSOFT Symposium on the Foundations of Software Engineering, December
1994.

[11] Herman, P.M. A data flow analysis approach to program testing. The Australian
Computer Journal, Vol. 8, No. 3, November 1976, pp. 92-96.

[12] Jackson, D. and Rollins, E.J. A new model of program dependences for reverse
engineering. Proc. of the Second ACM SIGSOFT Symposium on Foundations of
Software Engineering [SIGSOFT ‘94], December 1994, New Orleans, LA, pp. 2-10.

[13] Marx, D.I.S. and Frankl, P.G. The path-wise approach to data flow testing with
pointer variables. Proc. of the 1996 International Symposium on Software Testing and
Analysis [ISSTA], January 1996, San Diego, CA, pp. 135-146.

[14] Miller, E.F. and Howden, W.E., eds. Tutorial: Software Testing and Validation
Techniques. IEEE Computer Society, 1981.

[15] Ntafos, S.C. On required element testing. IEEE Trans. Soft. Eng., Vol. SE-10, no. 6,
November 1984, pp. 795-803.

[16] Podgurski, A. and Clarke, L.A. The implications of program dependences for
software testing, debugging and maintenance. Proc. of the ACM SIGSOFT ‘89 Third
Symposium on Software Testing, Analysis, and Verification (TAV3), December 1989,
Key West, FL, pp. 168-178.

APPENDIX A - DIRECTIONS FOR FURTHER RESEARCH

We are currently investigating how to “bridge the gap” between all µ-paths and all
necessary sequences (insofar as this is possible with information flow testing). The gap
consists of necessary sequences that are not exercised by the execution of a complete
µ-path. In this appendix, we will use PowerControl to illustrate a possible solution.

The µ-graph in Figure 15 is capable of representing all µ-paths in PowerControl. There
are necessary sequences that cannot be derived (directly) from this graph. These
sequences are generated by converging information flows. The convergence of
information flow within MorePower is portrayed in Figure 18, which shows one way in
which inputs involving the two variables, ‘s’ and ‘p’, combine to produce a single
output of ‘p’.

PAGE 25

FIGURE 18

The sequences are represented by the simultaneous execution of elementary µ-paths.
To more closely approximate all necessary sequences, it is necessary to test combinations
of converging elementary µ-paths.

To construct a graph which represents these combinations, we first construct separate
µ-graphs for the two sets of elementary µ-paths that converge within MorePower. The
µ-graph of all elementary µ-paths that end at a µ-use of ‘p’ in MorePower are shown in
Figure 19. Similarly, the µ-graph of all elementary µ-paths ending at a µ-use of ‘s’ in
MorePower are shown in Figure 20.

FIGURE 19

FIGURE 20

Each figure represents a set of elementary µ-paths. The “product” of the two sets of
elementary µ-paths is obtained by taking each path from one set and interleaving it
with each path from the other set. The “interleave” product will normally not be

PAGE 26

unique, and it is possible for the product of two paths to be two or more paths.

MorePower
d5(p)pu2(s)

u5(p)

MorePowerPowerControl
d

1
(s) pu

2
(s)

ToggleSafety
d

3
(s)pu

2
(s)

d
4

(s)

PowerDown

MorePowerPowerControl
d

1
(s)

d
1
(p)

d
1
(p)

pu
4

(p)
PowerUp

d
3

(p)pu
2

(s)
ToggleSafety

d
3

(s)pu
2

(s)

d
4

(s)
u

5
(p)

Incorporating the feedback path around MorePower leads to the resulting product,
shown as a µ-graph in Figure 21. The representation is not unique, due to
commutativity of some path products.

In this case, the effect of the path product has been accounted for by adding a simple
construct, the µ*-du-pair. We do not yet know if this is possible for all path products. If
it is, then simple approximations, such as µ*1 (all µ-elements including all µ*-du-pairs)
become available for testing path products. The coverage measure µ*23, which would
completely test all 2-sequences and 3-sequences, including those composed of µ*-du-
pairs, would be a close approximation to all-sequences.

FIGURE 21

The regular expression is:

PC ((TS* PU) | ε | PD) TS* MP (TS* MP)*

The initial path set is:

PC PD MP
PC MP
PC PU MP
PC TS PU MP
PC PD TS MP
PC TS MP
PC PU TS MP
PC TS PU TS MP
PC PD TS TS MP
PC TS TS MP
PD PU TS TS MP
PC TS PU TS TS MP

PAGE 27

PC TS TS PU MP

PowerDown

MorePowerPowerControl
d

1
(s)

d
1
(p)

d
1
(p)

d
5

(p)pu
2

(s)
pu

4
(p)

PowerUp
d

3
(p)pu

2
(s)

ToggleSafety
d

3
(s)pu

2
(s)

d
4

(s) d
7

(p)

ToggleSafety
d

3
(s)pu

2
(s)

d
4

(s) u
5

(p)

flows corresponding to µ*-ud-pairs are shown in blue

PC TS TS PU TS MP
PC TS TS PU TS TS MP

After removal of non-runtime µ-paths and addition of feedback paths around MP, the
final test set is:

PC PD MP
PC MP
PC PU
PC TS PU MP
PC PD TS MP
PC TS MP
PC TS PU TS MP
PC PD TS TS MP
PC TS TS MP
PC TS PU TS TS MP
PC TS PU MP TS MP
PC TS PU MP MP
PC TS PU MP MP MP MP

Rev. L

PAGE 28

COMPONENT INDEPENDENCE FOR SOFTWARE

SYSTEM RELIABILITY

Denise Woit & Dave Mason

Department of Maths, Physics and Computer Science
Ryerson Polytechnic University

dwoit@scs.ryerson.ca

dmason@arg.ryerson.ca

1998 Nov 11

Component Reliability

) � Introduction

� System Reliability

� Estimation from Component Reliability

� Hardware Reliability Models

� Software Models

� Issue of Independence

� Rules for Software Independence

� Experimental Results

� Conclusion

Woit & Mason 1

Component Reliability Introduction

System Reliability

� probability of successful operation per usage, or time period in a given
environment

� statistical measure/models

� test results are the data for a model

� requires operational pro�le, e.g., expected usage/input distribution

� typically at system level

Woit & Mason 2

Component Reliability Introduction

Estimation from Component Reliability

� common in other engineering �elds:

{ statistical models to combine component reliabilities

{ more cost/time e�ective (system testing, component reuse)

� interest for software:

{ supports module reuse, COTS components

{ more cost/time e�ective

{ supports treatment of software development as engineering discipline

Woit & Mason 3

Component Reliability Hardware Reliability Models

Simple system

-

B

A

C -

� A three component system

� For working system: component C and one of A or B must be working

Woit & Mason 4

Component Reliability Hardware Reliability Models

Markov Model

��
��
1

��
��
2 ��

��
3

��
��
4

-'
�A�A

�B

�C

�B + �C �A + �C

�

J
J
J
J
J
J
J
J
JĴ

�

J
J
J
J
J
J
J
J
JĴ ?

Markov model for the simple system from previous slide

Woit & Mason 5

Component Reliability Hardware Reliability Models

� Generally:
R(t) = P [in a success state at time t]

= 1� P [in failure state at time t]

� Here, because failures are independent:
R(t) = P1(t) + P2(t) + P3(t)

= 1� P4(t)

� Standard Markov analysis to calculate Pi(t)

� Markov assumptions:

{ state transitions independent: �A constant, regardless of how system
arrived in state 1

{ failure rates independent: P [A fail j B fail]= P [A fail]

Woit & Mason 6

Component Reliability Software Models

Various Markov Software Models

� nodes: components;

� sequential execution;

� arci;j : P [transition from component i to j]

�
RSys(t) = P [in a success state at time t]

= 1� P [in F at time t]

�
RSys = P [transition from \start" to \success"]

= 1� P [transition from \start" to F]

� uses typical Markov analysis as above

Woit & Mason 7

Component Reliability Software Models

� Same Markov assumptions:

{ state transitions independent

{ component/state failures independent

� Software system problems:

1. component independence: if A calls B �A depends on �B

2. component independence: B might change A's state, a�ecting �A

3. Markov diagrams assumed similar to system
ow diagrams
(Parnas invoke v.s. use)

� Solutions:

{ (1,3) impose rules governing \structure" of system, components, model.
Employ invoke rather than use

{ (2) later...

Woit & Mason 8

Component Reliability Software Models

Simple Program - Module A

void A() { (define (A)

int x=0; (define x 0)

do { (define (loop)

if (x%2==0) (if (even? x)

B(x); (B x)

else (C x))

C(x); (set! x (+ x 1))

x=x+1; (if (< x 10)

} while (x<10); (loop)))

(loop)

y=D(x); (set! y (D x))

printf("y=%d\n",y); (format #t "y=~a~%" y))

}

Woit & Mason 9

Component Reliability Software Models

Simplistic Flow Diagram for Module A

A

B

D

C

Success

-
�
�
�
�
��

@
@
@
@
@R

-�

?

'
?

&
6

� Problem: sequence of control lost;
same R attributed to di�erent fragments of A

� Solution: divide A into fragments to model system components

Woit & Mason 10

Component Reliability Software Models

Correct Flow Diagram for Module A

�

�

�

�

- A1A0

B

C

A2 D A3
- �

�
�
���

@
@
@
@@R

@
@
@
@@R

�
�
�
���

- - Succeed-
1

.5

.5

1

1
.9

.1 1 1

Woit & Mason 11

Component Reliability Software Models

Reliability Model for Module A

�

�

�

�

- A1A0

B

C

A2 D A3
- �

�
�
���

@
@
@
@@R

@
@
@
@@R

�
�
�
���

- - Succeed-�
�� $� $�-

�
�
�
�
���

���
���

���
���:

Fail

1

.495

.495

.98

.02

.01

.97

.03

.864

.096

.04

.9

.1

1

0

Woit & Mason 12

Component Reliability Software Models

CPS Version - Module A

(define (A)

(define (a1)

(if (even? x)

(B a2 x)

(C a2 x)))

(define (a2 result)

(set! x (+ x 1))

(if (< x 10)

(a1)

(D a3 x)))

(define (a3 result)

(set! y result)

(format #t "y=~a~%" y))

(define x 0)

(a1))

Woit & Mason 13

Component Reliability Issue of Independence

Issues of Component Independence

Markov model requires independence of component reliabilities

� if module A invokes a broken module B, and thereby produces a wrong
result, that is not a failure of A

� if a broken module A invokes module B with erroneous parameters and B
thereby produces a wrong result, that is not a failure of B

� if module A and correct module B are incorrectly connected such that B
fails, that is not a dependence between the modules, it is a design failure

� if module A invokes module B and it changes some state that module A
depends upon, then A and B are dependent (Problem 2)

Woit & Mason 14

Component Reliability Issue of Independence

Program State

� state includes:

{ �les

{ I/O registers

{ cursor position on screen

{ main memory

� atomicity is a desirable characteristic

� we discount the following from state:

{ stack/heap/disk space

{ CPU time

{ require separate proof that usage bounded

Woit & Mason 15

Component Reliability Rules for Software Independence

Rules for Software Independence

� no external state mutation/call-by-reference

� all accesses/updates to a variable are grouped as a sequence of critical
sections

� restrict each critical section to a single fragment

How?

� pure functional programming (Erlang { Ericson, SML/NJ { Lucent), or

� use no global variables and ensure all updates to any variable are in a
single fragment

Woit & Mason 16

Component Reliability Experimental Results

Experimental Results

� version of grep written in the functional subset of Scheme

� arbitrarily de�ned module boundaries (5 modules)

� broke it into fragments (6 new continuations)

� calculated reliability values

Woit & Mason 17

Component Reliability Experimental Results

Original Data

Bug Component 11 fragments
Name Reliability
compare range 79.23 7.39

� system reliability with this bug was about 75%

� recursive call from C to A creates an apparent path from A to C1 (the
fragment containing the error)

A

A1

B C

C1

FailSucceed

- -

�
�

�
��	

-

?

6 6

?

�

��
?

� �

��

Woit & Mason 18

Component Reliability Experimental Results

Unrolling

A

A1

B C

C1

FailSucceed

- -

�
�

�
��	

-

?

6 6

?

�

A'

A1'

B' C'

C1'

- -

�
�

�
��	

�
�

�
��	

-

6 6

�

��

��
?

� �

��

� by unrolling, frequency of the phantom path is reduced and true system
reliability is better approximated

� diagram above is unrolled once, producing the 35 fragment version in the
table on the next slide

� problem only arises with mutally recursive modules

Woit & Mason 19

Component Reliability Experimental Results

Unrolling

Bug Component 11 fragments 35 fragments 131 fragments
Name Reliability separate combined

compare range 79.23 7.39 63.65 63.64 67.89

� unrolling an additional time produced some improvement

� the operational pro�le seen by the module has little e�ect on the
calculated reliability

� the calculated reliability is always conservative, so safety is preserved,
even if the desired reliability cannot be attained.

� unrolling can be done at calculation time and does not have to be done to
the program itself

� a better approach, \conditional paths", was described in Quality Week
Europe'97

Woit & Mason 20

Component Reliability Conclusion

Conclusion

� it is possible to build software modules that are independent, and therefore
usable in Markov models

� presently restricted to purely functional module fragments

Future Work

� getting data on more programs

� extend to handle critical fragment groups (to support mutation)

Woit & Mason 21

Component Independence for Software System Reliability

Denise M. Woit
dwoit@scs.ryerson.ca

David V. Mason
dmason@scs.ryerson.ca

School of Computer Science
Ryerson Polytechnic University

350 Victoria Street
Toronto, Ontario

Canada M5B 2K3

Abstract

For a typical software system, it is generally consid-
ered infeasible to calculate system reliability from the
reliabilities of its constituent components because soft-
ware systems, unlike hardware systems, tend to violate
the underlying independence assumptions inherent in
the usual reliability calculations. We present a set of
component design and interaction rules which, if fol-
lowed in software development, can produce systems
with the highly independent components necessary in
order to legitimately calculate system reliability from
component reliability. We present a system which fol-
lows our rules, and show that in this case system relia-
bility calculated from component reliabilities was very
close to the true system reliability.

1 Introduction

Software system reliability estimates are typically
based upon data collected while testing the system as
a whole [7, 10]. However, there is growing interest in
estimating system reliability from the reliabilities of its
constituent components. This technique is both prag-
matically appealing, and supportive of the treatment of
software development as an engineering discipline.

In the hardware realm, Markov-based models are
commonly used to calculate system reliability from
component reliabilities; this approach is preferred be-
cause of its cost-effectiveness. Because the underly-
ing mathematical models for such calculations assume

component independence, hardware components are
designed to be as independent as possible; any remain-
ing dependencies are factored into the models [6, 7].

Unfortunately, the hardware models of reliability
composition are considered inapplicable in the soft-
ware realm because software components tend to vi-
olate the component independence assumption of the
basic model. It is widely considered impossible or in-
tractable to design software components to meet this
requirement [7].

We have constructed design rules that allow the
development of software components with the nec-
essary independence, and with interaction properties
that parallel those of physical systems, so that they are
amenable to analysis with Markov models. The use of
functional programming languages facilitates the con-
struction of these highly independent components. We
show that application of our rules can result in systems
which do not violate the underlying assumptions of the
typical reliability composition models.

We also discuss the limitations of first-order
Markov models of software systems, as outlined in
[12]. We explore techniques to mitigate these limita-
tions. Conditional statements are specified and then
used to automatically transform basic models into
those that more accurately describe software compo-
nent interaction. We present an example for which our
transformations produce reliability estimates that are
far more accurate than are possible with the traditional
model.

The design rules and the model transformation tools
combine to allow Markov models to be usable in de-

riving reasonable estimates of system reliability from
the reliabilities of system components.

2 Hardware Models

For hardware systems, or systems that are some
combination of hardware and software, estimations
of overall system reliability from constituent compo-
nent reliabilities are obtained via Markov or semi-
Markov models [6, 5, 4, 8, 3]. In Markov models,
system behavior is modeled by a set of systemstates,
fS1; S2; : : : ; Sng, and transition rates/probabilities
among states,Ti;j ; i; j;= 1; 2; : : : n. The Markov
model assumesTi;j dependsonly upon Si. This is
known as theMarkov property.

-

B

A

C -

Figure 1. A simple 3 component system

In hardware systems, anSi is usually considered
some distinct combination of working and failed com-
ponents. For eachSi, eachTi;j is composed of the fail-
ure rates or repair rates of its components. States are
partitioned into those representing system failure, and
those not. Reliability is calculated as the probability of
the system residing in a non-failure state [6]. Consider
the simple three component hardware system of fig-
ure 1. Suppose that for this system to be functioning,
it must be the case that component C and one of com-
ponents A or B must be functioning. A Markov model
for this simple system is presented in figure 2. In this
model, states 1, 2 and 3 aresuccess states(system can
function) and state 4 is afailure state(system does not
function). State 1 corresponds to all components, A,
B and C, functioning. State 2 corresponds to B and C
functioning, but A not. State 3 corresponds to A and

C functioning, but B not. State 4 corresponds to C not
functioning with all combinations of A and B func-
tioning/not.�i is the failure rate for componenti. �i is
the repair rate for componenti. Generally: R(t)=P[in a
success state at time t] = 1-P[in failure state at time t].
Here, R(t) =P1(t) + P2(t) + P3(t) = 1 � P4(t), and
standard Markov analysis is used to calculatePi(t).
Assumptions of the Markov model are:

� state transitions are independent:�A constant, re-
gardless of how system arrived in state 1

� failure rates are independent: P[X failj Y fail] =
P[X fail]

����1

����2 ����3

����4

-'
�A

�A
�B

�C

�B + �C �A + �C

�

J
J
J
J
J
J
Ĵ

�

J
J
J
J
J
JĴ ?

Figure 2. A Markov model for figure 1

3 Software Models

A similar approach has been presented for systems
comprised entirely or partly of software components
[2, 3, 5]. A state,Si is a set of components under
execution.Ti;j is the probability of execution transi-
tion from Si to Sj. For systems with sequential exe-
cution properties, anSi contains only one component;
for systems with non-sequential execution properties,
anSi contains more than one component. In the se-
quel, we consider sequential systems, without loss of
generality; thus,Si � Ci, whereCi is the ith com-
ponent of the system, andTi;j is the probability of

Woit/Mason QWE’98 2

execution transition fromCi to Cj. The ordering of
the components is not relevant except thatC1 must be
distinguished as thestartcomponent–that which is ini-
tially executed upon system start-up. A “termination”,
or “system success” state,S, is included to represent
successful termination of the software.

For systems comprised entirely or partly of soft-
ware components Markov models have been used to
calculate measures such as steady-state system avail-
ability and system reliability from the reliabilities of
constituent hardware/software components [5, 3, 2].
First, the model is modified by including a “fail” state,
F. Arcs are included from each component of the sys-
tem (except the termination component) toF . An arc
from Ci to F represents a failure of componentCi.
If componentCi has reliabilityri, then the probabil-
ity of failure is Ti;F = 1 � ri. The probabilities on
the remaining arcs emanating fromCi are each modi-
fied by multiplying them byri, as each of their prob-
abilities is now reduced because of the addition of the
new arc toF . Thus, the arc fromCi to F corresponds
to the probability thatCi will fail; the remaining arcs
from Ci correspond to the probabilities thatCi will
successfully pass control on to another component of
the system. When a graphical version of system com-
ponent interaction is thus modified, the only absorb-
ing states in the graph are the termination state and F.
Therefore, any path through the graph beginning with
the start state, and ending with the termination state,
represents a failure-free execution of the system. Any
path through the graph starting with the start state, and
ending with the failure state,F , represents a failed sys-
tem execution.

When a continuous measure is desired, the system
reliability is P[in a non-failure state at time t] = 1-P[in
F at time t]. For a discrete measure, system reliability
is P[absorption atS] = 1-P[absorption atF]. These
measures can be calculated by solving a system of lin-
ear equations.

When Markov and semi-Markov models are uti-
lized for systems with software components, the re-
sulting reliability estimations are not meaningful un-
less the Markov model is a good representation of
the actual system. Because they relate to establishing
the Markov property, the following two factors signif-
icantly influence the adequacy of the representation:
(1) the nature of transition properties within the given

system; (2) component independence in the given sys-
tem. We believe that typical systems involving soft-
ware components have properties such that modeling
these systems in a Markovian fashion is not feasi-
ble. Because the underlying Markov property is vio-
lated, the resulting system reliability estimations are
not meaningful. In the sequel, we will describe how
a system can be designed or modified so that the tran-
sition propertiesare amenable to Markovian analysis.
We will also outline our rules which can be used to cre-
ate system components with the independence proper-
ties required for Markovian analysis.

4 Transition Properties and CPS

In this section we identify inconsistencies between
software systems and the Markov models typically
used to represent them. We outline how these prob-
lems can be overcome by using Continuation Passing
Style (CPS)[1].

Parnas [11] differentiates between the mutually ex-
clusive relations “uses” and “invokes”. USES(Ci; Cj)
= iff Ci callsCj andCi will be considered incorrect
if Cj does not function properly. INV(Ci; Cj) = iff
Ci passes control toCj but does not useCj . Thus,
if USES(X,Y), then the reliability of component X
will incorporate the reliability of Y. Their reliabili-
ties (and thus failure rates, as reliability= 1�failure-
rate) will be dependent, and we write RelUSES(X,Y).
An assumption of the Markov model is thatTi;j �
INV(Ci; Cj).

A software component often uses the results of
other components to transform its input to output.
Consider component A, which is presented in pro-
gramming languagesC andScheme in Figure 3. A
typical Markov model for A is given in Figure 4.

A problem is apparent when comparing the model
of Figure 4 to the system in Figure 3. Figure 4 is
modeling component interactions for whichTi;j �
INV(Ci; Cj) holds. However, in the actual compo-
nent interactions of the system given in Figure 3, it
is not true thatTi;j � INV(Ci; Cj). Figure 4 in-
dicates INV(A,B), but the system of Figure 3, indi-
cates USES(A,B): an inconsistency between system
and model. Thus, the typical Markov model is not an
accurate description of the actual system.

There is a further problem apparent when compar-

Woit/Mason QWE’98 3

void A() { (define (A)
1 int x=0; (define x 0)
2 do { (define (loop)
3 if (x%2==0) (if (even? x)
4 B(x); (B x)
5 else
6 C(x); (C x))
7 x=x+1; (set! x (+ x 1))
8 } while (x<10); (if (< x 10)
9 (loop)))
10 (loop)
11 y=D(x); (set! y (D x))
12 printf((format #t
13 "y=%d\n",y);} "y=˜a˜%" y))

Figure 3. Component A

ing the model of Figure 4 to the system in Figure 3.
RelUSES(A,B), RelUSES(A,C), and RelUSES(A,D)
hold by Figure 3. Thus, the reliability of A will al-
ready incorporate the reliabilities of components B, C,
and D. In fact, for any system thus modeled, the reli-
ability of thestart component,C1, will already incor-
porate the reliabilities of componentsCi, whereCi is
the transitive closure of USES onC1. Thus, the reli-
ability for C1 is the overall system reliability, making
moot the entire exercise of calculating system reliabil-
ity from component reliabilities.

A

B

D

C

Success

-
�
�
�
�
��

@
@
@
@
@R

-�

?

'
?

&
6

Figure 4. Simplistic model of A

�
�

�
�
- A1A0

B

C

A2 D A3- �
��

@
@R

@
@R

�
��

- - Success-

Figure 5. Markov model after CPS conversion

The problems described above are solved if the flow
of information in the software system is via Continua-
tion Passing Style (CPS), described below. It is impor-
tant to note that a system can betransformedinto CPS;
it need not be initiallydesignedusing CPS principles.
When a system is in CPS form, all of the component
relations will be INV; none will be USES. Each com-
ponent will perform an atomic transformation from in-
put to output. The component, A, of Figure 3, can
be transformed into CPS by dividing it intofragments,
A0, A1, A2, and A3 as follows.

A0: set x=0 and invoke A1 (line 1)

A1: depending on result of if statement, invoke B or
C (lines 3-6)

A2: increment x; depending on result of decision,
invoke A1 or D (lines 2,7-10)

A3: set y and print (lines 11-13)

Components B and C must be modified to invoke their
continuation, A2. Component D must be modified to
invoke its continuation, A3. The components of the
CPS-converted system are thus A0, A1, A2, A3, B, C,
D, and the corresponding Markov model is given in
Figure 5. Note that the two problems above are now
solved. Each component performs an atomic trans-
formation of input to output, and uses the results of
no other component in its transformation. Thus, INV
holds for all component interactions. The reliability of
any component is not dependent on that of other com-
ponents because no USES relation exists among com-
ponents and because the components use no global
variables.1

1The relationship between reliability and program state is pre-
sented in Section 5.

Woit/Mason QWE’98 4

4.1 CPS Transformation

When the system is CPS converted (or designed)
all of the components are related by INV, none of the
components are related by USES, and each component
performs an atomic transformation of its input to out-
put. The Markov model is thus applicable to software
components in terms of component transformations.

To CPS convert a procedure/function, one partitions
the component intofragments, which are sequences of
instructions that do not involve a call to a component.
Each fragment may be considered to be a function.
Fragments become components in the CPS converted
system. The new set of componentsinvokeother com-
ponents, passing along relevant program state and the
next component to be executed. For example, consider
component C in Figure 6. The section prior to the call
to F becomes a fragment, C1. The section following
the call to F becomes a fragment (function), C2. A
must execute in the state, S1, that is visible in C before
the call to F. C2 must execute in the state, S2, that is
visible in C after the call to F. The components of CPS
conversion are C1, F and C2. C1 passes F both C2 and
S1. A will perform its function in state S1, and it in
turn will pass control and S2 (including the result of
F) to C2. C2 will perform its function in state S2.

C1

(� � �
� � �
� � �
F(� � �)

C2

(� � �
� � �
� � �

Figure 6. Component C

We have found CPS conversion straightforward
when using functional programming languages be-
cause of the high-level data-structure facilities. In a
language such asC, it is slightly more complicated,
but can be facilitated using macros. CPS conversion
of component A from Figure 3 using the programming
languageScheme is given in Figure 7.

(define (A)
(define (a1)

(if (even? x)
(B a2 x)
(C a2 x)))

(define (a2 result)
(set! x (+ x 1))
(if (< x 10)

(a1)
(D a3 x)))

(define (a3 result)
(set! y result)
(format #t "y=˜a˜%" y))

(define x 0)
(a1))

Figure 7. CPS conversion of component A
from Figure 3

5 Component Independence

When components are developed as, or converted
to, CPS, the transition properties among components
are consistent with those required for Markov model-
ing. CPS compliance, however, is not a sufficient con-
dition for the Markov model to apply–the components
of the system must also fail independently. When only
the INV relation exists among components, it is im-
possible for component A to fail because of a failure
of a component B which it calls. Thus CPS mitigates
this issue of dependence. It is important to note that
if A calls B with erroneous parameters, causing B to
produce an incorrect result, this isnot an indication
that A and B are dependent. If A and B are incorrectly
connected such that B fails, that isnot a dependence
between A and B, it is a system design failure. A and
B aredependent, however, if A calls B, and B modifies
some state that A depends upon. The state of a system
includes global variables, mutable data-structures, and
I/O state such as the position of file read/write point-
ers, values in device registers, segments of files that
can be read/written, etc. State also includes system
parameters such as the amount of free memory or the
time of day. If these are relevant to the given system,

Woit/Mason QWE’98 5

it must be proven by the system designer that they do
not compromise the independence of the components.

Rules that will help establish component indepen-
dence are as follows:

1. Design the system in (or convert the system into)
CPS.

2. Code in a programming that constrains point-
ers and automates memory management, such as
Java, ML, Scheme or Ada.

3. Use the functional-programming paradigm at the
component level. Within a component, the func-
tional paradigm is not required, but no mutable
data-structures can existbetweencomponents.

4. Updates to I/O state must be within a single com-
ponent. Further, the component cannot make any
assumptionsabout the current state. Any knowl-
edge about the existing state must be established
by the component intending to modify it.

Systems which conform to our design rules above
will not violate the Markov properties. Thus, using
Markovian analysis to derive system reliability esti-
mates from component reliabilities will be legitimate.
We note, however, that many systems cannot conform
to our rules because they require maintenance of some
I/O state. For such systems, state must be incorporated
into the reliability calculations, as outlined in [13].

6 Experimental Results

We developed a version of the Unix utilitygrep
which conforms to all of our rules for indepen-
dence. It is CPS-compliant and uses the functional-
programming paradigm between components, but not
within single components. The code was originally
written functionally, but not CPS-compliant, using
five components. It was subsequently CPS-converted.
When divided into fragments, six new continuations
were created, giving a total of eleven fragments. In
order to calculate system reliability, we seeded errors
into four fragments, and calculated the ensuing relia-
bility of each fragment. System reliability was calcu-
lated with standard Markov methods. It was compared
to the “true” reliability, which was obtained by testing

the system as a whole. The operational profile expe-
rienced by any given fragment during system testing
was identical to that it experienced during individual
fragment testing. This was important in order to be
able to compare true vs. calculated system reliabilities
in a meaningful way.

Initial results showed that calculated system relia-
bility was much lower than the true system reliability.
The discrepancy was traced to spurious paths through
our Markov model of fragment interaction. Although
the Markov property held for our system model, sev-
eral fragment paths were modeled that were impos-
sible, or improbable, in the actual system. This is a
shortcoming of the Markov model, and was first dis-
cussed in [12]. The solution to this problem requires
state-splitting, as outlined in [12]. One round of state-
splitting created 35 fragments. With the new model,
calculated system reliability was very close to true sys-
tem reliability (a difference of about 5%.) We obtained
moderate improvement when the state was split into
135 fragments (a difference of about 1%). It is impor-
tant to note that state-splitting need not be performed
manually. With the tools described in [12], conditional
statements can be defined abstractly describing com-
ponent interaction. The tool can automatically trans-
form these conditional statements into the correspond-
ing first-order Markov model, as required. There is
little correlation between the final number of states in
the calculated Markov model and the number of con-
ditions required to specify them. It is possible to accu-
rately describe a system of several hundred states with
only a handful of conditional statements.

Besides using state-splitting to obtain a more ac-
curate Markov model, we also experimented with re-
calculating reliabilities of fragments based on their
now different operational profiles. Surprisingly, we
found only negligible improvements in our calculated
reliability estimates. This is empirical evidence sup-
porting previous theoretical work which showed that
alterations in the operational profile result in much
smaller relative changes in the reliability estimates [9].

7 Conclusions

We outlined ways in which typical software sys-
tems, unlike hardware or combination systems, violate
the underlying assumptions of Markov models. We

Woit/Mason QWE’98 6

described why such models are inappropriate for cal-
culating system reliability from reliabilities of system
components. We then outlined rules which, if followed
in software development, could produce system com-
ponents which are independent, and systems which
thus are amenable to Markovian analysis. We created
a system which corresponded to our rules, and applied
the typical Markov analysis to determine system relia-
bility from component reliabilities. Our experimental
results were promising, with calculated system relia-
bility being close to true system reliability.

References

[1] A PPEL, A. W. Compiling with Continuations.
Cambridge University Press, 1992.

[2] CHEUNG, R. A user-oriented software reliability
model. IEEE Trans. Software Engineering 6, 2
(March 1980), 118–125.

[3] FRIEDMAN, M., AND VOAS, J. Software As-
sessment. John Wiley & Sons, New York, 1995.

[4] K RISHNAMURTHY, L., AND MATHUR, A. The
estimation of system reliability using reliabilities
of its components and their interfaces. InPro-
ceedings 8th Intl. Symposium on Software Reli-
ability Engineering(Albuquerque, New Mexico,
Nov. 1997).

[5] L APRIE, J.-C.,AND KANOUN, K. Software Re-
liability and System Reliability. In Lyu [7], 1996,
pp. 27–70.

[6] L EWIS, E. Introduction to Reliability Engineer-
ing, 2 ed. John Wiley & Sons, New York, 1996.

[7] LYU, M., Ed. Handbook of Software Reliability
Engineering. McGraw-Hill, New York, 1996.

[8] LYU, M. Reliability Theory, Analytical Tech-
niques and Basic Statistics. In Lyu [7], 1996,
pp. 747–779.

[9] M USA, J. Sensitivity of field failure intensity to
operational profile errors. InProceedings ISSRE
(Fifth International Symposium on Software Reli-
ability Engineering)(Monterey, California, Nov.
1994), IEEE, pp. 334–337.

[10] MUSA, J. Applying operational profiles in test-
ing. In Proc. 10th Intl. Software Quality Week
(San Francisco, CA, May 27–30 1997).

[11] PARNAS, D. On a “Buzzword”: Hierarchi-
cal structure. InIFIP Congress(1974), North-
Holland Publishing Co., pp. 336–339.

[12] WOIT, D. Specifying component interactions
for modular reliability estimation. InFirst Intl.
Quality Week Europe(Brussels, Belgium, Nov.
November 4–6 1997).

[13] WOIT, D., AND MASON, D. Software compo-
nent independence. InHigh Assurance Software
Engineering, (HASE’98)(Washington, DC, Nov.
1998).

Woit/Mason QWE’98 7

QWE '98 Slide 1

Testing Metrics for
Requirement Quality

Theodore Hammer, NASA/GSFC
301-286-7475 thammer@pop300.gsfc.nasa.gov

Linda Rosenberg, Ph.D., Unisys Federal Systems
Lenore Huffman, Unisys Federal Systems

2nd International Software Quality Week Europe ‘98
Software Assurance Technology Center

 Space Flight Center - NASA

QWE '98 Slide 2

Overview

Introduction
Requirements Specification

– Language
– Structure

Requirements Verification
– Volatility
– Traceability

Metrics Application
Lessons Learned
Conclusion

QWE '98 Slide 3

Objectives

Goal: High quality requirements

Expectation:
 High quality requirements ==>

 More effective testing (better, cheaper, faster)

Questions:
What constitutes quality in requirements?
How does requirement quality relate to testing?
What metrics are applicable?

QWE '98 Slide 4

Definitions

IEEE:

Quality - Degree requirements possesses desired combination of

Quality Attribute - Characteristic of the requirements that
affects the quality and is measurable using quality metrics

Evaluation of quality => measurable attributes of requirements

Test case - to verify compliance with a specific requirement

Test coverage - degree to which a set of tests addresses all
specified requirements for a given system

QWE '98 Slide 5

• Ambiguity - Requirements with potential
multiple meanings.

• Completeness - Items left to be specified

• Understandability - The readability/structure

• Volatility - The rate and time within the life
cycle changes are made to the requirements.

• Traceability - The traceability of the
requirements upward to higher level
documents and downward to code and tests.

Requirements Attributes

Specification

Verification

QWE '98 Slide 6

Requirement
Specification Metrics

• Ambiguity = Weak Phrases (adequate, as appropriate, as
applicable, but not limited to, normal, if practical, timely, as
a minimum) + Options (can, may, optionally)
Completeness = TBD + TBA + TBS + TBR

• Understandability = Numbering Scheme
• Traceability = Number of Items traced to tests, between

builds, between levels of detail
Number of Requirements: = Imperatives (shall, must, will,
required, responsible for, should, are to, are applicable) +
Continuances (below:, as follows:, following:, listed:, in
particular, support:, :)

QWE '98 Slide 7

Requirements Document
Analysis Example

56
 D

O
C

U
M

E
N

T

Li
ne

s
of

 T
ex

t
- C

ou
nt

 o
f t

he

ph
ys

ic
al

 li
ne

s
of

 te
xt

Im
pe

ra
tiv

es
 -

sh
al

l,
m

us
t,

w
ill

, s
ho

ul
d,

 is
 re

qu
ire

d
to

, a
re

ap

pl
ic

ab
le

, r
es

po
ns

ib
le

 fo
r

C
on

tin
ua

nc
es

 -
as

 fo
llo

w
s,

fo

llo
w

in
g,

 li
st

ed
, i

np
ar

tic
ul

ar
,

D
ir

ec
tiv

es
 -

 fi
gu

re
, t

ab
le

, f
or

ex

am
pl

e,
 n

ot
e:

W
ea

k
P

hr
as

es
 -

ad
eq

ua
te

,
as

 a
pp

lic
ab

le
, a

s
ap

pr
op

ria
te

,
as

 a
 m

in
im

um
, b

e
ab

le
 to

, b
e

ca
pa

bl
e,

 e
as

y,
 e

ffe
ct

iv
e,

 n
ot

lim

ite
d

to
, i

f p
ra

ct
ic

al

In
co

m
pl

et
e

(T
B

D
, T

B
S

)

O
pt

io
ns

 -
ca

n,
 m

ay
, o

pt
io

na
lly

Minimum 143 25 15 0 0 0 0
Median 2,265 382 183 21 37 7 27
Average 4,772 682 423 49 70 25 63
Maximum 28,459 3,896 118 224 4 32 130
Stdev 759 156 99 12 21 20 39

Project X 34,664 1,176 714 873 13 480 187

Automated Requirements Measurement Tool*

*available free from http://satc.gsfc.nasa.gov

QWE '98 Slide 8

Structure Level
at Which Imperative Occurs

Expected

Actual

1

3

5

7

9

 Derived
1

3

5

7

9

 Detailed

1

2

3

4

5

6

7

8

9

 Detailed
1

2

3

4

5

6

7

8

9

.

 Derived

Too much detail
too soon in
development

Insufficient
detail

QWE '98 Slide 9

Requirement Verification

Issues critical to testing:

 Volatility:
– Is requirement volatility zero?

Is requirement movement between builds stable?

 Traceability:
– Do all requirements trace to higher and lower level documents?

Are all requirements tested? Do they trace to a test?

QWE '98 Slide 10

Requirement Volatility

CDR
Looks Good!

(Stable)

CDR
Excessive Changes!

 NOT Stable

Modifications to Requirements

0

50

100

150

200

250

300

350

400

450

1Q94 2Q94 3Q94 4Q94 1Q95 2Q95 3Q95

Calendar Quarter

Q
ua

nt
ity

New

Modified
Deleted

Total Number of New Requirements

0

100

200

300

400

500

600

700

800

900

1000

1Q94 2Q94 3Q94 4Q94 1Q95 2Q95 3Q95

Calendar Quarter

Q
ua

nt
ity

Combination of BOTH views indicate risk area - requirements are NOT YET stable

QWE '98 Slide 11

BUILD A

2698 2694 2692

2498 2516

2455

2000

2100

2200

2300

2400

2500

2600

2700

2800

2900

3000

Month
1 -

PDR

Month
2

Month
3

Month
4

Month
5

Month
6 -

CDR
Date

N
um

be
r

of
 R

eq
ui

re
m

en
ts

BUILD B

2562 2568

2690

2830 2840

2956

2000

2100

2200

2300

2400

2500

2600

2700

2800

2900

3000

Month
1 -

PDR

Month
2

Month
3

Month
4

Month
5

Month
6 -

CDRDate

N
um

be
r

of
 R

eq
ui

re
m

en
ts

Requirement Traceability -
By Build

(Detailed)

QWE '98 Slide 12

1049

1638

84%

84%

16%

16%

0

200

400

600

800

1000

1200

1400

1600

1800

Build A Build B

N
um

be
r

of
 R

ec
or

ds
/L

in
ks

Total

Linked
Unlinked

Derived to Detailed

Requirement Traceability

QWE '98 Slide 13

Expected

 Derived to Detailed Requirements
Expansion: Empirical

 Detailed

D

er
iv

ed

Requirement Decomposition

QWE '98 Slide 14

Traceability - Requirement
Links to Tests

Test A

Test B

Requirement 1

Requirement 2

Requirement 3

Requirement 4

Requirement 5

Requirement 6

Tested by 1 Test

Tested by >1 Test

Untested - PROBLEM

Sample Linkage

QWE '98 Slide 15

Derived Requirements Detailed Requirements

0

200

400

600

800

1000

1200

1400

1600

1800

Build A Build B

R

eq
ui

re
m

en
ts

 TOTAL RQTs
Linked RQTs
Unlinked RQTs

0

500

1000

1500

2000

2500

3000

Build A Build B

R
eq

ui
re

m
en

ts

Total RQTs
Linked RQTs

Unlinked RQTs

Requirement Verification -
Trace to Test

QWE '98 Slide 16

Test Span
 System test Profile (CDR)

 Build A Build B

445 requirements are each tested by only 1 test

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 15 18 20 21 25

Tests

U

ni
qu

e
R

eq
ui

re
m

en
ts

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 36 47 51 57 67 78

Tests

U

ni
qu

e
R

eq
ui

re
m

en
ts

Test Cases

U

ni
qu

e
R

eq
ui

re
m

en
ts Expected

QWE '98 Slide 17

Requirement Repository
Metric Capabilities

 Word Spreadsheet Relational Requirement

 Processor Database Tool
Document size X
Dynamic changes over time X
Release size X X X X
Requirement expansion profile X X
Requirement types X X X X
Requirement verification X X
Requirement volatility X X X X
Test coverage X X
Test span X X
Test types X X X X

QWE '98 Slide 18

Metric Application

• Specification Quality (from the ARM Tool) :
- Prototyping, Special Studies
- Later refinement and allocation to later build

 Requirement Expansion and Volatility (from Requirement
 Management Tools):

- Reassessment
- Prototyping, Special Studies, Reallocation

and Coverage (from Requirement Management

- Completion of test matrix incrementally
- Focused review of test procedures

QWE '98 Slide 19

Lessons Learned

• Metrics should be used in the requirement phase

 Requirements management tools should be used as
 much as possible

 Metrics must be incorporated into management decision
 and risk management feedback loops

QWE '98 Slide 20

Conclusion

• Quality documentation: complete, concise, clear ==>
leads to quality testing program
Requirement volatility impacts testing and must be

Verification program: fully traceable and structured

Effective requirement management: appropriate
application of requirement database tool through
which the requirements are maintained through the

Metrics are a powerful tool that provide insight into
testing of requirements.

1

Testing Metrics for Requirement Quality

Dr. Linda H. Rosenberg, Ph. D., Theodore Hammer, Lenore Huffman

Key Words: Requirements, Metrics, Quality, Testing

1. INTRODUCTION

It is generally accepted that requirements are the foundation upon which the entire system is
built. And that requirement verification and validation is needed to assure that the functionality
representing the requirements has indeed been delivered. However, all too often requirements
are not satisfied, leading to a process of fixing what you can and accepting the fact that certain
functionality will not be there. A better approach is to develop requirements that are complete,
concise and clear, and that provide the implementer a clear blueprint with which to build the
system. This is not done by magic but through the application of tools and metric analysis
techniques in the areas of requirement specification and requirement verification.

Because both parties must understand requirements that the acquirer expects the provider to
contractually satisfy, specifications are usually written in natural language. The use of natural
language to prescribe complex, dynamic systems has at least two severe problems: ambiguity
and inaccuracy. Many words and phrases have dual meanings that can be altered by the context
in which they are used. Defining a large, multi-dimensional capability within the limitations
imposed by the two dimensional structure of a document can obscure the relationships between
individual groups of requirements. It is important to know the attributes for requirement quality:

• Ambiguity - Requirements with potential multiple meanings.
• Completeness - Items left to be specified.
• Understandability - The readability of the document.
• Volatility - The rate and time within the life cycle changes are made to the requirements.
• Traceability - The traceability of the requirements upward to higher level documents and

downward to code and tests.

Requirements based testing is critical in the implementation of software systems. Automated
tools, if properly used, open the door to assessing the scope and potential effectiveness of the test
program. Proper implementation of a database to not only track requirements at each level of
decomposition, but also the tests associated with the verification of these requirements affords
the project a wealth of information. From this database the project can gain important insight
into the relationship between the test and requirements.

This paper will demonstrate how metrics can help in these three areas of requirement
development. Examples will be provided how metrics can identify areas of weakness that should
be corrected, through the use of data from a large NASA project, Project X. Lessons learned will
also be listed to aid in keeping a project, large or small, on track.

2

2. REQUIREMENT SPECIFICATION

The importance of correctly documenting requirements has caused the software industry to
produce a significant number of aids [1] to the creation and management of the requirements
specification documents and individual specifications statements. However very few of these
aids assist in evaluating the quality of the requirements document or the individual specification
statements themselves. The SATC has developed a tool to parse requirements documents. The
Automated Requirements Measurement (ARM) software was developed for scanning a file that
contains the text of the requirements specification. During this scan process, it searches each
line of text for specific words and phrases. These search arguments (specific words and phrases)
are indicated by the SATC’s studies to be an indicator of the document’s quality as a
specification of requirements. ARM has been applied to 56 NASA requirement documents.
Seven measures were developed, as shown below.

1. Lines of Text - Physical lines of text as a measure of size.

2. Imperatives - Words and phases that command that something must be done or
provided. The number of imperatives is used as a base requirements count. [Shall,
must or must not, is required to, are applicable, responsible for, will, should]

3. Continuances -Phrases that follow an imperative and introduce the specification of
requirements at a lower level, for a supplemental requirement count. [As follows,
below, following, in particular, listed, support]

4. Directives – References provided to figures, tables, or notes.

5. Weak Phrases - Clauses that are apt to cause uncertainty and leave room for multiple
interpretations measure of ambiguity. [Adequate, as applicable, as appropriate, as a
minimum, be able to, but not limited to, be capable of, effective, easy, effective, if
effective, if practical, not limited to, normal, timely]

6. Incomplete – Statements within the document that have TBD (To be Determined) or
TBS (To Be Supplied).

7. Options - Words that seem to give the developer latitude in satisfying the
specifications but can be ambiguous. [Can, may, optionally]

It must be emphasized that the tool does not attempt to assess the correctness of the requirements
specified. It assesses individual specification statements and the vocabulary used to state the
requirements, and also has the capability to assess the structure of the requirements document.1

To see how this tool would be used to assess the “quality” of the requirements document, the
Project X Derived requirements document was analyzed using the ARM Tool. Table 1 shows
the results.

1 This tool is available at no cost from the SATC web site http://satc.gsfc.nasa.gov

3

Table 1 - Requirements Specification Analysis Example

Several things can be seen from this analysis. First, the document shows some strengths.
There appears to be a good number of imperatives, and the number of weak phrases is low as
compared to the family of NASA documents processed through the ARM tool to date. However,
the document shows some significant weaknesses. The document has a large amount of text
given the number of imperatives. This gives an indication of being a wordy document, which
can have the effect of obscuring the requirements, preventing the requirements from being clear
and concise. The document also has a large number of incomplete requirements, containing
TBDs and TBSs. It could even be said that this document is not ready for use on this point
alone, as this implies that there is still uncertainty about what the system is required to do. It is
very difficult to build a system that has undefined requirements. Also this document has a large
number of options, which increases the uncertainty about what is really required of the system
that is to be developed. Options leave decisions about what the system is to do to the
implementers, many times without sufficient direction or instruction about option selection
criteria. As a result the implementation varies widely, anything from some of the options to none
at all (especially since these items are options and not “really” required).

A further understanding of the requirements documentation can be achieved by looking at the
document structure. Figure 2 shows the expected structure, based on other NASA
documentation, and actual structure for documentation from Project X. The expected structure is
a graphical representation of the numbering structure used within the requirements
documentation. The levels represent sub tiers within a section. For example four sub tiers would
be 1.0, 1.1, 1.1.1, and 1.1.1.1. The expected graph for the Derived Specification indicates that
there are many more high level requirements than detailed requirement expansions. This makes
sense, as the Derived Specification is to define the overall requirements of the system and not
provide details. The expected graph for the Detailed Specification shows the opposite. There
are many more detailed expansions of the requirements than of high level statements. Again this
makes sense, as the detailed requirements document is to be the basis for the implementation of
the system. The Project X documentation show some disturbing weaknesses. The Derived
Specification shows a trend to over specify some of the requirements too early in the life cycle.
The Detailed Specification shows not enough detail. The weakness of the Detailed Specification

4

may be resultant from the trend to over specify requirements in the parent, Derived Specification,
or most probably is the result of the Derived Specification having too many incomplete
requirements and options (as seen from the first analysis using the ARM Tool).

Expected

Actual

1

3

5

7

9

 Derived
1

3

5

7

9

 Detailed

1

2

3

4

5

6

7

8

9

 Detailed
1

2

3

4

5

6

7

8

9

.

 Derived

Too much detail
too soon in
development

Insufficient
detail

Figure 2 - Structure Level at Which Imperative Occurs

Obtaining a good quality specification has always been a desire of engineers but there has been
little available in terms of analysis tools that would allow them to visualize the quality of the
documentation. Now with the ARM Tool the quality aspects of the documentation can be
visualized in such a way as to allow actions to be taken to improve the documentation.

3. REQUIREMENT VERIFICATION

Requirements testing is another important aspect of the requirements phase. Though this
may not be seen as directly to related to the issue of developing quality requirements, it is crucial
because delivered capability cannot be determined without an effective verification program. In
looking at the verification program, a further understanding of the nature of the requirements
must be attained. This is done by looking at requirement stability and expansion. The linkage of
requirements to test cases is reviewed, and then a test profile is made to characterize the entire
test program. Again, data from Project X is used to demonstrate the utility of metrics in
understanding requirement verification.

Requirement stability impacts the verification effort in that testing can not be planned or
designed with the requirements continually in a state of flux.

5

Figure 3 - Requirement Stabilization - Volatility

Figure 3 show how metrics can be used to gain insight into requirement stability and the
importance of looking a particular issue in more than one way. This figure shows that the total
number of requirements stabilized in time for the Critical Design Review (CDR), which is what
is desired. However, when one looks at requirement stability in terms of new, modified, and
deleted requirements one notices that the requirements are not that stable. There is almost
constant change occurring in the modification of requirements. This will endanger the
verification program. Another way of viewing requirement stability is to look at the allocation of
requirements to the individual builds or releases. Figure 4 show the allocation of Detailed
requirements to Build A and Build B for Project X.

B U I L D A

2 6 9 8 2 6 9 4 2 6 9 2

2 4 9 8 2 5 1 6

2 4 5 5

2 0 0 0

2 1 0 0

2 2 0 0

2 3 0 0

2 4 0 0

2 5 0 0

2 6 0 0

2 7 0 0

2 8 0 0

2 9 0 0

3 0 0 0

M o n t h
1 -

P D R

M o n t h
2

M o n t h
3

M o n t h
4

M o n t h
5

M o n t h
6 -

C D R
Date

N
um

be
r

of
 R

eq
ui

re
m

en
ts

B U I L D B

2 5 6 2 2 5 6 8

2 6 9 0

2 8 3 0 2 8 4 0

2 9 5 6

2 0 0 0

2 1 0 0

2 2 0 0

2 3 0 0

2 4 0 0

2 5 0 0

2 6 0 0

2 7 0 0

2 8 0 0

2 9 0 0

3 0 0 0

M o n t h
1 -

P D R

M o n t h
2

M o n t h
3

M o n t h
4

M o n t h
5

M o n t h
6 -

C D RDate

N
um

be
r

of
 R

eq
ui

re
m

en
ts

(Detai led)

Figure 4 - Requirement Stabilization by Build

6

What can be seen is that requirements are continually being moved or reallocated from Build A
to Build B. This instability will make the implementation and verification of Build B difficult, as
many requirements have been pushed into the last build in the development effort.

Requirement stability can be viewed in terms of requirement traceability and expansion.
Requirements traceability is the linkage of the requirements at one level to the requirements at
the next lower level. If there is missing linkage, a case can be made that possibly more
requirements need to be written. Requirement expansion is the measure of how many
requirements at the Detailed level were written to completely satisfy the Derived requirements.
If there is little expansion in the number of requirements, a case may again be made again that
there should be more requirements written to provide the level of detail necessary to implement
the system. Figure 5 shows the linkage of Derived requirements to Detailed requirements.

1049

1638

84%

84%

16%

16%

0

200

400

600

800

1000

1200

1400

1600

1800

Build A Build B

N
um

be
r

of
 R

ec
or

ds
/L

in
ks

Total

Linked
Unlinked

Derived to Detailed

Figure 5 - Requirement Traceability

In both cases there is missing linkage (white bar of graph) between Derived and Detailed
requirements, indicating that the Detailed requirements are potentially incomplete if a CDR was
held for any one of these builds.

In reviewing requirement expansion, a comparison is made with data compiled from NASA
projects which leads to an expected curve for requirement expansion that is bell shaped. This
reflects that few requirements are expected to have little expansion or be expanded to a large
number of requirements at the next lower level. As a result, there tends to be an average number
of requirements written to decompose the Derived requirements to the next level. Figure 6
shows the situation for Project X.

7

E x p e c t e d

 Der ived to Deta i led Requi rements
Expans ion: Empi r ica l

 Deta i led

D

er
iv

ed

Figure 6 - Requirement Decomposition

Here we see that the Derived requirements for the most part have not been expanded while there
are a few that have many requirements written to expand on the Derived requirements. This
situation correlates very well with the metrics developed from the analysis of the documentation
structure mentioned above, where the structure of the Detailed requirements specification
showed a lack of detail. This lack of detail not only jeopardizes the implementation effort but
also the development of effective verification procedures.

The objective of an effective verification program is to ensure that every requirement is tested,
the implication being that if the system passes the test, the requirement’s functionality in
included in the delivered system [1,2]. An assessment of the traceability of the requirements to
test cases is needed. It is expected that a requirement will be linked to a test case, and may well
be linked to more that one test case as shown in Figure 7 [3,4].

The important aspect of this analysis is to determine which requirements have not been linked to
any test cases at all.

Figure 7 - Requirement Verification - Trace to Test Linkage

8

Figure 8 shows that the traceability of requirements to test cases for Project X around the CDR
time frame for Build A. The information was extracted from the requirements management
database used in support of the development effort. The profiles show several problems.

The test program for Build B is further along than that for Build A, when it is Build A that will
be developed and tested before Build B. Resources may have been inappropriately allocated to
the development of the test program for Build A. Lastly, the test program for the Detailed
requirements is behind that for the test program for the Derived requirements. Again, this is
backwards. The first tests to be executed will be that for the Detailed requirements, the system
tests, and after that tests for the Derived requirements will be executed, the acceptance tests. An
explanation for this problem may be found is a previously presented metric. Remember the
metric showing the push of Detailed requirement from Build A to Build B. This movement of
requirements from Build A to Build B may well be the cause of the lack of traceability of
requirements to test cases. The test case developers may be having difficulty in keeping up with
the changes in requirements resulting in a number of requirements in each build without a link to
a test case.

Der ived Requ i rements Deta i l ed Requi rements

0

200

400

600

800

1000

1200

1400

1600

1800

Bui ld A Bui ld B

R

eq
ui

re
m

en
ts

 T O T A L R Q T s
L i n k e d R Q T s
Un l i nked RQTs

0

500

1000

1500

2000

2500

3000

Bui ld A Bui ld B

R

eq
ui

re
m

en
ts

To ta l RQTs
L i n k e d R Q T s

Un l i nked RQTs

Figure 8 - Requirement Verification Trace to Test

9

Not only is it important to understand whether all the requirements are linked to test cases, but
also to understand the character of the test program. This can be done by looking at the profile
and relationship of requirements to test cases. This provides an understanding of the nature of
the test program. Figure 9 shows an expected profile of unique requirements per test case based
on data from NASA projects [5].

Figure 9 - Test Program Characterization Tests per Requirement

This profile shows that there is an expectation that there will be a large number of requirements
tested by only one test case, and that there will be some number of requirements that will be
tested by a multiple number of test cases. It is expected that the upper bound of multiple test
cases will range in the tens. This makes sense, as more complicated requirements may require
different test cases to thoroughly verify all aspects of the requirement. However, there is a limit
on the number of test cases. As the number of test cases increases the difficulty in verifying the
requirement increases, due to the complication in data analysis, understanding the results of the
multiple tests cases, and understanding the impact of multiple test case results on the verification
of the requirement. Figure 10 shows the requirement to test case profile for Project X. There is
a good indication that there are a large number of requirements covered by just one test, making
for a simple, easy to evaluate test program for a significant part of the system requirements.
However, there are several instances for both Build A and B where the are several tests for
unique requirements. Notice that for Build A that one requirement has been linked to 25 test
cases, and in Build B that one requirement is linked to 51 test cases. This large number of test
cases may well make it impossible to verify that these requirements have been implemented.

In summary the verification program for Project X has some strengths; the total number of new
requirements is stable, and the Derived requirements have good linkage to tests for the
acceptance test program. But there are also significant weaknesses. There was a shifting of
requirements between builds late in the requirement phase. Requirements were not completely
decomposed from the Derived requirements to the Detailed requirements. The Detailed test
program showed a significant number of requirements without links to tests. Test programs for
both Derived and Detailed requirements showed some excessive testing of requirements.

10

 B u i l d A B u i l d B

4 4 5 r e q u i r e m e n t s a r e e a c h t e s t e d b y o n l y 1 t e s t

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

4 5 0

5 0 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 5 1 8 2 0 2 1 2 5

T e s t s

U

ni
qu

e
R

eq
ui

re
m

en
ts

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

4 5 0

5 0 0

5 5 0

6 0 0

6 5 0

7 0 0

7 5 0

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 5 2 7 2 9 3 1 3 6 4 7 5 1 5 7 6 7 7 8

T e s t s

U

ni
qu

e
R

eq
ui

re
m

en
ts

Figure 10 - Test Program Characterization Tests per Requirement

4. REQUIREMENT MANAGEMENT

The use of tools to aid in the management of requirements has become an important
aspect of system engineering and design. Considering the size and complexity of development
efforts, the use of requirements management tools has become essential. The tools which
requirement managers use for automating the requirements engineering process have reduced the
drudgery in maintaining a project’s requirement set and added the benefit of significant error
reduction. Tools also provide capabilities far beyond those obtained from text-based
maintenance and processing of requirements. Requirements management tools are sophisticated
and complex – since the nature of the material for which they are responsible is finely detailed,
time-sensitive, highly internally dependent, and can be continuously changing. Tools that
simplify complex tasks require skill and a thorough understanding of their capabilities if they are
to perform effectively over the lifetime of a project [6].

There are many requirement management tools to choose from. These range from simple word
processors, to spreadsheets, to relational dbs, to tools designed specifically for the management
of requirements such as DOORS (Quality Systems & Software - Mt. Arlington, NJ) or RTM
Requirements Traceability Management (Integrated Chipware, Inc. - Reston, VA). The key to
selecting the appropriate tool is the functionality (See Table 2 for a comparison of tool
capabilities) provided and the capability to develop metrics from the data, secondary contained in
the tool.

11

Table 2 - Requirement Repository Capabilities

The metric capability of the tool is important. It should be noted that most of the metrics
presented in this paper to demonstrate how to do requirements the right way were developed
from the data contained in a requirement management tool. Table 3 shows a comparison of the
metric capability associated with the different tools. Clearly, the relational database and
requirements management tool provide the capabilities needed to effectively support the
management of requirements.

Table 3 - Requirement Repository metric Capabilities

 Word Spreadsheet Relational Requirement
 Processor Database Tool

Document config. mgt X X X
Document preparation X X
Function decomposition X X
Report preparation X X
Requirement allocation X X X
Requirement config. mgt X X X
Requirement expansion X X
Requirement importation X
Requirement simplification X
Requirement storage X X X X
Requirement traceability X X
Test coverage/adequacy X X
Metrics X X

12

5. METRICS APPLICATION

 The examples cited above from the experiences with Project X provide some sense of how
metrics could be applied to real project experiences. The following provide further examples
how the application of metrics can and have been used to improve product quality and test
processes in support of projects.

The ARM tool not only provides an overview of the requirements specification quality but also
provides valuable ancillary information on specifically where in the requirements specification
the quality problems (e.g., options, ambiguities) exits. With this information the project has
several options available to solve the identified problem. A prototype effort could be established
with the ultimate end result of removing the uncertainties of specific functional requirements. A
special studies effort could be formed to resolve TBD (To Be Determined) and TBS (To Be
Supplied) uncertainties from the specification. Another avenue could be to assign the problem
functional area to a later build with a requirement baseline review established to support the later
build schedule. The review is critical. Assigning TBD and TBS requirement uncertainties to a
later build without an established resolution date for the issues will only jeopardize the success
of the later build and possibly the total system delivery.

Through the use of requirement management and configuration management tools the project
can develop metrics on requirement expansion and requirement volatility. Information can be
developed to determine which functional areas are the least understood (lack of adequate
requirement expansion) or are the most volatile (unsettled or confused user needs). This can lead
to strategies of focused prototyping, special studies, allocation of the functional area to later
builds, reassessing the need for the unsettled functional area, or an adaptive approach to define
functionality that can be adaptable to the kinds of changes experienced to date.

Again using requirement management tools metric insights can be obtained of the test program.
The completeness of test traceability to requirements, the coverage of the testing (how many
tests are traced to a requirement), complexity of the testing (how many requirements are traced to
tests), and overall characterization of the test program (does look fairly consistent with expected
curves). Detailed insight can help the project to develop strategies for focused assessment of test
procedures (do specific procedures really verify the requirements mapped to them), ensure test
traceability is complete by the test review for each build, and with understanding of the
complexities of the test program establish test priorities.

6. LESSONS LEARNED

The most important lesson learned is that metrics are available and can be an effective tool for
the project early in the development life-cycle, specifically the requirements phase. As stated
earlier in this paper the return on investment for efforts to remove as many errors as possible
from the requirements is very significant. Another lesson learned is the significant benefits from
the use of requirement management tools. Many of the metrics presented in this presentation
were developed from requirement management tool databases. These tools should be used on
any size project if at all possible. And lastly metrics must be thoroughly integrated into the
project management processes. The metrics collected must be meaningful and used by the

13

project to make decisions bout the requirements and test program. If metrics are not a part of
these processes, then there will be no benefit obtained from the effort expended to develop and
report the metrics. Only be using metrics as one of the windows into the quality of products and
effectivity of processes can the project receive the return on investment in a metrics program.

7. CONCLUSION

Quality documentation is complete, clear and concise. This used to be considered ethereal
concepts, difficult to measure or visualize. Now with the advent of tools, like ARM, metrics can
be developed to see the strengths and weaknesses of the requirement documentation. The
completeness of the verification program used to be the only aspect that was easily understood.
Now through the use of metrics, a project can gain insight into not only the completeness of the
test program but to understand the overall characteristics of the verification program. Effective
requirement management now demands the appropriate use of management tools and/or
databases through the development life cycle. It is through their use that enables the
development of metrics to gain insight into the quality of the requirements, take effective action
to correct deficiencies, manage requirement volatility and ensure that a complete and effective
test program is established to verify the total set of requirements.

8. REFERENCES

[1] Brooks, Frederick P. Jr., No Silver Bullet: Essence and accidents of software engineering,
IEEE Computer, vol. 15, no. 1, April 1987, pp. 10-18.

[2] Hammer, T., Huffman, L., Rosenberg, L., Wilson, W., Hyatt, L., “Requirement Metrics for
Risk Identification”, Software Engineering Laboratory Workshop, GSFC, 12/96.

[3] NASA, Software Assurance Guidebook, NASA Goddard Space Flight Center Office of
Safety, Reliability, Maintainability, and Quality Assurance, 9/89.

[4] Wilson, W., Rosenberg, L., Hyatt, L., “Automated Analysis of Requirement Specifications”,
Fourteenth Annual Pacific Northwest Software Quality Conference, 10/96.

[5] Hammer,T., “Measuring Requirement Testing”, 18th International Conference on Software
Engineering, 5/97.

[6] Hammer,T., “Automated Requirements Management – Beware How You Use Tools”, 19th
International Conference on Software Engineering, 4/98.

[7] Hansen, Gary W., Hansen, James V., Database Management and Design, Prentice Hall, 1992.
[8] Chen, M., Han, J., Yu, P. “Data Mining: An Overview from a Database Perspective”, IEEE

Transactions on knowledge and Data Engineering, Vol 8, No. 6, 12/96

14

9. BIOGRAPHIES

Theodore F. Hammer

Mr. Ted Hammer is the NASA manager for the Software Assurance Technology Center (SATC)
at NASA’s Goddard Space Flight Center (GSFC). The SATC, through associations with NASA
and GSFC projects and organizations, seeks to improve GSFC and NASA software by improving
software quality, reducing development risks, and lowering life cycle costs. A prime focus of the
SATC is the provision of software metrics support to GSFC and NASA software development
and acquisition projects. In order to meet the needs of these projects, the supporting research
done by the SATC is essential to allow the assurance activities to keep pace with the changing
software development environment. In addition, the SATC develops techniques, provides
software assurance tools, and transfers this technology to NASA and industry.

Prior to this position, Mr. Hammer was a member of the Assurance Management Office where
he is responsible for managing the overall quality assurance activities for specific ground system
implementation projects, with special emphasis on software quality assurance. Mr. Hammer is
also responsible for managing software quality assurance activities for selected spacecraft
implementation projects.

Mr. Hammer has over 22 years experience in software development and assurance, 9 with the
government at GSFC, and 14 with the government and private industry supporting the Naval Sea
Systems Command (NAVSEA). Early in his career he was responsible for test software
development for the Combat Direction System on destroyer and frigate classes of ships. He then
became responsible for the hardware and software upgrades for the Combat Direction System on
these same classes. He moved to private industry, Vitro and ISA, supporting NAVSEA by
reviewing software development specifications and witnessing software testing. He later
returned to government service (NAVSEA) as project engineer responsible for the
implementation, installation and upgrade of the ASW Control System hardware and software on
DD963 and AEGIS Class ships. He then worked with the Combat Systems Office and was
responsible for planning and coordinating the land based test and evaluation of combat system
software upgrades to carriers, cruisers, and destroyers.

He joined NASA/GSFC in 1989. Here he supported NASA Headquarters Software Management
Assurance Program, where he participated in the review of the early versions of the military
software development standard, MIL-STD-498, as well as NASA software development and
assurance standards and guidebooks.

Mr. Hammer received a B.S. in Electrical Engineering from the University of Maryland. He is a
member of the American Society for Quality.

Theodore F. Hammer
GSFC, Code 302

Greenbelt, MD 20771
(301) 286-7475 (voice)
(301) 286-1701 (fax)

thammer@pop300.gsfc.nasa.gov

15

Lenore L. Huffman

Lenore L. Huffman is a principal engineer with the Software Assurance Technology Center
(SATC). Ms. Huffman has more than 14 years of software engineering and quality assurance
experience. She is expert in the design, implementation, and execution of data collection,
database structures, and metrics reporting and analysis. She is also expert in the design and use
of State-Of-The-Art database reporting systems. Ms. Huffman has extensive experience
automating Configuration Management and Problem Reporting Systems and adapting their
capabilities to satisfy unique project requirements. She has successfully planned, designed, and
implemented software quality assurance projects. Prior to joining the SATC, Ms Huffman
developed metrics for software at the Space Telescope Institute, and while working at a chemical
research center, was awarded with several U.S. patents. Ms Huffman holds a M.B.A. and a B.S.

Lenore L. Huffman
GSFC, Code 300.1, Bld 6

Greenbelt, MD 20771
301-286-0099 (voice)

Lenore.L.Huffman.1@gsfc.nasa.gov

Linda H. Rosenberg, Ph.D.

Dr. Rosenberg is an Engineering Section Head at Unisys Government Systems in Lanham, MD.
She is contracted to manage the Software Assurance Technology Center (SATC) through the
System Reliability and Safety Office in the Flight Assurance Division at Goddard Space Flight
Center, NASA, in Greenbelt, MD. The SATC has four primary responsibilities: Metrics,
Standards and Guidance, Assurance tools and techniques, and Outreach programs. Although she
oversees all work areas of the SATC, Dr. Rosenberg's area of expertise is metrics. She is
responsible for overseeing metric programs to establish a basis for numerical guidelines and
standards for software developed at NASA, and to work with project managers to use metrics in
the evaluation of the quality of their software. Dr. Rosenberg’s work in software metrics outside
of NASA includes work with the Joint Logistics Command’s efforts to establish a core set of
process, product and system metrics with guidelines published in the Practical Software
Measurement. In addition, Dr. Rosenberg worked with the Software Engineering Institute to
develop a risk management course. She is now responsible for risk management training at all
NASA centers, and the initiation of software risk management at NASA Goddard. As part of the
SATC outreach program, Dr. Rosenberg has presented metrics/quality assurance papers and
tutorials at GSFC, and IEEE and ACM local and international conferences. She also reviews for
ACM, IEEE and military conferences and journals.

Immediately prior to this assignment, Dr. Rosenberg was an Assistant Professor in the
Mathematics/Computer Science Department at Goucher College in Towson, MD. Her
responsibilities included the development of upper level computer science courses in accordance
with the recommendations of the ACM/IEEE-CS Joint Curriculum Task Force, and the advisor
for computer science majors.

16

Dr. Rosenberg's work has encompassed many areas of Software Engineering. In addition to
metrics, she has worked in the areas of hypertext, specification languages, and user interfaces.
Dr. Rosenberg holds a Ph.D. in Computer Science from the University of Maryland, an M.E.S. in
Computer Science from Loyola College, and a B.S. in Mathematics from Towson State
University. She is a member of Electrical and Electronic Engineers (IEEE), the IEEE Computer
Society, the Association for Computing Machinery (ACM) and Upsilon Pi Epsilon.

Dr. Linda Rosenberg
GSFC, Code 300.1, Bld 6

Greenbelt, MD 20771
301-286-0087 (voice)

linda.rosenberg@gsfc.nasa.gov

(c) CMG Finance BV, 1998

Testing withTesting with
Action WordsAction Words

Hans Buwalda
CMG FINANCE B.V.
THE NETHERLANDS

e-mail: hans.buwalda@cmg.nl

a Quality Approach
to (Automated)

Software Testing

TestFrame

(c) CMG Finance BV, 1998

1 introduction: testing and quality

2 testing with action words

3 organisation of the process

agendaagenda

(c) CMG Finance BV, 1998

testing is necessarytesting is necessary

• faults are risks until they are found

• finding them later will cost you more

TICKTICK

TICKTICK

TICKTICK

BOMBBOMB

cccc
cccccccc

(c) CMG Finance BV, 1998

but testing often gets under but testing often gets under pressurepressure

planning and
specification development test

DEADLINE

(c) CMG Finance BV, 1998

quality and testingquality and testing

• quality is a general property

• testing is an activity (you can choose not to do it)

(c) CMG Finance BV, 1998

quality and testingquality and testing

• testing is an important instrumtent to establish the
quality

• but you must be able to establish the quality of the
testing

(c) CMG Finance BV, 1998

common experienced problemscommon experienced problems
with testingwith testing

• costly
• time consuming
• boring to do
• difficult to manage:

– what is the progress
– what is the quality

• the proper resources (users, specialists) are not
available when needed

• often neglected
• automated scripts hard to maintain
• ...

(c) CMG Finance BV, 1998

Strate gic ContextStrate gic Context

TIME TO MARKETTIME TO MARKET
QUALITY TO MARKETQUALITY TO MARKET

RE-USABLE TESTPRODUCTSRE-USABLE TESTPRODUCTS

SS
TT
RR
UU
CC
TT
UU
RR
II
NN
GG

TT
OO
OO
LL
II
NN
GG

FF
II
TT
TT
II
NN
GG

(c) CMG Finance BV, 1998

• test development aimed at the
production of “clusters”

– input and expected results
– test language with “action

words”
– in spreadsheets

• automatic execution by a
“navigation script”

– written in the script language of
the cast tool

– general part: the engine
– specific part: the action words

separationseparation of test development and of test development and
test executiontest execution

 A B C D
. . .
transfer Houston Black $210
check balance Black $210
. . .

case action of
 “transfer”: ...
 “check balance”: ...
end case

functional

technical

(c) CMG Finance BV, 1998

CAST tool

navigation script

target
systemseparation

report

test design

• test conditions
• test lines

test clusters
(text file)

test plan

• actual results
• comparison with

expectations
• management

information

• input data
• expected outcomes
• documentation

automation
organisation organisation

management

system
development

QA/Auditors

end users

(c) CMG Finance BV, 1998

cluster EXAMPLE OF A TEST CLUSTER
version 1.0
author Hans Buwalda

section 1. Entering clients and balances
last name first name account nr balance

enter client Green John 458473948 1500
enter client Wood Anna 422087596 2100

section 2. Money Transfers
from to sum

transfer 458473948 422087596 500
transfer 422087596 785793025 1201

section 3. Checking names and numbers
account nr last name first name

check name 458473948 Green John
check name 422087596 Wood Anna

account nr sum
check balance 458473948 1000
check balance 422087596 1399

input

expected output

action words test data example of a clusterexample of a cluster

documentary

(c) CMG Finance BV, 1998

==
cluster name : EXAMPLE OF A CLUSTER
cluster version : 1.0
cluster author : Hans Buwalda

script name : Example Navigation Script
script version : 1.0
script release date : February 1997

run date and time : 3-03-97 13:39:16
===

SECTION 1 - Relation management

 1 (6): enter client Green John 458473948 1500

 2 (7): enter client Wood Anna 422087596 2100

example of a cluster level report (1)example of a cluster level report (1)

(c) CMG Finance BV, 1998

example of a cluster level report (2)example of a cluster level report (2)
 11 (20): check name 422087596 Wood Anna

 12 (23): check balance 458473948 1000

 13 (24): check balance 422087596 1399
 ->FAILED: 1400

===
end of cluster : EXAMPLE OF A CLUSTER
finished at : 3-03-97 13:39:26
time used : 15

number of cluster lines : 26
number of test lines : 13
number of checks : 10
number passed : 9
number failed : 1
percentage passed : 90 %

failed at test lines (see above report):
 13
===

(c) CMG Finance BV, 1998

lay out of the navigationlay out of the navigation

action
word

engine

action
word

action
word

action
word

action
word

action
word

target
system

interface layer

clusters
(cast tool)

(c) CMG Finance BV, 1998

potential advantages of thepotential advantages of the
approachapproach

• less sensitive to target system changes

• better accessible tests

• test development better plannable

• less costs, especially for repeated testing

• higher motivation participants

• better organisational embedding possible:

– clearer separation of tasks

– tangible products

(c) CMG Finance BV, 1998

the method does not rely on athe method does not rely on a
specific toolspecific tool

• Winrunner/XRunner
• QA Run
• Hiperstation
• MS/Visual Test
• SQA Teamtest
• ATF
• Autotester
• FEPI
• ...

(c) CMG Finance BV, 1998

Activities at Project LevelActivities at Project Level

preparation

analysis

navigation

execution
and

follow up

maintenance

(c) CMG Finance BV, 1998

Activities at Organisation LevelActivities at Organisation Level

• one or more pilots
• training and handbooks
• resourcing (pooling, hiring)
• auditing and reviewing
• r&d
• development of common products
• ...

(c) CMG Finance BV, 1998

Test Organisation

Test Development

Test Automation

planning design realisation execution maintenance

processes and
activities structure management

tools supporting
 softwarenavigation infrastructure

people

ImplementationImplementation
• three dimensions for successful testing:

– organisation (fitting)
– test development (structuring)
– test automation (tooling)

(c) CMG Finance BV, 1998

some special applicationssome special applications

• performance and multi user testing
• testing of batch systems
• testing of large scale conversion like year 2000 and

euro
• regression testing
• test generation
• test result analysis
• fault tracking
• interface testing

© 1998, CMG Finance BV Automated Testing with Action Words 1

TestFrame

Testing with Action Words

Hans Buwalda

CMG Finance BV
PO Box 133, 1180 AC Amstelveen

the Netherlands
Tel: (31) (20) 50 33 000
Fax: (31) (20) 50 33 022

Email: hans.buwalda@cmg.nl

Abstract

Testing of information systems is a major concern for many organizations. It is of-
ten experienced as costly, time consuming, boring to do and difficult to manage.
But testing is unavoidable to avoid even greater problems in production.

Automation of the test process with test tools is drawing a lot of attention in the
market as a possible relief. These tools are known as CAST: Computer Aided
Software Testing. But without a proper approach things will get worse instead of
better.

In this paper a method is lined out, working with action words, which takes the
automation of testing a step further than the commonly used record & playback
approach. It is a method for test development, test automation and test organiza-
tion. Tests are divided into clusters. Every cluster is developed and automated
separately.

First the existing approaches for test automation are described, including some of
the pitfalls they present. Then the new method is described in general. Next the ef-
fect of the method on test automation is described. Finally the application of the
method for specific tests is outlined, like batch and performance tests.

© 1998, CMG Finance BV Automated Testing with Action Words 2

1. INTRODUCTION

Automated testing is an area which is getting increasing attention in the industry. In essence it
is not a new technique. Programmers have created solutions, ad hoc or structural, to test their
products automatically as long as there are computers. Already for many years there are prod-
ucts, on platforms like mainframes, Unix systems, and PCs, which assist in the automation of
testing.

The reason for the recent attention is twofold. Firstly client server applications with graphical
users interfaces are very complex and contain many aspects that can and should be tested. For
example the objects of one client screen of medium complexity contain together typically 2 to
3 thousand different properties, like colors, x and y pixels co-ordinates, visibility and accessi-
bility or underlying database events. There is no way that such amounts of (meta) data can be
tested manually.

Secondly PC’s are becoming more and more powerful and taking over the role of terminals,
getting connected with mini and mainframe platforms using terminal emulators or client server
like applications, apart from the applications that run on the PC platforms itself. The PC
therefore is becoming an ideal platform for Cast tools, even the applications under test run
elsewhere.

An increasing amount of good test products has become available. The core of most of these
tools is aimed on test execution. The number of tools for test generation is limited, because this
usually does not lead to good tests. Practically every tool set contains modules for test plan-
ning, test management and bug tracking. Other features, like performance testing, complete the
picture.

In essence two techniques are available for specifying the tests:

• Record and playback
 Test actions are carried out by hand and recorded by a test tool, invisible for the tester and
the application under test. The record process can be interrupted to introduce checks,
specifying that whatever is on the screen or part of the screen at a certain point during the
recording should also be there at the same point during the playback.

• Test programming

 Most tools contain a script language, which can be used like a normal third or fourth gen-
eration programming language, extended with special features for testing like functions for
simulating mouse and keyboard events and capturing screen data. The script language can
be used to program tests. One of the ways to do this is to take the recorded scripts and em-
bedding them in a loop, which is reading records from a data file. This approach is often
referred to as “data driven record and playback”.

Both methods, if used prudently, can lead to improvements of the test process, especially when
tests are to be repeated more than once. Still pitfalls can arise. In essence the record and play-
back is in fact automation of the existing manual process. A good comparison is that of the
first cars, which looked like carriages with a motor attached to the place of the horses. It is a

© 1998, CMG Finance BV Automated Testing with Action Words 3

first step but not an optimal design. The best use for record & playback is for small ad hoc
tests that have to be repeated only a few times. Test programming is an effective doubling of
the programming effort, the system design has to be repeated in the test design. The logic of
the test is hidden in the script code of a test tool. In both approaches there is a lack of flexibil-
ity: maintenance on the underlying system, like changing a menu structure or the location of a
result on a screen, means an substantial effort to keep the tests running.

A second potential problem with existing approaches for test automation is accessibility of
both the tests and the test results. Because actions and data are mixed and represented in a
technical form, it is difficult to understand what exactly is tested, especially for a non-technical
person like an end-user or an auditor. It is therefore hard to get a commitment for a system
using automated tests.

More practical considerations are the difficulties to start early with the test preparations, one
has to wait until there is a working system, and, for the record & playback method, the appli-
cability on only on-line systems.

2. DESCRIPTION OF THE ACTION WORD APPROACH

The tests are not registered in the test tool, neither as record playback scripts, nor as test pro-
grams. Instead the tests are put separately in spreadsheets. These spreadsheets are called test
clusters. To implement this approach a test language is introduced, specifying actions to be
taken and data to take that action with. The data can be either test input or (expected) test
outcomes. The actions are specified as action words, short commands to the test tool.

An example:

last first date of birth

enter client Buwalda Hans 2-jun-57 ...
...
check age 40

This example describes a part of a functional acceptance test for an imaginary client manage-
ment system. The action words used are “enter client” and “check age”. The first one enters
some client data, the second one specifies an expected outcome, in this case the age.

The action words are usually specific for the application that is tested. So there will be other
action words for a stock trading system and for a mortgage system. The first line in this exam-
ple contains column headers, meant to enhance the readability. Because there is no action word
in front of them, they are skipped during test execution. Lay out properties like the italic
printing of the action words have also no effect on the test itself.

In order to process the tests from the test cluster into the test tool, the clusters are first ex-
ported to a text file. This is done in the form of “tab delimited ASCII”, meaning that the fields

this row will be skipped when the test is
executed

action words

input data

expected result

© 1998, CMG Finance BV Automated Testing with Action Words 4

in the spreadsheet are separated by tab characters. This is a standard export format of popular
spreadsheet programs.

The test automation is regarded as a separate activity, apart from the test design. To interpret
and execute the commands in the test cluster a special script is written, so called navigation
script. This navigation script is usually written in the script language of a standard test tool.
Most test tools in the market have a script language build in powerful enough to make imple-
mentation of a navigation script possible.

The navigation script consists of several components, some of which are general, others must
be specifically written for the application that is being tested. The general functions read the
test lines from the tab separated ASCII text file, which was exported from the test cluster. The
lines are interpreted one by one. The first field, the action word, is used to call a function for
that action word. The action word functions are specific to the application.

In the above mentioned example there will be specific procedures for the action words used.
The procedure for “enter client” will go to a client screen and fill all fields in the right order.
This is not necessarily the order used in the test cluster. Even the number of fields is not neces-
sarily the same. The navigation procedure can replace not specified fields with relevant default
values. After entering the fields the navigation will close the entry screen by using enter or any
other means necessary in the system under test.

The procedure for second action word in the example, “check age”, will follow a similar path.
It will select a screen were the value for the age can be found and capture this value from the
screen. Next it will compare this value to the expected value which was specified, in this case
39. The result, “pass” or “fail”, will be written into the test report. If it is not possible to cap-
ture a value from the screen other means can be used to obtain like SQL queries or internal
API calls.

The report for our example will look something like this:

cluster: example
version: 1.0
date: December 1st, 1997
....

....
21 enter client Buwalda Hans 2-jun-57 ...
....
35 check age 39

check of type: age
expected value: 39
recorded value: 38
result: FAILED

....

....
number of checks: 257
number passed: 252 percentage passed: 98%
number failed: 5 lines: 10, 35, 52, 134, 201
....

report header, con-
taining general info

detailed results of
input and checks (on-
line number in the test
cluster)

summary of the test
run

© 1998, CMG Finance BV Automated Testing with Action Words 5

The report consists of a header, a detail part and a summary. What is exactly listed in the re-
port depends on the project. In our example the test has failed. The fail is marked, with the
expected and recorded value, and in the summary the fail is marked again with a line number so
that it can be easily found back for analysis.

Test results reported as “failed” are input for further analysis. They do not necessarily mean
that the system is wrong. Like with other test methods also the tests themselves can contain
errors. The fails must be regarded as signals.

Using a second example, a test on small banking system called Minibank, the cluster, naviga-
tion script and report are related as can be seen in the following picture.

CheckName
::::::::::::: TransferSum

::::::::::::::::

Action Word Functions

EnterClient
::::::::::::::CheckBalance

::::::::::::::::::

Navigation Script

RunTest (TestId)
open cluster (ClusterName)
while readTestLine OK
 case action
 "enter client": EnterClient
 "check balance": CheckBalance
 "transfer sum": TransferSum
 "check name": CheckName
 "section": StartSection

 else
 warning("unknown: ", action)
end while
close cluster
close report

cluster EXAMPLE OF A TEST CLUSTER
version 1.0
author Hans Buwalda

section 1. Entering clients and balances
last name first name account nr balance

enter client Green John 458473948 1500
enter client Wood Anna 422087596 2100

section 2. Money Transfers
from to sum

transfer sum 458473948 422087596 500
transfer sum 422087596 785793025 1201

section 3. Checking names and numbers
account nr last name first name

check name 458473948 Green John
check name 422087596 Wood Anna

account nr sum

check balance 458473948 1000
check balance 422087596 1399

Test Cluster (spreadsheet)

(text file)

The lines in the cluster are interpreted one by one by the navigation script. Every action word
is carried out by a action word function in the navigation script.

The test report, produced under control of the navigation script, contains besides the compari-
son results other data relevant to assess the test. It will usually contain a print of the test lines
interpreted, version information in the header and a summary of the test results. It is also pos-

© 1998, CMG Finance BV Automated Testing with Action Words 6

sible to report the test results in an alternative form, for example to collect them into a data-
base or into a specialized system for fault tracking.

In the above example the navigation was displayed as one loop reading the test lines and inter-
preting them. In practice a navigation scripts consists of several layers, dealing with tasks like
interpretation of test lines, execution of action words, reporting and interfacing with the target
system (for example through a GUI interface or a terminal emulator).

3. APPLICABILITY ON OTHER TESTS

The example in the last paragraph dealt mainly with acceptance testing. The method is also
applicable for a number of other kinds of tests.

Tests earlier in the project, like the module test, the system test and integration test, can be
automated with the described method as well. There are two considerations to make. Firstly
the tests usually have similar input cases, but want to test also intermediate results, for example
the contents of a database not accessible for an end user. Introducing additional action words
for that purpose can do this. The navigation script will then access the relevant data using an
appropriate means like a terminal emulator. It is even thinkable to access a debug tool, in
which case expected values can be specified for variables within a program.

A second consideration is the moment in the project that the tests are necessary. Especially an
early program test comes at a time when there are no implemented action words yet. Also it
can be too much work to implement an action for every program in a system. In that case it is
possible to use so-called “low level action words”. These words, like “push button” or “select
menu item”, have the relevant button to push or menu item to select as an argument in the
cluster. Although this has a great disadvantage of being more sensitive to system changes it can
be a solution for tests that are only used once.

Apart from on-line systems also batch systems can be tested. This is a main difference with
record & playback testing. The test clusters for a batch system are similar to those for an on-
line system. They start with a number of test lines with input data. The action words depict in
which tables or files the test data should go before the batch is started. For large records only
those fields, which are relevant for the test, are specified, the action word will fill in the rest of
the fields with relevant defaults. The input lines are followed by a special action word, like
"start overnight", that will trigger the start of the batch process that has to be tested. Then the
output lines are specified, with the action words specifying which tables or reports contain the
data which to compare it with.

The processing of batch test can still be done with a test tool on a PC. The test tool will, under
control of the navigation script, route the input data in the correct tables or files. This can ei-
ther be done by using on-line screens (for example with the use of a 3270 emulator) or col-
lecting in a local file which is uploaded. The test tool, acting as a “director” of the process, will
start the batch process and, after it is has detected that the process is ready, will test the out-
comes. This can be done by either accessing the outcome record by record or by collecting the
expected values in reference files and comparing these with a matching program either local or
on the mainframe. There are also test tools available on the mainframe itself, which can be
equally well used with the method.

© 1998, CMG Finance BV Automated Testing with Action Words 7

A special application of the method is for testing performance. In these tests the focus is on the
behavior of a system under a specified load. Figures that are measured are typically response
times and the usage of system components. Those values can be compared to specified de-
mands. This can be done in the test cluster introducing action words like "response time 10",
meaning that a time of 10 seconds is the maximum allowed for the system to respond since the
latest system entry. The test fails if the actual time exceeds these 10 seconds, in which case the
actual time is reported.

Similar solutions are devised for load generation. A typical form is “generate load 10 order-
entry”, meaning that a cluster “order-entry” should be executed simulating 10 simultaneous
users. This can be done on physical machines or as processes in a multi-tasking environment.
The action word “generate load” does not do much more than starting the 10 processes.
Within the earlier mentioned cluster “order-entry” other performance issues are specified with
proper action words, for instance measuring response times and synchronization with other
processes.

The method was developed in 1994 and used in many projects since then. In present days a
large part of the work with the method is in millennium projects and the euro currency con-
version. The method can be used to generate test cases efficiently, but also to automate tasks
like the “time travel” which is necessary for many of the millennium tests.

4. EFFECTS OF THE METHOD

The method described in the previous paragraphs is used in a growing number of large and
small projects, both for on-line and batch systems. The method has a number of effects on the
test automation process.

The first effect is on flexibility. A test set (test clusters and navigation script) is much less sen-
sitive to maintenance than for example record & playback scripts. When a change is made in
the underlying system, this will usually lead to a change in the tests but this change is limited.
Most of the times a change has only consequences for the navigation. For example a change in
the menu structure of a system or the place of an output result means a change to the relevant
action word procedures. By changing only a limited number of action word procedure a much
larger set of tests will run again on the new version of the system.

When there is a change in the business processes implemented by the system, the change will
effect the test cluster. For example a change in the tax laws will have an effect on a payroll
system and therefore on the clusters testing that payroll system. But these changes are logical,
a direct consequence of the functional change and therefore usually very straightforward to
implement.

A second effect is on the accessibility of the test clusters and the reports. Although they are
direct input for an automated test process the test clusters can be designed in a way that also
non-IT people can understand them. It is even possible to let end users directly prepare the test
cases in the spreadsheets.

© 1998, CMG Finance BV Automated Testing with Action Words 8

A next effect concerns the planning. The preparation of the test clusters can start in an early
stage in a project, without knowing all functional details of the system. Especially the business
oriented test cases for functions like payrolls, life insurance's or mortgage calculations can be
produced when a system is still in the definition phase. The navigation script can be developed
when a system is in its detail design and early building phases.

There is an effect in cost effectiveness. The implementation of the navigation script is an extra
activity in a project. This activity must be compared with the manual testing effort for the first
test. An important difference in this respect with the record & playback method is that also the
first run of the tests is automatic, there is no recording phase. Usually the cost for the naviga-
tion script is in the same order as the saving on the first test run. Of course the larger gain can
be expected for repeated tests, either tests of new releases in the project or later in the mainte-
nance phase of the system.

Like other automated test methods there is an implicit effect on quality. Because testing is
done automatically it is very persistent. Also it is possible to always run all tests, catching the
notorious unexpected faults resulting from maintenance in other parts of a system.

The method gives a basis to organize and manage the test process better. Products like the test
clusters and the report are tangible. It is easy to show what has been tested and what the re-
sults are. Also the method gives a proper separation of tasks:

• test analysis, the process of developing the tests and assessing their results

• test navigation, the actual automation of the tests, which in practice turns out to be a dif-
ferent area, with different skills needed (people doing this are called the “navigators”)

• test organization, at project level dealing with topics like who is doing what at which time
and above project level co-ordination of competence and resources and embedding of tasks
like cluster and script maintenance in the organization

Although almost all tests are automated this is not an essential component of the method.
There have been projects where tests where developed in the form of cluster with action
words, but not automated. In stead they were executed by hand. Test clusters have turned out
to be a efficient way of documenting tests with or without the automation by a test tool and a
navigation script. The decision of automating can even be made for every cluster separately.

Last but not least in the projects so far an increase in motivation for testing has been observed.
Reasons for that are that the dull parts of the work are done by the machine and that the sepa-
ration of test design and navigation make it possible for people to work on the job they like
most and they can do best, either the more business oriented test design or the more technically
oriented navigation.

5. OTHER USES THAN TESTING

Although most projects in which the method is applied deal with automated testing, this is not
essential. There are already uses for other purposes and more uses are imaginable in the future.

© 1998, CMG Finance BV Automated Testing with Action Words 9

To understand this it is necessary to look closer at the automation part of the method. The
essence is that the action words form a highly adaptable alternative interface to a system, one
could refer to it as a “level of indirection”, a popular concept in programming. Using the action
words pre-defined commands can be given to a system. If the interface of a system changes, it
is enough to change the navigation level instead of having to change the command lines.

A typical alternative application of this principle is initial loading. Clusters can be specified
with initial values for tables, system variables, user authorizations and other data that are nec-
essary for initializing a system in an environment. This can be a test environment, a training
environment or the actual production environment.

A similar approach is possible for data conversion. Data can be extracted from existing sys-
tems and entered using the action words, which already exist for the testing. In this way the
necessity of developing specialized conversion functions can be avoided. This is especially ap-
plicable for data with no high volume like a table with currency codes.

6. CONCLUSION

In this paper a method is described for automated testing of systems. The design of the tests is
strictly separated from the development of the script to automate their execution. The main
benefits of the approach are flexibility, manageability, cost effectiveness, quality and motiva-
tion.

This paper has only given a first introduction of the method. There are many aspects to deal
with in the actual implementation of the method. It is therefore recommended to start on a
small scale. Also it is important to notice that the method, although potentially useful, is not a
magic potion. Testing is a complex difficult activity that should never be underestimated, with
or without method outlined in this paper.

1

Quality Week Europe, 1998©Hewlett Packard Company, 1998

Software Defect Analysis: Real World Testing

A Simple Model for Test Process Defect

Software Quality Engineer
Hewlett Packard Company

Boise, Idaho LaserJet Division
Quality Engineering Department

Quality Week Europe, 1998©Hewlett Packard Company, 1998

Introduction

l Turning hindsight into foresight.
• Drives need for Failure Analysis

(defect categorization).
Helps create plan for Software
Development Process
Improvement on next project.

2

Quality Week Europe, 1998©Hewlett Packard Company, 1998

Introduction

l Model 1 - Software Development
Defect Categorization
• A “common” practice.
• The model proposed in this paper

extends the usefulness of software
development defect categorization
to Software Testing.

Quality Week Europe, 1998©Hewlett Packard Company, 1998

Introduction

l Model 2 - Software Testing
Process Defect Categorization
• Not a “common” practice.
• This paper introduces a model for

categorizing software testing

3

Quality Week Europe, 1998©Hewlett Packard Company, 1998

Actions

l Present and discuss the models.
l Apply the models to software

testing projects.
l Provide input to the author.

Quality Week Europe, 1998©Hewlett Packard Company, 1998

Benefits

l Use Software Development
defect trends to help focus
Software Testing.

l Determine testing specific
defect patterns. Take steps to

1

Quality Week Europe, 1998©Hewlett Packard Company, 1998

Part 1 - What is
Discussed

l Current HP Model. Results from

l Introduction of Model 1-
Software Testing Focus Based
on Defect Trends.

l Application of Model 1 to a
product.

Quality Week Europe, 1998©Hewlett Packard Company, 1998

Current HP Software Defect
Categorization Model

HEWLETT
PACKARDc 1992 Prentice-Hall

REQUIREMENTS
OR

SPECIFICATIONS

FUNCTIONALITY

TEST SW

TEST HW

DEVELOPMENT
TOOLS

SPEC/RQMTS DESIGN CODE DOCUMENTATION

TYPE

CATEGORIZATION OF SOURCES OF SOFTWARE DEFECTS

ENV. SUPT.

ORIGIN

PROC. (INTERPROC.)
 COMMUNICATIONS

DATA DEFINITION

INTERNAL MODULE

LOGIC DESCRIPTION

ERROR CHECKING

STANDARDS

HW INTERFACE

SW INTERFACE

USER INTERFACE

FUNCTIONAL
 DESCRIPTION

LOGIC

COMPUTATION

DATA HANDLING

MODULE OR OBJECT

STANDARDS

INTEGRATION SW

OTHER

MODE

(WHERE?)

MISSING UNCLEAR WRONG CHANGED BETTER WAY

(WHAT?)

(WHY?)

*

* Other also can be a
type classification for
any of the other
origins.

SYSTEM/DOMAIN
 OBJECT MODEL

 OR CLASS DESIGN

OBJECT LIFETIME
 INTERFACE/
 IMPLEMENTATION

Quality Week Europe, 1998©Hewlett Packard Company, 1998

Results based on HP Model

Top Eight Sources of Defects
(Actual)

Spec/Spec
19%

Spec/Funct.
Descr

8%

Spec I/F
8%

Design I/F
11%Design

Proc/Inter Proc
7%

Code Data
Handling

19%

Code Logic
20%

Design Error
Checking

8%

Top Eight Sources of Defects
 (Weighted)

Spec/Spec
35%

Spec I/F
15%

Design Error
Checking

6%

Design I/F
9%

Design
Proc/Inter Proc

6%

Spec/Funct.
Descr
15%

Code Data
Handling

7%

Code Logic
7%

Quality Week Europe, 1998©Hewlett Packard Company, 1998

Model 1 - From Defect Trends to
Software Testing Implications

CODE

UNIT
TEST

LOGIC

COMPUTATION

DATA
HANDLING

MODULE
INTERFACE/
IMPLEMENTATION

UNIT INTEGRATION
AND LOW
LEVEL
COMPONENT
INTEGRATION
TEST

DESIGNSPEC

USER
INTERFACE

REQMT/SPEC

FUNCTIONALITY

FUNCTIONAL
DESCR.

SYSTEM
TEST

PROCESS/
INTERPROC.
COMMUN.

HIGH LEVEL
COMPONENT
INTEGRATION
TEST

DATA DEFINITION

LOGIC
DESCRIPTION

HIGH LEVEL
COMPONENT
TEST

MODULE
DESIGN

ORIGIN
(WHERE?)

TYPE
(WHAT?)

TEST
LEVEL

ERROR
CHECKING

H W /SW
INTERFACE

SUB-SYSTEM
INTEGRATION
 TEST

So ftware Testing Focus
Based on Sources of D e fects

Quality Week Europe, 1998©Hewlett Packard Company, 1998

Applying Model 1 to a
Product

 Percent Defect Changes
One Project Compared to its Follow-on

1.2%

-11.1%

-3.7%
-6.7% -6.7%

6.1%

-3.9%

12.5%

0.1%

6.1% 6.1%

-15.0%

-10.0%

-5.0%

0.0%

5.0%

10.0%

15.0%

Sp/S
p

Sp/F
. D

es
cr

Spe
c I

/F

Spe
c F

un
ct

Des
. I/

F

Des
. P

r/In
t P

r

Cod
e D

ata
 H

an
dli

ng

Cod
e L

og
ic

Cod
e M

od
ule

 I/F

Cod
e C

om
p.

Prob
s.

Env
 Tes

t H
W

Quality Week Europe, 1998©Hewlett Packard Company, 1998

Applying Model 1 to a
Product

C O D E

UNIT
TEST

L O G IC

C O M P U T A T ION

DATA
HANDLING

M O D U L E
INTERFACE/
IMPLEMENTATION

U N IT INTEGRATION
AND LOW
LEVEL
C O M P O N E N T
INTEGRATION
TEST

D E S IGNSPEC

USER
INTERFACE

R E Q M T /SPEC

FUNCTIONALITY

FUNCTIONAL
D E S C R .

SYSTEM
TEST

PROCESS/
INTERPROC.
C O M M U N .

H IGH LEVEL
C O M P O N E N T
INTEGRATION
TEST

DATA DEFINIT ION

L O G IC
D E S C R IPTION

H IGH LEVEL
C O M P O N E N T
TEST

M O D U L E
D E S IGN

O R IGIN
(WHERE?)

TYPE
(WHAT?)

TEST
LEVEL

E R R O R
C H E C K ING

H W /SW
INTERFACE

S U B -SYSTEM
INTEGRATION
 TEST

So ft w ar e Tes t ing Fo cus
Based o n Sou rces o f D e fec t s

4

Quality Week Europe, 1998©Hewlett Packard Company, 1998

Part 2 - What is
Discussed

l Software Testing Defect Areas.
l Introduction of Model 2 -

Software Testing Defect
Categorization.

l What should be in place to apply
Model 2 to a product.

l Test Defect Weighting.

Quality Week Europe, 1998©Hewlett Packard Company, 1998

Software Testing
Defect Areas

l Test Process Defects - Errors in
strategy and/or procedures.

l Test Management Defects -
Policies and/or resources not in

l Test Product Defects - Errors
resulting in a change to the test

Quality Week Europe, 1998©Hewlett Packard Company, 1998

Model 2 - Classifying Software

TEST DESIGN TEST CODE/ENVIRONMENT
ORIGIN

(WHERE?)
TEST PLANNING TEST EXECUTION TESTRESULTS

 ANALYSIS

 Software Testing
 Defect Categorization

WRITTEN
REQUIREMENTS

RISK ANALYSIS

PARALLEL TESTING
AND DEVELOPMENT

TIME, RESOURCE, &
BUDGET

DOCUMENTATION
STRATEGY

REQUIREMENTS
MISUNDERSTOOD OR
INCOMPLETE

DATA STRUCTURE
OR VALUE

INCORRECT
OUTCOME
PREDICTED

INCORRECT PATH
PREDICTED

VERIFICATION
METHOD

TEST ARCHITECTURE

TEST STANDARDS

CONFIGURATION

INITIALIZATION

SEQUENCING

INFRASTRUCTURE
AND TOOLS

CHECKLISTS

IMPLEMENTATION

CONFIGURATION

INITIALIZATION

DATABASE

ACTION PERFORMED

ARCHIVAL

VERIFICATION
ACT

"IDEAL" OUTPUT

METRICS

DEFECT
MANAGEMENT

TYPE
(WHAT?)

1

Quality Week Europe, 1998©Hewlett Packard Company, 1998

Necessary Elements to
apply Model 2

l Distinction between Software
Testing and Development
Defects.

l Test Engineers log Testing
Defects as such.

l Test Team commits to applying
model after every project
iteration.

Quality Week Europe, 1998©Hewlett Packard Company, 1998

Example Results

Top Eight Sources of
Software Testing Defects

Plan/Reqmnts.
22%

Plan/Parallel
12%

Design/Data
20%

Env./Init.
5%

Env./Seq.
11%

Exec./Action
7%

Desg/Outcome
12%

Results/Arch
11%

5

Quality Week Europe, 1998©Hewlett Packard Company, 1998

Test Defect Weighting

l All testing defects not created

l Test Planning and Design
defects more difficult to detect

l Weighting factors vary from one
testing project to the next.

Quality Week Europe, 1998©Hewlett Packard Company, 1998

Next Steps

l Apply models to HP projects.
l Collect suggestions from

experiences others have in
using the models.

l Update the models based on
input.

Jon T. Huber, jon_huber@hp.com
Software Quality Engineer (208)396-6551
Hewlett Packard Company Quality Week Europe’1998

 Hewlett Packard Company, 1998
Page 1

Software Defect Analysis:

Real World Testing Implications &

A Simple Model for Test Process Defect Analysis

Abstract
This paper will present two models. The first model extends the current Hewlett Packard model
for the “Categorization of Sources of Software Defects”. This expansion has to do with focusing
software testing efforts based on software development defect trends. The second model allows
software test professionals to categorize software testing defects. It is hoped that through the use
of these two models, software test professionals will have the ability to better analyze software
product and testing defects, enabling them to implement action items that will improve software
testing.

Introduction
Any observer of human behavior will acknowledge that hindsight is almost always better than
foresight. The challenge with software testing is to adapt the hindsight learned on one project into
foresight on the next. Results from the categorization and analysis of software development
defects after a project is finished are often used as a guide to implement software development
process improvements on the next project. What is often ignored is the benefit that software
development defect analysis has in relation to software testing. Since one purpose of software
testing is to find bugs, examining software development defect patterns and trends, and then testing
in those areas, will help focus the efforts of software test engineers. The first model introduced in
this paper enable mapping software development defect trends to specific areas of software testing.

The analysis of defect trends in software development is a common practice in the software
industry. What is equally important, but sometimes overlooked, is the examination of software
testing defect trends. In contrast to multiple models available for categorizing software
development defects, there are only a few models available, and proven useful, for categorizing
software test defects. The second part of this paper will introduce a model, and the elements that
should exist in a software testing organization, to categorize software testing defects.

Real World Testing Implications of SW Development Defect
Analysis Data
This section of the paper will:
1. Introduce the Hewlett Packard model for categorizing defects.
2. Present defect categorization data from seven Hewlett Packard projects.
3. Explain the first model entitled “Software Testing Focus Based on Sources of Defects”.
4. Apply the model to a software development project and its follow-on.
The following model (Figure 1-1), developed by the Hewlett Packard Software Metrics Council in
19861 , was used to categorize the defects represented in the pie charts below (Figures 1-2 & 1-3).

Jon T. Huber, jon_huber@hp.com
Software Quality Engineer (208)396-6551
Hewlett Packard Company Quality Week Europe’1998

 Hewlett Packard Company, 1998
Page 2

(FIGURE 1-1)

Figures 1-2 & 1-3 show the average, actual and weighted, defect trends from seven Hewlett
Packard projects.

(FIGURE 1-2)

HEWLETT
PACKARDc 1992 Prentice-Hall

REQUIREMENTS
OR

SPECIFICATIONS

FUNCTIONALITY

TEST SW

TEST HW

DEVELOPMENT
TOOLS

SPEC/RQMTS DESIGN CODE DOCUMENTATION

TYPE

CATEGORIZATION OF SOURCES OF SOFTWARE DEFECTS

ENV. SUPT.

ORIGIN

PROC. (INTERPROC.)
 COMMUNICATIONS

DATA DEFINITION

INTERNAL MODULE

LOGIC DESCRIPTION

ERROR CHECKING

STANDARDS

HW INTERFACE

SW INTERFACE

USER INTERFACE

FUNCTIONAL
 DESCRIPTION

LOGIC

COMPUTATION

DATA HANDLING

MODULE OR OBJECT

STANDARDS

INTEGRATION SW

OTHER

MODE

(WHERE?)

MISSING UNCLEAR WRONG CHANGED BETTER WAY

(WHAT?)

(WHY?)

*

* Other also can be a
type classification for
any of the other
origins.

SYSTEM/DOMAIN
 OBJECT MODEL

 OR CLASS DESIGN

OBJECT LIFETIME
 INTERFACE/
 IMPLEMENTATION

Top Eight Sources of Defects
(Actual)

Spec/Spec
19%

Spec/Funct.
Descr

8%

Spec I/F
8%

Design I/F
11%Design

Proc/Inter Proc
7%

Code Data
Handling

19%

Code Logic
20%

Design Error
Checking

8%

Jon T. Huber, jon_huber@hp.com
Software Quality Engineer (208)396-6551
Hewlett Packard Company Quality Week Europe’1998

 Hewlett Packard Company, 1998
Page 3

(FIGURE 1-3)

Brief Explanation of Figure 1,2, &3
Since the development of the model in Figure 1-1, it has been successfully used on many Hewlett
Packard projects in multiple divisions. One of the first questions asked is why a weighted
calculation is needed. The idea behind a weighted calculation is that all defects are not created
equal. In other words, it will cost a development team more to fix a defect a defect whose origin is
specifications than it will to fix a defect whose origin is code. The main reason for this is the
number of work products that will need to be altered to fix a specification defect as compared to a
code defect. For example, a developer will need to alter the specification, change the design, and
modify the code in order to fix a specification defect. On the other hand, a coding defect only
requires a change to one work product, the source code. It is acknowledged that the weighting
factors listed in Figure 1-2 may vary from one software development project to another.2 The
important fact to remember is that for every software development project, weighting factors exist.

Testing Implications (The Model)
The model proposed below (Figure 1-4) will map defect categories, based on their definition, to
what appears to be the most appropriate software testing levels3. Based on experience using the
model presented in Figure 1-1, most software development defects cluster in Specifications,
Design, or Code. The model will focus on mapping the defect Types within these three Origins to
particular software testing levels. A software test engineer should be very concerned about
focusing testing in the areas where bugs cluster. This model will help with that responsibility.
With the model, it is also possible to reverse engineer a defect categorized in a particular area and
hypothesize as to what type of testing could have found the bug.

Top Eight Sources of Defects
 (Weighted)

Spec/Spec
35%

Spec I/F
15%

Design Error
Checking

6%

Design I/F
9%

Design
Proc/Inter Proc

6%
Code Logic

7%

Code Data
Handling

7%

Spec/Funct.
Descr
15%

Weighting Factors
Specifications 14.25
Design 6.25
Code 2.5

Jon T. Huber, jon_huber@hp.com
Software Quality Engineer (208)396-6551
Hewlett Packard Company Quality Week Europe’1998

 Hewlett Packard Company, 1998
Page 4

(FIGURE 1-4)

Industry Test Levels Applicable to the Model
The following explanations are applicable only to the software testing levels as contained in Figure
1-4.

Unit Testing – Testing the smallest piece of software that can be independently tested (i.e.,
compiled or assembled, loaded, and tested). Usually the work of one programmer consisting of a
few hundred lines of source code. For a printer, an example of a unit might be the function that
sets the paper’s Orientation.

Unit / Low Level Component Integration Testing – Testing aimed at exposing interface and
interaction defects between otherwise correct and unit tested components. For a printer, examples
of low level components might be all the “Page Setup” settings (e.g. Paper Size, Paper Source,
Numbers of Copies, and Orientation). An integration test at this level would test the interactions
between each of the “Page Setup” settings.

High Level Component Test - Testing components near the top of the call tree (a graphical
representation of the calling structure of components). For a printer, the Software Printer Driver
itself is an example of a high level component.

High Level Component Integration Test – Testing aimed at exposing interface and interaction
defects between otherwise correct and tested high level components. For a printer, this might

CODE

UNIT
TEST

LOGIC

COMPUTATION

DATA
HANDLING

MODULE
INTERFACE/
IMPLEMENTATION

UNIT INTEGRATION
AND LOW
LEVEL
COMPONENT
INTEGRATION
TEST

DESIGNSPEC

USER
INTERFACE

REQMT/SPEC

FUNCTIONALITY

FUNCTIONAL
DESCR.

SYSTEM
TEST

PROCESS/
INTERPROC.
COMMUN.

HIGH LEVEL
COMPONENT
INTEGRATION
TEST

DATA DEFINITION

LOGIC
DESCRIPTION

HIGH LEVEL
COMPONENT
TEST

MODULE
DESIGN

ORIGIN
(WHERE?)

TYPE
(WHAT?)

TEST
LEVEL

ERROR
CHECKING

HW/SW
INTERFACE

SUB-SYSTEM
INTEGRATION
 TEST

Software Testing Focus
Based on Sources of Defects

Jon T. Huber, jon_huber@hp.com
Software Quality Engineer (208)396-6551
Hewlett Packard Company Quality Week Europe’1998

 Hewlett Packard Company, 1998
Page 5

include testing the interactions between the SW Driver and other high level components such as the
Installer and Uninstaller.

Sub-system Integration Test – Testing aimed at exposing interface and interaction defects between
otherwise correct and tested subsystems. For a printer, this might include testing the interactions
between the printer Firmware, Software, and Hardware.

System Test
Testing aimed at how the customer will use the product. For a printer, this includes the printer
plus 3rd party applications and Operating Systems, but does not include packaging, learning
products, etc. (Solution Testing).

Defect Types Suggest Testing Focus Areas

Specification Defect Types
If defect categorization reveals a large percentage of specifications/requirements defects, it would
make sense to consider increasing the amount and/or types of System Testing.
Specification Defect Types seem to fit best into the System Testing category because the majority
of them are related to the customer or user of a product. In the Hewlett Packard defect
categorization model it states that specification defects are “A mistake in the definition of the
customer/target needs for a system or system performance.” Many of the specification defects
found have to do with missing, incorrect, or added functionality. It is likely, however, that these
types of bugs are best revealed with thorough System Testing that takes into account areas such as
timing, specification domain testing (to test functionality), transaction flow (how a software
program behaves), feature interaction, configuration, boundary configuration, hardware
configuration, performance, recovery, security, etc. Testing these areas most closely emulates how
the customer will use the product.

Concentrations of specification defects in the “Hardware and Software Interface” areas do not
indicate an increased emphasis in System Testing. For a printer at least, Hardware and Software
are subsystems. Therefore, significant percentages in these defect type areas attest to the need for
increased emphasis on Subsystem Integration Testing.

Design Defect Types
The mapping of Design Defect Types to Testing Levels is quite dispersed. The “User Interface”
Design Type is best tested by System Testing. As stated in the definition of this defect type these
are “problems with incorrect design of how the product will interact with its environment and/or
users”. Since the focus here is on the user or customer, a large percentage of defects of this type
indicate that the focus of System Testing should increase.

“Process/Inter-Process Communication” design defects are “incorrect interfaces and
communications between processes within the product.” This suggests a correlation to “High
Level Component Integration” testing, where the interactions between major processes within a
product are tested. An increased focus on various interface-testing techniques would be
appropriate. For example, Call-Pair and Domain testing techniques. Call-Pair testing concentrates
on exercising the interfaces between major processes within a product. Domain testing examines
the extreme values of one or more input variables to verify correct interfaces and communication
between High Level Components.

Jon T. Huber, jon_huber@hp.com
Software Quality Engineer (208)396-6551
Hewlett Packard Company Quality Week Europe’1998

 Hewlett Packard Company, 1998
Page 6

Concentrations of design defects in the “Hardware and Software Interface” indicate an increased
emphasis on Subsystem Integration Testing.

The definition for the “Module Design” defect type states “Problems with the control (logic) flow
and execution within processes”. A “process” most closely parallels a high level component in the
test levels described above. High Level Component testing is aimed primarily at major processes
within a product. As such, a concentration of “Module Design” defects should trigger an
examination of whether or not a tester should look more seriously at testing High Level
Components. High Level Component testing should occur in the most isolated context possible.
Possible techniques might be private branch component testing, automated regression test suites,
and increasing the ratio of dirty to clean tests.

“Data Definition”, “Logic Description”, and “Error Checking” Design Defect Types primarily
suggest a map to various “Unit Testing” techniques. The primary reason for this is that each of
these defect types is related to the internal structure and data of the program. Software Engineers
and Developers are responsible for most Unit Testing since they are also the most familiar with the
inner workings and layout of the software product under test.

The Design defect types of “Data Definition”, are defined as the “incorrect design of the data
structures to be used in the module/product”, and “Logic Description”, defined as “incorrect data
used in conveying the intended algorithm or logic flow”. Based on these descriptions, these types
of defects are most effectively tested using Data-Flow techniques. This is a structural testing
practice, where what happens to data objects (sequences of events that may alter the status of data
objects) are taken into account in determining what paths to test.

Significant percentages of the “Error Checking” design defects indicate that more emphasis be
placed on Unit Testing. Specifically, the programmer must thoroughly test whether or not the
functions/units written perform in the way expected. This includes whether or not units handle
errors properly. If the “Error Checking” defects are more specific to the specifications or
requirements, it is likely that a greater emphasis might be given to State and Transition testing at
the System Test level. An accurate state diagram should detail expected inputs and outputs
specifying software behavior such as error conditions at higher levels.

Code Defect Types
Based on the definition of “Logic” Code Defects, which is “forgotten cases or steps, duplicate
logic, extreme conditions neglected, unnecessary function, or misinterpretation errors”, a majority
of the defects are likely to be found with thorough Logic-Based Unit Testing techniques.

Similar to the Design defect types “Data Definition” and “Logic Description”, Code “Data
Handling” and “Computation Problem” defects may most effectively be tested using Data-Flow
testing at the Unit Test level. Both of these types of defects have to do with how the data is
interpreted and calculated in the code.

Significant percentages of the “Module Interface/Implementation” defect type indicate weaknesses
in the interfaces between Units and Low Level Components. These types of defects suggest an
increased focus on interface testing techniques such as Call-Pair and Domain Testing.

Jon T. Huber, jon_huber@hp.com
Software Quality Engineer (208)396-6551
Hewlett Packard Company Quality Week Europe’1998

 Hewlett Packard Company, 1998
Page 7

Application of Model to a Project
The model described contains ways that Software Testing personnel can examine Software Defect
Categorization data and trends. The model, and the explanations of various types of testing that
may be appropriate based on concentrations of various types of software defects, is a tool to help
the software test engineer. If used properly, the software test engineer can better determine, based
on where bugs have clustered in the recent past, where to focus testing in the immediate future.
With example defect categorization data, this paper will now explore how this model may be
applied to a project.

(FIGURE 1-5)

The data shown in Figure 1-5 represents increases or decreases in the percentage of particular
defect types from one project compared to its follow-on:
- Specifications Defects – decreased 20.3%
- Design Defects – decreased .6%
- Code Defects – increased 14.8%

From this information, it appears that process improvements aimed at decreasing the percentage of
specification defects, such as a specification inspection program (early testing), are in fact
improving the percentage of defects attributable to this Origin. The one defect type within this
origin that is still increasing is “Requirements or Specifications”. The project has recently engaged
in a Requirements Engineering activity aimed at clarifying and improving requirements. It is hoped
that these new requirements will enhance the System Testing efforts already initiated for this
product line.

There is not a significant difference in the percentage of defects categorized as Design. The
example project did make effort to create and inspect interface documents and this probably why
“Design Interface” defects did not appear in the top percentages of the follow-on product. Instead
of “Design Interface” defects, the follow-on project had defects attributable to “Design
Process/Inter-Process” defects. These types of defects suggest increased emphasis on High Level
Component Call Pair and Domain Testing.

 Percent Defect Changes
One Project Compared to its Follow-on

1.2%

-11.1%

-3.7%
-6.7% -6.7%

6.1%

-3.9%

12.5%

0.1%

6.1% 6.1%

-15.0%

-10.0%

-5.0%

0.0%

5.0%

10.0%

15.0%

Sp/S
p

Sp/F
. D

es
cr

Spe
c I

/F

Spe
c F

un
ct

Des
. I/

F

Des
. P

r/In
t P

r

Cod
e D

ata
 H

an
dli

ng

Cod
e L

og
ic

Cod
e M

od
ule

 I/F

Cod
e C

om
p.

Prob
s.

Env
 T

es
t H

W

Jon T. Huber, jon_huber@hp.com
Software Quality Engineer (208)396-6551
Hewlett Packard Company Quality Week Europe’1998

 Hewlett Packard Company, 1998
Page 8

Coding defects increased 14.8% from one project to the next. For both projects, there are
significant percentages of defects types occurring in the “Data Handling”, “Logic”, and “Module
Interface / Implementation” areas. In the follow-on project, there is also the appearance of
“Computation Problems” as a code defect type category. According to the model, “Module
Interface / Implementation” defects suggest more focus be placed in Unit / Low Level Component
Integration Testing. Interface testing techniques such as Call Pair and Domain Testing should be
considered at this level. “Data Handling” and “Computation Problems” defects suggest difficulty
with manipulating data at the Unit Test Level. Increased Data-Flow testing should help reveal
additional weaknesses in these areas. Code “Logic” defects indicates that an increased emphasis
should take place in considering the logic flow of a program. Logic-Based Testing techniques,
such as testing code using Boolean Algebra, are important in discovering improvement
opportunities for “Code Logic” defects.

Each software development project will have different defect trends. As such, the focus for testing
can and should be different from project to project. The explanation above illustrates how any
Software Development Project can interpret defect categorization data collected from their own
project to improve testing efforts. By focusing testing efforts based on these results a testing
organization can:

1. Better plan testing efforts based on real project defect data.
2. Focus testing on areas where the bugs are most likely to be hiding.
3. Assuming the current product is based on reused and/or leveraged code from a previous

product, the current product can take advantage of incremental improvement. This is done by
adjusting the testing focus for the current project based on defect trends from the most recently
finished project.

Much work has taken place in the Software industry to categorize and define defect types for
Software Development. What has received less emphasis is software testing. The paper will now
propose a model to help software testing professionals analyze software testing defect trends.

A Simple Model for Software Testing Defect Analysis
This section of the paper will:
1. Introduce and define the second model entitled “Software Testing Defect Categorization”.
2. Discuss the environment that must exist for the model to be used successfully.
3. Provide an example of data that could be generated by applying the model to a project.

Although there are some industry views on this subject, there is much to be done to make Software
Test defect logging and analysis a common practice. One of the reasons the Hewlett Packard
model for categorizing software development defects has been successful is because the “Type”
portion of the model has few enough types that engineers have little trouble categorizing their
defects. These types are based on causes of defects, rather than any possible reason for failure.
The model proposed will keep number of test defect “Types” manageable.

There are at least three areas of Software Testing defects. These are testing process, testing
management, and test product defects. Test Process defects are errors in the strategy and
procedures necessary for successful testing. When the resources and policies necessary for
successful testing are not in place, this is considered a Test Management defect. Errors that result

Jon T. Huber, jon_huber@hp.com
Software Quality Engineer (208)396-6551
Hewlett Packard Company Quality Week Europe’1998

 Hewlett Packard Company, 1998
Page 9

in changes to the test itself are Test Product defects. The categorization model described in Figure
1-6 contains defect types that can be applied to each of these three areas.

Portions of the model described below are based on “Test Definition or Execution Bugs” as defined
by Dr. Boris Beizer4.

(FIGURE 1-6)

Test Planning
Written Requirements
There are always testing requirements. The question becomes whether or not they are recorded
somewhere. This type of defect indicates that an initial set of documented testing requirements
does not exist or are of poor quality.

Risk Analysis
There are risks with every testing endeavor. Defects of this type have to do with not engaging
formal risk analysis as part of test planning. Some risks may be testing new technology,
initializing new test infrastructure and/or tools, the outsource of testing, lack of resources at
particular times in the testing life cycle, and testing over multiple protocols/languages , etc.
Prioritizing these risks, communicating contingency plans, and identifying other holes and gaps in
the testing strategy are essential to success.

Parallel Testing and Development
At certain times in the product lifecycle, cooperation between the software developer and software
tester is necessary. When initial requirements are generated, the tester and the developer should
communicate and agree that the requirements are testable and can be implemented (coded). At that
point, the developer creates the product and the tester develops tests. Once the tests are applied to
the product and defects occur, communication is again necessary between the tester and developer.
The defect must be analyzed to determine if it is a Testing or a Development defect. A breakdown
in the communication between the tester and developer at the point of initial requirements and when
defects are encountered constitute this type of defect.

TEST DESIGN TEST CODE/ENVIRONMENT
ORIGIN

(WHERE?)
TEST PLANNING TEST EXECUTION

TESTRESULTS
 ANALYSIS

 Software Test ing
 Defect Categorization

WRITTEN
REQUIREMENTS

RISK ANALYSIS

PARALLEL TESTING
AND DEVELOPMENT

TIME, RESOURCE, &
BUDGET

DOCUMENTATION
STRATEGY

REQUIREMENTS
MISUNDERSTOOD OR
INCOMPLETE

DATA STRUCTURE
OR VALUE

INCORRECT
OUTCOME
PREDICTED

INCORRECT PATH
PREDICTED

VERIFICATION
METHOD

TEST ARCHITECTURE

TEST STANDARDS

CONFIGURATION

INITIALIZATION

SEQUENCING

INFRASTRUCTURE
AND TOOLS

CHECKLISTS

IMPLEMENTATION

CONFIGURATION

INITIALIZATION

DATABASE

ACTION PERFORMED

ARCHIVAL

VERIFICATION
ACT

"IDEAL" OUTPUT

METRICS

DEFECT
MANAGEMENT

TYPE
(WHAT?)

Jon T. Huber, jon_huber@hp.com
Software Quality Engineer (208)396-6551
Hewlett Packard Company Quality Week Europe’1998

 Hewlett Packard Company, 1998
Page 10

Time, Resource, & Budget
Management support of a testing project is essential. This type of defect occurs when there is little
or no management support and a realistic testing schedule with sufficient time, resource, and
budget, is not developed.

Documentation Strategy
It is important to decide up front what documents are essential to the success of the testing process.
At a minimum, there should be written test requirements (mentioned above) and a thorough test
plan. As with any project, plans and estimates always change based on reality. A document
change management strategy to review and approve/disapprove modifications to the testing
requirements and test plan must exist. This change management strategy must be agreed to by
both development and testing personnel. If testing requirements and plans change without any
agreed on process, this type of defect occurs.

Test Design
Requirements Misunderstood or Incomplete
The test and the component under test are mismatched because the test designer did not understand
the requirements. This becomes apparent when the test is applied to the product. A defect of this
type may also occur because the requirements for the test are not documented thoroughly. At a
minimum, test design should document the configuration, start situation, the actions to be
performed by the test, and the expected outcome.

Data Structure or Value
Data objects used in tests or their values are wrong. Defects of this type are caused by incorrectly
designing data structures or by assigning wrong values to data within a test.

Incorrect Outcome Predicted
Predicted outcome of a test does not match required or actual outcome.

Incorrect Path Predicted
Outcome is correct but was achieved by the wrong predicted path. The test is only coincidentally
correct.

Verification Method
The method by which the outcome will be verified is incorrect or impossible.

Test Architecture
The style or method for constructing the test is missing or in error. Also, exactly what is being
tested is not well documented or understood.

Test Standards
The test design does not comply with locally accepted design standards.

Test Code/Environment
Configuration
The hardware and/or software configuration and/or environment specified for the test is wrong.
The configuration portion of the test design is documented but incorrect. Whatever environment

Jon T. Huber, jon_huber@hp.com
Software Quality Engineer (208)396-6551
Hewlett Packard Company Quality Week Europe’1998

 Hewlett Packard Company, 1998
Page 11

the test was supposed to run in is not correct. Configuration takes into account many factors such
as operating systems, applications, peripherals, networking, etc.

Initialization
The specified initial conditions for the test are wrong. The start situation of the test design is
documented but not correct. Examples might include the value data variables and function
parameters are set to when a test begins.

Sequencing
The sequence in which tests are to be executed, relative to other tests, or to test initialization, is
wrong.

Infrastructure and Tools
The test suite management and execution tools, and the infrastructure necessary to utilize them
properly, are not set up correctly or do not exist.

Checklists
The absence of exit and entry criteria, release notes, procedures to obtain code, resources needed to
successfully test, and other checklists necessary to set up the environment prior to Test Execution
constitute a defect of this type. Emphasis on exactly what is received from the development
community, is it ready to test and how this is determined, are factors that should be considered
when evaluating the test environment.

Implementation
There is an error in the code necessary to put in effect or carry out the test. This could be an
inaccuracy in the test harness or any other instrument directly related to completing the test.

Test Execution
Configuration
The configuration and/or environment specified for the test was not used during the run. A valid
environment was specified but, because of an error in the execution of the test, that environment is
not the environment where the test is run.

Initialization
The tested component is not initialized to the right state or value. The start situation of the test
design is correctly documented but an error in executing the test causes the initialization to be
wrong. Examples might include when data variables and function parameters are set to incorrect
values when a test begins execution.

Database
The database used to support the test is wrong or data is incorrectly entered.

Action Performed
This may be as simple as a keystroke or button hit error. However, this type of defect may also be
more complicated than simple input. For example, if for some reason when the test is executed, it
does not run according to its design, due to factors like network traffic, machine downtime, or
failure of tools the test is dependent on.

Jon T. Huber, jon_huber@hp.com
Software Quality Engineer (208)396-6551
Hewlett Packard Company Quality Week Europe’1998

 Hewlett Packard Company, 1998
Page 12

Test Results Analysis
Archival
The results of testing are not archived electronically or in hard copy form. It is dangerous not to
keep a record of the testing that has occurred. For the final test run, it is often necessary to archive
results to meet legal requirements. Very often, follow-on projects will need to refer to the results of
testing from their predecessor(s).

Verification Act
The act of verifying the outcome was incorrectly executed. The defined method for verifying the
outcome is correct but performed erroneously.

“Ideal” Output
This type of defect occurs when no process exists to update the “ideal” outcome of tests.
Many tests cannot be termed a success unless the results of test execution are compared to what is
thought to be the ideal outcome of the test. If the results of test execution match the “ideal” output,
then the test is called a success. What is often discovered, when the same test is run on a product
and its follow-on, is that the “ideal” outcome for a test needs to be amended.

Metrics
Nothing is in place to measure the status of testing processes and products. Some measurement
programs focus on the status of the product under test, rather than testing processes and products.
It is important to measure the testing process in terms of effectiveness and efficiency. Some
important factors to measure are defects found by tests, various types of coverage, the degree of
automation, estimated as compared to actual costs, ability to meet schedule, and test center
throughput.

Defect Management
Defects must be managed by the responsible testing organization. This type of defect applies when
the defect management system is exclusively focused on the development product and no effort is
made to align the defects being found to the tests that found them.

Application of the Model
In order to apply the “Software Testing Defect Categorization” model successfully, the following
must be in place:
1. There is a distinction in the defect management system between a product defect and a test

defect. This implies that both defect types are logged in a defect management system.
2. Test Engineers must log testing defects as they occur.
3. The testing team must be committed to categorizing a subset of defects after each test project.
As with any Failure Analysis and Process Improvement effort, analyzing trends once does little or
no good. To gain the full benefit, the team must commit to categorizing defects after each project,
implementing process improvements on the subsequent project, and then reevaluating defect trends.
This will help to measure whether or not the process improvements resulted in the betterment of the
software testing. Let’s assume, in this fictitious example, that the Testing defect trends for a
project looked like the following:

Jon T. Huber, jon_huber@hp.com
Software Quality Engineer (208)396-6551
Hewlett Packard Company Quality Week Europe’1998

 Hewlett Packard Company, 1998
Page 13

(FIGURE 1-7)

If this were data from a real project, the test team would need to decide which areas to focus on for
Testing Improvement. Some of the more obvious areas where defects are occurring are in Test
Planning and Design. If the team decided to limit its process improvement focus on Design, the
next step would be to consider root causes as to why a significant percentage of defects are
attributed to Test Design. Improvement strategies specific to the project should then become
apparent. Project specific improvement strategies would then be implemented on the next project.
When the next project is finished, the defect trends would be examined again to determine if the
testing improvements did in fact make a difference. With this type of incremental improvement,
the advantages of software testing defect categorization and root cause analysis become evident.

Test Defect Weighting
As mentioned previously, in reference to software development defects, all defects are not created
equal. This is also true for defects attributed to software testing. Defects that are categorized as
Test Planning or Test Design defects are more expensive to understand and correct than Test
Code/Environment, Test Execution, and Test Results Analysis defects. For example, initializing a
critical data variable to an incorrect value is not as difficult to detect or fix as if the test design
never accounts for testing the variable. It is acknowledged that weighting factors may vary from
one software testing project to another. The important fact to remember is that for every software
testing project, weighting factors exist.

Conclusion
Software Development Engineers have been analyzing defect trends, and making improvements
based on the data, for many years. It is time that Software Test Engineers do the same. This
paper has introduced two models. The first model that can help start the process of interpreting
software development defect trends and, based on those tendencies, determine what areas of testing
might be a appropriate for focus in the immediate future. The second model introduces a way to
categorize software testing defects, enabling better understanding of what improvements might be
possible in the project’s testing lifecycle. Both of the models allow Software Testing Organizations
to benefit hindsight. This hindsight is gained by possessing data in relation to what the defect

T o p E ig h t S o u rc e s o f
S o ftw a r e T e s tin g D e f e c t s

P l a n / R e q m n t s .
2 2 %

P l a n / P a r a l l e l
1 2 %

D e s i g n / D a t a
2 0 %

E n v . / In i t .
5 %

E n v . / S e q .
1 1 %

E x e c . / A c t i o n
7 %

R e s u l t s / A r c h
1 1 %

D e s g / O u t c o m e
1 2 %

Jon T. Huber, jon_huber@hp.com
Software Quality Engineer (208)396-6551
Hewlett Packard Company Quality Week Europe’1998

 Hewlett Packard Company, 1998
Page 14

trends are for both Software Development and Testing. This hindsight can be turned into the
foresight necessary to target and improve Software Testing efforts and practices.

Acknowledgements
Thanks go to my immediate manager, Len Schroath, and my functional manager, Anne Vermilion.
Thanks for believing in the people that work for you.

I would like to thank my colleagues Susan Davis, Mike Dunlap, and Felix Silva for providing
valuable comments and suggestions in relation to the contents of this paper.

I would also like to thank Bob Grady, author of three books and numerous articles, for introducing
me to Software Failure and Root Cause Analysis. Without learning what I did from his experience
and expertise, this paper would not have been possible.

References
1. Grady, Robert B., “Practical Software Metrics for Project Management and Process

Improvement”. Prentice Hall, Inc., (1992), pp. 127-128, 223-227.
2. Boehm, B., “Software Engineering Economics”. Englewood Cliffs, NJ: Prentice-Hall, Inc.,

(1981), p. 40.
3. Beizer, B., “Software Testing Techniques”. Boris Beizer, (1990). Printed by Van Nostrand

Reinhold, NY. Software Testing Levels, as contained in (Figure 1-4) and the explanation
following the diagram, are based in part on definitions in various sections of “Software Testing
Techniques”.

4. Beizer, B., “Software Testing Techniques”. Boris Beizer, (1990). Printed by Van Nostrand
Reinhold, NY, pp. 475-476. The defect types as contained in (Figure 1-6) and the explanation
following the diagram are based in part on Bug Statistics and Taxonomy as defined in
“Software Testing Techniques”.

1

A simple model to predict how
many more failures will appear in

testing
A. Bertolino, E. Marchetti

• Introduction

• Bemar model

• Case studies

• Future work

Static models of software defects

Software metrics are used to estimate the number o f
defects in the software

General for m

y f x x xn= ⋅ ⋅ ⋅(, , ,)1 2

y is a defect metric, such as:
• number of changes required in the design
• number of e r ro r s
• number of program changes

 can be:
• product-re la ted
• process-related

x xn1,.....,

2

Metrics used (product-re lat e d)

• program size in lines of code (Ss)

• count of decisions (DE)

Total nu m b er of de f ects

Akiyama’s study

d S

d DE
tot s

tot

= +
= − +

4 86 0 018

1 14 0 2

. .

. .

Dynamic models of software defects

• The software system is considered as a “black box”

• Tests are developed using the operational profile

• The reliability is estimated without considering the complexity
of the program

• Test are developed for:
- increasing the reliability

- estimating the reliability

Well known examples are:

• Musa model for the time between failures data

• Yamada S-shaped model for the failures per time period data

• Goel/Okumoto model for both

3

Bemar model: motivation

• Sometime iden tifying an opera t ional profile is quite
difficult and expensive

• Operational testing is applied to the whole system, or
to big-size portions of it

• Operational testing can only start when the software
configuration and behavior are fairly stable

• In general, c o mmonly used debug test methods d o
not exhibit a regular trend in reliabili ty

• Often t i m es for a software producer modifying the t e s t
p rocess is not easy

Bemar model: purpose

• To predict the number of r e maining failures when:

◊ the ope r a tional profile can’t be ident if ied
◊ the test involved single modules or small pieces
◊ the test p r o cess is in the early phases, which a r e

funct ional and dete r m inistic
◊ the rate of dete c tion of failures remains quite stable

• To provide the software producer with a method that:
◊ can be applied wi thout any change to the t e s t

p rocess
◊ establishes the effect iveness of the t ests pe r fo rme d

so far
◊ establishes a stop cr i t erion for the t e s ting

4

Bemar model: application

• Collect the data during the test

• Establish a test interval (TI) length

• Group failure data into test intervals

• Apply the Bemar method

Cai’s method

Assumptions

• Modules are randomly divided in part 0 and part 1
• T h e re are N=N0+N1 r e maining defects in t h e

software:
– N0 in part 0
– N1 in part 1

Use

• Perform code review on a randomly chosen module
• Establish to which part (0 or 1) the module t h a t

shows a defect belongs
• Use the number of defects discovered to predict how

many defects should be det e cted during the phase of
dynamic test ing in each part (N0, N1)

5

Model rationale
Intui t ion

• The number of failures f can be estimated by:
f=n*t

- n the total number of tests exec u t ed
- t is the failure d e te c tion rate

Problems
• A distribution should be used instead of a known

failure d e t ec t ion rate
• The e m p i rical dis t r ibut ion for t can only be identif ied

after t e s ts are complet e d

Solution
• A Bayesian approach to derive the dis t r ibut ion of t

from the observation of test resu l ts.

Bayesian approach

• "subjective" interpretation of probabil i ty

• allows consistent deductions from probability
statements, and inference from observat ion

• given prior probabilities and new observation,
derives updated posterior probability:

posterior probability

P(conjecture | observation) =

P(observation|conjecture)
P(observation)

P(conjecture)

prior probability

likelihood

6

To predict the failures

A random variable T, that t akes values in [1..M], is
defined as the distance between two successive failed
test i n t ervals

First step

Predict the number of failed test intervals NFTI

Second step
Predict the number of expected failures NF

First step

• Establish a prior distribution for T

• Derive a posterior distribution for T (after a given
number k of test intervals):

P T i F
p i

i i

p j
j j

k

T

f k f

T

f k f

j

M
(|)

()

()

= =
⋅ 



 −





⋅ 





−





−

−

=
∑

1
1

1

1
1

1

1

• Predict the number of failed test intervals

N
NTI

E TFTI k
k

, []
=

7

Second step

• Derive the mean number of failures observe d
within a failed test interval: E k[F]

• Predict the number of failures that the product
will show at the end of the test

N N E FF k FTI k k, , []= ⋅

Sets of failure data

project 3

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time between successive FTIs

project 1

0
2
4
6
8

10
12
14
16
18
20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

time between successive FTIs

project 2

0

5
10

15
20

25
30

35
40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

time between successive FTIs

8

Model predictions

project 1

40
45
50
55
60
65
70
75
80
85
90
95

100
105

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

k

project 2

15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115

5 15 25 35 45 55 65 75 85 95 105 115 125 135
k

N
F

project 3

20

30

40

50

60

70

80

90

100

110

120

130

140

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175
k

N
F

Comparison with a “classical” approach

project 3

20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175
k

project 2

15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115

5 15 25 35 45 55 65 75 85 95 105 115 125 135
k

project 1

40

45

50

55

60

65

70

75

80

85

90

95

100

105

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100k

Bemar

ClassicalX

9

Relative error

project 1

- 1
- 0 . 9
- 0 . 8
- 0 . 7
- 0 . 6
- 0 . 5
- 0 . 4
- 0 . 3
- 0 . 2
- 0 . 1

0
0 .1

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

test interval number

project 2

- 0 . 1 5
- 0 . 1

- 0 . 0 5
0

0.05
0.1

0 .15
0.2

0 .25
0.3

0 .35
0.4

0 .45
0.5

0 .55
0.6

0 .65
0.7

0 .75

1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 1 0
5

1 1
5

1 2
5

1 3
5

Test interval number

project 3

- 0 . 2

-0 .1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 0 3 0 5 0 7 0 9 0 110 130 150 170

test interval number

Application to a set of operational data

project 4

20

22

24
26

28

30

32
34

36

38

40

42
44

46

48

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185
k

project 4

- 0 . 1

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

1 0 3 0 5 0 7 0 9 0 1 1 0 1 3 0 1 5 0 1 7 0 1 9 0

test interval number

Bemar

ClassicalX

project 4

20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185
k

10

Application to a published set of data

operational data

7 0
7 5
8 0
8 5
9 0
9 5

100
105
110
115
120
125
130
135
140
145
150

5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 105 115 125 135 145 155 165k

relative error

-0 .55

-0 .45

-0 .35

-0 .25

-0 .15

-0 .05

0.05

0.15

5 2 5 4 5 6 5 8 5 105 125 145 165

test interval number

operational data

7 0

8 0

9 0

100

110

120

130

140

150

160

170

5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 105 115 125 135 145 155 165
k

Bemar

ClassicalX

Future work

• Find more efficacious ways to express prior

knowledge

• Quantify in advance the goodness of Bemar

predict ion

• Validate the Bemar method with more data

• Use of Bemar in combination with a reliability

growth mode l

1

A simple model to predict
how many more failures will appear in testing

A. Bertolino, E. Marchetti

Istituto di Elaborazione della Informazione, CNR, Pisa, Italy

bertolino@iei.pi.cnr.it, e.marchetti@iei.pi.cnr.it

Abstract

This paper deals with dynamic models to evaluate how many more failures will be observed in

future tests, based on the failures observed so far. The assessment of reliability through testing is

now one of the most mature fields in software engineering. There exist tens of reliability growth

models, and several tools for applying them. The major assumptions of these models are that test

cases are randomly drawn from the operational profile, and that as defects are found and

removed, reliability will exhibit an increasing trend. Both assumptions are hardly satisfied in the

first stages of the testing process or for the testing of small modules. Besides, there are not

reasons why commonly used test methods at this time, such as specification-based testing or

branch coverage, should exhibit a regular trend in reliability.

These are the motivations for the work reported here. A dynamic model is introduced that can be

applied to predict the number of remaining failures in early test phases. It is called the Bemar

model. The Bemar model is quite general and makes no assumption on as to how tests are

selected. The most attractive feature is indeed the simplicity of the model: testers have just to

collect the detection rates of failures, i.e., the intervals between subsequent failures. No

estimation of parameters of the product or of the development process is required.

Keywords: Bayesian approach, defect count models, functional testing, number of expected

failures

1. Introduction

In spite of great advances in the software engineering field since the complaints about a software

crisis began to spread in the mid-seventies, the state of practice in software development is still

such that producing defect-free code remains wishful thinking. On the contrary, coping with

software failures, during development and after release, is among the hardest tasks of managers,

while testing, debugging and maintenance activities still consume the largest part of development

effort and resources. For these reasons, methods to estimate the defect contents of software are of

great interest for managers and testers.

Researchers have devoted much attention to this problem and have proposed many models to

quantify faults and failures. It is important to distinguish between two different approaches that

have been taken. One approach consists of looking at properties of the present or past products,

and/or at parameters of the development process and then, using these observations, trying to

make a guess of the total number of defects, or faults, in the current product. A different approach

2

is instead to observe defects, or, more properly, failures, as they show up in testing. Based on

the observed behavior, one then uses statistical inference procedures to predict the number or the

time of failures expected in future tests or in operation.

Depending on which of the two approaches is followed, defect counting models have been

categorized as static or dynamic, respectively [Conte et al., 1986, Chapter 7]. However, the fact

that static and dynamic models assess two different entities, namely defects in the code the first

and failures to be observed the second, must be underscored.

Static models are very attractive to managers, because they provide "numbers", which the

managers are eager of, very early in advance in comparison with dynamic models. The latter can

only be used late in the life cycle, i.e., in the testing phases, when it may be too late to

efficaciously re-direct development efforts. In fact, static defect models are used to identify more

risky modules and consequently re-allocate testing resources or modify design. In addition, static

models claim to estimate the total number of defects. As by testing we find and fix failures, then,

static models would provide a prediction on how many defects are left in the code, which may

seem a very attractive measure at first glance.

On the other hand, a defect can be more or less disturbing depending on whether, and how much

frequently, it will eventually show up to the final user (and depending of course on the

seriousness of its consequences). Indeed, in many or in few, some defects will inevitably escape

testing and debugging. So, in the end, the real important measure to decide whether a product can

be released is software reliability; i.e., the number of failures, and not of remaining defects, must

be estimated. Until they do not cause failures, remaining defects do not trouble neither customers

nor producers.

The right position is that static and dynamic models are both useful, but for different objectives.

In the front-end phases of the life cycle, managers should use static models to apportion risk

among modules and to allocate development time and resources. In the final stages of

development, instead, they should use dynamic models in order to evaluate how much disturbing

are the defects that are inevitably left, and to decide whether the product is ready for delivery.

This paper deals with dynamic models to evaluate how many more failures are expected to be

observed in future tests, based on the failures observed so far. The assessment of reliability

through testing is now one of the most mature fields in software engineering [Lyu, 1996]. There

now exist tens of reliability growth models, and several tools for applying them, in combination

with rather sophisticated techniques to evaluate the accuracy of the measures given by the models,

and to select the most appropriate model for a specific data set.

Existing models, though, all share the underlying assumption that the test cases are randomly

drawn from the operational profile, and that as defects are found and removed, reliability will

exhibit an increasing trend. Both assumptions are hardly satisfied in the first stages of the testing

process. Industrial test processes commonly undergo several subsequent steps, identified with

differing terms, from unit to subsystem, and to system testing. Operational testing can only start

when the software configuration and behavior are fairly stable, and is applied to the whole

system, or to big-size portions of it. For the testing of single modules, or of small subsystems,

3

identifying an operational profile is quite difficult and expensive, and perhaps not sensible at all.

Besides, there are not reasons why commonly used test methods at this time, e.g., branch

coverage, should consistently exhibit a regular growth in reliability.

These are the underlying motivations for the work reported here. We introduce a dynamic model,

called the Bemar model, that can be applied to predict the expected number of remaining failures

in early test phases. The Bemar model is quite general and makes no assumption on as to how test

are selected. The most attractive feature is indeed the simplicity of the model. It only requires to

collect the intervals of time between subsequent failures. No estimation of parameters of the

product or of the development process is needed.

In the next section the underlying intuitive model is described; the mathematical formulation is

provided in Section 3. The model has been applied to some real world data; the results are

presented in Section 4. Although the data available are too poor to validate the model, these first

results look promising. This work is still in a preliminary phase; we briefly outline future

directions in the Conclusions.

2. Model Rationale

In measurement, one tries to map observations of the empirical world to mathematical entities that

can be formally manipulated. Models are defined trying to capture one's intuition and

understanding of the real world; indeed, "intuition is the starting point for all measurement"

[Fenton and Pfleeger,1997]. In this section we present the intuition underlying the Bemar model.

The stimulus for this work came from the analysis of the test results collected over several

projects by a software producer, namely Ericsson Telecomunicazioni S.p.A. in Rome. This

producer routinely logs for each product the failures observed since early test phases until beta

testing, and is interested in finding more effective ways to use these data for project management

and product control. So far, these data are used to derive measures of fault density, that is the

ratio between the cumulative number of failures observed in a given time period and the product

size, expressed in lines of code.

With regard to the results from beta testing, which is operational, standard approaches for

reliability estimates and predictions can be applied. In [Bertolino et al., 1998], we describe a first

case study conducted at the same producer, aimed at experiencing the use of software reliability

engineering techniques. But, reliability growth models could not be applied to the early test

phases, for the reasons we explained in the introduction.

It must be made clear beforehand that it is not the case that this producer is looking for new

testing methods to be applied that would facilitate failure predictions (as could be for instance the

case if fault seeding approaches were applied). On the contrary, this producer has a well

established and formalized test process, and is looking for efficient metrics that can be applied to

the data collected. It is plausible to assume that to a certain extent this proviso would be the same

for many other producers.

We surveyed the literature in search for a dynamic model that could be applied to the test outputs

from the early test phases; reliability growth models could not be used, as earlier explained. An

4

interesting finding of this survey was [Cai, 98]. Cai has proposed a model to predict the

remaining number of defects in the code based on the failures that are observed in testing, which

is in a sense a hybrid approach between static and dynamic models. Since the assumptions

underlying Cai's model reasonably held for the projects of this producer, the model was applied

to the data available, in order to see if the estimation of defects provided by the model was

conclusive for our situation, but with negative results.

We investigated on the reasons why Cai's method, which reportedly worked well on his data, did

not function on our data. One of the findings was that Cai's model does not consider the time

occurrence of failures. Intuitively, Cai's model is similar to fault seeding methods, but instead of

considering the proportion between seeded faults and unknown faults, Cai divides the software

under test into two parts, and uses the relative occurrence of (real) faults in either parts. The

model is thus only concerned with the number of faults and possibly with how these are

distributed among the modules of a system, but not with the time of their detection.

In our opinion, the rate of failure discovery is a fundamental parameter, and should be included in

the model. In simple words, the scenario we have in mind is that n failures are detected after d

days of testing, and that we want to estimate how many more failures we expect to find in the

next d' days, if we continue to test in the same way. We reasonably think that the prediction

should be different if the failures are uniformly distributed over the d days, or if instead all the

failures are, say, discovered in the first day of testing, and then the remaining (d - 1) days exhibit

no failures.

We have consequently defined a new dynamic model taking into account the time distribution of

failure discoveries. The intuition behind this new model is very simple: assuming that we can

know a priori, or somehow estimate, the rate of failure findings over the sequence of executed

tests, say t, then if by n we denote the total number of tests to be executed, quite obviously the

expected number of failures f would be estimated by:

(1) f= n*t

Of course this formula is rather naive and cannot be used in practice in this simplistic form,

because the rate of failure detection in testing can never be established with certainty; it is rather a

random variable, for which a distribution should be identified. For each new product under test,

the empirical distribution of the failure detection rate can only be precisely drawn only after the

testing is completed. However, if we could assume that, after having observed the test results for

some time it stabilizes (i.e., it can be used as an approximation of the real, so far unknown

distribution, to predict future behavior), then a formula generalizing Eq. (1) could be used. This

is the underlying intuition of the Bemar model. To derive the distribution of the failure detection

rate from the observation of test results, Bemar uses a Bayesian approach. This is described in the

next section.

According to its justification, we expect that Bemar performs better when the rate of detection of

failures in testing remains more or less stable. This is in contrast with the assumption underlying

reliability growth models. In fact, the Bemar model should be applied to early test phases, and in

general to all those situations in which failures are found with some regularity, and remains valid

5

only for limited periods, i.e., till the point in which the rate of occurrence of failures starts to

decrease as an effect of having removed a high number of faults.

In other words, the Bemar model performs well as long as reliability growth models cannot yet be

applied. It is foreseeable that the Bemar model and a reliability growth model can be used in

complementary way. How these could be combined will be object of future investigation.

3. Description of the Bemar Model

Before presenting the definitions and formulas adopted in the model, the typology of data

available is described.

The software producer provided us with sets of failure data collected over several projects during

the phase of subsystem testing. The test cases are deterministically chosen by examining the

functional specifications and altogether before test execution starts (which means that the number

of tests to be executed is decided in advance). The tests are not executed continuously, but only

during the working days (i.e., five days in a week) and 8 hours per day. For each project, the

information registered consists of the start and end dates of the test phase, and of the calendar day

(but not the day time) of discovery of each failure. Test execution (CPU) times were not

recorded.

Based on the coarse granularity of available data, we decided to group failure data into test

intervals (TIs). A TI could be as long as a day, a week, or any other length (for instance

measured in seconds), depending on the global duration of the testing, the precision of the data

available and the amount of observed failures.

A TI in which at least a failure is observed is called a failed test interval (FTI), otherwise it is said

a successful TI. Note that, anyhow small a test interval is chosen, until this remains larger than a

single test there will always be a chance to observe more than one failure within a failed test

interval. Hence, we predict the expected number of failures in two steps: first we predict NFTI,

i.e., the number of FTIs is estimated. Then, from this number, we derive the number of failures

NF .

In the first step, to estimate NFTI, we define the distance between two subsequent FTIs as a

random variable T, that can take discrete values within an interval [1, M] (where M is a maximum

fixed value). Precisely, for each i within [1,M], the associated probability mass function (pmf),

pT(i) = P(T=i), gives the probability that the next failure will be observed after i TIs (i.e., i -1

successful TIs are observed and then the ith TI is a FTI).

Denoting by NTI the total number of test intervals to be performed, and with Ε Τ[] ()= ⋅
=
∑ p i iT
i

M

1

, it

can be shown that the following formula holds1:

(2) NTI NFTI= ⋅ Ε Τ[]

1 Actually, this formula holds precisely if it can be assumed that the last test interval is a failed one. Otherwise, the
left-hand side should be decreased by the number of test intervals occurring between the last FTI and the last test
interval. This adjustment will be neglected in the paper.

6

Since for each project the number of test intervals can be easily derived (remember that the

functional test cases are preselected in advance), Equation (2) above can be solved for NFTI,

yielding:

(3)
N

NTI
FTI =

Ε Τ[]

We need now a procedure to derive E[T]. Looking at the data available, we see that the failures

are variously distributed over the whole test period and it is not generally the case that towards the

end of the functional test period less failures are observed than at the beginning (as it is expected

in operational testing). In particular, the data do not show any consistent reliability increasing

trend, appearance which was confirmed by the Laplace test [Kanoun et al., 1997] conducted over

all the sets of data. In Figure 1, we show for instance the failure data relative to one of the

products analyzed.

Figure 1: Failure data for a product

To develop a prediction procedure which is sensible, and correlated with the behavior of a given

product under test, it is desirable to use the test results collected as functional test proceeds to

adjust an initial estimate of the pmf. Hence, we chose to adopt a Bayesian approach.

In the Bayesian framework, probabilities are meant to describe an observer subjective knowledge

of yet-unknown events. This knowledge evolves as events are observed. In this context, the pmf

of T pT(i) is taken as the prior knowledge about the behavior of a product under test. I.e., pT(i) is

taken to model a tester's subjective belief about the rate of failure detection before some evidence

(the test results) about the product under test is observed. During the performance of the

functional testing, the realization of a sequence of test intervals with and without failures is

observed. Thanks to this evidence, the tester's knowledge about this product evolves and a new
distribution for the pmf of T, called the posterior distribution, can be derived. Denoting by Fk the

sequence of observed outcomes (failed/successful) for the first k TIs, the posterior distribution
p'T,k(i) then gives P(Τ=i | Fk), i.e., it is the update of pT(i) after having observed the sequence

Fk. Applying Bayes' formula we have:

project 1

0

1

2

3

4

5

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100
Test intervals

7

(4) p i P T i F
P T i P F T i

P F T j P T j
T k k

prior k

k prior
j

M
'

, () ((|)
() (|)

(|) ()
= = =

= =

= =
=

∑
1

in which the term P(Fk|Τ=i) is usually called a likelihood function. To derive it, we can consider

that, if T=i, then the probability of observing a failure in the next test interval is 1/i, i.e.:

(5) P(F1|T = i) = {
1
i

 if F1 is failed

(1 − 1
i
) if F1 is successful

Substituting this in formula 4, and iterating the same reasoning also to the subsequent test

intervals, we finally obtain2:

(6) p i
p i

i i

P j
j j

T k

T

f k f

T

f k f

j

M

'
, ()

()

()

=
⋅ 



 −





⋅ 





−





−

−

=
∑

1
1

1

1
1

1

1

which gives the posterior pmf for the random variable T, after observing k test intervals, out of

which f were failed.

In general, deriving a prior distribution for the probability of interest is a difficult task, which also

generates some perplexity towards the usefulness of Bayesian inference methods. In our case, the

form of pT(i) can be derived on the basis of data available from similar products. In general, some

suitable representation of ignorance is often adopted, like for instance the uniform distribution,

though actually absolute ignorance can never be assumed.

By using the posterior pmf provided by formula (6) to derive E[T], by (3) we can then derive

NFTI,k, i.e., the number of FTIs expected after NTI test intervals, using the test information

collected during the first k test intervals.

From NFTI,k the total number of failures NF needs now to be estimated. This clearly depends on

how many failures on average are observed within a FTI. We can again define a random variable

F to represents the number of failures observed within a FTI, and then derive NF from NFTI, with

N N E FF FTI= ⋅ [].

We derive an empirical pmf for F by considering the results from the first k TIs. In particular, by

analyzing the sets of failure data available, a maximum number of failures per FTI, MF, can be

fixed. From the distribution of the number of failures within a failed test interval, we are able to

calculate the expectation E F P F i ik k
i

MF

[] ()= = ⋅
=
∑

1

.

2In the generalization of this formula from the case k=1 to larger values of k, we have in reality used some relaxed
assumptions, which could raise some objection to its validity from a purely theoretical viewpoint. In future work
we will fix these problems. However, on the set of data available, this formula performed better than other
theoretically stronger models.

8

Therefore, after having observed k TIs, the number of failures that a product will show at the end

of the functional test is:
(7) N N E FF k FTI k k, , []= ⋅

The formulas (3) and (7) are to be used incrementally during functional test, i.e., considering

each time a greater value for k, and adjusting the pmfs involved correspondingly. In this way, the

prediction about the total number of failures for a product as testing proceeds will be more and

more precise.

4. Application

The Bemar method has been experimented on the failure data relative to the functional test phase

of several products; we have also tried it on some operational test results (for which we expect the

model is not working as well as for functional testing). We briefly present the results in sections

4.1 and 4.2, respectively.

4.1 Functional testing

Before applying the Bemar model to the data relative to functional testing, we investigated ways

to derive a suitable prior distribution for T.

About these data we knew that the products performed similar functionalities, they had been

tested by the same producer and with the same methodology. It was plausible to expect that the

test results could exhibit a similar behavior, which would be a useful fact to derive a prior pmf for

T.

More in general, it is probable that a software producer has collected similar information about the

functional tests developed in the past. In the case that the products exhibit a similar behavior, the

information collected (in particular the mean and the variance) can be useful to establish a proper

prior pmf of T for the next product that the producer will test.

First of all, analyzing the failure data we noticed that the distance between subsequent FTIs was

not greater than 20 and that the maximum number of failures per FTI was 6. Therefore we

considered that the variable T could take discrete values within the interval [1,20] and we put

MF=6.

Then for each project we derived a histogram of the time distance (measured in elapsed test

intervals) occurring between two subsequent FTIs. In Figure 2 we report the histogram

corresponding to the product shown in figure 1. Analyzing the histograms for this and all the

other sets of data available, a certain regularity in the failure behavior under functional testing was

in fact noted. This observation would sustain the hypothesis that a general distribution for the

distance between two successive FTIs for the functional test process of this producer can be

identified.

9

Figure 2: Histogram for the random variable T

In particular, after some analysis, we decided to approximate the prior pmf of T with a normal

truncated distribution. We derived the normal curve with mean and variance equal to the sample

mean and variance, and truncated it between 1 and 20. Since the data we have are grouped within

intervals, we then approximated this continuous distribution with a discrete one.

The approach we followed to verify the model was the following. Considering the whole series

of test outputs of a product, an intermediate test interval TIk is taken as the current point. From

this point, the cumulative number of failures that will be observed for the whole testing period is

estimated applying the Bemar model. For the prediction, therefore, we use the failure data

collected from the beginning of the functional test up to the selected point TIk.

This computation is repeated for progressively longer test intervals (i.e., for greater values of k),

for instance after the first 5 TIs, after the first 10 TIs, 15, and so on. In fact, since a Bayesian

inference procedure is used, the prediction is progressively updated considering each time a

greater amount of collected data.

In Figure 3 the results obtained applying the Bemar method to some of the sets of data available

are shown. In these figures on the horizontal axis we put the number of test intervals, k ,

considered to make the prediction, and on the vertical axis the cumulative number of failures, NF,

predicted at the end of functional test. The dotted line represents the cumulative number of failures

predicted at the end of the functional test using as prior pmf of T the normal truncated

distribution. The effect of improvement of the prediction as more test outputs are observed is

clearly visible. To compare the results predicted with the real ones, in the figures we drew the

actual number of failures counted at the end of the testing (the horizontal line). The strip around

the horizontal line marked with vertical segments signs the zone where the relative error of the

estimation is below 10%.

project 1

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

distance between subsequent FTIs

n
u

m
b

e
r

o
f

F
T

Is

10

(a)

 (b)

 (c)

Figure 3: Predictions with the Bemar model

In general, for all the case studies considered, we could observe that the model starts with very

high errors, but after about a half of the test period, the prediction becomes quite good. We are

currently studying other ways to derive a prior pmf for a specific producer from the test result

observed in earlier projects. We expect that a prior pmf which fits better to the test process under

investigation should converge more quickly to a valid prediction.

project 1

40

45

50
55
60

65

70
75
80

85

90
95

100
105

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100k

project 2

15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115

5 15 25 35 45 55 65 75 85 95 105 115 125 135k

project 3

20
30
40

50
60
70
80

90
100
110
120

130
140

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175
k

N
F

11

4.2 Application to operational test data

We are interested in discovering if and how the Bemar model can be applied as a complementary

approach to reliability growth models or in those situations in which the failure data relative to

operational testing do not show a reliability increasing trend. For this reason, we also tried our

model on some operational test results collected by the same producer during beta testing.

The problem in applying the Bemar model to this kind of data was that operational test results

collected previously on similar projects were not available. Therefore we could not apply the

criteria described in the previous section for the selection of a prior pmf of T. We hence decided

to adopt a uniform prior distribution.

For the rest, the approach to apply the Bemar model to the data collected during the operational

phase is the same of that described in Section 4.1: we took an intermediate test interval k as the

current point of the operational test, and from this point we predicted the expected final number of

failures. This computation has been repeated taking progressively longer periods. We report the

results in the figure below.

Figure 4: Prediction of the Bemar model for beta testing

The performance of the model becomes acceptable after 110 TIs, over a complessive period of

180 TIs. We must add that attempts to apply standard reliability growth models to these same data

were not successful; the problem was that the reliability did not regularly increase, as required by

those models.

On the contrary, we expect a worse performance of Bemar over data that exhibit consistent

reliability growth. We have tried the model on a set of data taken from the literature (Abdel-

Ghaly, 1986). These data are reported as execution times in seconds between successive failures.

To apply our model, we have grouped the failure data into test intervals of 600 seconds.

project 4

20
22

24
26
28

30

32
34

36

38
40

42
44
46

48

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185
k

N
F

12

Figure 5: Prediction of the Bemar model for operational testing

5. Conclusions

This work is still in a preliminary stage. We are investigating dynamic models for monitoring and

controlling the test process based on observed test results. In this paper we have briefly presented

the motivations, the formulation and a few applications of a new model that can be applied to

failure data to predict the expected number of failures in future tests. The model is still

incomplete, and needs further validation on more data. In particular, the formula used to make the

prediction needs to be augmented with some method to estimate in advance the error bound. For

the time being, we have evaluated the relative error against known results, and the model

performance looks encouraging.

This model assumes that the detected failures are distributed over the whole test period, and that

reliability does not exhibit a regular trend. This could be the case for the early test phases, when

many failures still remain, and standard reliability growth models cannot yet be applied. In this

sense, we believe that this model works in complementary way with reliability growth models,

and in fact we intend to investigate an approach to use both models in combination.

Acknowledgements

We thank Emilia Peciola and Gaetano Lombardi of the Research&Development Division of

Ericsson Telecomunicazioni S.p.A. in Rome, for providing us with valuable data and

information, as well as for useful discussions and interest during the development of this work.

References

A. Abdel-Ghaly, P. Y. Chan, and B. Littlewood, Evaluation of Competing Software Reliability
Predictions, IEEE Tr. On Software Eng., Vol. SE-12, No. 9, Sept. 1996, pp. 950-967.

operational data

7 0
7 5
8 0
8 5
9 0
9 5

100
105
110
115
120
125
130
135
140
145
150

5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 105 115 125 135 145 155 165k

N
F

13

A. Bertolino, G. Lombardi, E. Marchetti, E. Peciola, “Introducing a Reliability Measurement
Program into an Industrial Context”, Proc. of ESCOM-ENCRESS 98, Rome, May 27-29 1998,
pp. 277-286.

K. Y. Cai “On Estimating the Number of Defects Remaining in the Software”, J. System
Software, Vol. 40, No. 2, pp. 93-114, February 1998.

S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Software Engineering Metrics and Models, The
Benjamin/Cummings Publishing Co., Menlo Park, Ca, 1986.

N. E. Fenton and S. L. Pfleeger, Software Metrics A Rigorous and Practical Approach, 2nd Ed.,
Int. Thomson Comp. Press, 1997.

K. Kanoun, M. Kaaniche, and J. P. Laprie, “Qualitative and Quantitative Reliability
Assessment”, IEEE Software, Vol. 14, No. 2, Mach 1997.

M. R. Lyu (Ed.), Handbook of Software Reliability Engineering, McGraw-Hill, 1996.

5516 Lonas Rd, Suite 110, Knoxville, TN 37909, USA
http://www.q-labs.com/

Email: Stacy.Prowell@Q-Labs.com

1 (3 7)

Sequence-Based Specification and Statistical Testing

Q-Labs
®

Impact of
Sequence-Based Specification on

Statistical Software Testing

Stacy Prowell

2 (3 7)

Sequence-Based Specification and Statistical Testing

Primary Benefits

Sequence-based specification contributes to the
understanding of:

• Precise test boundary

• Complete input domain

• Valid input sequencing

• Intended software function

Sequence-based specification also helps enforce an external,
user-centered view of software function.

3 (3 7)

Sequence-Based Specification and Statistical Testing

Sequence-Based Specification

Sequence-based specification is a black box specification
method.

The specification gives an external, implementation-
independent “user’s view” of software function.

S RSystem

4 (3 7)

Sequence-Based Specification and Statistical Testing

Primary Techniques

Sequence
Enumeration

Sequence
Abstraction

(Explore Behavior) (Control/Focus Work)

5 (3 7)

Sequence-Based Specification and Statistical Testing

Sequence-Based Specification Process

Specify System Boundary

Sequence Abstraction

Black/State Specification

Sequence Enumeration

6 (3 7)

Sequence-Based Specification and Statistical Testing

Specify Software Interfaces

camera image
capture

database
manager

user
console

database

system

environment

image
processing

control

7 (3 7)

Sequence-Based Specification and Statistical Testing

Black Box Specification

Issues

1 Software need not generate a response for every stimulus.
clock pulses

2 Some sequences may violate the definition of the system or
environment, or may violate known design assumptions.
stimuli before invocation
events from deactivated hardware

Solution

 contains two special values: and , the null response and
illegal, respectively. These two values allow the black box to be
a total function.

R 0 ω

8 (3 7)

Sequence-Based Specification and Statistical Testing

Requirements Traceability

The correctness of the black box function must be shown
through requirements traceability.

Requirements

Specification

Software

R3.1.4
R3.1.5
R3.1.6

A1.3

A1.4

R3.1.4
R3.1.6

Derived Requirement

B7.4.3 A1.3
A1.4

9 (3 7)

Sequence-Based Specification and Statistical Testing

Sequence Enumeration

Basic Idea: Enumerate stimulus histories in order by length. For
each history, give the response.

T t
F
L
TT
TF f
TL r
FT
FF
FL
LT
LF
LL

λ 0

ω
ω
ω

ω
ω
ω
ω
ω
ω

1 0 (3 7)

Sequence-Based Specification and Statistical Testing

Illegal Prefix

Whenever a sequence has an illegal prefix, the sequence is
illegal. Do not expand illegal sequences in the enumeration.

T t
F
L
TT
TF f
TL r
TFT
TFF f
TFL a
TLT t
TLF
TLL

λ 0

ω
ω
ω

ω

ω
ω

1 1 (3 7)

Sequence-Based Specification and Statistical Testing

Equivalent Sequences

Note that the sequences and TL both leave the plane in the
initial condition. Thus the future behavior of the system is
independent of which of these sequences occurred.

We say two sequences and are equivalent if and only if,
when extended by non-empty histories, the responses always
match.

 if and only if

Basic Idea: When enumerating, note equivalences to previous
sequences in the enumeration, as with . We say is
reduced to .

Since the sequences agree on future behavior, only extend
one. Do not extend sequences which have been reduced.

λ

u v

u v≡ w S *∈()∀ w λ≠ BB uw() BB vw()=⇒,

λ TL≡ TL
λ

1 2 (3 7)

Sequence-Based Specification and Statistical Testing

Complete Enumeration

Noting reductions in the enumeration, we obtain the following.

There are no sequences left to extend; the enumeration is
complete, and gives a response for any sequence in .

T t
F
L
TT
TF f
TL r /
TFT
TFF f /
TFL a /

λ 0

ω
ω
ω

λ≡
ω

TF≡
λ≡

S *

1 3 (3 7)

Sequence-Based Specification and Statistical Testing

Example Enumeration

Sequence Response Equivalence Trace Notes

IN MG HR IN INA IN 3.5

IN MG HR HR ERR IN MG HR 4.3.5,
6.1, 6.4

4.3.5
If the SOS receives a
command (other than
IN) from the GCS during
processing of a previous
command, a protocol
error shall be generated
and processing of the
previous command
shall continue.

IN MG HR OTE HF IN MG HR ASN 4.3.3,
4.3.7

4.3.7
The outcome of an HT
shall not affect
subsequent
functionality.

1 4 (3 7)

Sequence-Based Specification and Statistical Testing

Canonical Sequences

One is only allowed to reduce to previous histories in the
enumeration. Every sequence in an enumeration will be
equivalent to an unreduced sequence.

There will be one unreduced sequence, called the canonical
sequence, for each equivalence class of the equivalence
relation discovered on .S *

1 5 (3 7)

Sequence-Based Specification and Statistical Testing

Abstraction

Basic Idea: Abstractions may be used to omit or hide details
about histories, resulting in shorter histories.

Formally, a sequence abstraction is a mapping from
(atomic sequences) to (abstract sequences), such that

• sequences get no longer ()

• the stimulus ordering is preserved (is a prefix of)

φ X *

Y *

φ u() u≤

φ u() φ uv()

1 6 (3 7)

Sequence-Based Specification and Statistical Testing

Example

Two stimuli:

R(n) = User requests a connection
A(n) = Connection request accepted

A system n is “connected” if there has been a request followed
by an accept.

1 7 (3 7)

Sequence-Based Specification and Statistical Testing

Example

Define an abstract stimulus C(n) formally as follows.

The atomic sequence

is mapped to abstract sequence

.

pC λ n,() false=

pC ux n,()
true if x A n() and pC u n,() false and==

u contains an R n()
=

pC ux n,() false otherwise=

R 7() R 5() A 3() A(5) R 4() R 9() A 4() A 7()

C 5() C 4() C 7()

1 8 (3 7)

Sequence-Based Specification and Statistical Testing

Working with Abstractions

Basic Idea: Enumerate with the abstract stimuli.

One enumerates to discover system behavior. Thus, one may
not know enough about an abstraction to specify it formally.

In this case, give an initial, informal definition of the abstraction
and enumerate using the abstract stimuli.

Based on the behavior discovered, create a formal definition of
the abstraction.

1 9 (3 7)

Sequence-Based Specification and Statistical Testing

Writing the Specification and
Transformation to State Machine

A state machine can be generated from the enumerations,
specification functions, and abstraction definitions—the
enumeration state machine.

The enumeration state machine gives intended software
response for a known state and input.

States are distinguished by future behavior (responses).

2 0 (3 7)

Sequence-Based Specification and Statistical Testing

Statistical Software Testing

Statistical software testing is the application of statistical
science to software testing problems.

Statistical testing must be a well-defined procedure, performed
under specified operating conditions.

All Tests

Tests to Execute

Statistical
Inference

Statistical
Sampling

2 1 (3 7)

Sequence-Based Specification and Statistical Testing

Statistical Software Testing

Statistical software testing is primarily a black box testing
method.

A usage specification gives an external, “user’s view” of
software use.

S System Under
Test

2 2 (3 7)

Sequence-Based Specification and Statistical Testing

Primary Techniques

Usage
Modeling Abstraction

(Define Use) (Control/Focus Work)

Stratification
Planning

(Budgeting/Planning)

2 3 (3 7)

Sequence-Based Specification and Statistical Testing

Statistical Software Testing Process
Stratification

Planning*

Inference

AbstractionBuild Usage
Model(s)*

Identify Test
Boundary*

Analysis

Test Generation

Test Execution*

2 4 (3 7)

Sequence-Based Specification and Statistical Testing

Statistical Software Testing

Implementation knowledge may lead to bias in testing.

Focus on states of use, not software states.

External view in testing is aided by external specification.

Requirements traceability of specification supports

• Evaluating requirements coverage for testing

• Evaluating testability of requirements

• Generating non-random tests for particular requirements

2 5 (3 7)

Sequence-Based Specification and Statistical Testing

Stratification Planning

A stratum is a combination of user, use, and environment.

• Definition of use must include initial and final states.

• Final states must be verifiable.

Users

Uses

Environments

2 6 (3 7)

Sequence-Based Specification and Statistical Testing

Stratification Planning

Initial state: software uninvoked
Final state: software terminated

What are all the conditions under which the software should
terminate? These conditions are given by the specification.

All
Possible

Tests

Stratification

Searching
Data
Entry Admin

Experienced
User

Novice
User

20% 30%

20%
20%

10%

2 7 (3 7)

Sequence-Based Specification and Statistical Testing

Stratification Planning

The complete and consistent nature of the specification reveals
classes of use which might otherwise be missed or insufficiently
tested:

• Error conditions

• Critical use

• Unexpected use

This analysis is based on user-perceived function and risk.

2 8 (3 7)

Sequence-Based Specification and Statistical Testing

Identify Test Boundary

Identify and understand all interfaces to be cut during testing.

• Drive stimuli

• Monitor responses

Controlled Test
Inputs

Monitored
Responses

Test
BoundarySystem

Under
Test

2 9 (3 7)

Sequence-Based Specification and Statistical Testing

Identify Test Boundary

Sequence-based specification’s deterministic model helps
avoid:

• Undocumented inputs

• Misunderstood interfaces

while providing:

• Planning for test drivers / monitors

• Evaluation of interface testability

• Evaluation of requirements testability

3 0 (3 7)

Sequence-Based Specification and Statistical Testing

Usage Modeling

Expected use can be modeled as a finite-state, discrete
parameter Markov chain.

• Whittaker and Thomason (1993) proposed the Markov chain
as the model for software use.

• Walton (1995) explored optimization of model probabilities
given constraints.

• Gutjahr (1997) explored acceleration of testing by modifying
the chain probabilities and weighting the results.

3 1 (3 7)

Sequence-Based Specification and Statistical Testing

Usage Modeling

No File

No Data

File Open

Session End

New (0.2)

Open (0.8)

Enter Data (0.9)

Enter Data (0.3)
Search (0.6)

Close (0.1)

Close (0.1)

3 2 (3 7)

Sequence-Based Specification and Statistical Testing

Usage Modeling

A usage model is essentially a state machine whose transitions
have an associated probability distribution.

States are distinguishable by future use (stimuli)

Different states from the specification state machine typically
correspond to different states of use.

The specification state machine may be used as the “first cut”
of a usage model. Testers proceed by:

• Combining states to reduce model size

• Splitting states to reflect pure usage factors

This changes the focus from constructing the model to refining
the model.

3 3 (3 7)

Sequence-Based Specification and Statistical Testing

Usage Modeling

Structure (Behavior)
Component

Known Usage
Information

Testing Goals
or Constraints

Model Probabilities

3 4 (3 7)

Sequence-Based Specification and Statistical Testing

Test Execution

Usage Model

Test Case
System Under Test

Test Oracle

Monitored
Outputs

Pass Fail

Generate

Execute

3 5 (3 7)

Sequence-Based Specification and Statistical Testing

Test Oracle

The specification state machine can be used as the test oracle.

The derivation of the usage model from the specification state
machine enforces the correspondence.

Two issues:

• Abstraction: The oracle may not compute all abstractions.

• Boundary: The test boundary may differ from the system
boundary; some unavoidable non-determinism may be
introduced.

3 6 (3 7)

Sequence-Based Specification and Statistical Testing

Summary

The use of sequence-based specification has several impacts
on a statistical software testing phase.

Direct benefits:

• Communication reduced by precise specification

• Requirements traceability simplifies test case crafting

• Precise system boundary reduces start-up time

• Reuse of specification state machine reduces model
construction effort

• Reuse of specification state machine as test oracle reduces
cost of automated testing

3 7 (3 7)

Sequence-Based Specification and Statistical Testing

Summary

Indirect benefits:

• External focus reduces implementation bias

• Strict definition of interfaces improves testability analysis

• System understanding is improved for all practitioners

IMPACT OF SEQUENCE-BASED SOFTWARE SPECIFICATION
ON STATISTICAL SOFTWARE TESTING

S. J. PROWELL

ABSTRACT. The combination of sequence-based software speci-
fication with statistical software testing yields direct benefits of
reduced start-up and communication overhead and the potential
for automated generation of initial usage models and test oracles.
Indirect benefits include better developer and system engineer
understanding of external usability issues and an emphasis on
external events which supports evaluating testability of require-
ments. This paper introduces the sequence-based specification
techniques of sequence enumeration and sequence abstraction,
then proceeds to trace the impacts of sequence-based specifica-
tion on the development of test plans, usage models, and testing
oracles.

1. MOTIVATION

Statistical testing of software based on a usage model requires
that test engineers precisely define the test boundary, extract the ex-
pected usage profile, legal inputs, potential outputs, valid sequenc-
ing of inputs, and expected software responses to given input se-
quences. Extracting these details requires considerable communica-
tion between testing team members and both software developers
and systems engineers. Misunderstandings about fundamental de-
tails of the software’s input space and intended function often result
in significant revision of software test plans and usage models. Fur-
ther, software developers and systems engineers may communicate
specialized knowledge of the software’s implementation which may

Key words and phrases. Specification, sequence-based specification, statistical test-
ing, usage models.
Dr. Prowell is with Q-Labs, Inc., 5516 Lonas Road, Suite 110, Knoxville, TN 37909,
USA. Email: Stacy.Prowell@Q-Labs.com.

1

bias software testing. Often such knowledge rests on the assump-
tion that the software system is correctly implemented (for example,
the claim that some behavior is “impossible” because the software is
intended to make it so), and may therefore hinder the utility of the
software testing phase.

The introduction of sequence-based software specification can di-
rectly reduce the start-up costs incurred during testing by requir-
ing that the software’s input domain, valid input sequences, and
intended response for each sequence be considered early. Though
additional costs are incurred during the specification phase, all sub-
sequent phases of software development and testing benefit from the
early introduction of a detailed, external specification. This reduces
start-up times and communication overhead for all phases by help-
ing identify and confront potential risks early in the process, and
pays dividends in software testing.

2. SEQUENCE-BASED SPECIFICATION

Sequence-based specification is a collection of techniques for rig-
orous development of an external, functional specification of a soft-
ware system’s intended behavior, known as a black box specification
[2]. The development of this black box specification is guided by the
technique of sequence enumeration, which is the literal enumeration of
sequences of inputs and the assignment of correct responses to each
enumerated sequence. Sequence enumeration is controlled and fo-
cused through the development of sequence abstractions, which allow
practitioners to change their view of the system’s inputs and outputs
without losing the formal nature of the resulting specification.

Sequence-based specification proceeds as follows:

1. The system boundary is specified by defining all software inter-
faces as precisely as possible.

2. All direct inputs to the system (stimuli) are identified.
3. Sequences of stimuli are enumerated, and a response is given

for each sequence. All choices are justified by tracing to either
2

Specified
System

Stimuli Responses

System
Boundary

Environment

FIGURE 1. System boundary and environment

the software requirements, or by the introduction of a derived
requirement.

4. Abstract stimuli are defined and introduced into the enumer-
ation process as necessary to control growth, hide details, or
refocus the enumeration activity.

5. From the enumerations, a black box specification is constructed
and refined to the appropriate level of detail.

This section contains a short review of sequence-based specification.
More detail may be found in [2], with full details and a case study
in [3]. A more extensive case study will be available in [4]. Proofs of
the theorems presented in this section can be found in [1].

2.1. Identification of the System Boundary. The system boundary
lists all system interfaces, and should be documented in an inter-
face specification. The collection of external entities with which the
system communicates directly makes up the system’s environment.
Events which occur in the environment, and which can affect system
behavior are stimuli. Events which occur in the system and which
are observable from the environment are responses. Note that this
definition of stimulus and response includes changes to monitored
and controlled variables. The system boundary is depicted in fig. 1.

Work on a black box specification cannot begin until an initial list
of stimuli and responses is in hand, though this list may be revised as
work proceeds. In fact, the process of sequence enumeration, based
as it is on a deterministic view of the system, may reveal problems in

3

the system boundary definition, resulting in revisions of the interface
specification.

2.2. The Black Box Function. Let the set of all system stimuli be
denoted S; and let the set of all system responses be denoted R: The
black box specification denotes a complete function BB : S� ! R,
where S� denotes all finite-length sequences of stimuli, which are
interpreted as stimulus histories from left to right. Each sequence
of stimuli is mapped to a unique value in R; which is the intended
response to the most recent stimulus in the sequence. Software in
operation might emit a response for every stimulus in a sequence,
but the black box specification identifies only the last response.

Throughout the rest of this paper, let � denote the empty sequence,
and let sequence concatenation be denoted by juxtaposition, so the
concatenation of u 2 S� onto the left end of v 2 S� is denoted uv:

The mapping rule of the specification requires that all sequences
be assigned a unique value from R; but some sequences may not be
physically realizable for software in operation because they violate
the definition of the system. Consider a sequence which has several
stimuli prior to the software being invoked for the first time. Such
a sequence cannot be observed by the software. Such sequences are
called illegal, since they violate the system definition. To account for
these sequences, R is extended to include a special value !; to which
all illegal sequences are mapped. Software in operation need not
generate an externally-visible response for every stimulus sequence,
but the mapping rule requires a value from R: To accommodate these
sequences, R is further extended to include a special “null response”
denoted 0 and interpreted as “no externally-visible response.”

2.3. The Sequence Enumeration Method. Sequence enumeration
is a technique for discovering the black box function for a system

4

through the literal enumeration of all sequences of stimuli. In se-
quence enumeration, practitioners generate sequences from S� in or-
der by length, and then according to some fixed ordering among se-
quences of a particular length. As each sequence is generated, practi-
tioners assign some value from R for the sequence, tracing the choice
to software requirements or documenting derived requirements as
necessary to justify their decisions. This systematic process increases
developer understanding of the system’s external behavior.

During sequence enumeration, practitioners may discover that all
extensions of one sequence are mapped to the same response as the
identical extensions of the other sequence. Formally, two sequences
u and v are (Mealy) equivalent, denoted u ��Me v if and only if 8w 2

S�; w 6= �;BB(uw) = BB(vw): If, in an enumeration, the current se-
quence u is equivalent to a previously-enumerated sequence v; then
practitioners note both the value BB(u) and the equivalence to previ-
ous sequence v: In this case, u is reducible to v: If there are no previous
sequences to which u may be reduced, then u is irreducible.

Henceforth, the mapping of sequence u to response r 2 R in an
enumeration will be denoted u 7! r: If u is found to be reducible to
previous sequence v; then this is denoted u 7! r= � v:

Theorem. [Canonical Sequence] Let u 2 S� be a sequence. Then there ex-
ists a unique sequence (the “normal form”) v 2 [u]�Me which is irreducible.

The unique normal forms for the reduction system defined by the
equivalence �Me are called canonical sequences. Since equivalence re-
lations are transitive, and since every equivalence class has a canon-
ical sequence, every reduction in an enumeration is required to be to
an unreduced sequence.

Enumerations are generated by extending sequences of length n

to obtain all sequences of length n + 1: If a sequence is illegal (u 7!
!); then all sequences with prefix u are also illegal, and thus illegal
sequences need not be extended in an enumeration. If a sequence is
reduced to previous sequence v; then for any sequence uw (w 6= �),
BB(uw) = BB(vw): Thus sequences which have been reduced need

5

not be extended in an enumeration. It follows that only unreduced,
legal sequences need to be extended. If no sequences of some length
n need to be extended, then the enumeration is complete.

Theorem. A complete enumeration specifies a response for every sequence
u 2 S�:

A sequence enumeration thus defines a complete, consistent black
box specification for a software system.

Every enumeration can be viewed as a Mealy machine by taking
the canonical sequences as states. This leads to a direct conversion
of the enumeration, and thus the black box, into a state machine.

2.4. Controlling Enumeration Through Sequence Abstractions. Se-
quence enumeration is made practical through the application of
abstraction techniques, which can be used to control growth, de-
fer details without losing them, and change views of the system.
A sequence abstraction is a complete mapping � : X� ! Y � from
atomic (stimulus) sequences X� to abstract (stimulus) sequences Y �

such that the mapping satisfies two properties:

� abstract sequences are never longer than corresponding atomic
sequences: 8u 2 X�; j�(u)j � juj ; and

� the order of the stimuli in the sequence is preserved: 8u; v 2

X�; �(u) is a prefix of �(uv):

There are several common forms of abstractions. Some of these “ab-
straction patterns” are considered in [1] and [4]. The process by
which one defines abstractions is beyond the scope of this paper.
Fig. 2 illustrates the idea of abstractions. Here a sequence of request
connection and accept connection request events, denoted R(n) and
A(n), respectively, is transformed into a sequence of connect events,
denoted C(n).

Abstractions may be used as follows, in conjunction with enumer-
ation:

1. Enumerate sequences at the lowest reasonable level of abstrac-
tion.

6

Atomic Sequence

Abstract Sequence

R(1) R(7) A(5) R(3) A(7) A(1) R(2) A(3)

C(7) C(1) C(3)

FIGURE 2. An abstract view of a sequence

2. If work stalls or is found to be unproductive, replace atomic
stimuli with abstract stimuli to resolve the difficulty and restart
enumeration with the abstract stimulus set.

3. Continue to invent abstract stimuli and enumerate until a com-
plete enumeration is obtained, or until system behavior is suf-
ficiently understood to write a complete, consistent black box
specification at some level of abstraction.

3. STATISTICAL TESTING OF SOFTWARE AND THE IMPACT OF

SEQUENCE BASED SPECIFICATION

Statistical testing refers to the application of statistical science to
software testing, and may involve both random and non-random
methods. The particular kind of statistical testing to be discussed
here involves the generation of software test cases from a stochas-
tic model representing the known or expected usage of a software
system (a usage model). The stochastic model used will be a finite-
state, discrete parameter, irreducible Markov chain. The application
of such a model to the testing of software has been widely discussed
(for example [5], [6], and [7]). For this reason, the presentation of
statistical testing here will be terse.

As with the system specification, the intent is to have an external,
black box view of the software to the extent possible. Knowledge
of the internal implementation of a system is a source of bias in the
statistical experiment, and can result in failure to test portions of the
system, or in the direction of significant effort to seldom-used, non-
critical functionality. Because the software specification is developed
with an external, implementation-independent view, this focus on
external events is easier to achieve. Additionally, it provides a means

7

for discussions between developers and test practitioners while re-
ducing the risk of introducing an implementation bias.

3.1. Test Planning.

3.1.1. Test Boundary. Software testing can be viewed as a statistical
experiment. One cannot run all possible tests, therefore only some
sample of the potential tests will be run, and a conclusion about the
reliability of the software in operation use must be derived from the
software’s performance on this sample. Treating testing as a statisti-
cal experiment implies that testing must be a well-defined procedure
performed under specified operating conditions in order to generate
useful, accurate conclusions.

The system under test must be understood and isolated by the
definition of a test boundary. The test boundary consists of the pre-
cise definition of all interfaces with the system under test. This is
similar to the system boundary, with the following exceptions: for
every interface which is cut, all stimuli must be controllable, and all
responses must be observable, throughout the test. For this reason,
practitioners may choose a test boundary which includes some com-
ponents which are in the system’s environment. The test boundary
is illustrated in fig. 3.

The definition of the test boundary, which includes the software’s
interfaces, is crucial to the rest of testing. Inputs to the system which
are unknown to the test team may escape testing; vague or incorrect
interface descriptions will result in long discussions with developers
(who may argue for or against testing certain parts of the system,
because of their prior assumptions about system reliability) and in
wasted effort due to misinterpreting the interface specifications.

Sequence-based specification requires the development and main-
tenance of a complete system boundary definition. The process of
enumeration and the deterministic nature of the specification force
developers to insure that external information sources critical to the
production of software responses are documented. This insures the

8

Controlled Test
Inputs

System
Under
Test

Monitored Responses

Test
Boundary

FIGURE 3. Test boundary

persistence of valid interface specifications which may be made avail-
able to test practitioners. Further, precise interface descriptions re-
veal what system stimuli and responses can be controlled and mon-
itored effectively during a test. The availability of a precise interface
description serves both to reduce communication overhead between
test practitioners and developers, and focuses the discussions on the
external system interfaces, thus reducing the chance of introducing
an implementation bias into the testing phase.

The most significant advantage gained from such an interface spec-
ification is the ability to effectively plan for automation. Since inter-
faces are precisely specified, test drivers and monitors may be de-
veloped in parallel to the software development effort. In this way
start-up time, and thus cost, for software testing is significantly re-
duced.

During test planning, one must also consider requirements cov-
erage. Sequence-based specifications directly support requirements
traceability through sequence enumeration. It is thus possible to
identify all input sequences which implement a given requirement.
This allows assessing whether the requirement is testable given the

9

external view and chosen test boundary. The ability to quickly trans-
form a requirement into a collection of sequences also provides for
the use of non-random, crafted test cases to address specific require-
ments.

3.1.2. Test Stratification. The testing effort may be divided and fo-
cused along three dimensions: types of users, types of uses, and en-
vironments of use. A combination of these three dimensions which
is valid for software testing is called a stratum. Identification of test
strata and the assignment of testing budget and effort to each iden-
tified stratum is stratification planning. The idea of test planning is
illustrated in fig. 4.

For the purpose of stratification planning, a user is any source of
stimuli to the system under test, and these may be deduced from the
interface specification. A use is any single instance of software us-
age, and may be defined in terms of specific start and finish events,
number of commands, duration of test, or simply by specifying start-
ing and terminating conditions. A use always begins in some initial
state (perhaps one of several), and ends in some defined final state
(perhaps one of several). The initial and final states of any such use
must be defined and must be verifiable. If a test is intended to leave
the system under test in some particular state (such as terminated,
with temporary files deleted) but instead leaves the system in some
different state (unterminated, or with temporary files not deleted),
then the test must be counted as a failure [8].

The identification of appropriate initial and final states is greatly
aided by access to a consistent, complete specification. As a sim-
ple example, consider the definition of the initial state to be “unin-
voked,” and the definition of the final state to be “terminated.” Un-
der what conditions does the software terminate? This can be found
immediately by examining the specification.

Examination of the specification will reveal important classes of
use which might otherwise be missed in testing, or tested insuffi-
ciently. For example, it is common to discover previously-unconsidered

10

All
Possible

Tests

Experienced
User

Novice
User

Data
Entry

20%

30%

20%

20%
10%

Searching Admin

Stratification

FIGURE 4. Stratification

critical behavior (such as error conditions) as one develops a se-
quence enumeration. The resulting specification is passed to testing,
and additional testing effort can be directed to this behavior. This
redirection of test effort occurs as the result of examining an external
behavioral specification and not due to knowledge of internal imple-
mentation, and is thus based on user-perceived function and risk.

3.2. Modeling Expected Software Usage. Software use will be mod-
eled as a finite-state, discrete parameter, irreducible Markov chain.
Such a model is essentially a finite state machine whose transitions

11

No File

File Open

Session End

No Data

Open (0.8)

New (0.2) Close (0.1)

Close (0.1)

Enter Data (0.9)

Enter Data (0.3)

Search (0.6)

FIGURE 5. A Markov chain usage model

are labelled with stimuli and have associated probabilities. A graph-
ical view of such a model is given in fig. 5, with initial state “No
File.” States in this model correspond to states of use. Let any path in
the chain which begins with the initial state be a test trajectory. For
example, one test trajectory for the model in fig. 5 is “Open, Search,
Search, Enter Data, Close” with probability 0.00864. Any test tra-
jectory which terminates in a final state is therefore a test case; thus
the trajectory just discussed is also a test case, since “Session End” is
the final state. Let �U be a relation on the set of test trajectories S�;

and let p(u) denote the expected probability in use of test trajectory
u: Two test trajectories u and v are usage equivalent, denoted u ��U v

if extensions are always approximately equally likely. In short, the
likelihood of future use is independent of which sequence has been
observed.

Formally, choose some small 0 < � < 1 and break the interval [0; 1]
into [0; �); [�; 2�); : : : ; [n�; 1]: Then two values are �-equivalent, writ-
ten p �� q if and only if they fall in the same interval. Equivalence of
test trajectories is given by: u ��U v if and only if 8w 2 S�; p(uw) ��

p(vw): Note that this relation is an equivalence relation, and we may
use it to deduce a state space from S�: Formally, a state of use is an
element of S�= �� :

12

This kind of trajectory equivalence is similar to the notion of se-
quence equivalence used in sequence-based specification. While there
is no simple containment of one in the other, there is a weak relation-
ship which can be exploited. A response r 2 R may change the po-
tential input domain of the software (perhaps by opening or closing
a window, or turning on or off some external hardware), and clearly
two sequences which have differing future input domains are un-
likely to be usage equivalent. Thus if two sequences are not Mealy
equivalent, then they are unlikely to be usage equivalent. If follows
that different states of the Mealy machine derived from an enumer-
ation are likely to correspond to different states of use. Thus test
practitioners may take the Mealy machine as the first cut of a usage
model.

The ability to automatically generate an initial usage model from
the software specification is a tremendous advantage to test practi-
tioners. The development of a usage model requires considerable
knowledge of both the software’s legal sequences and generated re-
sponses, both of which are directly encoded in the Mealy machine.
Practitioners may then modify the machine by combining states to
reduce test overhead and model size, or by splitting states based on
usage criteria not considered in the specification (such as time of day,
type of usage, whether a file has just been printed, etc.). Thus the test
practitioners are able to quickly shift their focus to optimizing their
efforts to achieve test goals.

3.3. Execution of Tests and the Role of Oracles. The role of a test
oracle is illustrated in fig. 6. The Mealy machine additionally en-
codes the associated software response, and thus can serve as a test
oracle (up to the level of abstraction used in the specification). As
sequences of inputs are generated for input to the software, one can
use the Mealy machine to predict the appropriate response. This re-
sponse may then be checked against the response generated by the
software.

13

Usage Model System Under Test

Test Case

Test Oracle

Pass Fail

Monitored
Outputs

Generate

Execute

FIGURE 6. Test oracle

Two factors complicate the use of the Mealy machine as an ora-
cle. First, abstractions may be used in the development of the enu-
meration, and thus in the Mealy machine. These can be removed
through function composition, as described in [3]. One can imple-
ment the abstractions and, given the sequence of real inputs passed
to the software, determine the appropriate abstract sequence. The
Mealy machine will then reveal the abstract response, which can be
mapped to the particular atomic response.

Second, and more significantly, the test boundary and the system
boundary may differ. As a result, some software inputs needed to
determine a particular response given the Mealy machine may be
unavailable to the oracle. One solution is the following. Transitions
in the Mealy machine which correspond to such unavailable stim-
uli are changed to �-transitions (i.e., transitions which may be taken
nondeterministically). Thus for any sequence executed against the
software, the sequence prefix reveals that the software must be in
one of a collection of states. The final stimulus is then used to de-
termine all potential responses. Note that, because of the nondeter-
ministic nature of this oracle, it is possible that failures will not be

14

detected, as pointed out in [9]. Note that, because some stimuli are
lost, no other solution is possible.

4. CONCLUSIONS

Aside from the obvious advantages to test practitioners of a any
software specification the development of a sequence-based specifi-
cation has the following direct benefits to software testing:

� The precise nature of the specification reduces communication
overhead by conveying the software’s intended behavior un-
ambiguously

� Requirements traceability, maintained throughout the sequence
enumeration process, simplifies the construction of crafted test
cases to address specific requirements by identifying the se-
quences which implement a particular requirement

� The precise system boundary definition reduces start-up time
and provides early opportunities to assess and develop test dri-
vers and scaffolding

� Using the Mealy machine from the enumeration as an initial
Markov model structure reduces Model construction time

� The Mealy machine from the enumeration serves as a test or-
acle to support automated testing, reducing the overall cost of
automating software testing

These benefits all serve to either reduce the effort required during
software testing, or to improve management of the testing process.

Software testing benefits indirectly from the development of a sequence-
based specification in the following ways:

� The focus on external events reduces the chance of implementa-
tion bias during testing, providing improved experimental con-
trol

� The strict definition of software interfaces allows improved as-
sessment of software testability and appropriate test boundary

� Understanding of the system is improved for developers, sys-
tems engineers, and test practitioners

15

The application of sequence-based specification on industrial projects
has resulted in the development of new sequence-based practices
and the extension of existing practices to meet the needs of spe-
cific software domains, including real-time software, distributed sys-
tems, and dynamic network environments. These additions to the
theory will have implications with respect to software testing which
should be explored further. For example, one common extension
of the basic enumeration practice is to allow stimuli to interrupt the
production of a response. This has implications with respect to testa-
bility which must be considered in a software test plan.

Abstractions are used in the development of Markov chain usage
models to control the growth of the state space. The relationship of
these abstractions to the abstractions defined during analysis of soft-
ware behavior should be explored. At present, it seems that abstrac-
tions developed during specification are often equally useful during
development of a usage model.

The use of the enumeration Mealy machine as a test oracle requires
further development. In particular, the problem of how to deal with
nondeterministic behavior during testing must be addressed. If the
communication which is obscured is with a component which re-
ceives no stimuli from other external systems, and if a sequence-
based specification is available for the component, then the compo-
nent may be modeled by a second Mealy machine, and the nonde-
terminism eliminated. This would increase the accuracy of the test
oracle, and thus yield a more effective software test.

REFERENCES

[1] S.J. Prowell, “Sequence-Based Software Specification,” (Dissertation), Univer-
sity of Tennessee, Knoxville, Tennessee, 1996.

[2] S.J. Prowell and J.H. Poore, “Sequence-Based Software Specification of Deter-
ministic Systems,” Software—Practice and Experience, v. 28, n. 3, March 1998, pp.
329-344.

16

[3] S.J. Prowell, J.C. Martin, C.J. Trammell, J.H. Poore, Cleanroom Software Engineer-
ing: A Practitioners Guide (version 2.0), Knoxville, Tennessee: Q-Labs, Inc., 1998,
Chapter 3.

[4] S.J. Prowell, C.J. Trammell, R.C. Linger, J.H. Poore, Cleanroom Software En-
gineering: Technology and Process, Reading, Massachusetts: Addison-Wesley-
Longman, to appear fall 1998.

[5] J.A. Whittaker and M.G. Thomason, “A Markov Chain Model for Statistical
Software Testing,” IEEE Transactions on Software Engineering, v. 20, n. 10, October
1994, pp. 812-824.

[6] G.H. Walton, J.H. Poore, and C.J. Trammell, “Statistical Testing of Software
Based on a Usage Model,” Software—Practice and Experience, v. 25, n. 1, January
1995, pp. 97-108.

[7] W.J. Gutjahr, “Importance Sampling of Test Cases in Markovian Software Us-
age Models,” Probability in the Engineering and Information Sciences, v. 11, 1997, pp.
19-36.

[8] C.J. Trammell and J.H. Poore, “Experimental Control in Software Reliability
Certification,” Proceedings of the 7th Annual NASA/Goddard Software Engineering
Workshop, November 1994, reprinted in Cleanroom Software Engineering: A Reader,
C. J. Trammell and J. H. Poore, eds., Cambridge, Massachusetts: Blackwell, 1996.

[9] S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi, “Test
Selection Based on Finite State Models,” IEEE Transactions on Software Engineering,
v. 17, n. 6, June 1991, pp. 591-603.

17

�2,)10',+�.4 �#/0'+%
,$

�#*-,.�) �,..#!0+#//

��00&'�/ �.,!&0*�++� �,�!&'* �#%#+#.

��'*)#.8�#+5 ��

�#/#�.!& �+" �#!&+,),%4

�)08�,� '0 �� �

�8��

� �#.)'+

�#.*�+4

�#)�� �	� �� ���
�86�������7

��3� �	� �� ���
�8���

��00&'�/��.,!&0*�++�" �%�)+�"�'*)#. #+5�!,*

�,�!&'*��#%#+#.�"� %�)+�"�'*)#. #+5�!,*

�1�)'04 �##(�1.,-#

� 8 �� �,2#* #. ���
� �.1//#)/� �#)%'1*

C
op

yr
ig

ht
 D

ai
m

le
r-

B
en

z
A

G
 1

99
8,

 1

�� ��
�� ������� ���������� ��� �������

�������� ��������

���� �������! ���
���"���� �!�����

������!

������������

�����������! ������� �� �������� �����������

	������

���������
����� ��� �����������! �������

��������� �!�������� ��� �����������! �������

C
op

yr
ig

ht
 D

ai
m

le
r-

B
en

z
A

G
 1

99
8,

 2

�
�����!�� �� ������� 	���%����
$�����

������� ������

� �� � ��������
���!��� ���

� �� ��������
���!���

�� ��� �$���� ���� ����

 ������ � ���������� �� ��� ������� � ��������� �� ��� ���� �
����

$ �#�� ���� ��� ���� �
���� "��� �������� ��� ���

���������� ��� �������� ��� ����������� ��� �������$�
��������
����$� ��� �����
����$ �� ���� �������� ���

��������� �$���� ��������������� � �� �� ��� �����
����������� "��� ��� ����������� ��!��������� ���
��!�������� �� ����%������ ��!���������� �� "��� ��
�������� ��� ������
 ��� �$���� ��������� ���

�������� �#������ �� �� ��� ������#��$ �� ��� �����

������#
����

������� 	���%����
$����� ������	�����

C
op

yr
ig

ht
 D

ai
m

le
r-

B
en

z
A

G
 1

99
8,

 3

	������ ���
������ �"���� ���� ���

����
����#�������� ���� ���
������ !��
� ������� �� ��������������� ��
��� ���� ����
�
���� ����� ����
���

���
������ ���� ������� ��
� �� ���
�������
�����#���� ������ ���
!���#�������

��� ���� ��� ������ ��� �����������
�� �������
�� ������� �������� ���� ��� �����

	���� �� � ��
� �� ����������� ���� ���
�������

	�� ������ ���� ��
� ��
�� �������� ���� ��������

������� �����������
�� �����
������ ����� ��
���������� ��� �"
���� �� ���� ��������
 ����� �� !����#
��� �
��������

	������ 	������� �"���� ���� ���

	������ ����#	��� �"����� ������	�����

C
op

yr
ig

ht
 D

ai
m

le
r-

B
en

z
A

G
 1

99
8,

 4

���!�� ��#$ �����$�
(�%��$� � &�$�

����"�����#

�	�#$�$����$# �'�� ��$����%���"� ��

���� ��'�����!�$�#

�

�

�

	

�

�

��

�

�

��

��

��

��

��

��

 �$" �(�� & �"�!�

��	���

��#$��� ���! "��
 ""��$��## �	��������

C
op

yr
ig

ht
 D

ai
m

le
r-

B
en

z
A

G
 1

99
8,

 5

	 �����!��# �&��$#��� #���" �!�� ���
 #� ����
 µ"��
�	�� #� ��	� �'���"�

��� � �!���� ��%�!��� ����
� #�"# ��"�"

��� �����!��# �&��$#��� #���" �!�� ���
 #� ����
 µ"��
�	�� #� ��	� �'���"�

�
 � ��
��	 !������' ����!�#�� "�#" �� #�"# ��#�

�'"#���#�� #�"#

�#�#�"#���� #�"#

��"#��� ��� �!�� ��!!��#��"" �
�������	

C
op

yr
ig

ht
 D

ai
m

le
r-

B
en

z
A

G
 1

99
8,

 6

�� !��� �������� ����#���

��& ������% !� � $���� ���"��� �������'�� ������"�� � ��!��� �

��� !���

����!�#� �� �� !���� 	������ �����

"� ��������

� � ����!�� ��!���'�!��� !� ��!������ !�� ����� ! ��� ���!� ! �%��"!���

!��� �"!���!�����&�

��� !������� ����#��� �� ����(!��� & !�� � �����!�#� $��� ���"!

 �!"�!��� �%� ! �� "�� � ������ !��! !���� ����"!�!��� #����!� !��

 �������� !����� ��� !����! �

	��� !�� ���"! �!"�!��� $�!� !�� ����� ! �� ���!� ! �%��"!��� !���

!� ����� $��!��� !��& ����"�� � !������� ������

�� !��� �������� ������!�� ��	���� ������
���
	

C
op

yr
ig

ht
 D

ai
m

le
r-

B
en

z
A

G
 1

99
8,

 7

����"�� ��"���(�"���

"� �"�$� ��"���(�"��� � ����# � %���� ���"�"�! ��"# �� ����"��! ���

���������� �$��#"���

�� ���� �"� �"��� � ��% ���#��"��� �� ����$��#��! ���"��"��� !��#"���!

�� � �����!� �! ���� �"�� ��� �$��#�"���

� ��% ���#��"��� �! � ��"�� � �� ��

�&�!"��� ���

�' ����! ��

� !����"���

� ��������"���

� �� �� ����� �$��#�"��� �

� !# $�$��

#�"��

� �� ��"��#� !��#"��� �! ��#�� �

� � !"������ �����"��� �������

���� ����� �! �������

��"����(���

���
���
�����
�������
�

������

�����"���

	������"����
�#"�"���

$��#�"���

�

�

�# $�$��
� ����# �!

$��#�"���

��!"��� ����� �� 	� ��"��!! �����
	 ���
�
���
��

C
op

yr
ig

ht
 D

ai
m

le
r-

B
en

z
A

G
 1

99
8,

 8

�!�� ������# �������

���!�� ���

������"�� ����

	������

��� ������
�
�� ��
������

���������

������������
������!��

�����������
�!�� �����

���!�� �����	������

���

���!�� ������"�� ���������

� ������

������� �������� �����������

C
op

yr
ig

ht
 D

ai
m

le
r-

B
en

z
A

G
 1

99
8,

 9

� ��� �)"�#��� %$ %�� �! ��$%

�)��&%�! %��� $! ��# ���	
 �*���$�

(�$ �!& � '�#* ��$%� ��(�*$ (�%��

� %! �� �� �#�%�! $�

� ��� �)"�#��� %$ %�� $�!#%�$%

�)��&%�! %��� $! ��# �	

 �*���$�

(�$ �!& � '�#* ��$%�

� $�'�#�� �)"�#��� %$ � �($�!#%�$%

�)��&%�! %��� !� 	

 �*���$ �
���

µ$��� (�$ �!& �� ���� �* &$� � $&�+
"!"&��%�! $�

New shortest
execution time

�'!�&%�! �#* ��$%� � !� ���"!#�� �!##��% �$$

%�� �! ��$% �)��&%�! %��� %�� $�!#%�$% �)��&%�! %���

���#��� � ���"�� ��$% �����%

�!#

'�#*� � $����%�! "#!���&#�$� �� �%�� !"�#�%!#$� � � $&#'�'�� "#!���&#�$

C
op

yr
ig

ht
 D

ai
m

le
r-

B
en

z
A

G
 1

99
8,

 1
0

��	����� ���������� ���
�����
�

����	����� �
 ���������	�� ������� 	�� �	���� ������� ��� ��	�
� �
 ���

������� ���
����� �����

Generation

F
itn

es
s

V
al

ue
 fo

r
B

es
t I

nd
iv

id
ua

l

���������	�� ������� �
 ������	� �����
�����

C
op

yr
ig

ht
 D

ai
m

le
r-

B
en

z
A

G
 1

99
8,

 1
1

	������� ���������� 	��
�����
�

������
 �� ��������� ������� ������ ���� ��� ����������� ��� ����������� �������

��� ������ ������� ��� ����
� �� ��� ������� ���
����� �����

Distribution of Fitness Values for Evolutionary Testing Distribution of Fitness Values for Random Testing

Execution Time/Fitness Value Execution Time/Fitness Value

	���������� ������� �� �������� �����
�����

N
um

be
r

of
 In

di
vi

du
al

s

N
um

be
r

of
 In

di
vi

du
al

s

C
op

yr
ig

ht
 D

ai
m

le
r-

B
en

z
A

G
 1

99
8,

 1
2

�)# � "�' ��#�$" ��'(#� �)# � "�' �*$!)($#�&, ��'(#�

��'(�)#' ��$&(�'(� �$#��'(�

�+%�& "�#('

	��� �
� �
�� �
���

��

���� �� �
	 ���������

�)($"$(*�

����#'�

�$"%)(�&

��
� ��	

�&�%� �'
��������

�$"%)(�&
�&�%� �'
���������

�!��(&$# �'
�	�������

�!��(&$# �'
�
�������

�%%! ��($#'

	
��	���� ��

��	�����������
	� ��
�	���

����

��%&$��''$&��,�!�'

�)($"$(*�
�!��(&$# �'
��
�������

���

����	 	

�
��� ������

��'(�)#' ��$&(�'(� �$#��'(�

�� !&$����$#(&$!
����#$!$�,
��
������

�	��
��
�� �
������� �����
�

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

�*$!)($#�&, ��'(#� $� ��"%$&�! �$&&��(#�''

C
op

yr
ig

ht
 D

ai
m

le
r-

B
en

z
A

G
 1

99
8,

 1
3

	��������� �� �%� ��� �� ���
"��! �����% ��� ����

$�������

"��! �����% ��� ��� �� �������� 	����� ����

�� � !��� � �� ��� #� �������� ������ �� ����� � ���� �� �����

�� ����! �� �������� ��� �!�� ����� �� #��� �� ������� ������ ����

� !��� � #��� ��� ����� ��� �� � ��� #��� �� ��� ��!��� � �� ���������

��"���� % �� ������ ��� #��� ������ �� ��� #��� �� ��� �� ����

 �� �� � #��� ������ ��� ���� !� ���� ��� �� � �� �� ������� �

���� �� ���� � !���

 �� ���������� ���& ��� �� ��� #�� !��� ��� �� �� ���� ������

 �� �$��! ��� ���� #��� ����!��� ��� �������� � ���!� � �����"��

�% �"��! �����% �� ���

C
op

yr
ig

ht
 D

ai
m

le
r-

B
en

z
A

G
 1

99
8,

 1
4

���������� �� ���������	 ��
 ������������ ������

���
��� ���	����� ����� ����
 �� ���������	 ������
 	������
 �� ������������

������

������������ ������
 �� �������� �����	�����

C
op

yr
ig

ht
 D

ai
m

le
r-

B
en

z
A

G
 1

99
8,

 1
5

������
��� �� ����
���
� ��	 ������
����� �
��
��

��
���
�� �
�
� ����	 �� ����
���
� �
��
�� ������
	 ��
�����
����� �
��
��

������
����� �
��
�� �� �
������ ����
���
��

C
op

yr
ig

ht
 D

ai
m

le
r-

B
en

z
A

G
 1

99
8,

 1
6

�%����# "$

�& �%$� ��") ��#$��� � ���! "�� � ""��$��##

��#%���#�$� � � $�� $�#$ ��$� '�$� $�� #� "$�#$

�(��%$� � $��� �� ���� ����"�$� �

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8
x 10

6

generation

ob
je

ct
iv

e
va

lu
e

Best objective values

��!" &����$ � �(��%$� � $���#

 &�" ���� ����"�$� �# �#��"�����

� " $�� #� "$�#$ �(��%$� � $����

generation

nu
m

be
r

of
 v

ar
ia

bl
e

best individuals

0 200 400 600 800 1000

50

100

150

200

250

300

350

400

450

500
−3

−2

−1

0

1

2

3

x 10
4

�$%�� #� "$�#$ �(��%$� � $���

������ �)���#� � %�� ��$�"
�	

����"�$� �#�

C
op

yr
ig

ht
 D

ai
m

le
r-

B
en

z
A

G
 1

99
8,

 1
7

	���������

�
��
��� �
���� ���
��

��� ��������
��
����

���������
�" ������� �� ������
�
����������

50 100 150 200 250 300 350 400 450 500
−4

−3

−2

−1

0

1

2

3

4
x 10

4 variables of all ind. [Gen: 20]

number of variable
va

lu
e

of
 v

ar
ia

bl
e

50 100 150 200 250 300 350 400 450 500
−4

−3

−2

−1

0

1

2

3

4
x 10

4 variables of all ind. [Gen: 100]

number of variable

va
lu

e
of

 v
ar

ia
bl

e

50 100 150 200 250 300 350 400 450 500
−4

−3

−2

−1

0

1

2

3

4
x 10

4 variables of all ind. [Gen: 300]

number of variable

va
lu

e
of

 v
ar

ia
bl

e

��

���

����
��

����

�����
�����

� ��� ��
������ ��� ���

�������� �!������� �����

50 100 150 200 250 300 350 400 450 500
−4

−3

−2

−1

0

1

2

3

4
x 10

4 variables of all ind. [Gen: 1000]

number of variable

va
lu

e
of

 v
ar

ia
bl

e

C
op

yr
ig

ht
 D

ai
m

le
r-

B
en

z
A

G
 1

99
8,

 1
8

�������
 �!����
��� ���� ��

�
���� ��������
� ������������

����! ���������
�! ������� ��� ���

�
���
���� �� ������
� ������������

����
��
���!

31

2 ��� �!����
���
��! �������� ����

�
�

� �����
� �����
���� ��� ���

����
��� ��
��� ��� � �����

� ������� ������

2

��������

	�������
�����
���������

�������
���
��
��
����

���
����

������� 	�
�"����
!����� ����
� �	� �������

C
op

yr
ig

ht
 D

ai
m

le
r-

B
en

z
A

G
 1

99
8,

 1
9

�����"

	� �������� ��� ������� ��������
�������� �����������" �������

���
������� �� �"�������� ������� ��� �����������" ������� ����� �� �������
��������� ��� ������������

�� �������� ������� �� ��� ���� ��������� ����"����� ������" ��������� ������
��� ����$���� �"������

���������� �� ��� �� �������� �"����
������� ���� ��
� �!�������

�� ��� �!��������� �����������" ������� ��������
����� ������� ����
������ ��������

�����������" ������� �� �������� �����������

����� �!��������� ��� ������� ��������
������� ��� ������� ����������
����
��� �����������" ����������

������ ���� ������� ������ ��� ������� ���������� �"����
��������

�� ���������� ��������#�� �� ������� ��������
��������

C
op

yr
ig

ht
 D

ai
m

le
r-

B
en

z
A

G
 1

99
8,

 2
0

Daimler-Benz AG, Research and Technology, 1998 – 1 –�

Quality Week Europe ’98

Evolutionary Testing of Temporal Correctness

Matthias Grochtmann, Joachim Wegener

Daimler-Benz AG
Research and Technology

Alt-Moabit 96 a
D-10559 Berlin

Germany

Tel.: +49 30 39982-{229, 232}, Fax: +49 30 39982-107
Matthias.Grochtmann@dbag.bln.daimlerbenz.com,

Joachim.Wegener@dbag.bln.daimlerbenz.com

Abstract

The development of real-time systems is an essential industrial activity. Dynamic testing is the most important
analytical method to assure the quality of real-time systems. It is the only method that examines the run-time
behavior, based on an execution in the application environment.

An investigation of existing software test methods shows that they mostly concentrate on testing for functional
correctness. They are not specialized in the examination of temporal correctness that is essential to real-time
systems. Therefore, existing test procedures must be supplemented by new methods that concentrate on deter-
mining whether the system violates its specified timing constraints. In general, a violation means that outputs
are produced too early or their computation takes too long. The task of the tester is to find the inputs with the
longest or shortest execution times to check whether they produce a temporal error. If the search for such inputs
is interpreted as a problem of optimization, genetic algorithms can be used to find the inputs with the longest or
shortest execution times automatically. The fitness function is the measured execution time. The use of genetic
algorithms for testing is called evolutionary testing.

Experiments using evolutionary testing on a number of programs with up to 1511 LOC and 843 input parame-
ters have successfully identified new longer and shorter execution times than those that had been found using
random testing and systematic testing. Evolutionary testing therefore seems to be well-suited for checking the
temporal correctness of real-time software. A combination of evolutionary testing with systematic testing
offers further opportunities to improve the test quality and is suggested in this paper as an effective test strategy
for real-time systems.

0 Introduction

Many industrial products use embedded computer systems. Usually, embedded computer systems have to ful-
fil real-time requirements, and correct system functionality depends on their logical correctness as well as on
their temporal correctness.

In practice, dynamic testing is the most important analytical method for assuring the quality of embedded com-
puter systems. Testing is aimed at finding errors in the systems and giving confidence in their correct behavior
by executing the test object with selected inputs. Often more than 50 % of the overall development budget is
spent on testing [Davis, 1979].

For testing real-time systems the examination of the functional system behavior alone is not sufficient. Addi-
tionally, the temporal behavior of the systems needs to be thoroughly examined. An investigation of existing

Daimler-Benz AG, Research and Technology, 1998 – 2 –�

software test methods shows that they mostly concentrate on testing for functional correctness. They are not
suited for an examination of temporal correctness which is also essential to real-time systems. This work tries
to fill this gap by giving support to testing temporal behavior. It investigates the effectiveness of genetic algo-
rithms to validate the temporal correctness of embedded systems by establishing the maximum and minimum
execution times. Promising results have been achieved. However, the sole use of evolutionary testing is not
sufficient for a thorough and comprehensive examination of real-time systems. A combination with existing
test procedures is necessary to develop an effective test strategy for embedded systems. A combination of sys-
tematic testing and evolutionary testing is promising.

The first section contains an overview of the current state in the field of testing real-time systems. The second
section gives a brief introduction to genetic algorithms and describes how they are applied to solve different
testing problems. This is followed by a depiction of the way genetic algorithms are used for evolutionary test-
ing of real-time systems’ temporal behavior. Several experiments were performed comparing evolutionary
testing with random testing as well as systematic testing. Their results will be described in detail. Section 4
discusses the combination of systematic testing and evolutionary testing and derives from it a test strategy for
real-time systems. After some concluding remarks the paper closes with a short outlook on current and future
work.

1 Testing Real-Time Systems

Testing is one of the most complex and time-consuming activities within the development of real-time systems
[Heath, 1991]. It typically consumes 50 % of the overall development effort and budget since embedded sys-
tems are much more difficult to test than conventional software systems. The examination of additional
requirements like timeliness, simultaneity, and predictability make the test costly. In addition, testing is com-
plicated by technical characteristics like the development in host-target environments, the strong connection
with the system environment, the frequent use of parallelism, distribution and fault-tolerance mechanisms as
well as the utilization of simulators.

Nevertheless, systematic testing is an inevitable part of the verification and validation process for software-
based systems. Testing is the only method that allows a thorough examination of the test object’s run-time
behavior in the actual application environment. Dynamic aspects like the duration of computations, the
memory actually needed during program execution, or the synchronization of parallel processes are especially
important for the correct functioning of real-time systems.

Real-time systems must be tested for compliance with their functional specification and their timing
constraints. An investigation of existing software test methods shows that a number of proven functional and
structural test methods is available for examining logical correctness, e.g. the classification-tree method
[Grochtmann and Grimm, 1993]. When using structure-oriented test methods the tester must take into account
that an instrumentation of the test object causes probe effects, i.e. deviations from the real system behavior are
possible. There are no specialized procedures for testing temporal behavior. This is why in practice testers
often go back to conventional test procedures. They try to compensate for the existing methodological short-
comings by using more or less heuristic tests in worst-case scenarios. However, even a small experiment
makes clear that testing temporal behavior is a very complex task which requires special methods and tools.

1.1 Experiment

For the experiment, a simple computer graphics function written in C was thoroughly tested. It contained a
total of 37 statements and had 16 program branches; its control flow graph is shown in Figure 1. A systematic
test with the classification-tree method led to 49 test cases which covered all the branches and resulted in 43
different execution times. The timings varied between 359 processor cycles (equivalent to 5.27 µs) and 1839
processor cycles (equivalent to 26.27 µs).

Daimler-Benz AG, Research and Technology, 1998 – 3 –�

Figure 1: Control Graph

1

3

9

7

6

5
8

10
2

4

13

16

14

11
12

15

This was followed by applying a total of 4603 randomly generated tests, which resulted in 298 different execu-
tion times even though full branch coverage was not achieved; one branch remained untested. The timings
varied again between 359 cycles and 1839 cycles.

These initial results demonstrate the importance of investigating a specialized approach to testing temporal
correctness: already very small systems show a wide range of different execution times. Only a fraction of the
possible execution times is covered by the systematic test. Random testing, however, does not detect certain
value combinations that might be significant for the temporal behavior. Consequently, for testing temporal
behavior the application of a new approach was examined, namely genetic algorithms.

2 Genetic Algorithms

Genetic algorithms are a well-established method of optimization in many areas. An overview of different
successful applications is, for example, provided by Davis [1996]. Genetic algorithms represent a class of
adaptive search techniques and procedures based on the processes of natural genetics and Darwin’s theory of
evolution. Genetic algorithms model natural processes, such as selection, reproduction, mutation, migration,
locality, and neighborhood [Pohlheim, 1996]. The fundamental concept of genetic algorithms is to evolve
successive generations of increasingly better combinations of those parameters which significantly effect the
overall performance of a design. The genetic algorithm achieves the optimum solution by the random
exchange of information between increasingly fit samples (combination/crossover) and the introduction of a
probability of independent random change (mutation). Traditionally, parameters involved in genetic opti-
mization have been represented as strings of binary bits where crossover is achieved by choosing a point along
two bit strings at random and swapping the tails, and mutation by picking a bit at random and flipping its value.
The adaptation of the genetic algorithm is achieved by the selection and survival procedures since these are
based on fitness. The fitness-value is a numerical value that expresses the performance of an individual with
regard to the current optimum so that different designs may be compared. The notion of fitness is fundamental
to the application of genetic algorithms; the degree of success in using them may depend critically on the defi-
nition of a fitness that changes neither too rapidly nor too slowly with the design parameters.

Figure 2 gives an overview of a typical procedure for genetic algorithms. A population of guesses to the solu-
tion of a problem is initialized, usually at random. Each individual in the population is evaluated by calculating
its fitness. This will result in a spread of solutions ranging in fitness from very poor to good – the chances of
hitting on the optimum solution initially are, of course, infinitesimally small for most problems. The remain-
der of the algorithm is iterated until the optimum is achieved. Pairs of individuals are selected from the popula-

Daimler-Benz AG, Research and Technology, 1998 – 4 –�

tion using a pre-defined strategy, and are combined in some way to produce a new guess in an analogous way to
biological reproduction. Combination algorithms are many and varied. Additionally, mutation is applied. The
new individuals are evaluated for their fitness, and survivors into the next generation are chosen from the par-
ents and offspring, often according to fitness though it is important to maintain a diversity in the population to
prevent premature convergence to a sub-optimal solution.

Figure 2: Block Diagram of Genetic Algorithms

Initializing

Evaluation

Selection

Combination/
Mutation

Evaluation

Survival
procedures

Optimization
criteria met? Result

2.1 Genetic Algorithms Applied to Testing

Genetic algorithms have been applied successfully to various testing problems. Several papers deal with struc-
tural testing; others concentrate on test case generation based on formal specifications, the testing of APIs, and
testing for robustness.

Jones et al. [1996] have used genetic algorithms to generate test data automatically to execute every branch in a
variety of programs written in Ada83. In most cases full branch coverage was obtained. The branch predicate
formed the basis of the fitness function so that boundary value data were generated.

Roper [1996] has obtained encouraging results by applying genetic algorithms to achieve branch coverage for
programs written in C or C++. The test object is instrumented with probes to provide feedback on the coverage
achieved. For each individual, the program path executed determines its level of fitness.

Xanthakis et al. [1992] describe a method in which a constraint propagation graph is formed; the nodes of the
graph may represent either predicates or variables connected by elementary path functions. The fitness func-
tion depends on the predicates which are satisfied by modifying the adjacent variable nodes by a small amount.
This work was continued by Watkins [1995] who used a fitness function based on the reciprocal of the number
of times a path was exercised.

Jones et al. [1995] have derived test sets from Z specifications by a method that used a variety of algorithms,
including genetic algorithms and simulated annealing. A language was developed to enter the Z schemas into
the machine and a series of test cases was formed for both valid and invalid inputs.

Daimler-Benz AG, Research and Technology, 1998 – 5 –�

Boden and Martino [1996] have developed a testing facility in which genetic algorithms are used to generate
API tests. The fitness function is a weighted sum of various factors of a test response, e.g. depending on the
generation of exceptions, well-defined errors or return codes by the API. Furthermore, sequences of API calls
are determined as useful, based on expected or recommended usages for the API.

Schultz et al. [1993] have achieved promising results using genetic algorithms for testing the robustness of
autonomous vehicle controllers. The aim of the test was to find test scenarios in which minimal fault activity
causes a mission failure or vehicle loss and in which maximal fault activity still permits a high degree of mis-
sion success. These scenarios provided some insight into parts of the controller and allowed the designer to
improve the controller’s robustness. The fitness function was based on the current fault activity and the quality
of mission fulfilment.

In this work, we investigate the feasibility of genetic algorithms for testing the temporal correctness of real-
time systems.

3 Evolutionary Testing of Temporal System Behavior

The major objective of testing is to find errors. Real-time systems are tested for logical correctness by standard
testing techniques such as the classification-tree method. A common definition of a real-time system is that it
must deliver the result within a specified time interval and this adds an extra dimension to the validation of
such systems, namely that their temporal correctness must be checked.

The temporal behavior of real-time systems is defective when input situations exist in such a manner that their
computation violates the specified timing constraints. In general, this means that outputs are produced too
early or their computation takes too long. The task of the tester therefore is to find the input situations with the
shortest or longest execution times to check whether they produce a temporal error. This search for the shortest
and longest execution times can be regarded as an optimization problem to which genetic algorithms seem an
appropriate solution. The use of genetic algorithms for testing is called evolutionary testing [Wegener et al.,
1997a; Wegener and Grochtmann, 1998].

Genetic algorithms enable a totally automated search for the longest and shortest execution times. They are
particularly suited to problems involving large numbers of variables and complex input domains. Even for
non-linear and poorly understood search spaces genetic algorithms have been used successfully. Since genetic
algorithms search from a population of points rather than from a single point, the probability of getting stuck at
local optima is significantly reduced compared with more traditional optimization techniques, like hill clim-
bing. The use of mutation and subpopulations can further reduce the chance of getting stuck. When genetic
algorithms are used to solve optimization problems, good results are obtained surprisingly quickly [Sthamer,
1996].

Figure 3 illustrates the use of evolutionary testing for determining the shortest and longest execution times.
The initial population is generated at random. Each individual of the population represents a test datum with
which the test object is executed. For every test datum the execution time is measured. The execution time
determines the fitness of the respective individual or test datum. If one searches for the longest execution time,
test data with long execution times obtain high fitness values. If one searches for the shortest execution times,
individuals with short execution times obtain high fitness values. Afterwards, members of the population are
selected with regard to their fitnesses and subjected to combination and mutation to generate a new population.
First, it is checked whether the generated test data are in the input domain of the test object. Then the individu-
als of the new generation are also evaluated and united with the previous generation to form a new population
according to the survival procedures laid down. Afterwards, this process repeats itself, starting with selection,
until a given stopping condition is reached or a temporal error is detected. Thus an execution time is found
which is outside the specified timing constraints. If all the times found meet the timing constraints specified for
the system under test, confidence in the temporal correctness of the system is substantiated.

Daimler-Benz AG, Research and Technology, 1998 – 6 –�

Figure 3: Evolutionary Testing of Temporal System Behavior

Individuals Fitness V alues

Initial Population Result

Individual’s Fitness <=>
Individual’s Execution Time

Selection

Combination
Crossover

Mutation

Test Execution

Performance
Evaluation

3.1 Experiments

We used evolutionary testing in several experiments to determine the shortest and longest execution times of
different systems. Of course the results are dependent on the hardware/software platform and generally are not
directly transferable from one to another since the processor speed and the compiler used directly affect the
temporal behavior. All the experiments to be described were carried out on a SPARCstation 10 running under
Solaris 2.5. The duration of executions was measured in processor cycles to rule out overheads by the operat-
ing system such as service interrupts. Thus the execution times reported were the same for repeated runs with
identical parameters.

The fitness was set equal to the execution time when searching for the worst-case execution time and was set
equal to the negative value of the execution time when searching for the best-case execution time. For each
experiment evolutionary testing was applied twice, first, to find the longest execution time, and then the short-
est. The library of genetic algorithms we used was a Matlab-based toolbox developed at our Daimler-Benz
Laboratories by Hartmut Pohlheim.

3.1.1 Comparison of Random Testing and Evolutionary Testing

For the experiments six test objects from real-world applications were tested by means of evolutionary testing.
The results of the experiments are summarized and compared to random testing in table 1.

The first computer graphics example (Computer Graphics I) shows that even when the number of test runs for
random testing was multiplied, compared with the number of test runs for evolutionary testing, the longest
execution time determined by evolutionary testing could not be found by random testing. When evolutionary
testing was applied to testing the simple C function already mentioned in section 1.1 (Computer Graphics II),
the longest execution time of 1839 cycles was found in less than 20 generations and a new shortest time of 355

Daimler-Benz AG, Research and Technology, 1998 – 7 –�

cycles (5.07 µs) was discovered in a smaller number of tests than executed for random testing. For the first
example from the field of automotive electronics shorter execution times were found by evolutionary testing
than by random testing.

Random Testing Evolutionary Testing

Applications
No. of

Test Runs
Shortest

Exec. Time
Longest

Exec. Time
No. of

Test Runs
Shortest

Exec. Time
Longest

Exec. Time

Computer Graphics I
(61 LOC)

9200 99 384 1200 99 392

Computer Graphics II
(107 LOC)

4600 359 1839 800 355 1839

Auto Electronics I
(432 LOC)

2700 66 104 1350 45 104

Auto Electronics II
(1511 LOC)

5000 366 10774 4850 366 12185

Railroad Technology
(389 LOC)

10000 1050 11529 9500 399 14175

Defense Electronics
(879 LOC)

56000 27258 110842 30000 27154 114160

Table 1: Shortest and Longest Execution Times in Processor Cycles Measured for a Variety of Programs
by Random Testing and Evolutionary Testing; the Overall Optimum is Shown in Bold

The second automotive electronics system implements the entire functionality of an airbag controller and
therefore is safety critical. It contains 1511 LOC. For this example about 80 parameters were varied by evolu-
tionary testing, among other things the interval between the occurrence of different events. There is no means
of deciding when an optimum has been found and the genetic algorithms were allowed to continue for 100
generations before they were stopped.

When searching for the longest execution time of the airbag controller software, a maximum of 12185 proces-
sor cycles was found in generation number 97. In the same way, the random test was terminated after 5000
tests, and at this time had found a maximum of 10774 cycles. Evolutionary testing had found an execution time
13% longer than was found for random testing. Figure 4 shows that random testing reaches its maximum exe-
cution time after only about 1500 test runs, whereas for evolutionary testing a continuous improvement up to
the 100th generation can be observed. The curve trace suggests that the genetic algorithms would find even
longer execution times if the number of generations were increased. After only eleven generations – that corre-
sponds to 550 test runs – the execution times found by evolutionary testing are above those of random testing.

When searching for the shortest execution time, both evolutionary testing and random testing found the same
time of 366 cycles. The genetic algorithms discovered this in the first generation at which point it is still effec-
tively a random search since the recombinations and mutations could have had no effect. This path was clearly
one whose tests occupied a large input subdomain with a high probability of being found at random.

This is also emphasized by Figure 5 which indicates the frequency with which different execution times
occurred during the search for the longest execution time. For random testing far more than 10 % of all test runs
goes to particularly short run times. For the other execution times almost a Gaussian curve results from random
testing. During evolutionary testing, however, not even 1 % goes to the area of particularly short run times.
Furthermore, a clearly increasing number can be seen for the long execution times. The genetic algorithms
obviously succeed in avoiding the generation of test data with short run times and in concentrating on test data
with long execution times.

Daimler-Benz AG, Research and Technology, 1998 – 8 –�

Figure 4: Comparison of Evolutionary Testing and Random Testing Searching
for the Longest Execution Time for the Airbag Controller

F
itn

es
s

V
al

ue
 fo

r
B

es
t I

nd
iv

id
ua

l

Generation

Evolutionary Testing

Random Testing

Figure 5: Distribution of Execution Times for Evolutionary Testing and Random Testing
when Searching for the Longest Execution Time for the Airbag Controller

Execution Time/Fitness Value Execution Time/Fitness Value

N
o.

 o
f E

xe
cu

tio
ns

N
o.

 o
f E

xe
cu

tio
ns

Distribution of Fitness Values for
Evolutionary Testing

Distribution of Fitness Values for
Random Testing

The railroad control and instrumentation technology example is also safety critical. The population size in this
experiment was increased from 50 to 100 because of the complexity of the test object. The shortest execution
time found by evolutionary testing is more than 60 % below the one detected by random testing. 14175 proces-
sor cycles were determined as the longest execution time by the genetic algorithms. This is 23 % above the
maximum execution time of 11529 cycles that was found by random testing. Figure 6 shows the comparison of
random testing and evolutionary testing for the search of the longest execution time. It becomes clear after the

Daimler-Benz AG, Research and Technology, 1998 – 9 –�

fourth generation that evolutionary testing is superior to random testing. Random testing stagnates after 3500
test runs; the generation of 6500 other test data sets does not produce any longer execution times. Evolutionary
testing, however, manages once again to improve the execution times continuously. In generation number 70
even a significant leap of more than 1500 cycles can be noted.

Figure 6: Comparison of Evolutionary Testing and Random Testing Searching
for the Longest Execution Time for the Railroad System

F
itn

es
s

V
al

ue
 fo

r
B

es
t I

nd
iv

id
ua

l

Generation

Evolutionary Testing

Random Testing

The Defense Electronics program with 879 LOC has 843 integer input parameters. The first two input parame-
ters represent the position of a pixel in a window and lie within the range 1..1200 and 1..287 respectively. The
remaining 841 parameters define an array of 29 by 29 pixels representing a graphical input located around the
specified position; each integer describes the pixel color and lies in the range 0..4095. Genetic algorithms were
used in this example to generate pictures surrounding a given position. The longest execution time increased
steadily with each new generation and asymptoted towards the current maximum of 114160 cycles when the
run was terminated after 300 generations. The population size in this experiment was also set to 100 because of
the large range of the variables and the large number of input parameters. The fastest execution time was found
to be 27154 after 100 generations. Evolutionary testing found more extreme values for the longest and shortest
execution times than those found by random testing that were 110842 and 27258 respectively. Where genetic
algorithms allowed to search further a longest execution time of 114393 processor cycles was found in genera-
tion 657 and a shortest execution time of 26814 was detected in generation 372.

3.1.2 Comparison of Random Testing and Systematic Testing

Furthermore, experiments were performed to compare evolutionary testing with systematic testing. The re-
sults of these experiments are ambiguous: On the one hand, an experiment comparing evolutionary testing
with the results of systematic tests carried out by 19 different testers on the two test objects from the field of
computer graphics showed evolutionary testing to always be superior or equal to systematic testing. On the
other hand, however, in an experiment testing a standard sorting routine evolutionary testing quickly ap-
proached the shortest execution time searched for but found the exact time only after several hundred more

Daimler-Benz AG, Research and Technology, 1998 – 10 –�

generations. In this case, systematic testing easily found the input with the shortest execution time possible: the
already sorted list.

During the first experiment which involved 19 testers, both applications from the field of computer graphics
were tested for their functional as well as their temporal correctness. The testers were 19 students participating
in a software testing course at the Technical University of Berlin. They were trained in software testing meth-
ods and tools. Test cases were designed by means of the classification-tree method. The tests were marked and
made up more than 20 % of the aggregate mark of each student.

In addition to the test cases, the students determined test data with which the test was executed. The execution
times were measured and compared to the results obtained by evolutionary testing. For the first example, all
students had found the shortest execution time. However, none of the students found the longest execution
time (392 processor cycles). The determined execution times varied between 342 cycles and 384 cycles (Fig-
ure 7). For the second example, 9 students ascertained the shortest execution time (355 cycles), but only two
students found the longest execution time (1839 cycles). Only one of 19 students found both the shortest and
the longest execution time for the second computer graphics example (Figure 8). The total number of test cases
amounts to 639 for this example. The number of testcases varied from 11 to 58 for the students.

Figure 7: Execution Times for Computer Graphics I

While evolutionary testing was superior to systematic testing in the described experiments, the testing of a
bubblesort algorithm showed advantages of the systematic test. The task of the test object was the sorting of a
list of 500 elements. In this example the evolutionary test only reached the shortest execution time after ca. 750
generations. In this case, this equals 225000 executions of the bubblesort. Systematic testing easily found the
input with the shortest execution time possible: the already sorted list. The longest execution time results from
the list sorted in reverse order.

3.2 Discussion

In all our experiments evolutionary testing obtained better results than random testing, regardless of whether
the shortest or the longest execution times were searched for. The disadvantage of a random method which is

Daimler-Benz AG, Research and Technology, 1998 – 11 –�

Figure 8: Execution Times for Computer Graphics II

that no step builds upon another is avoided by using genetic algorithms. Genetic algorithms take advantage of
the old knowledge held in a parent population to generate new guesses with improved performance. Their it-
erations are based on the experience which has been gained from previous trials.

For both computer graphics examples systematic tests with the classification-tree method were also per-
formed. The longest execution time of 392 processor cycles found by the genetic algorithms for the first exam-
ple was detected by none of the systematic tests. Only 384 cycles as maximum and 99 cycles as minimum run
time were found by the systematic tests. For the second example systematic testing and evolutionary testing
detected the same run times, namely 355 and 1839 processor cycles. In some simpler experiments systematic
testing turned out to be superior to evolutionary testing. For a sorting program, for example, the sorted list
caused the shortest run time. Evolutionary testing needed more than 200000 executions of the test object to
determine the best-case execution time.

Since genetic algorithms try to achieve the optimum solution by the random exchange of information between
increasingly fit samples (combination) and the introduction of independent random change (mutation), they
share a problem with random and statistical testing: it is not predictable if and when certain input situations
will be found, which might be especially important for the run-time behavior of the system under test. There-
fore, we cannot prove that the timings found are the longest and shortest possible values. On the other hand,
existing approaches to systematic testing are not sufficient to examine the temporal behavior of systems thor-
oughly. Consequently, an effective test strategy for real-time systems should contain systematic testing as well
as evolutionary testing.

4 Test Strategy

As a strategy for testing real-time systems we recommend the combination of systematic testing with evolu-
tionary testing. By means of the systematic test errors in the logical program behavior of the test object shall be
detected. Furthermore, special value combinations shall be defined which are relevant to the testing of tempo-
ral behavior but which might be difficult to find with the help of genetic algorithms. On the basis of the system-
atic test genetic algorithms are then used to detect input constellations with particularly long and short run
times which the tester did not find by means of the systematic test.

Daimler-Benz AG, Research and Technology, 1998 – 12 –�

The classification-tree method should be applied for the systematic test because it is a functional test method
which has already proved very worthwhile in practice (cf. [Grochtmann and Wegener, 1995]). The function-
oriented test is indispensable to the thorough examination of systems for only by means of test cases derived
from the system specification can it be found out if specified requirements or functions were omitted (e.g.
simply forgotten) during the software development process [Grimm, 1996].

The test strategy comprises two steps. At first, the tester uses the classification-tree method for the systematic
design of black-box test cases. The tester also adds aspects assessed as relevant to the temporal system behav-
ior, for example the simultaneous occurrence of several events or time-consuming system states. However,
test cases determined with the classification-tree method focus mainly on the examination of logical correct-
ness. Afterwards, the second step of our test strategy concentrates on the examination of temporal correctness.
The test data specified for the systematic test is used as initial population for the optimization of execution
times by means of evolutionary testing – as described in section 3. Thus the genetic search for the shortest and
longest execution times benefits from the tester’s experience and his domain knowledge [Wegener et al.,
1996]. Figure 9 illustrates the suggested test strategy for real-time systems.

Figure 9: Test Strategy Suggested for Real-Time Systems

Selection

Combination/
Crossover

Performance
Evaluation

Mutation

STEP 1: Perform a systematic test following the clas-
sification-tree method to check logical correctness.

STEP 2: Use evolutionary testing – starting from a
population of systematically produced test data – for
the examination of temporal correctness.

STEP 1 STEP 2

In principle structure-oriented test cases are also suited as initial population for the genetic search because
there is a close correlation between temporal behavior and program structure. The number of processor cycles
measured will generally be directly related to the number of statements in the control flow path, though there
will be exceptions because some statements require more cycles than others [Wegener et al., 1997b]. In this
case evolutionary testing will benefit from the tester’s knowledge of the internal program structure. Another
idea for further improvement is to link evolutionary testing directly with structural testing. The fitness-func-
tion could be expanded in such a way that individuals which execute a new program branch or path would get a
high fitness-value to ensure their survival in the next generation. Thus the diversity of the population would
not only be maintained with respect to the temporal behavior of individuals but also in consideration of the test
object’s internal structure. From this follows that the new program structures would be executed several times
in the next generations. If no longer execution times resulted from this, the corresponding test sets would be-
come extinct again during subsequent generations.

Daimler-Benz AG, Research and Technology, 1998 – 13 –�

5 Conclusion and Future Work

The correct functioning of real-time systems depends critically on their temporal correctness. Testing is the
most important analytical method for the quality assurance of such systems. An investigation of existing test-
ing approaches showed a lack of support for testing the temporal behavior. Therefore, existing test procedures
must be supplemented by new methods and tools. In various experiments evolutionary testing has been suc-
cessfully applied to search the longest and shortest execution times of real-time programs in order to check
whether they violate the specified timing constraints. Compared with random testing, evolutionary testing
always obtained better results. Compared with systematic testing, evolutionary testing seems to be better for
complex test objects where the temporal behavior is difficult to assess by systematic testing.

Further improvements are possible through the combination with systematic test methods. If the genetic
search does not start with a randomly generated population but with a set of test data systematically determined
by the tester, the disadvantage of genetic algorithms that they might not find certain test relevant value com-
binations can be compensated for. Moreover, depending on the test method applied, evolutionary testing bene-
fits from the tester’s knowledge of the program function or the program structure.

Evolutionary testing shows considerable promise in testing and validating the temporal correctness of real-
time systems and further research work in this area should prove fruitful. More work is needed to find the most
appropriate parameters for genetic algorithms and to define suitable criteria for the decision when to stop the
search [Sullivan et al., 1998]. Further studies are focusing on the question how stagnations can be reacted to
with appropriate changes of the search strategy.

Daimler-Benz AG, Research and Technology, 1998 – 14 –�

References
Boden, E.B., and Martino, G.F. (1996). Testing Software Using Order-Based Genetic Algorithms. In Koza,

J.R. et al. (eds.). Proceedings of the First Annual Conference on Genetic Programming, 28 - 31 July 1996,
Stanford University. The MIT Press, Cambridge, USA, pp. 461 - 466.

Davis, C.G. (1979). Testing Large, Real-Time Software Systems. Software Testing, Infotech State of the Art
Report, Vol. 2, 1979, pp. 85 - 105.

Davis, L. (1996). Handbook of Genetic Algorithms. International Thomson Computer Press, Boston, USA.

Grimm, K. (1996). Systematic Testing of Software-Based Systems. Proceedings of the 2nd Annual ENCRESS
Conference, June 1996, Paris, France.

Grochtmann, M., and Grimm, K. (1993). Classification Trees for Partition Testing. Software Testing, Verifi-
cation & Reliability, Vol. 3, No. 2, pp. 63 - 82, Wiley.

Grochtmann, M., and Wegener, J. (1995). Test Case Design Using Classification Trees and the Classification-
Tree Editor CTE. Proceedings of Quality Week ’95, 30 May - 2 June 1995, San Francisco, USA.

Heath, W.S. (1991). Real-Time Software Techniques. Van Nostrand Reinhold, New York, USA.

Jones, B.F., Sthamer, H.-H., and Eyres, D.E. (1996). Automatic Structural Testing Using Genetic Algorithms.
Software Engineering Journal, Vol. 11, No. 5, pp. 299 - 306, IEE & BCS, Stevenage, UK.

Jones, B.F., Sthamer, H.-H., Yang, X., Eyres, D.E. (1995). The Automatic Generation of Software Test Data
Sets using Adaptive Search Techniques. Proceedings of Software Quality Management ’95, Seville, Spain, pp.
435 - 444.

Pohlheim, H. (1996). GEATbx: Genetic and Evolutionary Algorithm Toolbox for Use with Matlab – Docu-
mentation. Technical Report, Technical University Ilmenau.

Roper, M. (1996). CAST with GAs – Automatic Test Data Generation via Evolutionary Computation. Com-
puter Aided Software Testing (CAST) Tools, IEE Colloquium C6, Digest No. 96/096.

Schultz, A.C., Grefenstette, J.J., and De Jong, K.A. (1993). Test and Evaluation by Genetic Algorithms. IEEE
Expert, Vol. 8, No. 5, pp. 9 - 14, IEEE Computer Society.

Sthamer, H.-H. (1996). The Automatic Generation of Software Test Data Using Genetic Algorithms. PhD
Thesis, Department of Electronics and Information Technology, University of Glamorgan, Wales, UK.

Sullivan, M., Voessner, S., Wegener, J. (1998). Testing Temporal Correctness of Real-Time Systems – A New
Approach Using Genetic Algorithms and Cluster Analysis. Proceedings of EuroSTAR ’98, 30 November -
4 December 1998, Munich, Germany.

Watkins, A.E.L. (1995). A Tool for the Automatic Generation of Test Data Using Genetic Algorithms. Pro-
ceedings of Software Quality Conference ’95, July 1995, Dundee, Scotland.

Wegener, J., Grimm, K., Grochtmann, M., Sthamer, H.-H., and Jones, B.F. (1996). Systematic Testing of Real-
Time Systems. Proceedings of EuroSTAR ’96, 2 - 6 December 1996, Amsterdam, Netherlands.

Wegener, J., Grochtmann, M. (1998). Verifying Timing Constraints of Real-Time Systems by Means of Evolu-
tionary Testing. to appear in Real-Time Systems.

Wegener, J., Grochtmann, M., Jones, B.F. (1997a). Testing Temporal Correctness of Real-Time Systems by
Means of Genetic Algorithms. Proceedings of Quality Week ’97, 27 - 30 May 1997, San Francisco, USA.

Wegener, J., Sthamer, H.-H., Jones, B.F., and Eyres, D.E. (1997b). Testing Real-Time Systems Using Genetic
Algorithms. Proceedings of Software Quality Management ’97, 24 - 26 March 1997, Bath, UK.

Xanthakis, S., Ellis, C., Skourlas, C., LeGall, A., and Katsikas, S. (1992). Application of Genetic Algorithms to
Software Testing. 5th International Conference on Software Engineering, December 1992, Toulouse,
France.

1

A Software Engineering View of
Data Quality

Mónica Bobrowski
Universidad de Buenos Aires

Joint Work with
Martina Marré and Daniel Yankelevich

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

Outline
• Motivation
• The Data Quality Problem
• What is Data Quality?
• Software Engineering and Data Quality

Measuring Data Quality
Testing Data Quality
Data Quality in the Software Development

Conclusions and Future Work

2

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

Which one is my name?
• Mónica Bobrowski
• Monca Bobrowski
• Mónica Bobrowsky
• Mónica Bobrovsky
• Mónica Brobrovsky
• Mónica Bobrosky
• Mónica Bovrosky
• etc.

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

The client point of view

I could not sign for a new
house because I was found
in Fidelitas records as not
trustable. Of course it
wasn’t me!! I’ve put a
lawsuit against them. They
made me lose a lot of
money!

3

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

The company point of view

We are having troubles
with our people
identification system.
We are loosing our
clients confidence and
we are loosing lots of
money too!

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

The Data Quality Problem

• Even with good software systems (and
marketing staff) we can get bad results
Organizations cannot use their systems
because of the data
Economic impact of poor quality data
Bad data is a problem that has to be

4

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

What is Data Quality?

• Quality: a relative concept
• Data attributes:

– Accuracy
– Timeliness
– Usability, etc.

• Quality Data does not necessarily mean

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

Software Engineering and Data
Quality

• “The system works perfectly. Of course, if
wrong data is being loaded, what can the

• Poor system design may lead to bad data

Software engineering has to deal with data
quality problems!!!

5

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

Software Engineering and Data
Quality

• Software Engineering has been dealing for
long with quality problems

Product and Process Quality

How can we deal with data quality

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

Data Quality in Software
Engineering

• Measuring Data Quality
• Testing Data Quality
• Data Quality in the Software Development

We want to use existing techniques!!!

6

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

Measuring Data Quality

• “If you can’t measure it, you can’t manage

Value of the information
How and what to improve

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

Measuring Data Quality

• Identify interesting attributes (dimensions,
Wang, Strong and Lee, 1997)

Use existing techniques (e.g., GQM,

Measure the quality of the data instance and

7

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

Testing Data Quality

• “Data is not a problem for software

System testing concentrates on system

But systems may use data generated by

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

Testing Data Quality

• Verify data quality independently of the
systems that may use it

– Complete validation of all data
Statistical indicators
Testing techniques to define and execute test

8

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

Using Known Software Testing
Techniques

• Define testing criteria based on quality

Notion of coverage
Construct test cases
Need for an Oracle

≈ Structural Testing?

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality 16

Data Quality in the Software
Development Process

• We have functional and non-functional
requirements in traditional software

We define them at the early stages of the
development process, and verify them

Data Quality Requirements are Non-
functional Requirements

9

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

Data Quality Requirements

• Define them at the early stages of the
development process
Using formal notations
Incorporate them to the final product
Verify them using:
– Data Quality Metrics
– Data Testing

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

Conclusions and Future Work

• Organizations need quality data in order to

Some data quality dimensions may be
incorporated to software systems
Software engineering is able to contribute to

10

Bobrowski, Marré, Yankelevich: A Software Engineering View of Data Quality

Conclusions and Future Work
• Research program:

– Define a set of metrics (what and how to

Define data testing criteria based on dimensions
Define data quality requirements as non-
functional requirements

• Empirical Validation is Mandatory!!!

1

A Software Engineering View of Data Quality

Mónica Bobrowski, Martina Marré, Daniel Yankelevich

Departamento de Computación, FCEyN, Universidad de Buenos Aires, Argentina

{monicab,martina,dany}@dc.uba.ar

Abstract

Thirty years ago, software was not considered a concrete value. Everyone agreed on its
importance, but it was not considered as a good or possession. Nowadays, software is
part of the balance of an organization. Data is slowly following the same process. The
information owned by an organization is an important part of its assets. Information can
be used as a competitive advantage. However, data has long been underestimated by the
software community. Usually, methods and techniques apply to software (including data
schemata), but the data itself has often been considered as an external problem.
Validation and verification techniques usually assume that data is provided by an
external agent and concentrate only on software.

In this work, we present different issues related to data quality from a software
engineering point of view. We propose three main streams that should be analyzed: data
quality metrics, data testing, and data quality requirements in the software development
process. We point out the main problems and opportunities in each of them.

Keywords: Software Quality, Data Quality, Software Engineering.

1. Introduction

Thirty years ago, the software owned by an organization was not considered a concrete value. Everyone
agreed on the importance of software, on its virtual value, but it was not considered as a good, as a
possession. In those days, the value of software was defined by its cost.

Nowadays, software is part of the balance of an organization, it contributes to its value, and for almost every
software project the ROI is calculated. Data is slowly following the same process. In fact, people is now
talking about “the value of information.” Many organizations want to possess information. Managers know
that having the right information at the right time may lead them to obtain great benefits. Moreover,
organizations have information that may help them to improve their work, make decisions, and increase their
profits. This information is usually stored in large databases accessed via software applications. However, it is
not enough to have good applications; an organization needs good data in order to achieve its goals.

Now, how could an organization know that it has the right information at the right time? How could an
organization evaluate its information? That is a matter of data quality. In fact, the quality of information is
crucial when determining its usefulness. When quality is not achieved, information is not used, or leads to
incorrect decisions, and even loss. As it is known, “decisions are no better than the data on which they are
based” [Red98]. But, what does information quality mean?

In recent years, researchers have been studying data quality problems from the perspective of the data
generation processes [SLW97, SLW97, WW96]. They have identified problems in data, and tried to associate
them with problems in the process that lead to this data. The underlying idea is that improving the process

2

may lead to an improvement in data.

In [Red96], Redman gives a deep introduction to DQ issues. He points out many aspects of data quality:
definition, management, policies, experiences, requirements, measurements, etc. Although his approach
differs from ours (it is mainly statistical, and concentrate on the data generation process), his book offers clear
examples, motivations, definitions, and useful tips.

Data quality problems are well known to practitioners. In fact, many failures of software are not due to poor
quality of the systems, but to inconsistencies or other problems in data. The quality of data has a great impact
on the usefulness and overall quality of software systems.

However, the mainstream of Software Engineering ignored data quality issues up to day. Validation and
verification techniques exist and have been used for software processes and products, but few has been done
related to data. The only concern for computer engineers regarding data quality has been the extraction of data
for data warehouses. In the context of Data Warehousing, an European project investigated quality and in
particular the requirements on data needed to implement a data warehouse [JV97].

In our view, software engineers must take into account data quality issues in the design, validation, and
implementation of software systems. Moreover, standard techniques can and should be applied to these
problems. In this paper, we present different issues related to data quality from a software engineering point
of view. We point out three main streams that should be analyzed and the main problems and opportunities in
each of them. These themes are:

• Data quality metrics

Measuring the quality of the information will help us to know its value, and also its pitfalls. We will be able to
know how valuable our information is, and also what we need to improve in order to increase quality.
Moreover, measuring quality would clarify the goals of a quality improvement strategy or process. We agree
with the well-known proverb: "if you can’t measure it, you can’t manage it."

• Data quality and testing

Usually, testers and engineers assume that the data (in a production environment) is correct, and test the
system considering its behavior. However, as we have said, this is not the case in the real world. When a new
system is incorporated to an existing environment, the data it uses must be analyzed to understand its
usefulness. Moreover, an old system may be using corrupted data. We believe that the verification of a
system must include the verification of the data it works on. Besides, we believe that many testing techniques
can be adapted in order to be used to test data.

• Data quality in the software development process

The dimensions in which data quality is analyzed (for instance consistency, accuracy) can be considered data
quality requirements for a project, and can be assessed from the beginning of the software development
process in the same way that we have functional and non-functional requirements. In fact, they are a particular
sort of non-functional requirements. So, we want to deal with them from the beginning of the process, and
incorporate them to our specification, our design, and our system implementation. In this case, our system
should give us a warning when the data is in close or already in a “bad quality” situation with respect to our
requirements. And hence we can prevent our system from entering such a situation.
In Section 2 we discuss what data quality means. In Section 3 we describe typical data quality problems.
Section 4 presents data quality metrics: why, what, and how to measure. Section 5 is devoted to data testing.
Section 6 points out why data quality requirements should be incorporated to the software development
process. In section 7 we present our conclusions and future work.

2. What is Data Quality?

 It is difficult to give a universal definition of what quality means. When we talk about quality we do not
always refer to the same concept. We will try to exemplify this issue. Suppose that you are planning a trip to a
foreign country. You have to choose an airline to fly. Which one do you prefer? Of course, you will prefer the
airline that offers the best quality. But, what does quality mean? You want to arrive in time, you want
comfortable seats, you want a helpful crew, you want a quiet trip, and you want low prices. These attributes

3

(punctuality, comfort, helpfulness, peace, low prices) constitute your notion of quality in this particular
context. Even in the trip situation, someone else may not be concerned about the price, but be very worried
about the meals served. So his notion of “airline quality” is different from yours. It may differ not only in the
attributes taken into account; the relevance of each item may be different. Moreover, you could have different
notions of “airline quality” for different trips.

 This example shows that quality is not an absolute concept. The word quality by itself has not a unique
connotation. We have to make assumptions on which aspects apply on a particular situation. In the case of
data quality, we may want to take into account only specific attributes with some specific relevance,
depending on the particular context we are analyzing. In our view, the quality of data in the context of
software systems is related to the benefits that it might give to an organization.

 As we have said, the quality of data depends on several aspects. Therefore, in order to obtain an accurate
measure of the quality of data, one have to choose which attributes to consider, and how much each one
contributes to the quality as a whole. In what follows, we present several attributes that we think may
determine the quality of our data. These attributes or dimensions have been taken from [WW96, SLW97]
following the point of view of the value of the data, i.e., our pragmatic view of data quality.

 We present an informal definition for each of the attributes considered. This selection is not exhaustive, but is
representative enough for our purposes.

 Completeness Every fact of the real world is represented. It is possible to consider two different aspects of
completeness: first, certain values may not be present at the time; second, certain attributes
cannot be stored.

 Relevance Every piece of information stored is important in order to get a representation of the real
world.

 Reliability The data stored is trustable, i.e., it can be taken as true information.

 Amount of data The number of facts stored.

 Consistency There is no contradiction between the data stored.

 Correctness Every set of data stored represents a real world situation.

 Timeliness Data is updated in time; update frequency is adequate.

 Precision Data is stored with the precision required to characterize it.

 Unambiguous Each piece of data has a unique meaning.

 Accuracy Each piece of data stored is related to a real world datum in a precise way.

 Objectivity Data is objective, i.e., it does not depend on the judgment, interpretation, or evaluation of
people.

 Conciseness The real world is represented with the minimum information required for the goal it is used
for.

 Usefulness The stored information is applicable for the organization.

 Usability The stored information is usable by the organization.

 Notice that dimensions may be related to others. For example, the amount of data may be important only in
conjunction with correctness (lot of incorrect data has no sense, and even may damage the organization),
usability (inefficient access to data due to the size of the database is worthless), and so on. In some way, these
attributes complement each other.

4

3. The Data Quality Problem

- I can´t use this application. Look, I know that wells in this field are at most 3000 feet, and the
depth of this well in the system is 4500! This system is useless.

- The system works perfectly. Of course, if wrong data is being loaded, what can the computer
do?

- I don´t know. I just say that it is not good for me. It makes me loose more time looking for
data than before.

- It is not our problem. The system works, we detect wrong data when it is loaded –and in the
cases YOU specified-. It is a problem of the users: you should tell them to use it right.

This dialog, at least in spirit, happened in many places many times. Data quality problems are real problems
in most information systems. With different degrees of criticality and deepness, these problems are being
treated in many organizations. In most cases, in an ad-hoc way.

For instance, let us consider mailing lists. How many times do you usually receive a brochure for a
conference? How many combinations of first, second, and last name have you seen your name on envelopes?
This simple example shows how expensive data quality errors can be: mailing can be quite expensive, and
using a faulty list, a mailing campaign can be many times more expensive. Moreover, the lost caused by
wrong advertising goes long beyond the cost of mailing: customers and potential customers do not trust
someone that is not even capable of keep his/her data right. The image of the organization suffers offering and
using wrong data.

However, the particular case of names (and, mainly, occidental names) has been extensively studied and
many heuristics have been proposed for the problem of determining whether two names correspond to the
same person (in general, in the presence of more data, like date of birth, addresses, etc.). Commercial products
and algorithms are available to attack (not to solve) this problem. Even though, this particular problem is
cause of misuse of systems in several different contexts.

For instance, criminal identification systems determine if a person has criminal records. This information is
used, for example, by judges (to decide whether the person has to be punished, and how), and by
organizations (to decide whether to hire him). These systems are critical because, in some sense, our future
may depend on the quality of the data and the procedures used to recover it. Although a high quality
application is used to access the data, the identification is based on several attributes, and sophisticated
algorithms are used to match them, it turns out that wrong conclusions can be obtained when bad quality data
is present in the system. It has been found that 50-80% of computerized criminal records in the U.S. were
found to be inaccurate, incomplete, or ambiguous [Tay98]. This poor quality data may imply send people to
jail or not to hire them.

Data quality problems are not only related to pattern matching of persons or organizations. Such problems
arise in many different contexts, and the consequences can be disastrous. The cultural change imposed by the
use of computers in many different environments, only makes the problem worse. In fact, people trust
computers and utilize them as the main source of data: digital information is used minute by minute to take
important decisions that affect people lives.

Recently, data warehouse and data mining projects exposed many data quality problems in big enterprises.
When the information collected was analyzed or was checked for integrity, some “hidden” problems were
detected. For instance, data from different sources was detected to be inconsistent in data warehousing.

The usual (implicit or explicit) position of software professionals facing data quality issues is that “this is not
our problem. ” Somehow, information professionals are not responsible of dealing with information.

On the other hand, we have two ideas that contradict that belief. First, some data quality issues are caused by
poor design of software systems. In particular, the effect of poor interface design on data quality is direct. For
instance, in many cases users of a complex interface with mandatory values have the tendency to choose a
random value. If there is a list of values available, users choose the first of the list or the default value.

For example, by studying last year information the managers of a hospital discovered that most of the patients
suffered from hemorrhoids. The resources of the next year were assigned on this basis. The number of beds,

5

nurses, and other resources needed were determined using this information. However, it came out that
“hemorrhoids” was the default choice at the check-in application, and clerks selected it because it was
difficult to look for the correct choice. This bad data -due to a poor interface design- had terrible
consequences on the hospital finances [Tay98].

Another way in which poor design may affect the quality of the data is by failing in a complete analysis of
business rules or by not taking into account data quality issues during the requirements analysis phase. In fact,
if data quality is a risk, the design of the system must take measures to minimize that risk.

A rule of thumb [Orr98] proposes to improve data quality by increasing the use of the data. Data that is not
used cannot be maintained. We agree with this rule. However, several times it has been used to illustrate that
problems in the quality of information are not caused by poor design. This is not true. The process of creating
and using data must be subsumed in the design of the system. The data flow, the organization of the
processes, and the overall design must be created with this data life cycle in mind [Red96]. Not to do so is a
modeling and design fault. During the analysis phase, the processes that are automated must be analyzed not
only for efficiency: data quality is also a driver when designing the processes and the use of the applications.

The second idea is that many data quality problems can be prevented and deal with by using standard
software engineering techniques – adequately adapted or revisited. For instance, configuration management
techniques could be used to solve problems with out-of-date data or versioning of information. Standard
metric definition techniques could be used to define useful data quality metrics. These ideas are addressed in
more detail in the following sections of this work.

4. Measuring Data Quality

 The first step to improve data quality and to define methods and techniques is to understand what “good
quality” and “bad quality” is. Hence, we need to measure data quality to be able to know how valuable the
information is, and how to improve it. Measuring the quality of the information will help us to know its value,
and also its pitfalls. We will be able to know how valuable our information is, and also what we need to
improve in order to increase quality. Moreover, measuring quality would clarify the goals of a quality
improvement strategy or process. We agree with the well-known proverb: "if you can’t measure it, you can’t
manage it”. In fact, it is not possible to make serious empirical analysis of techniques or strategies if there is
no agreement on how the results will be evaluated.

 We propose to measure information quality using metrics defined using traditional software engineering
techniques. Metrics have been deeply studied in software engineering [FP97], so we want to take advantage
of it.

 In [BMY98] we present a framework for defining and using data quality metrics. The outcome of this work is
a suitable set of metrics that establish a starting point for a systematic analysis of data quality. We identify the
attributes we want to measure, and obtain a set of metrics and techniques to calculate them. This is a starting
point for a systematic analysis of data quality, that may lead to improve the quality of the data in an
organization.

We base our work on the GQM methodology [BR88]. GQM is a framework for the definition of metrics.
GQM is based on the assumption that in order to measure in a useful way, an organization must:

• specify goals,

• characterize them by means of questions pointing their relevant attributes,

• give measurements that may answer these questions.

We have chosen this framework because it is a top down approach that provides guidelines to define metrics,
without a priori knowledge of the specific measures. There are other approaches for metric definition, e.g.,
[BBL76, MRW77]. We have chosen GQM because of its simplicity, its adequacy to our problem, and
because it is well known and proven in software engineering applications [Van98].

Following GQM, we first are able to state which dimensions characterize our notion of data quality. Then, we
can ask questions characterizing each dimension, without giving a precise (formal) definition -that is

6

sometimes impossible-, only focusing on their relevant characteristics from our point of view. Finally, we
give metrics (some objective, some others based on people appreciation) to answer these questions, giving us
a more precise valuation of the quality of our data.

 We cannot measure data and ignore how it is organized. Certain quality characteristics are related to the
organization of data, i.e., to the data model, and not to data itself. The data model might affect some data
quality attributes, since it defines the way data is accessed and maintained. We want to identify and measure
those attributes too, and complement measures of data with information on how it is organized. As a
consequence, we defined two kinds of metrics: set of data metrics, and data model metrics.

Once we have defined our data quality metrics (i.e., what and how to measure) we want to use them. We can
simply take our relational database, identify the dimensions we are interested in, choose the appropriate
metrics and techniques depending on specific considerations, apply them, and analyze the results. This is a
useful approach, specially when the system is already in production, the database is implemented, there is a
lot of data loaded, and we want to have a picture of the current situation in order to decide what to improve.
We may even add information about the quality of the data to the meta model, as part of its definition. This
way it may be easier to check and evaluate the quality of the data at a certain point. In [JV97], this approach is
followed in the data warehouse case.

Once we have measured the quality of our data with respect to the chosen dimensions, we can decide whether
or not our current data satisfies our quality expectations. Moreover, we will know in which dimension it fails
(although we do not know why), with respect to which specific aspect, and we have a measure of the
“badness.” So we can concentrate our efforts in solving that particular problem, and we can decide if it is
convenient to do so - may be data is not so bad, and the solving effort is worthless.

This procedure only deals with measuring the quality of data at certain points, and can help in deciding which
corrective or preventive actions to implement. In order to reach and maintain high levels of data quality, it has
to be part of a broader plan, that takes into account all the aspects of data quality in the organization (see
[Red96]).

Another approach is to see the dimensions we are interested in as data quality requirements (see Section 6).
These requirements can be assessed from the beginning of the software development process, in the same way
that we have functional and non-functional requirements. So, we want to deal with them from the beginning,
and incorporate them to our specification, our design, and our system implementation. In this case, our system
should give us a warning when the data is in close or already in a “bad quality” situation with respect to our
requirements. And hence we can prevent our system from entering such a situation. Metrics may be used here
to establish the requirements and check them at different stages of the software development process.

5. Testing and Data Quality

Software systems were often analyzed as if they start from scratch. Only recently the idea of using COTS is
being incorporated in formal description of the development process. This is even stronger in the case of the
data used by these systems. The idea of testing a system concentrates on testing its functionalities: never the
data that it is supposed to work with – even if it makes assumptions on what is the state of the data. The
phrase “garbage in/garbage out” only expresses the idea of “data is not a problem of software systems.”

If a system is started from scratch, some of these assumptions can be accepted. However, in the daily practice
of our profession, most systems are incorporated on top of existing systems or collaborating with existing
systems. Many projects use data generated by other systems, in many cases by systems that are not operative
anymore.

In our view, it is important to check whether the data satisfies the requirements of the system or, in other
words, that the quality of data reaches the minimum level required for the system to work properly. This
activity can be done before the system is developed (in order to take corrective measures or include extra
components during the development), before installing the system (in order to check how it will work and to
prevent problems during its use) or, independently of any system, just to measure the quality of the data.

This verification can be done in three different ways:

• Complete validation of all data.

7

• Statistical indicators of mean, variance, intervals, etc.; or random selection with an associated confidence.

• Use testing techniques to define and execute test cases.

The first way is clear: validate the whole data, using automatic and manual verification. This is not equivalent
to clean the database or files, because the cost of repairing a data error can be many times greater than the cost
of detecting it. However, in most cases complete validation is unfeasible. In this extent, it is not different of
complete validation of programs [How76]: in many cases the domain of programs are finite and could, in
theory, be validated for all inputs. Even though, complete verification is not done, because it is too expensive,
too complex, or unnecessary. Only the thought of checking a 2,000,000 registries database to see if any
customer has changed his address is scaring.

It is important to discuss the difference between the last two options. There are testing techniques based on
statistics, and the activity of testing is strongly related to statistical analysis. However, there is a subtle
difference between taking values that describe distribution of data on one hand, and choosing particular cases
that satisfy particular criteria on the other. When we propose testing as a technique to validate data quality, we
think that it is possible to define testing criteria for data quality based on the quality dimensions of interest.
In some cases, it might be even possible to define the notion of coverage, and to construct test cases to satisfy
a particular coverage criteria [My79].

For example, suppose that we are interested in measuring how accurate our data is with respect to time
(timeliness). Let us assume that we know which attributes are time dependent. If we have a way to know if
specific values are outdated, we may define a test over the data to estimate the number of records that are
outdated. Hence, in order to implement these testing activities we need to use a selection criterion (to reduce
the number of test cases to be evaluated) and an oracle (to know if specific values are outdated). We believe
that in this case, the selection criterion should use the specific information about timeliness of data, improving
the results obtained by using sampling. Testing for other qualities should use different information to select
data.

Data testing has the flavor of structural testing –because the structure of data will probably play a basic role in
defining the criteria- and aspects of functional testing. The type of coverage used to check data quality will be
fundamental to create new testing techniques –or adapt existing techniques for new goals. A lot of work must
be done to define adequate notions, and those notions must be validated by empirical data (and, possibly, by
high quality data!) before proposing concrete techniques. However, it is clear that testing, as presented in this
section, has many advantages over statistical analysis. One of the advantages is that we do not need to define
the rules that guarantee that a particular piece of data is of high quality explicitly: for each case we can
determine whether the output passes or fails the test. The only difficulty is to choose the right tests. But we
know how to do that to test programs: the same ideas should apply here.

6. Data Quality in the Software Development Process

The requirements of a software system are usually divided in two groups: functional requirements and non-
functional requirements. Functional requirements include the services the system is expected to provide, while
non-functional requirements place constraints on the way those services must be provided [Som94]. Examples
of non-functional requirements are programming languages (“the system must be implemented using C++”),
performance (“the expected response time is 2 seconds”), standards (“the development process must be ISO
compliant”), interoperability (“the system must communicate with the accounting system”). Moreover, non-
functional requirements may be classified according to the kind of constraints they impose. So, we have
process requirements (constrain the development process), product requirements (constrain the final product),
and external requirements [Som94].

Besides, when describing non-functional requirements at early stages of the software development process,
we assume that they should be verifiable, that is, we want to be able to decide whether the system
architecture, the design, the implementation, the process model, etc., satisfy them.

As mentioned in previous sections, we claim that data quality issues are non-functional requirements that may
be incorporated into the software development process. In fact, we may add a fourth kind of requirements:
data requirements. These requirements must be placed at requirements and specification time, and they will
constrain the following steps of the development process. In this way, we the system constructed will satisfy

8

the expected levels of data quality, and we may be able to verify these data quality requirements in the
system.

Very often, system developers claim that their job do not consist in understanding what the systems they
develop are used for, neither the context in which the systems will be used. They just build systems that meet
the requirements of the users; the users have to ensure the quality of the data in the databases [Orr98].
According to our view, if data quality requirements are formulated together with other non-functional
requirements, the developer has to guarantee that those requirements are met, and consequently, that the
expected levels of data quality are achieved and maintained. Of course, it is not always possible to have an a-
priori knowledge of all the aspects regarding data quality, but at least a subset should be available. And the
analyst is responsible for asking and obtaining this information.

Users have expected levels of data quality in mind. In fact, they obviously want data in the systems to be
used, and this alone constitutes a requirement. Sometimes they have more specific demands, concerning
accuracy, timeliness, security, accessibility, etc., of data. These requirements are functional by no means,
since they are not related to the services the system provides. However, they are related to how the services
will be implemented. For example, if a requirement is placed on the security of the data so that certain data is
not accessible to every one, the system must comply with this security requirement in order to satisfy the user
expectations. Hence, data quality requirements are non-functional requirements. To include data quality
requirements from the beginning of the development process may help to improve the quality of the data
during system usage, because the system will be designed to take care of the quality of the data according to
the user needs.

Moreover, in information systems the expectations on data quality can be even stronger than the expectations
on a particular functionality or operation that the system may perform.

Existent approaches consider data to be independent from the applications that use it [Red96]. This is
essentially true. Organizations have information that may be used by many systems, although the data has
entity by itself. However, systems are build to use this data in agreement with the rules and needs of the
organization. Thus, they have to preserve the consistency of the data, make it accessible, extract useful
information, maintain its quality, etc. It follows that applications must take care of data quality. And, as we
already know from software development models, it is better to have them in mind from the beginning. It is
always more expensive to modify existent systems in order to deal with the quality of the data, to preserve it,
or improve it. It is cheaper to include them at the starting point of the development process and verify them at
each stage, including the final implementation.

In order to have verifiable requirements, we would rather use formal notations that may allow us to use
automatic tools to perform verification of requirements. As opposed to other requirement languages, a
language for data quality specification should be decidable and quite simple.

Data quality requirements may be formulated in terms of data quality dimensions [SLW97]. Different
requirements may be placed over the same set of data and data model. Hence, we want to be able to decide
whether a set of requirements is sound. Moreover, we may place different requirements over different subsets
of data.

There are other approaches that deal with requirements on the data at early stages of the software
development process [Red96]. However, they do not follow a software engineering approach. In fact, they do
not incorporate them as part of standard software development processes; they do not look for a formal,
simple, and verifiable notation to describe data quality requirements; they do not apply traditional software
engineering techniques to data quality problems.

Strong, Lee, and Wang [SLW97] describe common existing problems with data. They identify their source,
the dimensions affected, and the impact on the organization. They propose general solutions to these
problems, for instance, as guidelines to the process development and management. They do not formalize the
expected data quality levels, and cannot verify if they are achieved. This analysis can be done when the
problems are detected, and the experience could be used in future developments.

Redman [Red96] proposes to understand the customer needs prior to the software development. He translates
user requirements into technical requirements written in natural language. Some of these requirements are
formulated in terms of specific conditions over certain data (for example, “the new address must be in the

9

system within two weeks”). He determines which dimensions are affected by each requirement. To do this, he
uses an impact matrix, where the impact of each requirement is rated as “high”, “medium”, or “low”. It is
hard to verify if the technical requirements really correspond to the user requirements, since they are both
informal. Also, it is difficult to verify if the technical requirements are satisfied. Moreover, with such a
limited scale, it is hard to determine the desired quality levels precisely, and consequently, to verify their
achievement.

7. Conclusions and Future Work

Problems in the quality of information are real problems in almost all organizations that use large databases.
In this work we have discussed the characteristics of the data quality problem, in particular related to other
quality topics usually considered in the software engineering field. Moreover, we have proposed three specific
lines in which particular techniques could have a direct impact on how organizations deal with these
problems.

This work presents more problems than solutions, it is just a particular point of view to attack data quality
problems. In order to obtain concrete results, more work must be done in each of the three themes proposed.
In particular, empirical validation is mandatory to check the adequacy of the methods and techniques
proposed. Actually, this work can be used as a research agenda, and the lines presented are the basis of our
research program on data quality.

The start point of this research program is the definition of metrics for data quality. Without a clear
knowledge of what and how to measure, it is difficult to attack the underlying problems or to define objective
experiments to check improvement after the use of new techniques [BMY98]. A particular issue related to this
point is the value of data. At some point in our program, we would like to have a notion of value of
information (in the sense of dollar value or market value), probably related to its use.

Data testing and the incorporation of data quality in the software development process are both issues that
must be investigated before defining practical techniques.

One of the main conclusions of this work is that software engineers cannot ignore data quality in the day to
day practice, and that many among the best practices of the field can be adapted to work with data quality.

Acknowledgements

This research was partially supported by the ANPCyT under ARTE Project grant PIC 11-00000-01856, and
the ANPCyT under grant PIC 11-00000-0594.

References

[BR88] Basili, V.R., Rombach, H.D.: The TAME Project: Towards Improvement-Oriented Software
Environments, IEEE Transactions on Software Engineering, vol. 14, no. 6, June 1988.

[BMY98] Bobrowski, M., Marré, M., Yankelevich, D.: Measuring Data Quality, submitted for publication.

[BBL76] Boehm, W., Brown, J.R., Lipow, M.: Quantitative Evaluation of Software Quality, Proceedings of
the Second International Conference on Software Engineering, 1976.

[FP97] Fenton, N.E., Pfleeger, S.L.: Software Metrics - A Rigorous & Practical Approach, 2nd edition ITP
Press, 1997.

[How76] Howden W. E.: Reliability of the Path Analysis Testing Strategy, IEEE Transactions on Software
Engineering, vol. 2, 1976.

[JV97] Jarke M., Vassiliou Y.: Data Warehouse Quality: A Review of the DWQ Project, Proceedings of the
Conference on Information Quality, MIT, Boston, October 1997.

[MRW77] McCall, J.A., Richards, P.K., Walters, G.F.: Factors in Software Quality, Rome Air Development
Center, RADC TR-77-369, 1977.

10

[My79] Myers G. J., The Art of Software Testing, Wiley, New York, 1979.

[Orr98] Orr, K.: Data Quality and Systems Theory, Communications of the ACM, Vol. 41, No. 2, pp. 66-71,
Feb. 1998.

[Red96] Redman, T.: Data Quality for the Information Age, Artech House, 1996.

[Red98] Redman, T.: The Impact of Poor Data Quality on the Typical Enterprise, Communications of the
ACM, Vol. 41, No. 2, pp. 79-82, Feb. 1998.

[SLW97] Strong, D., Lee, Y., Wang, R.: Data Quality in Context, Communications of the ACM, Vol. 40, No.
5, May, 1997.

[SLW97] Strong, D., Lee, Y., Wang, R.: 10 Potholes in the Road of Information Quality, IEEE Computer,
August 1997.

[Som94] Sommerville, I.: Software Engineering, Addison-Wesley, 1994.

[Tay98] Tayi, G.K.: Research Seminar on Data Quality Management, Universidad de Buenos Aires, July
22th, 1998.

[Van98] Van Latum F., Van Solingen R., Oivo M., Hoisi B., Rombach D., and Ruhe G.: Adopting GQM-
Based Measurement in an Industrial Environment, IEEE Software, pp. 78-86, January-February 1998.

[WW96] Wand, Y., Wang, R.: Anchoring Data Quality Dimensions in Ontological Foundations,
Communications of the ACM, Vol. 39, No. 11, November, 1996.

Slide 1

System Test Server
through the Web

Manuel Gonzalez
Software Quality Engineer

Hewlett Packard Barcelona Division
mgonzal@bpo.hp.com

Slide 2

Typical testing problems

The problem

Testing
crisis

Number of manual
 tests too high

Test environment
complex

Time
constraints

Lack of
reuse

Testing
too late

Market
 pressure

Lack of
standardization

High setup and
maintenance

Test cases not
documented Test cases not

centralized

No time to automate

Bad software
specification

Lack of
standardization

Random test

Operator
involved

No risk
analysis

Slide 3

Guidelines for a solution

n Zero setup and maintenance at the client side. Facilitating
testing deploy, setup and maintenance.

n “Centralization of distributed testing resources”. Facilitating
reuse.

n High control about test cases (test cases repository).
Facilitating test cases documentation and standarization

n A strategy to verify testing results in an automatic way.
Reducing manual testing and the need of an operator.

The solution

Slide 4

What to use to
implement a solution?

n Internet technologies can bring some
relief to this problem

The solution

Slide 5

Pieces of the solution

n Test cases repository.

n Web tools and technology (Web server, browser,
protocols, …).

n Testing resources accesed via client-server
paradigm.

n Simulation software (when a hardware device is
also involved).

The solution

Slide 6

System Test Server
high level Arquitecture

The data layer handles all retrieval and storage of information.

High level
Architecture

Browser

Test EnvironmentDaemons

Test cases repositoryWeb Server

ThePresentation layer that does little more
than handle display requirements. To the end
user, the presentation layer is the application.

The Application or business logic layer handles all
the “stuff” that needs to get done. This may include
calculations, data analysis, logical record handling.

Slide 7

System architecture based on Java
components

WEB Browser

Java appletClient
HTTP and RMI calls

INTRANET

Server

Test cases
repository

Query servlet
(Java)

DBMS-proprietary
protocol

JDBC driver

WEB
server

RMI callsHTTP calls

Test environment

Java-based
Architecture

Slide 8

System architecture based on
Microsoft components

Browser

http

Intranet

IIS
ASP pages

ODBC aware
database

http

Printing query
server

Socket

Via
ODBC
driver

Socket

Test environment

MS-based
Architecture

Repository

Query servlet (Java)

JDBC driver

WEBserver

WEB Browser

Java applet

HTTP / RMI

RMIHTTP

Java-based
arch.

Socket

Slide 9

ASP Sample
In the example we will use a simple one-table database, with information about test cases. The test case-id is
the primary key and it contains the test case information like name, operating system, what proves, and so
on. We are going to create a SQL query that returns the test cases on Windows 95:

 ' We create command and record set objects
 Set SQLCommand = Server.CreateObject("ADODB.Command")
 Set TestCasesSet = Server.CreateObject("ADODB.RecordSet")

 ' Set the ActiveConnection property of command object to the ODBC source we will connect with
 SQLCommand.ActiveConnection = "ODBC_source"

 ' Build the SQL query
 SQLquery = "SELECT * FROM TestCasesTable WHERE OS=’Windows 95’"

 ' We assign the SQL query to the CommandText property of Command object
 SQLCommand.CommandText = SQLquery
 SQLCommand.CommandType = 1

 ' Execute the command (query), and set the record set object to the result
 Set TestCasesSet = SQLCommand.Execute

 ' Release the resources for command object
 Set TestCasesSet.ActiveConnection = Nothing

 ' Use query result to populate your HTML output stream
 Do While NOT TestCasesSet.EOF

 TestCasesSet.MoveNext
 Loop

MS-based
Architecture

Slide 10

Differences between the
two alternatives

Advantages Disadvantages
ASP-based model § Visual Basic is easier to

learn than Java/RMI.
§ Browser must not have

special capabilities

§ The user interface is
constrained to the HTML
features.

§ The Microsoft-SQL is not
standard.

§ The server must be the
Microsoft’s Internet
Information Server. Therefore
it’s a proprietary solution.

Java-based model § High flexibility in the user
interface layout .

§ More flexibility in the
server side.

§ It’s necessary to deal with the
complexity of Java and RMI.

§ RMI only works in the most
recent browsers (browsers that
support Java Platform 1.1).

§ Browser must have enabled
the Java setting (security
issues)

MS-based
Architecture

Slide 11

Our testing flowchart Example

Select a
Test Case

What OS,
App.,

driver use?

Print

Where output
will be

redirected?

Simulator

Printer Simulator

File

Slide 12

Our solution
Browser

http

Intranet

http Sockets

Sockets

CLIENT ENVIRONMENT

95/98

NT 4.0/5.0

MAC

Printing daemon

socket

Script

ApplicationDriver

Network printer

IIS
ASP pages

ODBC aware
repository

Query
Deamon

SERVER ENVIRONMENT

Firmware
Simulator

Master
Comparison

To a network
printer

IN EACH PC

WORKSTATION

Example

Drawing

ProfileSockets

Slide 13

Step I
Browser

http

Intranet

http

CLIENT ENVIRONMENT

IIS
ASP pages

ODBC aware
repository

SERVER ENVIRONMENT

Example

Slide 14

Step II
Browser

http

Intranet

http

CLIENT ENVIRONMENT

IIS
ASP pages

ODBC aware
repository

Query
Deamon

SERVER ENVIRONMENT

Example

Sockets

Slide 15

Step III
Browser

http

Intranet

Sockets

Sockets

CLIENT ENVIRONMENT

Printing daemon

Script

ApplicationDriver

Query
Deamon

SERVER ENVIRONMENT

Firmware
Simulator

Master
Comparison

IN EACH PC

WORKSTATION

Example

Drawing

Profile

Slide 16

Step IV

http

Intranet Sockets

CLIENT ENVIRONMENT

Printing daemon

Script

ApplicationDriver

Network printer

ODBC aware
repository

Query
Deamon

SERVER ENVIRONMENT

Firmware
Simulator

Master
Comparison

To a network
printer

IN EACH PC

WORKSTATION

Example

Drawing

ProfileSockets

Slide 17

Use Model. Sequence Diagram
Example

User Web
Browser

Query
Daemon

Printing
Deamon

Test Script Driver |
Application |

RepositoryWeb Server

connectHomePage

queryTestCases

retrieveCatalog

solveQuery

printTestCases

parsePrintingCommand

retrieveCatalog

retrieveInfo

printTestCase

buildDriverProfile

executeTestCase

status&Results

logInfo

askForStatusAndResults

Slide 18

Use model

1. A User accesses to the home page (an ASP page) of the testing
environment using his favorite Web Browser.

2. The User queries the Web Server using special forms.
3. The Web Server executes ASP code in order to solve the query.
4. The ASP code accesses to the Repository and select the Test

Cases that meet the query requirements. Then, it sends the
query results back to the Web Browser (as HTML).

5. The User selects the appropriate test cases and then sends a
printing command to the Query Deamon.

Example

Slide 19

Use model

7. The Query Deamon receives the printing command and parses
its content. It retrieves the Test Cases from the Repository and
passes them to an appropiate Printing Deamon.

8. The Printing Deamon:
- Builds a driver configuration file (profile) that later will be
loaded by the driver.
- It calls a Test Script in order to execute an application, load a
drawing in the application and print the drawing.

9. The output can be:
- sent to a networked printer
- stored on hard disk
- simulated

Example

1

System Test Server through the Web
Manuel Gonzalez

Software Quality Engineer
Hewlett Packard’s Barcelona Division

Avda. Graells, 501
08190 Sant Cugat del Valles

Barcelona -Spain
mgonzal@bpo.hp.com

1. Introduction
For the Software Quality department of a mid-large company testing represents an

expensive phase involving a lot of people, and unfortunately sometimes, it’s done at the
last stages of a project, causing strong time constraints and high cost. [Jones91]

Once the code has reached functionality complete, integration, system and
regression testing [Humprey90] [Myers76] are done in order to stabilize the product.
Once the code is frozen, further regression testing is done to check that the product is
ready to be shipped. In these stages of the project, schedule constrains are frequent and
any time saving is welcome.

Generally, when the project is large, reuse helps to save effort, time and money.
In a large project, it’s typical to have several groups doing similar tasks in a similar way
(for example, a printer manufacturer might have two groups developing different drivers
(Postscript and HPGL/2) for the same printer, using the same test strategies but different
testing environment implementations).

From our point of view, a valid solution for this problem could consist of:

a) Facilitating the testing tasks to all project teams (not only software quality engineers,
even if they are one of the main addressees). The idea is to make test execution easy
enough so that it is not an expensive additional effort for people whose main task is
doing something other than testing. So, test deployment through all the project teams
will be easier.

b) Having a centralized testing infrastructure reusing testing knowledge among all teams
in a project. Moreover, this infrastructure must allow very fast reaction to software
last minute changes at the last moment, and to run the highest amount of tests in a
short period of time. In order to achieve this, a total control of test cases and an
adequate mechanism for testing automation is required.

We think that Internet technologies can bring some relief to this problem. If we
would combine the Web with a well-structured test case repository (and Web-aware) it
would be possible to make testing accessible to everyone in the company and to share
testing knowledge and technology with very low setup and maintenance.

2

2. How do we think that the problem may be attacked?
Test technology in a Quality department typically passes through different stages of

maturity. In its beginning random test, then formal and repeatable tests are done in a
manual way, finally some test automation environment gathers test knowledge trying to
reduce time and cost. But when the product is complex (large software projects or
hardware/firmware/software mixed projects), normally the test environment is also
complex. So, testing environment setup and maintenance starts to be a problem that
prevents the sharing and deployment of testing technology. In order to reduce cost and
improve reuse rate we propose a testing automation environment integrating several
techniques:

1. To create a test cases repository as the core of the testing automation environment
which groups the test cases and enough information to execute them (preferably in an
automatic way).

2. To use Web technology in a manner which reduces client setup to a minimum and to
deploy the maximum testing through all the company.

3. To share testing resources to allow to clients access to expensive resources (due to
development time or hardware/device availability).

4. In testing environments where a hardware device is also involved, to use simulation
software in order to avoid lack of prototypes and human intervention (for example, to
load paper in the printer), and to save money.

We think that the main design criteria of this automation environment, in order to
overcome the previous disadvantages, must be:

a) Zero setup and maintenance at the client side. The software in the client side must be
multiplatform. This allows to spread the automation environment without cost
increment. Moreover, clients can access testing resources without workload
increment and so they have almost no barrier to begin doing testing.

b) High control about test cases. Reuse testing knowledge is fundamental to avoid
unnecessary expenses and to improve testing reuse. Therefore, a repository where test
cases are grouped in accordance to different variables (functionality tested, target
market…) must be the core of this environment. A query interface must facilitate
client requests. Moreover, management of test case results is a central piece in order
to improve testing efficiency and to improve development processes.

c) A strategy to verify testing results in an automatic way. This strategy will be specific
for each different type of project. In this paper we will explain the strategy adopted
for the HP DesignJet printer’s drivers1.

1 HP DesignJet printers, commonly called plotters, are large format printers able to print drawings up 54 inches wide.
They support several graphic languages (HPGL/2, RTL, and Postscript) and for each of these languages a driver is
developed. These printers are used by graphics artists, CAD users, GIS users, …

3

In the remaining of this paper, firstly we will explain the general architecture
proposing two alternatives, and then we will develop an example about Hewlett-Packard
DesignJet printers and the current testing environment for its drivers.

3. System test server’s architecture
The model we propose consists of three main components. Firstly, a repository

where test cases are stored containing enough information in order to automatically
execute them and to know what the test case proves and how the test case result can be
verified. Secondly, an Internet-oriented infrastructure that allows to the users with a
minimum of client-side setup to access and share of all testing resources with the
consequent savings of cost and time. And lastly, the test environment to be deployed.

We propose two similar architectures: one based on a pure Java model, and
another one based mainly in Microsoft Internet technologies. Both meet the requirements
previously listed with the only difference of the Internet infrastructure implementation.
Figures 1 and 2 summarize both approaches:

WEB Browser

Java applet
MAIL reader

Client

HTTP and RMI calls

INTRANET

Server

Test cases
repository

Query servlet (Java)

DBMS-proprietary
protocol

JDBC driver

WEB
server

RMI callsHTTP calls

Test environment

Transaction
monitor

Figure 1: System architecture based on Java components

In these architecture we replicate the known three-tier model. So, the top tier
(user interface) is the entire client side, the middle tier (business logic) is represented by

4

the test environment and the Java servlet, and the bottom tier (data storage) is composed
by the database.

In the Java [Java98] alternative (figure 1) the client side just consists of a Java
applet running in a Web browser. This applet will provide enough functionality to
browse and query the test cases database, and to issue an execution starting command
based on the user selection. The client side simplicity makes it easy to deploy the test
technology beyond quality department. The client and server will communicate using
HTTP and Java-to-Java Remote Method Invocation (RMI) [RMI98] protocols.

In the middle tier of the server there are several basic components:

• The Web server in order to serve HTTP requests, for example the first connection to
the Java applet's page. Any Web server is a valid candidate.

• The Transaction Processing (TP) monitor: It manages all the tasks involved in a
query and serves the query as an atomic transaction (all or nothing). Moreover it does
load balancing, thread management, security, connection pooling. This is an optional
component. But, performance and reliability will improve if a TP monitor is used.

• The servlet: written in Java, it manages multiple execution of test scripts with the
(optional) support of a TP monitor. Client uses the RMI protocol to communicate
with the servlet. The main servlet tasks are:

a) Once the user have built the final query, the servlet has to retrieve additional
data from the repository in order to make the automatic execution of the test cases
selected feasible.

b) For each test case, the servlet has to pass this information to the client on the
machine where execution will be done (W95 PC, or WNT PC, and so on). This
information may be passed using any remote procedure call (RMI, RPC,) or a simple
interchange of files, depending on the method implemented in the different clients.

c) During the entire process, the servlet will log the query’s execution status in the
database and will inform the users about failures.

• The test environment (test resources) to be deployed via the Web. In each machine
of the test environment executing test cases, there will be a piece of software in
charge of communicating with the servlet on the server. Main tasks of this software
will be:

a) Launching and configuring the components needed to execute each test case.

b) Recovering when an execution error occurs and communicating it to the server.

c) Logging useful data about the execution of the test case and communicating

5

them to the server. For example, performance data.

• Java Database Connectivity (JDBC) [JDBC98] plays an important role. JDBC, a
Java-based interface to SQL-based database engines, provides a consistent interface
for communicating with a database and for accessing database metadata. Individual
vendors provide specific drivers to their particular database management system.
JDBC is important to allow database access from a Java middle tier abstracting
database implementation specifics.

In the top tier we have:

• Client Java applet: downloaded from the server embedded in a HTML page. This
applet shows an user interface, allowing an user to do queries and issues commands
to the system test server. Users should have at least two possibilities: to make a query
using keywords or to select test cases directly.

• E-mail reader: used to receive notifications about the end of tasks or the existence of
errors.

And in the bottom tier:

• Test cases repository: this repository contains at least the following information:

a) For each test case, a set of keywords defining what the test case proves. Users
can build queries using the complete set of keywords.

b) For each test case, information about how to verify the result.

c) For each test case, information about where to find components involved in its
execution.

d) Data about features of the software to be tested in order to allow flexibility in
test cases.

e) Data about server capabilities (which are the resources of the test
environments, where they are…).

f) For each test case executed, data about its execution. For example, number of
errors found, time spent in its execution, number of times it has been executed, …

The second alternative is based on Microsoft-world components. Both alternatives
have the same philosophy but different implementations. They use different components
for the Internet infrastructure.

6

Browser

http

Intranet

IIS

ASP pages

ODBC aware
database

ADO

http

Printing query
server

RPC

Via
ODBC
driver

RPC

Test environment

Figure 2: System architecture based on Microsoft components

The differences between the Microsoft-based model (figure 2) and the Java-based
model are the following:

• Microsoft-based model uses Microsoft's ASP pages (Active Server Pages)
[Francis98]. Active Server Pages allow you an easy means of querying and updating a
database from a Web page. ASP pages allow you to combine scripting and HTML on
Microsoft's Internet Information Server. ASP embedded scripting code may be
written both in JavaScript and VBScript. ASP pages are independent of the type of
browser that will be used to access these pages because they are executed on the
server; the client receives their output as HTML. Additionally, server components
can be easily added to extend the Internet/intranet application.

In figure 3 there is an example of ASP scripting. The code is inserted along with the
HTML tags. The code is closed between '<%' and '%>' symbols. The page must have
the '.asp' extension.

7

In the example we will use a simple one-table database, with information about test cases. The test case-id is
the primary key and it contains the test case information like name, operating system, what proves, and so
on. We are going to create a SQL query that returns the test cases on Windows 95:

 ' We create command and record set objects
 Set SQLCommand = Server.CreateObject("ADODB.Command")
 Set TestCasesSet = Server.CreateObject("ADODB.RecordSet")

 ' Set the ActiveConnection property of command object to the ODBC source we will connect with
 SQLCommand.ActiveConnection = "ODBC_source"

 ' Build the SQL query
 SQLquery = "SELECT * FROM TestCasesTable WHERE OS=’Windows 95’"

 ' We assign the SQL query to the CommandText property of Command object
 SQLCommand.CommandText = SQLquery
 SQLCommand.CommandType = 1

 ' Execute the command (query), and set the record set object to the result
 Set TestCasesSet = SQLCommand.Execute

 ' Release the resources for command object
 Set TestCasesSet.ActiveConnection = Nothing

 ' Use query result to populate your HTML output stream
 Do While NOT TestCasesSet.EOF

 TestCasesSet.MoveNext
 Loop

Figure 3: ASP example

• Microsoft-based model uses RPC instead of RMI. Moreover, RPC is just used to
communicate between the server and the test environment. There is no RPC use in
the communication between the browser and the server, this communication is
simplified and done via HTML.

• It uses an HTML-based User Interface.

Although they are similar solutions, to use Java instead of ASP or vice versa, has a lot
of implications, above all in terms of flexibility and simplicity. Advantages and
disadvantages of both approaches are summarized in the following table:

8

Advantages Disadvantages
ASP-based model � Visual Basic is easier to

learn than Java/RMI.
� Browser must no have

special capabilities

� The user interface is
constrained to the HTML
features.

� The Microsoft-SQL is not
standard.

� The server must be the
Microsoft’s Internet
Information Server. Therefore
it’s a proprietary solution.

Java-based model � High flexibility in the user
interface layout .

� More flexibility in the
server side.

� It’s necessary to deal with the
complexity of Java and RMI.

� RMI only works in the most
recent browsers (browsers that
support Java Platform 1.1).

� Browser must have enabled
the Java setting (security
issues)

4. An implementation of this approach: HP Large Format Printers testing
Our lab is dedicated to investigating and implementing new Large Format

Printing solutions. So we mainly develop printers and software related to it (drivers,
status monitors, printing tools,…). The Software Quality team is in charge of providing
quality services to developers, including testing services. System testing is one of our
most valuable test strategies, because it covers all the components we develop (device,
drivers, …), and the applications used by our users. Therefore, System testing ensures
quality in the entire solution.

In order to do System Test we have a very complex System Test environment,
composed of:

• The device(s), printer(s), under test.

• The drivers that are necessary for plotting to the device(s) from different operating
systems and commercial applications.

• Main applications used by our users (divided in several markets).

• Several operating systems (Windows 3.1/95/NT, MS-DOS, UNIX and MAC OS)

Figure 4 shows the typical testing flowchart.

9

Select a drawing
 (test case)

What driver do
you print with?

There are five
different drivers

What application
do you use?

What OS
do you want?

There are about twenty
 different applications

There are eight
different OSs

Open the app

Load the drawing
into the app

Configure
the driver

PRINT

Where redirect
the output

Open the
simulator

SimulatorPlotter

Load the driver output
into the simulator

Load simulator
output into a viewer

Compare simulator
with a master

Visual
verification

Are there
differences?

OK Error

...

...

Figure 4: Our testing flowchart

Our system test cases usually consist of a drawing that is printed using one of our
drivers. In order to print the drawing the driver must be configured with significant
values. A commercial application is used to load the drawing and print it using the
driver. We have different drivers (System Printer, Postscript, …) running on different
platforms (Windows 3.1, Windows NT, System 7 and 8, …).

In order to reduce testing complexity and cost we may redirect the driver output to a
printer simulator. The printer simulator consists of the true printer firmware compiled on
VxSim/HP-UX instead of on the printer motherboard. This has several advantages: we
can simulate a printer when printer prototypes are not available and we reduce testing
cost significantly due to the fact that the simulator is cheaper and accessible to everyone
in the lab. The output of the simulator is previewed using a tool called Vpaper that
generates a bitmap as printed in paper from the simulator’s output format.

10

The main drawback of such complexity is that our quality engineers use various
testing automation environments. These environments are faced with the issues of
complexity, cost (hardware prototype, several market applications involved) and difficult
client setup. Moreover, the existence of various testing environments made that the
quality engineer’s workload didn’t allow to maintain the high amount of test cases under
control. These drawbacks caused development engineers to be reluctant to do system
testing and so this kind of testing is done mainly by quality engineers and at the last
stages of development (with the known cost and inefficiency).

The solution has been implementing the approach presented in this paper. The
software quality team focuses on system test deployment, sharing of valuable testing
resources, low maintenance and setup and understanding what our test cases prove. The
pieces of our anterior test environment have been integrated in the new one in the
following way:

Browser

http

Intranethttp

RPC

RPC

CLIENT ENVIRONMENT

RPC

95/98

NT 4.0/5.0

MAC

Printing daemon

RPC

Script
Profile

Drawing

Application
DriverNetwork printer

Via an
ODBC driver

IIS

ASP pages

ODBC aware
database

ADO

Printing query
server

SERVER ENVIRONMENT

Firmware
Simulator

Master
Comparison

To a network
printer

IN EACH PC

WORKSTATION

Figure 5: Our test environment deployed via WEB

Our test cases are drawings to be plotted in the printer using a specific driver under
any operating system supported, using a specific application. Each drawing tests one or
several features of the entire printing path. For each test case stored in the database we
gather information about:

11

• What the drawing tests? For example, correct margins management, line width/line
length accuracy, color matching, fill pattern, text, ...

• Test case characteristics. For example, if the test case includes color, how many dots
per inch the drawing has, complexity (high | mid | low), applications that can be used
to print it (PhotoShop, Corel, AutoCAD, ...), ...

• Target market of the type of drawing (for example, Print Service Providers, Retail,
GIS, Sign Shops, Architectural, ...)

Each test case has an associated script. This script executes the test case using both
informations in the database as client applet settings (for example, print quality, print
area, paper type...)

5. Use model
In this section we detail the use model of the System Test server via the Web, using

the Java-based model.

Steps involved in the execution of a query are the following:

1. A user accesses to the home page of the testing environment using his WEB browser.
The client applet is executed in the client. The applet shows a query interface built
from the database information: drawing catalog, available drivers and applications,
and so on.

2. The user queries the server: for example “I want to test color adjustment using the
Postscript driver in Windows 95”, or “I want to run a regression for GIS market”, or
“I want to test such a drawing using the AutoCAD driver in AutoCAD R14 for
Windows NT and in the DesignJet 2500CP”.

3. The servlet gets the query and creates a process in order to manage it. In this step
Transaction Processing (TP) monitor services are required, in this way we overcome
issues of robustness, reliability, and quality of service.

4. The servlet accesses the database and select test cases that meet query requirements.
Then, it creates a data stream with query results and sends it back to the client.

5. The client’s applet shows the query results in a friendly way. Then, the user has the
choice of executing all the test cases, selecting a subset or refining the query. When
the user has selected the appropriate test cases he sends a printing command to the
server.

6. The servlet gets the printing command and parses its content. It retrieves the test
cases from the database and all the information needed to execute them. Then, it
passes each test case to the correct testing PC. For example, if a test case must be

12

executed on Windows 95, the servlet passes information to a testing PC running a
test execution daemon in this OS. (In this step, TP monitor services are also
required).

7. The test execution daemon (replicated in each testing machine) does two tasks:
- First, it builds a driver configuration file (profile) that later will be loaded by the
driver, and
– Second, it calls a script in order to execute the application, load a drawing in the
application and issue a printing command. The printing command will launch the
driver, and this will load the profile.

The driver output is sent to a networked printer, a printer simulator or stored on hard
disk, depending of the user’s choice. The printing daemon will notify the servlet of
any error situation during the test case execution.

8. If the user decides to send the binary output to a networked printer, the servlet
redirects the output to the corresponding printing queue and sends a notification to the
user via e-mail.

9. If the user decides to store the binary output on hard disk, the servlet stores it in any
of the hard disks managed by the environment. The user can later access the file
generated.

10. If the user decided to simulate the binary output in any of the simulators available, the
servlet communicates this proposal to a UNIX daemon that will be the owner of the
simulation. The driver output and some additional information are also sent to the
UNIX daemon. The latter calls the printer simulator and notifies the user about the
location of the final output via e-mail.

6. Conclusions
We have presented two approaches (one based in Microsoft components and another

one based in Java) in order to deploy a testing environment using Web technologies.
Both approaches are similar, but we finally have implemented the Microsoft one because
of its simplicity. The Java model has a high flexibility but at the expense of some
additional complexity. In both approaches, a test case repository plays a main role. In
this repository test cases are classified in accordance with testing criteria. So, we improve
reuse.

We think that Web technologies can help improve testing performance as well as
reduce testing cost. But to be successful is important to achieve zero setup and
maintenance at the client side, to have a high control about test cases, and to have a
strategy to verify testing results in an automatic way.

13

7. Bibliography

[Francis98] Brian Francis, Alex Fedorow, Richard Harrison, Dave Sussman, Rob Smith,
Alex Homer, Shawn Murphy. Professional Active Server Pages 2.0. Wrox Press Inc.
March 1998.

[Humprey90] Humphrey, Watts S. Managing the Software Process. Addison-Wesley,
1990.

[Java98] Java home page at http://www.javasoft.com.

[Jones91] Jones, C. Applied Software Measurement: Assuring Productivity and Quality.
 New York: McGraw Hill.

[Myers76] Myers, G. J. Software Reliability, Principles and Practices, New York: Wiley,
1976.

[ODBC98] Java home page at http://www.javasoft.com.

[RMI98] Java home page at http://www.javasoft.com.

1

Automated Test Data Generation to
Solve the Y2K Problem*

István Forgács and Ákos Hajnal

Computer and Automation Institute

Hungarian Academy of Sciences

* Research was supported in part by AKP grant 97-129 2,1/20

Outline

➫ Introduction

➫ Y2k fault detection method

➫ Y2k criterion

➫ Test data generation

➫ Example

➫ Related work

➫ Concluding remarks

2

Introduction

➫ Nobody knows what will happen on January 1, 2000

➫ What is the Year 2000 (Y2k) problem?

➫ Many computer programs use only two digits to record year values.

➫ Both 1900 and 2000 are represented as ''00'' ➪ defect

Example: Mr. Smith was born in 1960, then 2000 - 1960 = 40

However, 0 - 60 = -60, i.e., this person is just -60 years old

according to the computer!

➫ Problem: we have to fix both the program and the database that
contain two digits year-valued data

➫ The present ad-hoc methods are not reliable and they cannot be used
to test the fixed program

Introduction

➫ The technical part of the Y2k problem includes
➫ (1) testing for the Y2k faults,

➫ (2) the program and database fixing process,

➫ (3) post-renovation testing.

➫ Our method addresses (1) and (3), so that Y2k bugs can be found
automatically

➫ We do not need to know the value of any output, or how to select input
data

➫ Key idea: We compare output (or branch) functions for six different
years (1997-2002) ➪ automated validation

➫ We apply a very reliable criterion ➪ safety

➫ We reduce programs by using slicing ➪ efficiency (wrt cost and time)

3

Y2k fault detection method: An example

read(workers_name)

seek(workers_file, workers_name)

read(workers_record)

. . .

age = CurrentDate.year - WorkersRecord.birthday.year

if age > 60 then

 TaxPercentage = 0

else

 TaxPercentage = 20

. . .

Y2k fault detection method (previous methods)

➫ Let us test the program for some (not too old) employees for years 1998
and 2000

➫ All the people pay tax in every case

➫ Since this is obvious, any tester without inspecting the code thoroughly
would believe that the testing process was adequate

➫ Though white box testing may reveal this bug, a deep knowledge is
required

➫ Assume automated test data generation
➫ We have to validate the results manually

➫ Reliable criterion requires the generation of numerous test cases

⇓
➫ The method is very time consuming

4

Y2k fault detection method
➫ Input: employee was born in 1959

➫ test cases: six different years,

i.e., CurrentDate.year = 1997, 1998, 1999, 2000, 2001 and 2002

➫ branch function:

f = age - 60 = CurrentDate.year - WorkersRecord.birth.year-60

➫ Assuming two-digits year-valued data we obtain the branch functions:

-22, -21, -20, -119, -118, -117

➫ There is a big jump considering 1999 and 2000

➫ For two consecutive years excluding (1999, 2000) the difference of the
branch functions is f(1998) - f(1997) = -21 - (-22) = 1

➫ However, the difference of the branch functions for 1999 and 2000 is
f(2000) - f(1999) = -119 - (-20) = -99

➫ Consequence: the Y2k fault has been recognized for any employee even if
the output is correct for all dates!

Y2k fault detection method
1 Assume that we are given an executable program path P and a program

input x for which P is traversed

2 Select an instruction I (can be a predicate or an output) that is
influenced by a Y2k-related input variable

3 Generate six different program inputs by setting year to the values
1997, 1998, 1999, 2000, 2001, 2002, keeping all the other input
variables unchanged

4 Compute the differences: d1 = |f(1998) - f(1997)|,

d2 = |f(1999) - f(1998)|, d3 = |f(2000) - f(1999)|,

d4 = |f(2001) - f(2000)|, d5 = |f(2002) - f(2001)|

5 Y2K fault occurs along P, if any d3 is larger than any other di

➫ The method works well surely for linear case, however, in any case it is
safe

5

Y2k criterion
➫ Y2k criterion requires the selection of a set of program inputs that

reveals the Y2k faults (if any) of a given program with high probability

➫ It is also an adequacy criterion that efficiently tests the program after the
fixing of Y2k bugs

➫ Information we need are:
➫ The names of date-related input variables (Y2k variables)

➫ The content of the date (year, year and month, year, month and day)

➫ Which program paths should be covered?
➫ If we cover only each edge, the method is not safe

➫ If we cover all (cycle-free) paths, the method is very expensive

➫ Solution: SLICING

➫ A slice contains all the statements that might affect the set of variables used
at a program point I

Y2k criterion

• The forward slice consists of all the statements and predicates that might
be affected by a set of variables defined at a program instruction I

• Consider each Y2k variable v one-by-one.

• First, we determine the forward slice for v at an instruction I, where v is
read from keyboard, from a database, etc.

• Select output instructions and determine the (backward) slice for each
output o

• We obtain the statements that may affect o

• We intersect the statements that are in both slices; the new subprogram is
called a double-slice

• Any Y2k criterion has to select program path related to the double-slice
only ➪ The number of tests is significantly reduced

6

Y2k criterion

➫ Select a Y2k variable v and an output O
➫ generate each cycle-free executable program path that reaches the output

corresponding to the double-slice

➫ generate executable program paths so that each loop be iterated once and
twice

➫ apply Y2k fault detection method for each selected path for the output
function

⇓
the Y2k criterion for (v,O) has been satisfied

➫ Extend the method to apply Y2k fault detection method for the
predicates that are along the prefix path that reaches O

➫ Select each output for the selected Y2k variable

➫ Repeat the above method for every Y2k variable ➪

The Y2k criterion is satisfied

Test data generation

➫ Our algorithm

➥generates a set of test data to cover each necessary program path in
the double-slice

➥uses an improved function minimization technique to alter the
flow of control at a selected conditional statement

➥checks these paths with respect to Y2k faults

➫ The branch function expression of a simple predicate A op B (where
op∈{<, ≤, >, ≥, =, ≠}) is F = A - B, which is a function of the current
program input

7

 Test data generation

➫ Assume that F is positive

➫ To alter the flow of control we have to find a program input for which
the branch function value is negative (or zero)

➫ A two-phase method is applied to decrease the branch function value:

➥ exploratory search

➥ minimization procedure

➫ Exploratory search

➧ We modify (increase/decrease) input variables (keeping all other
variables unchanged) by a small amount until the branch function
decreases

 Test data generation

➫ Minimization procedure

➧ The current program input is modified repeatedly along the same
direction that is selected by the exploratory search

➧ The amount of the modification is doubled until the branch
function improves or the prefix path changes

➧ The amount of the modification is halved until a local minimum
has been found or F becomes negative

➧ If the latter case occurs, then the algorithm successfully modifies
the flow of control at the selected predicate

➧ If F remains positive, then we select another variable and the
whole method including exploratory search and minimization is
repeated

8

 Test data generation

➫ The coverage algorithm

➧ starts with an arbitrarily selected program input

➧ explores all program paths systematically by applying the test data
generation method repeatedly for the selected predicates

➧ executes each loop zero times, once, and twice

➫ The paths are validated with respect to the Y2k problem

➫ If the prefix path changes for a selected series of test data, a path
correction method is applied

Example

read(current_year)

read(job_begin_year)

read(salary_class)

a if current_year < 0 then

1 exit (''error'')

b if job_begin_year < 0 then

2 exit (''error'')

3 salary = 80000

c if current_year - job_begin_year >= 10 then

4 salary = salary * salary_class

else

5 salary = salary + 1000 *

(current_year - job_begin_year)

6 write (salary)

9

➫ Let us select an arbitrary initial program input I1, such as
current_year =1997, job_begin_year =1982,
salary_class =1.0 (I 1 =[1997,1982,1.0])

➫ Generate the double-slice of the code for input variable current_year and
output variable salary

➥forward-slicing filters out predicate b, statement 2 and 3

➥backward-slicing filters out predicate a, and statement 1

➫ The test data generation algorithm automatically finds the program input
I 2=[1997,1989,1.0] that covers the other possible path

➫ Generate and execute the series of program inputs
➥ I1 ➩ [1997,1982,1.0], [1998,1982,1.0], [1999,1982,1.0],

[2000,1982,1.0], [2001,1982,1.0], [2002,1982,1.0]

➥ I2 ➩ [1997,1989,1.0], [1998,1989,1.0], [1999,1989,1.0],
[2000,1989,1.0], [2001,1989,1.0], [2002,1989,1.0]

Example

➫ Since the prefix path changes for the I2-series, the path correction method is
applied resulting I’ 2=[1997,1996,1.0]

➫ Branch function values of predicate c for the I1-series

correct ➩ faulty ➩

program program

➫ Branch function- and output values for the I2-series

correct ➩ faulty ➩

program program

date Fc
1997 5
1998 6
1999 7
2000 8
2001 9
2002 10

date Fc
1997 5
1998 6
1999 7
2000 -92
2001 -91
2002 -90

date Fc salary

1997 -9 81000
1998 -8 82000
1999 -7 83000
2000 -6 84000
2001 -5 85000
2002 -4 86000

date Fc salary

1997 -9 81000
1998 -8 82000
1999 -7 83000
2000 -106 -16000
2001 -105 -15000
2002 -104 -14000

Example

10

Related work

➫ Commercial products try to find the location where dates are employed
➥date-manipulation sites can be identified by the places where there is a call to

the operating system

➥automated string-searching tools identify some patterns, for example, ''*date*'',
''*yy*'’

➥ these methods cannot be applied for post-renovation testing, since these
methods do not execute programs at all

➫ Path profiling method (Reps et al. 1997)
➥A path profiler instruments programs so that the different executed program

paths can be recognized

➥After several runs of the code a path spectrum can be obtained and displayed so
that the frequency of different executed paths is determined

➥ If the path spectra for pre-2000 and post-2000 values are different, a Y2k fault
has been detected

➥The method is not reliable for some Y2k fault

Conclusion

➫ This Y2k fault detection method
➥ is fully automated, test cases are generated, human validation is not

necessary,

➥requires quite a few initial information,

➥ is reliable, it requires the satisfaction of a very strong criterion,

➥ is fast, since by applying double-slices only the necessary code has to be
investigated,

➥can be used to reveal Y2k bugs,

➥can be applied as an adequacy method to check whether a program is Y2k
bug-free.

➫ Implementation
➥automated test data generation has been implemented in part,

➥slicing has been implemented for intraprocedural case

Dxwrpdwhg Whvw Gdwd Jhqhudwlrq wr Vroyh wkh

\5N Sureohp �

Lvwyäq Irujäfv dqg Änrv Kdmqdo
Frpsxwhu dqg Dxwrpdwlrq Lqvwlwxwh
Kxqjduldq Dfdghp| ri Vflhqfhv

4444 Nhqgh x1 4604:1
Exgdshvw/ Kxqjdu|

~irujdfv/ dkdmqdo�Cv}wdnl1kx

Vhswhpehu 48/ 4<<;

Devwudfw

Wklv sdshu ghvfulehv d qhz whfkqltxh wr vroyh wkh prvw fulwlfdo hoh0
phqwv ri wkh %\hdu 5333 Sureohp%1 \5n sureohp kdv erwk pdqdjhphqw
dqg whfkqlfdo dvshfwv1 Wkh whfkqlfdo sduw lqfoxghv +4, whvwlqj iru wkh \5n
idxowv/ +5, wkh surjudp dqg gdwdedvh �{lqj surfhvv/ dqg +6, wkh srvw0
uhqrydwlrq whvwlqj1 Rxu phwkrg dgguhvvhv +4, dqg +6,/ vr wkdw \5n exjv
fdq eh irxqg dxwrpdwlfdoo|1 Wklv phdqv wkdw zh gr qrw qhhg wr nqrz wkh
ydoxh ri dq| rxwsxw/ ru krz wr vhohfw lqsxw gdwd1

Rxu phwkrg lv qrw rqo| dssolfdeoh/ exw idvw dqg uholdeoh dv zhoo1 Wr gr
wklv rxu phwkrg frqvlvwv ri wkuhh pdlq sduwv1 Wkh nh| lghd ri rxu dssurdfk
lv wr frpsduh wkh eudqfk +ru rxwsxw, ixqfwlrqv iru gl�huhqw lqsxw |hduv1
Wklv phwkrg uhyhdov wkh \5n exj hyhq li wkh rxwsxw ri wkh surjudp zdv
fruuhfw/ l1h1/ wkh whvwhu zrxog qrw revhuyh dq| idloxuh1 Wr vdwlvi| uholdelolw|
uhtxluhphqwv zh dsso| d yhu| vwurqj whvwlqj fulwhulrq1 Wr vshhg xs whvwlqj
zh dsso| volflqj/ e| zklfk rqo| d vpdoo vxevhw ri wkh surjudp kdv wr eh
dghtxdwho| dqdo|}hg1

4 LQWURGXFWLRQ

Wkrxjk d wuhphqgrxv h�ruw kdv ehhq pdgh wr dyrlg wkh �erpe ri ploohqqlxp�/
qrerg| nqrzv zkdw zloo kdsshq rq Mdqxdu| 4/ 53331 Zh fdqqrw eh vxuh wkdw
zh zloo kdyh hohfwulflw|/ zh fdq | wr rwkhu frxqwulhv ru zh fdq jhw rxu prqh|
iurp dq DWP1

Wkh \hdu 5333 +\5n, sureohp lv wkh rqo| vriwzduh hqjlqhhulqj sureohp wkdw
lv zlgho| nqrzq iru hyhu|erg| iurp |rxqj fkloguhq wr shqvlrqhuv zkr kdyh
qhyhu vzlwfkhg rq d frpsxwhu1 Vxu�qj wkh lqwhuqhw wkhuh duh wkrxvdqgv ri vlwhv
frqwdlqlqj lqirupdwlrq derxw wkh \5n sureohp1 Orwv ri frqvxowlqj frpsdqlhv
r�hu vroxwlrq wr wklv sureohp/ dqg qxphurxv wrrov duh dydlodeoh wr uhyhdo \5n
exjv1 Lq dgglwlrq/ wkrxvdqgv ri surjudpphuv duh �{lqj surjudpv vx�hulqj

WUhvhdufk zdv vxssruwhg lq sduw e| DNS judqw <:045< 5/42531

4

iurp wkh ploohqqlxp exj1 Zk| zh fdqqrw eh vxuh ghvslwh wkhvh kxjh h�ruw wkdw
surjudpv zloo zrun surshuo| diwhu wkh �uvw gd| ri |hdu 5333B

Wkh fdxvh lv wkdw wkhvh vroxwlrqv duh qrw uholdeoh hqrxjk/ vlqfh wkh| edvhg rq
dg krf phwkrgv dqg wkh| uhtxluh vljql�fdqw kxpdq h�ruw wkdw dozd|v lqyroyhv
wkh suredelolw| ri pdnlqj huuruv1 Wr rxu nqrzohgjh wkhuh lv rqo| rqh vflhqwl�f
vroxwlrq wr wklv sureohp ^<`/ krzhyhu/ dv zh zloo vhh/ wklv phwkrg lv qrw dozd|v
uholdeoh hlwkhu1

Wklv sdshu ghvfulehv d ixoo| dxwrpdwhg \5n0idxow ghwhfwlrq phwkrg wkdw
lv doprvw 433(uholdeoh1 Lq dgglwlrq zh krsh wkdw wklv phwkrg lv dssolfdeoh
dqg uhtxluhv pdqdjhdeoh wlph/ h�ruw dqg frvw1 Ehiruh zh lqirupdoo| lqwurgxfh
rxu phwkrg/ zh vkruwo| ghvfuleh wkh \5n sureohp wkrxjk lw lv zhoo0nqrzq iru
hyhu|rqh1

Pdq| frpsxwhu surjudpv xvh rqo| wzr gljlwv wr uhfrug |hdu0ydoxhg gdwd1
Lq wklv fdvh wkhuh lv qr gl�huhqfh ehwzhhq 4<33 dqg 5333 vlqfh erwk gdwhv duh
uhsuhvhqwhg dv �33�1 Wklv idovh htxlydohqfh pd| fdxvh ghihfw gxulqj frpsxwdwlrq
ryhu |hdu0ydoxhg gdwd1 Iru h{dpsoh/ li zh frpsxwh wkh +dssur{lpdwh, djh ri
vrpherg| zkr zdv eruq lq 4<:3/ wkhq zh vkrxog rewdlq 63 lq 5333 e| pdnlqj
wkh rshudwlrq 5333 0 4<:31 Krzhyhu/ wklv rshudwlrq lq d 50gljlw |hdu0ydoxhg gdwd
uhsuhvhqwdwlrq zrxog uhvxow lq 33 0 :3 @ 0:3/ l1h1/ wklv shuvrq lv mxvw 0:3 |hduv rog$
Wkh sureohp lv wkdw zh kdyh wr �{ qrw rqo| wkh surjudp wr fruuhfwo| frpsxwh
djhv/ exw zh kdyh wr uhfryhu wkh gdwdedvh wkdw frqwdlqv 50gljlw |hdu0ydoxhg gdwd
dv zhoo1

Krzhyhu/ diwhu fkdqjlqj erwk wkh surjudp dqg wkh gdwdedvh zh kdyh wr
uhwhvw wkh zkroh surjudp djdlq1 Wklv lv vrphwlphv yhu| gl!fxow li wkh ruljlqdo
surjudpphuv/ v|vwhp ghyhorshuv dqg whvwhuv duh qrw dydlodeoh1 Prgl�hg sur0
judp dqg gdwdedvh pd| fdxvh hyhq pruh vhulrxv idxowv1 Wkhuhiruh/ lw lv yhu|
lpsruwdqw wr fkdqjh wkh frgh dqg wkh gdwdedvh li lw lv uhdoo| qhfhvvdu|/ l1h1/ li
wkh \5n exj lv suhvhqw1

Zh kdyh lqwurgxfhg d qhz phwkrg wkdw uhtxluhv yhu| ihz lqirupdwlrq dqg
|hw/ lwv uholdelolw| lv doprvw 433(1 Lq dgglwlrq rxu phwkrg lv ixoo| dxwrpdwhg
dqg uhtxluhv dv ihz whvwlqj h�ruw dv srvvleoh1 Rxu phwkrg lqyroyhv wkuhh gli0
ihuhqw whfkqltxhv1 Zh frpsxwh rxwsxw dqg eudqfk ixqfwlrqv iru suh05333 dqg
srvw05333 |hduv1 Wkh uhvxowv duh hydoxdwhg dqg \5n exjv duh lghqwl�hg zlwk
d kljk suredelolw|1 Zh dsso| d yhu| vwurqj fulwhulrq fdoohg \5n fulwhulrq +vhh
Vhfwlrq 7,1 Wkh surjudp sdwkv wkdw fryhu wkh uhtxluhg fulwhulrq duh jhqhudwhg
dxwrpdwlfdoo| e| dsso|lqj d idvw whvw gdwd jhqhudwlrq phwkrg lqwurgxfhg lq ^6`
lpsohphqwhg iru \5n fulwhulrq1 Ilqdoo|/ zh dsso| gl�huhqw volflqj phwkrgv wr
uhgxfh wkh surjudp wr eh dqdo|}hg/ dqg wkxv wkh qxpehu ri sdwkv wr eh fryhuhg1
Zh duh vxuh wkh frgh wkdw pdqlsxodwhv |hdu0ydoxhg yduldeohv lv d vpdoo sduw ri
wkh hqwluh surjudp1 Lq wklv h{shfwhg fdvh wkh volfh lv uhodwlyho| vpdoo dqg wkh
uhgxfhg doo0sdwkv fulwhulrq fdq eh hdvlo| vdwlv�hg1

Rxu phwkrg lv dssolfdeoh erwk iru \5n0exj ghwhfwlrq dqg whvwlqj wkh �{hg
surjudp diwhu wkh \5n idxowv kdyh ehhq uhpryhg1 Krzhyhu/ �{lqj wkh frgh dqg
wkh gdwdedvh lv eh|rqg wkh vfrsh ri rxu sdshu1 Vlqfh wkh phwkrg lv dxwrpdwhg/
wkhuh lv qr qhhg iru h{shuw whvwhuv ru surjudpphuv1 Wkh qhfhvvdu| lqirupdwlrq
fdq eh hdvlo| rewdlqhg/ wkhuhiruh wkh fkhfnlqj surfhvv lv yhu| vkruw/ dqg fdq eh
uhshdwhgo| dssolhg pruh wlphv diwhu \5n0idxow uhsdudwlrq1

Wkh uhpdlqghu ri wkh sdshu lv rujdql}hg dv iroorzv1 Vhfwlrq 5 surylghv wkh
qhfhvvdu| edfnjurxqg1 Vhfwlrq 6 ghvfulehv krz wr dgguhvv wkh \5n sureohp iru d
jlyhq surjudp srlqw1 Lq Vhfwlrq 7 zh lqwurgxfh \5n whvwlqj fulwhulrq1 Vhfwlrq 8

5

ghvfulehv rxu whvw gdwd jhqhudwlrq phwkrg wr vdwlvi| wkh deryh fulwhulrq1 Vhfwlrq
9 glvfxvvhv uhodwhg zrun/ zkloh lq Vhfwlrq : zh vxppdul}h rxu uhvxowv1

5 EDFNJURXQG

D surjudp vwuxfwxuh fdq eh uhsuhvhqwhg e| d gluhfwhg judsk fdoohg +frqwuro,
 rz judsk J @ +Q>H> v> h,/ zkhuh Q lv d vhw ri qrghv/ H lv d vhw ri hgjhv dqg
v/ h duh xqltxh hqwu| dqg h{lw qrghv1 Qrghv uhsuhvhqw surjudp vwdwhphqwv dqg
hgjhv uhsuhvhqw srvvleoh rz ri frqwuro ehwzhhq qrghv1 Qrghv wkdw fruuhvsrqg
wr dq li0wkhq0hovh/ ru zkloh vwdwhphqwv duh uhihuuhg wr dv suhglfdwh qrghv/ ru
suhglfdwh iru vkruw1 D sdwk S iurp qm wr qn lq J lv d vhtxhqfh ri qrghv S @?
qm> qm.4> ===> qn A/ zkhuh dqg hdfk dgmdfhqw sdlu +ql> ql.4, lv dq hgjh lq H iru
m � l ? n � 41 D suh�{ sdwk lv d sdwk iurp v/ d srvw�{ sdwk lv d sdwk wr h/ dqg
d frpsohwh sdwk lv d sdwk iurp v wr h1

D +surjudp, volfh frqvlvwv ri doo wkh vwdwhphqwv dqg suhglfdwhv wkdw pljkw
d�hfw wkh yduldeohv lq d vhw Y dw d surjudp lqvwuxfwlrq L ^43`1 Wkh sdlu F @
+Y> L, lv fdoohg d volflqj fulwhulrq1 D volfh lv d vxevhw ri wkh surjudp frgh1 Wkh
whup �d�hfw� phdqv wkdw L lv +wudqvlwlyho|, ghshqghqw rq d vwdwhphqw lqfoxghg
lq wkh volfh1 Wkhuh duh wzr w|shv ri +gluhfw, ghshqghqfhv= +4, gdwd ghshqghqfh

dqg +5, frqwuro ghshqghqfh1 Wkhuh lv d gdwd ghshqghqfh iurp vwdwhphqw q wr
vwdwhphqw p li p xvhv wkh ydoxh ri d yduldeoh {/ wkdw lv gh�qhg +dvvljqhg, lq q
dqg wkhuh lv d sdwk lq wkh frqwuro0 rz judsk ri wkh surjudp iurp q wr p dorqj
zklfk { lv qhyhu gh�qhg1 Wkhuh lv d frqwuro ghshqghqfh iurp d suhglfdwh s wr d
vwdwhphqw q li wkh h{hfxwlrq ri q gluhfwo| ghshqgv rq wkh hydoxdwlrq ri suhglfdwh
s1

Wkh iruzdug volfh frqvlvwv ri doo wkh vwdwhphqwv dqg suhglfdwhv wkdw pljkw eh
d�hfwhg e| d vhw ri yduldeohv Y gh�qhg dw d surjudp lqvwuxfwlrq L 1 Wkh iruzdug
volflqj fulwhulrq lv dovr d sdlu Fi @ +Y> L,1 Qrwh wkdw xvxdoo| Y frqwdlqv rqo|
rqh hohphqw/ vlqfh rqo| rqh yduldeoh lv gh�qhg dw d vwdwhphqw lq prvw fdvhv1
Wkh iruzdug volfh dovr frqwdlqv d vxevhw ri wkh surjudp1 Wkh iruzdug volfh
ghwhuplqdwlrq vwduwv iurp L dqg zh lqfoxgh wudqvlwlyho| doo wkh vwdwhphqwv wkdw
duh hlwkhu gdwd ru frqwuro ghshqghqw rq L 1

Wkh eudqfk ixqfwlrq h{suhvvlrq4 +ru eudqfk ixqfwlrq/ iru vkruw, I dvvrfl0
dwhg wr d vlpsoh suhglfdwh h{suhvvlrq +D rs E, +zkhuh D dqg E duh dulwkphwlf
h{suhvvlrqv/ dqg rs lv d uhodwlrqdo rshudwru, lv I @ +D�E,1

D whvw gdwd dghtxdf| fulwhulrq lv d uhodwlrq F � PV � VV � W / zkhuh PV

lv d vhw ri prgxohv/ VV lv d vhw ri vshfl�fdwlrqv uhodwhg wr PV / dqg W lv d whvw
vxlwh1 Vxfk d uhodwlrq surylghv d vwrsslqj uxoh iru whvwlqj/ l1h1/ d whvw vxlwh W lv
ghhphg wr eh dghtxdwh/ ru vx!flhqw/ dv vrrq dv lw ixo�oov F1 Zh zloo dovr uhihu

wr F vlpso| dv d whvwlqj fulwhulrq ru d fulwhulrq1

Frqvlghu d vhw ri surjudp sdwkv S 1 S lv dghtxdwh iru wkh doo0sdwk fulwhulrq li

hyhu| h{hfxwdeoh surjudp sdwk lv lqfoxghg lq S 1 Wkh eudqfk whvwlqj fulwhulrq lv

vdwlv�hg/ li hyhu| h{hfxwdeoh rxwfrph ri dq| suhglfdwh kdv ehhq h{hfxwhg gxulqj

wkh whvw1

4Wkh whup �eudqfk ixqfwlrq� lv lqwurgxfhg lq ^:` �uvw1 Wkrxjk lwv gh�qlwlrq xvhg lq wklv
sdshu dqg wkh ruljlqdo gh�qlwlrq voljkwo| gl�hu/ ehdfdxvh ri wkh vdph ixqfwlrqdolw| zh nhsw
wkh qrwdwlrq1

6

6 \5N IDXOW ghwhfwlrq phwkrg

Lq wklv vhfwlrq zh suhvhqw d phwkrg e| zklfk \5n idxowv fdq eh uhfrjql}hg hyhq
li wkh rxwsxw lv fruuhfw/ l1h1/ wkh idxow grhv qrw fdxvh dq| idloxuh1 Iluvw/ frqvlghu
wudglwlrqdo eodfn er{ whvwlqj dssurdfk e| dsso|lqj wkh vpdoo surjudp iudjphqw
ehorz1

uhdg+zrunhuvbqdph,

vhhn+zrunhuvbiloh/ zrunhuvbqdph,

uhdg+zrunhuvbuhfrug,

111

djh @ FxuuhqwGdwh1|hdu 0 ZrunhuvUhfrug1eluwkgd|1|hdu

li djh A 93

wkhq

Wd{Shufhqwdjh @ 3

hovh

Wd{Shufhqwdjh @ 53

111

Whvwlqj wkh surjudp iru vrph qrw wrr rog hpsor|hhv dqg iru lqsxwv Fxuuhqw0
Gdwh1|hdu @ 4<<< dqg FxuuhqwGdwh1|hdu @ 5333/ wkh whvwhu revhuyhv wkdw doo
shrsoh sd| wd{ lq hyhu| fdvh1 Wklv vhhpv wr eh txlwh reylrxv/ dqg dq| whvwhu
zlwkrxw lqvshfwlqj wkh frgh wkrurxjko| zrxog eholhyh wkdw wkh whvwlqj surfhvv
zdv dghtxdwh1

Qrz dvvxph wkdw zh dsso| d zklwh er{ whvwlqj phwkrg/ vxfk dv wkh eudqfk
whvwlqj fulwhulrq1 Lq rxu yhu| vlpsoh fdvh wkh whvwhu zloo �qg wkh idxow diwhu kh2vkh
idlov wr �qg lqsxw gdwd wr fryhu wkh wkhq eudqfk1 Diwhu d fduhixo lqyhvwljdwlrq
ri erwk wkh surjudp dqg wkh vshfl�fdwlrq/ rxu whvwhu uhfrjql}hv wkdw li yduldeoh
djh zhuh juhdwhu wkhq 93/ wkhq wkh hovh eudqfk vkrxog eh iroorzhg1 Wkhq kh2vkh
wulhv wr vhohfw dq roghu hpsor|hh1 Ilqdoo|/ wkh whvwhu uhdol}hv wkdw dq huurqhrxv
eudqfk kdv ehhq iroorzhg1 Wklv xvxdoo| uhtxluhv wzr shrsoh/ rqh lv h{shuw lq
surjudpplqj2whvwlqj/ wkh rwkhu kdv d ghhs nqrzohgjh ri wkh frqwhqw ri wkh
gdwdedvh1 Krzhyhu/ wklv surjudp lv yhu| vlpsoh1 Lq sudfwlfh lw fdq rffxu wkdw
wkh whvwhu fdq �qg lqsxwv fryhulqj doo wkh eudqfkhv zlwkrxw dq| idloxuh ghwhfwlrq/
wkrxjk wkh \5n exj lv suhvhqw1

Hyhq wkh vlpsohvw fulwhulrq lv gl!fxow dqg wlph frqvxplqj wr vdwlvi| pdqx0
doo|1 Rxu jrdo lv wr dxwrpdwlfdoo| ghwhfw \5n idloxuhv1 Zh vkrz wkdw wudglwlrqdo
phwkrgv fdqqrw eh dssolfdeoh iru ixoo dxwrpdwlrq1 Wkrxjk wkhuh duh phwkrgv
wkdw dxwrpdwlfdoo| vhohfw lqsxw gdwd/ wkh ydolgdwlrq ri wkh uhvxow zuw wkhvh gdwd
qhfhvvlwdwhv kxpdq lqwhudfwlrq1 Iru hdfk dxwrpdwlfdoo| jhqhudwhg whvw fdvh zh
kdyh wr nqrz dqg fkhfn wkh fruuhvsrqglqj rxwsxw ydoxhv1 Wklv lv yhu| wlph frq0
vxplqj/ dqg erulqj1 Dq h!flhqw fulwhulrq pd| uhtxluh pruh wkrxvdqgv whvwv1
Dq lqghshqghqw whvwhu grhv qrw nqrz wkh uhodwhg rxwsxw ydoxhv/ zkloh wkh xvhu
xvxdoo| kdv qr h{shulhqfh lq whvwlqj1 Rq wkh rwkhu kdqg/ hyhq li zh kdyh dq
h!flhqw whvwlqj fulwhulrq/ d idxow pd| uhpdlq xqghwhfwhg1

Iruwxqdwho|/ wkhuh lv dqrwkhu phwkrg wkdw fdq uhyhdo \5n idxow hqwluho| dxwr0
pdwlfdoo|1 Zh gr qrw qhhg wr nqrz dq| uhvxow/ dqg zh gr qrw qhhg wr fryhu hyhq
erwk eudqfkhv ri d jlyhq suhglfdwh1 Rxu dssurdfk lv edvhg rq wkh idfw wkdw wkh
ydoxh ri wkh eudqfk +ru wkh rxwsxw, ixqfwlrq iru lqsxw gdwh 5333 lv vljql�fdqwo|
gl�huhqw iurp wkh fruuhvsrqglqj ydoxh iru 4<<<1

7

Dvvxph wkdw zh whvw rxu h{dpsoh e| vhohfwlqj dq hpsor|hh zkr zdv eruq
lq 4<8< iru vl{ gl�huhqw gdwhv= 4<<:/ 4<<;/ 4<<</ 5333/ 5334 dqg 53351 Dvvxph/
lq dgglwlrq/ wkdw doo gdwhv kdyh d 50gljlw uhsuhvhqwdwlrq +8</ <:/ <;/ <</ 33/ 34
dqg 35,1 Vlqfh wkh eudqfk ixqfwlrq lv i @ djh � 93 @ FxuuhqwGdwh=|hdu �

ZrunhuvUhfrug=eluwkgd|=|hdu� 93 zh rewdlq wkh iroorzlqj vhulhv ri uhvxowv iru
wkh eudqfk ixqfwlrq= 055/ 054/ 053/ 044</ 044;/ 044:1 Frqvlghulqj wklv vhulhv zh
fdq vhh wkdw wkhuh lv d odujh mxps zkhq wkh v|vwhp gdwh lv prgl�hg iurp 4<<<
wr 53331 Wklv mxps lv hyhq pruh uhfrjql}deoh li zh ghwhuplqh wkh gl�huhqfh
ri wkh eudqfk ixqfwlrqv iru wzr frqvhfxwlyh |hduv/ h1j1 i+4<<;, � i+4<<:, @
�54� +�55, @ 41 Zh fdq vhh wkdw zh dozd|v rewdlq 4 iru wklv gl�huhqfh h{fhsw
lq wkh fdvh ri |hduv 4<<< dqg 5333 lq zklfk fdvh zh jhw i+5333, � i+4<<<, @
�44<� +�53, @ �<<1

Zh fdq vhh wkdw e| dsso|lqj wkh dssurdfk deryh wkh \5n idxow kdv ehhq

uhfrjql}hg iru dq| hpsor|hh hyhq li wkh rxwsxw lv fruuhfw iru doo gdwhv1
Wkhuhiruh/ zh gr qrw qhhg wr nqrz dq|wklqj derxw wkh gdwdedvh ru wkh vshfl�0
fdwlrq ri wkh surjudp1

Qrz zh fdq jlyh wkh irupdo ghvfulswlrq ri rxu \5n idloxuh ghwhfwlrq phwkrg1
Dvvxph wkdw zh duh jlyhq dq h{hfxwdeoh surjudp sdwk Sl dqg d surjudp lqsxw
{ iru zklfk Sl lv wudyhuvhg1 Iluvw/ zh vhohfw dq lqvwuxfwlrq L +fdq eh d suhglfdwh
ru dq rxwsxw, wkdw lv lq xhqfhg e| d \5n0uhodwhg lqsxw yduldeoh {n/ l1h1/ wkh
prgl�fdwlrq ri {n pd| fkdqjh wkh ydoxh ri wkh rxwsxw ru eudqfk ixqfwlrq i ri
L 1 Wkhq/ zh jhqhudwh vl{ gl�huhqw surjudp lqsxwv e| vhwwlqj {n wr wkh ydoxhv
4<<:/ 4<<;/ 4<<</ 5333/ 5334/ 5335/ nhhslqj doo wkh rwkhu lqsxw yduldeohv iru
{ xqfkdqjhg1 Zh h{hfxwh wkh surjudp iru wkhvh vl{ surjudp lqsxwv/ vwruh
wkh ydoxhv ri i / dqg frpsxwh wkh gl�huhqfhv= g4 @ mi+4<<;, � i+4<<:,m > g5 @
mi+4<<<, � i+4<<;,m > g6 @ mi+5333,� i+4<<<,m > g7 @ mi+5334,� i+5333,m > g8 @
mi+5335, � i+5334,m1

Zh dvvxph wkdw d \5N idxow rffxuv dorqj Sl/ li g6 lv odujhu wkdq dq| rwkhu
gl1 Wkh uhdvrq ri wklv dvvxpswlrq lv vdihw|1 Li ixqfwlrq i lv olqhdu wkdw rffxuv
lq prvw fdvhv/ wkhq rxu phwkrg zrunv zhoo1 Qrwh wkdw zh phdq wkdw wkh fruuhfw
ixqfwlrq lv olqhdu exw wkh uhdol}hg lv qrw mxvw ehfdxvh ri wkh \5n idxow1 Hyhq li i
lv qrq0olqhdu +wkdw lv d qrqvhqvh vlqfh txdgudwlf |hduv fdq eh xvhg iru qrwklqj,/
wkh phwkrg suredeo| uhyhdov \5n idxowv1 Iru wkh vdph uhdvrq/ zh fdq h{shfw
wkdw idovh srvlwlyh rffxuv rqo| lq yhu| ihz fdvhv +ru qhyhu,1 Wklv �idovh dodup�
+zkhq wkh phwkrg huurqhrxvo| �qgv dq \5n exj, fdq eh lghqwl�hg hdvlo|1

7 \5n FULWHULRQ

Lq wklv vhfwlrq zh lqwurgxfh d fulwhulrq fdoohg \5n fulwhulrq wkdw uhtxluhv wkh
vhohfwlrq ri d vhw ri surjudp lqsxwv wkdw uhyhdov wkh \5n idxowv +li dq|, ri d jlyhq
surjudp zlwk kljk suredelolw|1 Wkh \5n fulwhulrq lv dovr dq dghtxdf| fulwhulrq
wkdw h!flhqwo| whvwv wkh surjudp diwhu wkh �{lqj ri \5n exjv1

Ru phwkrg qhfhvvlwdwhv uhodwlyho| ihz lqirupdwlrq dv iroorzv1 Zh dvvxph
wkdw wkh qdphv ri gdwh0uhodwhg lqsxw yduldeohv uhihuuhg wr dv \5n yduldeohv
duh nqrzq1 Wkhvh duh wkh yduldeohv wkdw pd| frqwdlq |hdu0ydoxhv vxfk dv
�4823:2<;�/ �3924<<;�/ hwf1 Lqsxw phdqv wkdw wkh ydoxh ri wkh yduldeoh lv
uhdg iurp dq lqsxw ghylfh ru iurp d gdwdedvh1 Zh dovr dvvxph wkdw zh nqrz
wkh frqwhqw ri wkh gdwh/ l1h1/ zklfk gdwh0ydoxh lqyroyhv |hduv/ |hduv dqg prqwkv/
|hduv/ prqwkv dqg gd|v/ hwf1 Krzhyhu/ lw lv qrw qhfhvvdu| wr nqrz wkh lqwhuqdo

8

irupdw ri wkh gdwh lq wkh gdwdedvh ru lq wkh yduldeoh1 Wklv lv lpsruwdqw vlqfh
wkh xvhu xvxdoo| nqrzv zklfk w|sh ri gdwhv kh2vkh hqwhuv/ zkloh wkh lqwhuqdo
irupdw lv xvxdoo| klgghq1 Li wkhvh lqirupdwlrq duh dydlodeoh/ zh fdq vhohfw wkh
|hdu0ydoxhg sduw iurp wkh hqwluh ydoxh1

Vlqfh zh kdyh qr dq| suholplqdu| nqrzohgjh derxw wkh sodfh ri \5n idxowv/
d wkrurxjk h{dplqdwlrq ri wkh wdujhw surjudp lv qhfhvvdu|1 Wklv uhtxluhv wkh
jhqhudwlrq ri d odujh qxpehu ri surjudp lqsxwv wkdw pd| uhyhdo wkh \5n idxowv
zlwk yhu| kljk suredelolw|1 Dv zh zloo vkrz lq wkh odvw vhfwlrq/ pdqxdo phwkrgv
duh lqh!flhqw dqg xquholdeoh1 Lq wkh suhylrxv vhfwlrq zh ghvfulehg d phwkrg wkdw
uhyhdov \5n idxowv iru d jlyhq rxwsxw ru suhglfdwh1 Krzhyhu wkhvh lqvwuxfwlrqv
fdq eh wudyhuvhg dorqj pdq| surjudp sdwkv1 Zklfk rqhv vkrxog eh vhohfwhgB
Li zh vhohfw txlwh d ihz/ wkhq wkh phwkrg zloo qrw eh uholdeoh1 Rq wkh frqwudu|/
li zh vhohfw doo wkh sdwkv/ wkhq wkh phwkrg zloo eh h{wuhpho| vorz/ wkrxjk |hdu
5333 lv frplqj vrrq1 Wkhuhiruh/ zh lqwurgxfh rxu \5n fulwhulrq vr wkdw zh
dgguhvv erwk lvvxhv1

Wkhuh duh wzr edvlf w|shv ri \5n huuruv1 Iluvw/ dq rxwsxw pd| frqwdlq
dq huurqhrxv ydoxh +\5n frpsxwdwlrq huuru,1 Vhfrqgo|/ wkh surjudp iroorzv
d zurqj sdwk +\5n grpdlq huuru,1 Erwk w|shv ri idxowv fdq eh uhyhdohg e|
dsso|lqj \5n idxow ghwhfwlrq phwkrg1 Qrz ohw xv wu| wr dqvzhu wkh txhvwlrq
�Zklfk surjudp sdwkv vkdoo zh vhohfwB�1 Lw fdq kdsshq wkdw uhdfklqj d jlyhq
suhglfdwh dorqj wzr gl�huhqw sdwkv rqo| rqh ri wkhp zrxog fdxvh d idloxuh1 Vxfk
d fdvh rffxuv lq wkh h{dpsoh ghvfulehg lq wkh qh{w vhfwlrq1 Wkhuhiruh rxu whvw
vhohfwlrq lv edvhg rq d vwurqjhu fulwhulrq1 Rqh ri wkh vwurqjhvw fulwhulrq lv wkh
doo0sdwkv fulwhulrq1 Xqiruwxqdwho|/ wkh qxpehu ri gl�huhqw h{hfxwdeoh sdwkv pd|
eh xqerxqghg/ wkhuhiruh zh lqwurgxfh d pdqdjhdeoh fulwhulrq dv iroorzv1

Gh�qlwlrq 4 Frqvlghu d vhw ri surjudp sdwkv S 1 S lv dghtxdwh iru wkh uhgxfhg
doo0sdwk fulwhulrq li +4, hyhu| h{hfxwdeoh f|foh0iuhh surjudp sdwk s lv lqfoxghg lq
S / +5, iru hyhu| orrs o lq wkh surjudp d sdwk s lv lqfoxghg lq S iru zklfk o lv
lwhudwhg rqfh dqg s lv h{hfxwdeoh/ +6, iru hyhu| orrs o lq wkh surjudp d sdwk s lv
lqfoxghg lq S iru zklfk o lv lwhudwhg dw ohdvw wzlfh dqg s lv h{hfxwdeoh1

Qrwh wkdw wklv fulwhulrq lv d voljkwo| prgl�hg dqg �dssolfdeoh� +vhh ^5`, yhu0
vlrq ri erxqgdu| lqwhulru fulwhulrq ^8`1

Wr uhgxfh whvwlqj h�ruw gudvwlfdoo| zh dsso| volflqj1 Ljqrulqj vwdwhphqwv wkdw
duh qrw uhodwhg wr wkh \5N sureohp zh rewdlq d vljql�fdqwo| vpdoohu frgh wkdq
wkh ruljlqdo rqh lq prvw fdvhv1 Wkh prvw lpsruwdqw frqvhtxhqfh ri wkh uhgxfhg
frgh lv wkdw rxu fulwhulrq kdv wr eh vdwlv�hg iru wklv vxesurjudp rqo|1 Wklv
uhvxowv lq d uholdeoh whvw dw d uhgxfhg frvw1 Zh frqvlghu hdfk \5n yduldeoh y rqh0
e|0rqh1 Iluvw/ zh ghwhuplqh wkh iruzdug volfh iru y dw dq lqvwuxfwlrq Llq/ zkhuh
y lv dvvljqhg dv dq lqsxw1 Wklv phdqv wkdw wkh ydoxh ri y lv dvvljqhg zlwkrxw
xvlqj dq| yduldeoh/ l1h1/ lwv ydoxh lv uhdg iurp d gdwdedvh/ iurp nh|erdug/ hwf1
Wkhq/ zh vhohfw rxwsxw lqvwuxfwlrqv1 Qh{w zh ghwhuplqh wkh vwdwlf +edfnzdug,
volfh iru hdfk rxwsxw lqvwuxfwlrq Lrxw1 Zlwk wklv zh rewdlq wkh vwdwhphqwv wkdw
pd| d�hfw Lrxw1 Wkhq zh lqwhuvhfw wkh vwdwhphqwv wkdw duh lq erwk volfhv1 Wkh
qhz vxesurjudp lv fdoohg grxeoh0volfh1 Wkh volflqj fulwhulrq ri d grxeoh0volfh lv d
txdguxsoh Fg @ +y> Llq> Lrxw>R,/ zkhuh y lv wkh \5n yduldeoh dvvljqhg +gh�qhg,
lq Llq/ Lrxw lv dq rxwsxw lqvwuxfwlrq iru zklfk wkh \5n sureohp lv dqdo|}hg/
�qdoo|/ R lv d vhw ri yduldeoh xvhg lq Lrxw1 Wkh uhdvrq ri wkh xvh ri grxeoh0volfhv
lv wkdw zh kdyh wr dqdo|}h hdfk \5n yduldeoh vhsdudwho|/ dqg zh zrxog olnh wr
uhgxfh wkh qxpehu ri qhfhvvdu| surjudp h{hfxwlrqv dv zhoo1

9

Lq wklv zd| d grxeoh0volfh frqwdlqv doo wkh vwdwhphqwv wkdw duh d�hfwhg e| dq
\5n yduldeoh dqg zklfk pd| kdyh dq lq xhqfh rq wkh vhohfwhg rxwsxw1 Frqvlghu
d orrs0iuhh surjudp1 Lq wklv fdvh dq| surjudp sdwk lq wkh frqwuro rz judsk
ri wkh grxeoh0volfh fruuhvsrqgv wr d xqltxh frpsxwdwlrq +uhsuhvhqwdwlrq, ri wkh
jlyhq rxwsxw1 Wkhuhiruh/ wkh fryhudjh ri doo wkhvh surjudp sdwkv lv dv h�hfwlyh dv
wkh dssolfdwlrq ri wkh doo0sdwkv fulwhulrq iru wkh ruljlqdo surjudp1 Wkh fryhudjh
ri wkh uhgxfhg vhw ri doo sdwkv lq wkh volfh lv h{whqghg zlwk wkh \5n idloxuh
ghwhfwlrq surfhvv ghvfulehg lq Vhfwlrq 71 Dv uhvxow wkh \5n fulwhulrq iru d jlyhq
rxwsxw Lrxw lv dv iroorzv=

Gh�qlwlrq 5 \5n fulwhulrq iru dq rxwsxw Lrxw1 Frqvlghu dq rxwsxw lqvwuxfwlrq

Lrxw lq d surjudp S 1 Dvvxph wkdw wkh vhw ri \5n yduldeohv lv Y dqg y 5 Y

lv gh�qhg dv lqsxw lq lqvwuxfwlrqv Ly
lq
5 LLlq1 Ohw xv ghulyh wkh grxeoh0volfhv

Vg+y> Lylq, iru doo fulwhuld Fg @ +y> Ly
lq
> Lrxw> R,/ y 5 Y dqg Ly

lq 5 LLlq1 Li doo wkh
Vgv duh vdwlv�hg e| dsso|lqj wkh uhgxfhg doo0sdwkv fulwhulrq/ vxfk wkdw wkh \5n
idloxuh ghwhfwlrq phwkrg lv vxffhvvixoo| dssolhg iru hdfk vhohfwhg lqsxw zuw Lrxw/
wkh \5n fulwhulrq iru Lrxw kdv ehhq vdwlv�hg1

Zh fdq dvvxph wkdw wkh wrwdo qxpehu ri \5n yduldeohv lv vpdoo dqg vlploduo|/
wkh qxpehu ri lqvwuxfwlrqv zkhuh \5n yduldeohv duh gh�qhg dv lqsxw lv vpdoo dv
zhoo1 Lq wklv fdvh zh kdyh wr ghwhuplqh rqo| txlwh d ihz qxpehu ri gl�huhqw
grxeoh0volfhv1

Lq wkh Frqfoxvlrq zh vkrz wkdw wkh vdwlvidfwlrq ri \5n fulwhulrq lv pxfk
pruh uholdeoh iru \5n exjv wkdq wkh vdwlvidfwlrq ri wkh ruljlqdo doo0sdwkv fulwh0
ulrq1 Wkh uhdvrq lv wkdw zh dsso| rxu \5n ghwhfwlrq phwkrg lqvwhdg ri rxwsxw
ydoxh fkhfnlqj1 Wkrxjk zh fdqqrw fryhu hdfk gl�huhqw frpsxwdwlrq ri dq rxw0
sxw lq wkh suhvhqfh ri orrsv +vlqfh wkh qxpehu ri wkhvh frpsxwdwlrqv pd| eh
xqerxqghg,/ zh vwurqjo| eholhyh wkdw rxu phwkrg lv dovr uholdeoh iru dq| sur0
judp1 Wkh phwkrg lqyroylqj wkh dxwrpdwhg whvw gdwd jhqhudwlrq/ grxeoh volflqj
dqg wkh vdwlvidfwlrq ri wkh \5n fulwhulrq lv looxvwudwhg lq wkh qh{w vhfwlrq1 Zh
fdoo wkh uhdghuv dwwhqwlrq wkdw zh vkrxog ghwhuplqh rqo| wkh suhglfdwhv lq d
grxeoh0volfh1 Wklv lqirupdwlrq lv vx!flhqw wr dsso| wkh \5n fulwhulrq1

Qrz frqvlghu wkh fdvh ri suhglfdwhv1 Zh fdq dovr frqvlghu suhglfdwhv dv
rxwsxwv/ dqg wkxv wkh deryh phwkrg fdq eh dssolhg iru suhglfdwhv lq d vwudljkw0
iruzdug zd|1 Krzhyhu/ li d suhglfdwh s lv lq wkh grxeoh0volfh ri dq rxwsxw Lrxw/
wkhq vdwlvi|lqj wkh \5n fulwhulrq iru Lrxw lqyroyhv wkh vdwlvidfwlrq ri wklv fulwh0
ulrq iru s1 Uhdoo|/ wkh vhw ri surjudp sdwkv wr eh fryhuhg iru s lv d vxevhw ri
wkh rqhv wkdw vdwlvi| wkh fulwhulrq iru Lrxw1 Wkhuhiruh/ lw lv vx!flhqw wr dsso|
wkh \5n idxow ghwhfwlrq phwkrg iru wkh uhtxluhg sdwkv wkdw fryhu s dqg uhdfk
Lrxw +vhh wkh h{dpsoh lq wkh qh{w vhfwlrq,1 Wkh gh�qlwlrq ri \5n fulwhulrq iru d
surjudp S lv dv iroorzv=

Gh�qlwlrq 6 \5n fulwhulrq iru d surjudp P 1 Frqvlghu wkh vhw ri doo rxwsxw

lqvwuxfwlrqv LLrxw dqg wkh vhw ri doo suhglfdwhv s 5 S lq P1 Wkh \5n fulwhulrq

lv vdwlv�hg iru P li doo wkh \5n fulwhuld iru L 5 LLrxw dqg s 5 S duh vdwlv�hg1

8 WHVW GDWD JHQHUDWLRQ PHWKRG

Lq wklv vhfwlrq zh lqwurgxfh d phwkrg wkdw jhqhudwhv whvw gdwd fryhulqj hdfk sdwk

lq wkh grxeoh0volfh dqg fkhfnv wkhvh zlwk uhvshfw wr \5n sureohp1 Rxu phwkrg

:

lv edvhg rq hlwkhu wkh jhqhudo ixqfwlrq plqlpl}dwlrq whfkqltxh lqwurgxfhg lq ^:`/
dqg rq ^6` lq zklfk dq dxwrpdwhg phwkrg iru grpdlq whvwlqj kdv ehhq ghvfulehg1
Qrwh wkdw zh h{hfxwh wkh ruljlqdo surjudp/ dqg zh xvh wkh volfh rqo| iru sdwk
vhohfwlrq1 Iluvw zh ghvfuleh d edvlf whvw gdwd jhqhudwlrq dojrulwkp wkdw prgl�hv
wkh rz ri frqwuro dw d vhohfwhg eudqfk vxfk wkdw wkh surjudp iroorzv wkh vdph
suh�{ sdwk1 Wklv phwkrg zloo eh frpelqhg zlwk d sdwk pdqdjhphqw surfhgxuh
wr jhqhudwh wkh uhtxluhg surjudp lqsxwv dxwrpdwlfdoo|1

Dvvxph wkdw zh duh jlyhq d surjudp lqsxw L3 iru zklfk d frqglwlrqdo vwdwh0
phqw s lv h{hfxwhg dorqj d frpsohwh sdwk S 1 Rxu jrdo lv wr �qg vxfk d surjudp
lqsxw L wkdw dowhuqdwhv wkh errohdq rxwfrph ri s nhhslqj wkh h{hfxwlrq ri wkh
suh�{ sdwk wr s xqfkdqjhg1 Uhphpehu/ wkdw wkh eudqfk ixqfwlrq h{suhvvlrq I

dvvrfldwhg wr d vlpsoh suhglfdwh h{suhvvlrq D rs E +zkhuh D dqg E duh dulwk0
phwlf h{suhvvlrqv/ dqg rs lv d uhodwlrqdo rshudwru, lv I @ +D � E,/ wkdw lv d
uhdo0ydoxhg ixqfwlrq ri wkh fxuuhqw surjudp lqsxw1 Zlwkrxw orvv ri jhqhudolw|
zh fdq dvvxph wkdw I lv srvlwlyh iru L3/ dqg zh vkrxog �qg d surjudp lqsxw L /
wkdw vdwlv�hv wkh eudqfk ixqfwlrq frqglwlrq vkrzq lq Wdeoh 41

rs L

fdvh4 ?/ � I +L, ? 3
fdvh 5 A/ � I +L, � 3
fdvh 6 @/ 9@ I +L, @ 3

Wdeoh 4=
Eudqfk ixqfwlrq frqglwlrqv

Dq lpsuryhg ixqfwlrq plqlpl}dwlrq phwkrg zloo eh dssolhg wr �qg L1 Wkh
dojrulwkp frqvlvwv ri wzr pdmru sduwv=

41 h{sorudwru| vhdufk/

51 plqlpl}dwlrq surfhgxuh1

Lq wkh h{sorudwru| vhdufk zh prgli| d vhohfwhg lqsxw yduldeoh ri wkh fxuuhqw
surjudp lqsxw nhhslqj doo wkh rwkhu lqsxw yduldeohv xqfkdqjhg1 Wkh dprxqw ri
wkh prgl�fdwlrq lv d vpdoo ydoxh fdoohg xqlw wkdw lv dvvrfldwhg wr wkh gdwd w|sh
ri wkh vhohfwhg lqsxw yduldeoh1 Iru h{dpsoh lq wkh fdvh ri lqwhjhuv xqlw lv 4/ dqg
3=4 lq wkh fdvh ri rdwlqj srlqw gdwd w|shv1 Iluvw zh lqfuhphqw d vhohfwhg lqsxw
yduldeoh e| xqlw/ uh0h{hfxwh wkh surjudp dqg hydoxdwh wkh eudqfk ixqfwlrq iru
wkh prgl�hg surjudp lqsxw1 Li wkh eudqfk ixqfwlrq ydoxh kdv qrw ghfuhdvhg/
wkhq zh ghfuhphqw wkh vdph lqsxw yduldeoh e| xqlw1 Li qrqh ri wkh prgl�fdwlrqv
lpsuryh wkh eudqfk ixqfwlrq/ dqrwkhu lqsxw yduldeoh lv wdnhq1 Wklv surfhgxuh
frqwlqxhv xqwlo zh �qg d gluhfwlrq lq zklfk wkh eudqfk ixqfwlrq uhgxfhv ru
qrqh ri wkh prgl�fdwlrqv ghfuhdvh wkh eudqfk ixqfwlrq1 Lq wkh odwwhu fdvh wkh
h{sorudwru| vhdufk idlov1

Wkh jrdo ri wkh plqlpl}dwlrq surfhgxuh lv wr �qg d orfdo plqlpxp ydoxh ri
wkh eudqfk ixqfwlrq dorqj wkh gluhfwlrq ghwhuplqhg e| wkh h{sorudwru| vhdufk1 Lq
wkh �uvw skdvh ri wkh plqlpl}dwlrq surfhgxuh zh uhshdwhgo| prgli| wkh fxuuhqw
surjudp lqsxw dorqj wkh vdph gluhfwlrq1 Zh vd| frqvwudlqw ylrodwlrq rffxuv/ li

;

� XQLW � XQLW,

)�,�

Y

Q��

Q

FXUUHQW

Iljxuh 4= Plqlpl}dwlrq skdvh

wkh suh�{ sdwk wr s lv qrw h{hfxwhg frqvlghulqj wkh grxeoh0volfh iru wkh prgl�hg
surjudp lqsxw1 Wkh dprxqw ri wkh prgl�fdwlrq lv grxeohg diwhu hdfk vwhs xqwlo
wkh prgl�hg surjudp lqsxw grhv qrw uhgxfh wkh eudqfk ixqfwlrq/ ru frqvwudlqw
ylrodwlrq rffxuv1 Lq wkh vhfrqg +kdoylqj, skdvh dqrwkhu h{sorudwru| vhdufk lv
fdoohg iru wkh fxuuhqw surjudp lqsxw +uhvwulfwlqj wr wkh fxuuhqwo| prgl�hg lqsxw
yduldeoh, wr lqglfdwh d srvvleoh qhz gluhfwlrq wrzdug wkh orfdo plqlpxp/ dv lw
lv looxvwudwhg lq Iljxuh 41

Dw hdfk vwhs wkh dprxqw ri prgl�fdwlrq lv kdoyhg/ dqg wkh prgl�hg surjudp
lqsxw uhsodfhv wkh fxuuhqw rqh/ rqo| li lw lpsuryhv wkh eudqfk ixqfwlrq1

Wkh deryh lwhudwlrqv duh uhshdwhg xqwlo wkh eudqfk ixqfwlrq ydoxh ehfrphv
qhjdwlyh +ru }hur, fkdqjlqj wkh rz ri frqwuro dw wkh vhohfwhg suhglfdwh/ ru wkh
h{sorudwru| vhdufk idlov iru hdfk lqsxw yduldeoh dqg wkh dojrulwkp vwrsv zlwkrxw
surgxflqj wkh uhtxluhg surjudp lqsxw1 Wklv odwwhu fdvh rffxuv/ li wkh vhohfwhg
sdwk lv lqihdvleoh dfwxdoo|/ l1h1 wkhuh lv qr vxfk d surjudp lqsxw iru zklfk wklv
sdwk lv wudyhuvhg1 Wkh phwkrg fdq eh xvhg iru frpsrxqg suhglfdwhv wrr +vhh=
^6`, h{whqglqj lwv dssolfdwlrq iru d zlghu udqjh ri surjudpv1

Wkh frpsohwh whvw gdwd jhqhudwlrq dojrulwkp xvhv wkh uhshdwhg dssolfdwlrq ri
wkh deryh surfhgxuh wr fryhu doo wkh uhtxluhg sdwkv lq wkh frqwuro rz judsk ri
wkh grxeoh0volfh1 Sdwkv iru zklfk wkh phwkrg idlov duh dvvxphg wr eh lqihdvleoh1

Wkh fryhudjh dojrulwkp vwduwv zlwk dq duelwudulo| vhohfwhg surjudp lqsxw/
dqg h{soruhv doo surjudp sdwkv v|vwhpdwlfdoo|1 Lq wkh ehjlqqlqj zh kdyh rqo|
rqh sdwk S4 wkdw lv wudyhuvhg iru wkh lqlwldo surjudp lqsxw1 Dw wkh �uvw lwhudwlrq
zh vhohfw wkh �uvw suhglfdwh dorqj wklv sdwk/ dqg dsso| wkh whvw gdwd jhqhudwlrq
phwkrg ghvfulehg deryh rewdlqlqj d qhz sdwk S51 Dw wkh vhfrqg lwhudwlrq zh
vhohfw wkh vhfrqg suhglfdwhv ri doo wkh dydlodeoh sdwkv/ l1h1/ dorqj S4 dqg S51 Wkh
whvw gdwd jhqhudwlrq surfhgxuh lv qrz fdoohg iru wkh vhfrqg suhglfdwhv ri wkhvh
sdwkv rqh e| rqh uhvxowlqj irxu gl�huhqw surjudp sdwkv1 Dw wkh lwk lwhudwlrq zh
vhohfw wkh lwk suhglfdwhv dorqj doo wkh jhqhudwhg sdwkv/ dqg dsso| wkh phwkrg
iru hdfk sdwk lqglylgxdoo|1 Sdwkv zklfk frqwdlq ohvv suhglfdwhv wkdq wkh fxuuhqw
lwhudwlrq qxpehu duh vwruhg lq wkh �qdo sdwk vhw/ dqg ljqruhg gxulqj wkh ixuwkhu
suhglfdwh vhohfwlrqv1 Qrwh wkdw doo wkh jhqhudwhg sdwkv duh qhfhvvdulo| gl�huhqw/

<

V

D

E F

G
H

I

Iljxuh 5= D vdpsoh FIJ

vlqfh dw wkh lwk lwhudwlrq wkh suh�{ sdwkv ri doo wkh dydlodeoh sdwkv xs wr wkh
lwk suhglfdwhv duh gl�huhqw1 Wkh dojrulwkp zrxog fryhu hdfk orrs }hur wlphv/
rqfh/ dqg wzlfh dxwrpdwlfdoo|/ krzhyhu/ vlqfh zh uhvwulfw wr doo0uhgxfhg0sdwkv
fulwhulrq/ zh kdyh wr vnls orrsv zklfk kdyh ehhq fryhuhg pruh wkdq wzlfh1 Sdwkv
wkdw fruuhvsrqg wr }hur/ dqg rqh lwhudwlrq duh vwruhg lq wkh �qdo whvw gdwd vhw/
exw duh ljqruhg lq ixuwkhu whvw gdwd jhqhudwlrq1

Wkh frpsohwh sdwk jhqhudwlrq dojrulwkp lv ghprqvwudwhg lq wkh iroorzlqj
h{dpsoh1 Frqvlghu wkh frqwuro rz judsk ri d grxeoh0volfh lq Iljxuh 5/ dqg dv0
vxph wkdw d sdwk S4 @? v>d> e> i A kdv ehhq wudyhuvhg1 S4 kdv wzr suhglfdwhv=
d dqg e1 Dw wkh �uvw lwhudwlrq zh vhohfw suhglfdwh d/ dqg dsso| wkh deryh phwkrg
wr fkdqjh wkh rz ri frqwuro dw d rewdlqlqj d qhz sdwk S5 @? v> d> f> h> i A1
Lq wkh vhfrqg lwhudwlrq/ zh kdyh wr vhohfw wkh vhfrqg suhglfdwhv dorqj wkh jhq0
hudwhg sdwkv S4/ S51 Iluvw/ wdnh S4/ vhohfw suhglfdwh e/ dqg dsso| wkh whvw
gdwd jhqhudwlrq phwkrg1 Zh jhw d qhz sdwk S6 @? v> d> e> h> i A1 Iru S5/
vhohfwlqj suhglfdwh f/ zh rewdlq sdwk S7 @? v>d> f> g> f> h> i A1 Vlqfh sdwkv
S4/ S5/ S6 frqwdlq rqo| wzr suhglfdwh qrghv/ lq wkh wklug lwhudwlrq zh kdyh wr
ghdo zlwk sdwk S7 rqo|1 Qrz zh vhohfw wkh wklug suhglfdwh dorqj S7 zklfk lv
wkh vhfrqg rffxuuhqfh ri suhglfdwh f1 Wkh whvw gdwd jhqhudwlrq phwkrg lv ds0
solhg iru suhglfdwh f dorqj wkh suh�{ sdwk ? v>d> f> g> f A uhvxowlqj d qhz sdwk
S8 @? v> d> f> g> f> g> f> h> i A1 Lq wkh iruwk lwhudwlrq zh vkrxog vhohfw wkh wklug
rffxuuhqfh ri suhglfdwh f dorqj S8/ exw dv zh fdq vhh wkh orrs kdv douhdg| ehhq
wudyhuvhg }hur wlphv +dorqj S5,/ rqfh +dorqj S7,/ dqg wzlfh +dorqj S8, vdwlvi|lqj
rxu fulwhulrq1 Vlqfh sdwk S8 grhv qrw frqwdlq dq| ixuwkhu suhglfdwhv/ zh kdyh
�qlvkhg wkh whvw gdwd jhqhudwlrq surfhgxuh1

Lw fdq rffxu wkdw vhwwlqj d \5n yduldeoh wr wkh vhtxhqfh ri |hduv 4<<:/ 4<<;/
4<<</ 5333/ 5334/ 5335 wkh sdwkv gl�hu iru vrph ri wkhvh surjudp lqsxwv1 Lq
wklv fdvh d sdwk fruuhfwlrq phwkrg lv dssolhg/ zklfk wdnhv wkh wzr surjudp
lqsxwv wkdw fruuhvsrqg wr |hdu 4<<: dqg 5335/ lghqwl�hv wkh sureohp suhglfdwh

qrgh s dw zklfk wkh sdwkv glyhujh/ dqg fdoov wkh dxwrpdwhg whvw gdwd jhqhudwlrq
surfhgxuh iru suhglfdwh s1 Rxu surjudp sdwk dowhudwlrq surfhgxuh lv dssolhg
xqwlo zh rewdlq wkh *fruuhfwhg surjudp lqsxw * wkdw iroorzv wkh vdph sdwk iru doo

43

wkh vhohfwhg |hduv1 Dowkrxjk lw fdq kdsshq/ iru d phgldwh whvw gdwd vwloo fdxvhv
frqvwudlqw ylrodwlrq/ wklv fdvh rffxuv uduho|1 Wkh hqwluh phwkrg lv looxvwudwhg e|
wkh surjudp iudjphqw ehorz1

uhdg+fxuuhqwb|hdu,

uhdg+mrebehjlqb|hdu,

uhdg+vdodu|bfodvv,

111

d li fxuuhqwb|hdu ? 3 wkhq

4 h{lw +**huuru**,

111

e li mrebehjlqb|hdu ? 3 wkhq

5 h{lw +**huuru**,

6 vdodu| @ ;3333

111

f li fxuuhqwb|hdu 0 mrebehjlqb|hdu A@ 43 wkhq

7 vdodu| @ vdodu| - vdodu|bfodvv

hovh

8 vdodu| @ vdodu| . 4333 -

+fxuuhqwb|hdu 0 mrebehjlqb|hdu,

hqgli

9 zulwh +vdodu|,

Wkh \5n yduldeohv fxuuhqwb|hdu dqg mrebehjlqb|hdu duh dvvxphg wr eh
lghqwl�hg suholplqdu|1 Iluvw/ zh vhohfw fxuuhqwb|hdu dqg vwdwhphqw 9/ dqg
jhqhudwh wkh grxeoh0volfh ri wkh frgh1 Vlqfh suhglfdwh e dqg vwdwhphqwv 5 dqg 6
duh qrw lq xhqfhg e| wkh uhdg vwdwhphqw ri fxuuhqwb|hdu/ wkhuhiruh wkhvh duh
qrw lq wkh iruzdug volfh1 Suhglfdwh d dqg vwdwhphqw 4 duh qrw lq wkh edfnzdug
volfh iru lqvwuxfwlrq 9 dqg yduldeoh vdodu|/ wkhuhiruh wkh grxeoh0volfh frqwdlqv
rqo| rqh suhglfdwh f1

Rxu �uvw vxejrdo lv wr �qg d vhw ri surjudp lqsxwv wkdw fryhuv hdfk lqglylgxdo
surjudp sdwkv lq wkh grxeoh0volfh1

Ohw xv vhohfw dq lqlwldo surjudp lqsxw L4 dqg vhw fxuuhqwb|hdu wr 4<<:1 Ohw
L4 eh fxuuhqwb|hdu@4<<:/ mrebehjlqb|hdu@4<;5/ vdodu|bfodvv@413 + L4 @
^4<<:/4<;5/413` iru vkruw,/ dqg h{hfxwh wkh frgh rewdlqlqj d surjudp sdwk S41
Lq wklv fdvh wkh wkhq eudqfk ri f lv h{hfxwhg1 Vlqfh dw wkh �uvw lwhudwlrq zh
kdyh wr vhohfw wkh �uvw +dqg wkh rqo|, suhglfdwh dorqj wkh wudyhuvhg sdwk S4/ zh
dsso| wkh dxwrpdwhg whvw gdwd jhqhudwlrq dojrulwkp iru suhglfdwh f1 Wkh eudqfk
ixqfwlrq h{suhvvlrq lv If @ fxuuhqwb|hdu � mrebehjlqb|hdu � 43/ wkdw |lhogv
8 iru L41 Wr dowhu wkh rz ri frqwuro zh vkrxog plqlpl}h wkh eudqfk ixqfwlrq
ydoxh/ xqwlo lw ehfrphv qhjdwlyh1 Wkh h{sorudwru| vhdufk vhohfwv wkh yduldeoh
mrebehjlqb|hdu wr lqfuhphqw1 Wkh vwhsv ri wkh plqlpl}dwlrq skdvh duh vkrzq
lq Wdeoh 5=

vwhs vl}h mrebehjlqb|hdu If

4 4<;6 7
5 4<;8 5
7 4<;< 05

Wdeoh 5= Plqlpl}dwlrq vwhsv

44

Lq wkh wklug vwhs zh �qg surjudp lqsxw L5@^4<<:/4<;</413` iru zklfk suhgl0
fdwh f ehfrphv idovh h{hfxwlqj dq xqfryhuhg qhz sdwk S51

Vlqfh S4 dqg S5 fryhu doo wkh srvvleoh sdwkv lq wkh grxeoh0volfh/ rxu vhfrqg
wdvn lv wr ydolgdwh wkhvh zlwk uhvshfw wr wkh \5n sureohp1

Iluvw/ vhohfw sdwk S4/ jhqhudwh wkh vhulhv ri surjudp lqsxwv= ^4<<:/4<;5/413`/
^4<<;/4<;5/413`/ ^4<<</4<;5/413`/ ^5333/4<;5/413`/ ^5334/4<;5/413`/ ^5335/4<;5/413`/
dqg h{hfxwh wkh frgh iru wkhvh ydoxhv1 Wkh eudqfk ixqfwlrq ri suhglfdwh f lv
vkrzq lq wkh fdvh ri d fruuhfw surjudp lq Wdeoh 62d1

gdwh If

4<<: 8
4<<; 9
4<<< :
5333 ;
5334 <
5335 43

Wdeoh 62d= Eudqfk ixqfwlrq
ydoxhv ri wkh fruuhfw surjudp

gdwh If

4<<: 8
4<<; 9
4<<< :
5333 0<5
5334 0<4
5335 0<3

Wdeoh 62e= Eudqfk ixqfwlrq
ydoxhv ri wkh idxow| surjudp

Qrz dvvxph wkdw wkh deryh frgh frqwdlqv d \5n idxow/ ehfdxvh lw frqvlghuv
rqo| wkh odvw wzr gljlwv iru |hduv1 Wkh eudqfk ixqfwlrq iru wkh vhulhv ri wkh deryh
surjudp lqsxwv lv vkrzq lq Wdeoh 62e1 Wkh gl�huhqfhv ri wkh ydoxhv ri eudqfk
ixqfwlrq duh= +4/ 4/ 0<</ 4/ 4,/ l1h1/ wkh idxow lq wkh suhglfdwh kdv ehhq ghwhfwhg1

Qrwh wkdw zh fdqqrw jhqhudwh whvw gdwd vr wkdw dozd|v S4 lv fryhuhg iru doo
|hduv 4<<:� 5335 +dvvxplqj srvlwlyh |hduv,1 Zh fdq vhh wkdw d idxow pd| klgh
rwkhu idxowv/ wkhuhiruh uhshdwhg dssolfdwlrq ri rxu phwkrg lv uhtxluhg1

Wkh qh{w vwhs ri sdwk ydolgdwlrq surfhgxuh lv wr vhohfw sdwk S5/ dqg h{hfxwh
wkh vhulhv ri surjudp lqsxwv ^4<<:/4<;</413`/ ^4<<;/4<;</413`/ ^4<<</4<;</413`/
^5333/4<;</413`/ ^5334/4<;</413`/ ^5335/4<;</413`1 Vlqfh frqvwudlqw ylrodwlrq rf0
fxuv iru wkh wklug surjudp lqsxw ^4<<</4<;</413` wkh sdwk fruuhfwlrq phwkrg lv
dssolhg1 Wkh whvw gdwd jhqhudwlrq phwkrg qrz uhvxowv lq d qhz surjudp lq0
sxw L

3

5
@^5335/4<<9/413` iru zklfk wkh uhtxluhg sdwk kdv ehhq wudyhuvhg1 Wkh

surjudp qrz lv h{hfxwhg iru wkh qhz vhulhv ri surjudp lqsxwv= ^4<<:/4<<9/413`/
^4<<;/4<<9/413`/ ^4<<</4<<9/413`/ ^5333/4<<9/413`/ ^5334/4<<9/413`/ ^5335/4<<9/413`1
Wkh eudqfk ixqfwlrq ydoxhv ri suhglfdwh f dqg rxwsxw ydoxhv ri yduldeoh vdodu|
lq wkh fdvh ri wkh fruuhfw frgh duh vkrzq lq Wdeoh 72d1

gdwh I
f

vdodu|

4<<: 0< ;4333
4<<; 0; ;5333
4<<< 0: ;6333
5333 09 ;7333
5334 08 ;8333
5335 07 ;9333

Wdeoh 72d= Eudqfk ixqfwlrq0 dqg
rxwsxw ydoxhv ri wkh fruuhfw surjudp

gdwh I
f

vdodu|

4<<: 0< ;4333
4<<; 0; ;5333
4<<< 0: ;6333
5333 0439 049333
5334 0438 048333
5335 0437 047333

Wdeoh 72e= Eudqfk ixqfwlrq0 dqg
rxwsxw ydoxhv ri wkh idxow| surjudp

45

Qrz dvvxph wkdw djdlq/ wkh surjudp frqwdlqv \5n idxow1 Wkh eudqfk ixqf0
wlrq ydoxhv dqg wkh ydoxhv ri vdodu| ri wkh idxow| frgh duh olvwhg lq Wdeoh 72e1
Zh fdq vhh rxu phwkrg uhyhdov wkh idxow lq wkh eudqfk ixqfwlrq djdlq1 Vlqfh
iru doo wkh lqsxwv sdwk S5 lv wudyhuvhg/ wkh \5n idxow iru vwdwhphqw 9 fdq eh
lqyhvwljdwhg1 Wkh gl�huhqfhv ri wkh rxwsxw ixqfwlrqv +khuh wkh rxwsxw lwvhoi,
duh= +4333/ 4333/ 0<<333/ 4333/ 4333,/ wkhuhiruh zh ghwhfw d \5n idloxuh1

Dqdo|}lqj wklv surjudp zh fdq mxvwli| wkh vhohfwlrq ri rxu vwurqj whvwlqj
fulwhulrq1 Zh fdq vhh wkdw rqo| lqvwuxfwlrq 8 frqwdlqv d \5n idxow zkloh vwdwh0
phqw 7 grhv qrw1 Wkhuhiruh/ zh kdyh wr h{hfxwh d surjudp sdwk wkdw fryhuv wkh
zurqj vwdwhphqw dqg dorqj zklfk wkhuh lv qr uhgh�qlwlrq iru vdodu| ehwzhhq
wklv vwdwhphqw dqg dq rxwsxw ru suhglfdwh wkdw xvhv vdodu|1 +Lq rxu vlpsoh
h{dpsoh wklv uhtxluhphqw lv vdwlv�hg/ exw zh fdq hdvlo| h{whqg wkh h{dpsoh
zkhq wklv lv qrw wuxh1, Frqvhtxhqwo| zh kdyh wr fryhu doo vlpsoh sdwkv lq wkh
grxeoh0volfh1

Wkh frpsohwh yhul�fdwlrq qhhgv wr lqvshfw yduldeoh mrebehjlqb|hdu wrr lq
wkh vdph zd|1 Wkh *rxwsxwv* h{lw+**huuru**, lq vwdwhphqwv 4 dqg 5 duh dovr
kdyh wr eh frqvlghuhg1

9 UHODWHG ZRUN

Frpphufldo surgxfwv wu| wr �qg wkh orfdwlrq zkhuh gdwhv duh hpsor|hg1 Wr gr
wklv/ vrph gdwh0pdqlsxodwlrq vlwhv fdq eh lghqwl�hg e| wkh sodfhv zkhuh wkhuh
lv d fdoo wr wkh rshudwlqj v|vwhp lq wkh surjudp1 Dq h{dpsoh lv zkhq v|vwhp
forfn frqwdlqlqj fxuuhqw |hdu lv uhdg lqwr d yduldeoh1 Krzhyhu/ wklv yduldeoh
fdq eh dvvljqhg wr rwkhu yduldeohv1 Wkrxjk e| dsso|lqj volflqj zh fdq revhuyh
hdfk gdwh0uhodwhg yduldeohv dqg lqvwuxfwlrq/ lw fdqqrw eh ghflghg zkhwkhu wkhvh
lqvwuxfwlrqv vx�hu iurp \5n exj1

Dqrwkhu phwkrg lv wr �qg gdwh0pdqlsxodwlrq vlwhv e| vhdufklqj vxvslflrxv
yduldeoh qdphv1 Zh fdq xvh dq dxwrpdwhg vwulqj0vhdufklqj wrro wr lghqwli| vrph
sdwwhuqv/ iru h{dpsoh/ %-gdwh-%/ %-||-%/ %-|hdu-%/ hwf1/ zkhuh %-% lv d zlog0fdug
v|pero uhsodflqj dq| vxevwulqj1 Wklv phwkrg fdq dovr eh h{whqghg e| volflqj
wr �qg rwkhu srwhqwldo sodfhv ri \5n exj1

Wkh pdlq sureohp zlwk wkhvh phwkrgv lv wkdw wkh qxpehu ri srwhqwldo or0
fdwlrqv ri d \5n idxow lv pxfk odujhu wkdq wkh dfwxdo qxpehu ri \5n idxowv lq
wkh surjudp1 Lq wklv zd| qrw rqo| wkh fruuhfw frgh vkrxog eh prgl�hg/ exw wkh
kxjh gdwdedvh vkrxog dovr eh fkdqjhg1 Wklv lv vrphwlphv yhu| gl!fxow/ dqg pd|
hqwdlo qhzhu idxowv1 Wkh rwkhu sureohp lv wkdw wkhvh phwkrgv fdqqrw eh dssolhg
iru srvw0uhqrydwlrq whvwlqj/ vlqfh wkhvh phwkrgv gr qrw h{hfxwh surjudpv dw doo1

Wkh rqo| vflhqwl�f phwkrg wr dgguhvv wkh \5n sureohp kdv ehhq ghyhorshg
e| Uhsv hw do1 ^<`1 Wkhlu phwkrg lv edvhg rq sdwk sur�olqj1 D sdwk sur�ohu
lqvwuxphqwv surjudpv vr wkdw wkh gl�huhqw h{hfxwhg surjudp sdwkv fdq eh uhf0
rjql}hg1 Diwhu vhyhudo uxqv ri wkh surjudp d sdwk vshfwuxp fdq eh rewdlqhg
dqg glvsod|hg vr wkdw wkh iuhtxhqf| ri gl�huhqw h{hfxwhg sdwkv lv ghwhuplqhg1

Wklv sur�olqj whfkqltxh lv dssolhg iru gdwh0ghshqghqw yduldeohv vr wkdw rqo|
wkh ydoxh ri rqh gdwh0ghshqghqw yduldeoh lv prgl�hg nhhslqj doo rwkhu yduldeohv
xqfkdqjhg1 Diwhu d orw ri surjudp h{hfxwlrqv/ zh fdq frpsduh wkh sdwk vshfwud
iru suh05333 dqg srvw05333 ydoxhv1 Li wkh vshfwud duh vlplodu iru vrph suh05333

46

+srvw05333, gdwd/ krzhyhu wkh| gl�hu iru suh05333 dqg srvw05333 gdwd/ d \5n
exj lv dvvxphg1

Wklv phwkrg vwduwv iurp vlplodu k|srwkhvlv/ l1h1/ wkh ydoxhv ri eudqfk ixqf0
wlrqv duh suredeo| gl�huhqw iurp suh05333 dqg srvw05333 |hduv1 Krzhyhu/ wkhuh
lv d vljql�fdqw gl�huhqfh ehwzhhq wklv dqg rxu phwkrgv= Hyhq li wkh ydoxhv
ri eudqfk ixqfwlrqv duh gl�huhqw iru wzr uxqv/ wklv grhv qrw dozd|v hqwdlo wkh
gl�huhqfh ri frqwuro rz wr eh iroorzhg1 Frqvlghu rxu �uvw h{dpsoh1 Zh fdq
revhuyh wkdw iru erwk suh05333 dqg srvw05333 |hduv wkh hovh eudqfk lv iroorzhg/
wkhuhiruh wkh sdwk vshfwud duh wkh vdph1 Wr dgguhvv wklv sureohp/ pruh uxqv
duh uhtxluhg dqg e| dsso|lqj d wkuhvkrog udwlr zh fdq ghflgh zkhq d \5n idxow
lv suhvhqw1 Wklv phwkrg kdv wzr sureohpv1 Wkh �uvw lv wkdw zh kdyh wr h{hfxwh
wkh surjudp pdq| wlphv iru erwk suh05333 dqg srvw05333 gdwhv1 Lq wklv fdvh zh
fdqqrw nhhs wkh ydoxh ri doo rwkhu yduldeohv xqfkdqjhg1 Lw lv yhu| gl!fxow wr vh0
ohfw pdq| dssursuldwh +l1h1 lqghshqghqw, lqsxw wkdw zrxog iroorz vlplodu sdwkv
hyhq iru wkh vdph suh05333 +srvw05333, |hdu1 Wkh lqsxw vhohfwlrq uhtxluhv d ghhs
nqrzohgjh ri erwk wkh surjudp dqg wkh gdwdedvh/ d uhtxluhphqw zh zrxog olnh
wr holplqdwh1

Dqrwkhu sureohp lv zkhq wkh gdwdedvh frqwdlqv orwv ri gdwd wkdw zrxog
uhvxow lq wkh fryhudjh ri wkh wkhq eudqfk dqg rqo| txlwh d ihz iru zklfk wkh hovh

eudqfk zrxog eh iroorzhg1 Lq wklv fdvh/ hyhq orwv ri whvw fdvhv uhvxow lq vlplodu
sdwk vshfwud/ wkh \5n idxow uhpdlqv xqghwhfwhg1 Li wkh gdwdedvh lv vpdoo/ wkhq
lw fdq rffxu wkdw wkhuh lv qr gdwd lq wklv gdwdedvh iru zklfk wkh exj zrxog eh
pdqlihvwhg1 Lq wklv fdvh sdwk sur�olqj whfkqltxh vxuho| idlov iru \5n exjv1 Rq
wkh frqwudu|/ rxu phwkrg qhhgv rqo| 9 lqsxwv wr uhyhdo d \5n idxow dqg wklv
exj lv fdswxuhg iru dq| lqsxw wkdw iroorz d jlyhq surjudp sdwk1 Lq dgglwlrq/
rxu phwkrg lv pruh h!flhqw/ vlqfh zh whvw doo wkh gl�huhqw frpsxwdwlrqv ri dq
rxwsxw +ru suhglfdwh, ixqfwlrq/ zkloh sdwk sur�olqj kdv qr vxfk d vwulfw fulwhulrq1

: FRQFOXVLRQ

Wklv sdshu ghvfulehv d qhz phwkrg wkdw lv deoh wr ghwhfw \5n0exjv dxwrpdwlfdoo|
e| xvlqj dv ihz lqlwldo lqirupdwlrq dv srvvleoh1 Wkh phwkrg fdq dovr eh dssolhg
dv dq dghtxdf| fulwhulrq wr fkhfn zkhwkhu d �{hg surjudp lv \5n exj0iuhh ru
wkh uhqrydwlrq kdv wr eh iroorzhg1 Wklv lv wkh �uvw vflhqwl�f phwkrg wkdw lv
erwk vdih dqg suhflvh1 Wklv phdqv wkdw srwhqwldo idxowv duh uhyhdohg/ exw wkh
frgh dqg wkh uhodwhg gdwdedvh uhpdlq xqwrxfkhg li wkh phwkrg ydolgdwhv wkhlu
fruuhfwqhvv1

Wkrxjk rxu phwkrg fdq eh dssolhg wr uhyhdo \5n idxowv/ wklv phwkrg lv
xqltxho| dssolfdeoh dv dq dghtxdf| fulwhulrq1 Doo frpphufldo wrrov fdq rqo|
eh dssolhg wr srvvleo| uhyhdo \5n exjv/ exw whvwlqj diwhu wkh fruuhfwlrq ri wkh
idxowv kdv wr eh grqh pdqxdoo|1 Vlqfh wkh sur�olqj phwkrg lv qrw uholdeoh dv
zdv vkrzq lq wkh suhylrxv vhfwlrq/ rxu phwkrg lv wkh rqo| rqh zklfk dghtxdwho|
whvwv surjudpv diwhu \5n0exj fruuhfwlrq1 Zh qrwh wkdw wkhuh lv qr phwkrg wr
vxuho| �{ \5n idxowv vr wkdw wkh dghtxdf| whvw fdq eh rplwwhg1 Hyhq li doo wkh
\5n yduldeohv duh prgl�hg wr 70gljlw ydoxhv erwk lq wkh gdwdedvh dqg lq wkh
surjudp/ wkhuh pd| eh vrph vwulqj wudqvirupdwlrq lq wkh frgh lqgxflqj \5n
exjv1 Rq wkh frqwudu|/ rxu phwkrg lv ixoo| dxwrpdwhg/ l1h1/ qrw rqo| wkh whvw
gdwd duh jhqhudwhg/ exw wkh ydolgdwlrq lv dovr dxwrpdwlf1

D uhdghu nqrzlqj wkh vriwzduh whvwlqj olwhudwxuh ghhso| pljkw eh grxewixo

47

rxu dvvhuwlrq wkdw wkh uholdelolw| ri wklv phwkrg lv doprvw shuihfw1 Wklv uhdghu
vhhpv wr eh uljkw ehfdxvh Krzghq lq ^9` vkrzhg wkdw qrw hyhq wkh doo0sdwkv
fulwhulrq lv deoh wr uhyhdo doo wkh idxowv lq d surjudp1 Wklv lv wuxh1 Krzhyhu/
frqvlghu zklfk w|sh ri idxowv pd| jr xqghwhfwhg hyhq li doo0sdwkv fulwhulrq kdv
ehhq vdwlv�hg1

Iluvw/ d idxow uhpdlqv xqghwhfwhg li iru vrph gdwd wkh surjudp zrxog iroorz d
zurqj sdwk/ krzhyhu/ zh vhohfw dq lqdssursuldwh lqsxw1 Wklv fdvh rffxuv lq rxu
�uvw h{dpsoh li zh vhohfw d qrq0shqvlrqhu hpsor|hh wkdw fdq kdsshq iuhtxhqwo|1
Iru wklv shuvrq d fruuhfw sdwk kdv ehhq h{hfxwhg dqg zh fdqqrw �qg wkh idxow
hyhq li doo wkh sdwkv kdyh ehhq h{hfxwhg1 Vlqfh rxu surjudp frpsxwhv eudqfk
+dqg rxwsxw, ixqfwlrqv iru 9 gl�huhqw |hduv/ rxu phwkrg uhyhdov wkh exj iru dq|
lqsxw1

Wkh vhfrqg fdvh wkdw pd| uhvxow lq dq xquhyhdohg idxow diwhu wkh vdwlvidfwlrq
ri doo0sdwkv fulwhulrq lv frlqflghqwdo fruuhfwqhvv1 Frlqflghqwdo fruuhfwqhvv rffxuv
li iru vrph edgo| vhohfwhg lqsxw wkh lqfruuhfw surjudp uhvxowv lq wkh vdph ydoxh
dv wkh fruuhfw rqh1 Iru h{dpsoh/ | @ { - { dqg | @ { . { uhvxow lq wkh vdph
ydoxh 7 iru { @ 51 Ehfdxvh zh vhohfw vl{ vxevhtxhqw |hduv dv lqsxw/ frlqflghqwdo
fruuhfwqhvv fdqqrw rffxu1

Ilqdoo|/ d surjudp fdq frqwdlq sodfhv zkhuh vrph �erxqgdu| ydoxhv� fdxvh
idloxuhv/ zkloh iru doo rwkhu ydoxhv wkh surjudp ehkdyhv fruuhfwo|1 Dq h{dpsoh
iru wklv w|sh ri idxow lv | @ 4@+43� {,/ zkhq rqo| { @ 43 fdq fdxvh d uxq wlph
huuru1 Krzhyhu/ rxu erxqgdu| ydoxh lv 5333 wkdw lv mxvw vhohfwhg dv lqsxw1

Lqh!flhqw zrunlqj ri rxu whvw gdwd jhqhudwlrq dojrulwkp fdq dovr fdxvh dq
xquhyhdohg \50idxow1 Krzhyhu/ rxu dojrulwkp zrunv fruuhfwo| iru olqhdu suhgl0
fdwhv/ dqg h{shulhqfhv vkrz wkdw prvw ri wkh suhglfdwhv +dqg suhglfdwh lqwhusuh0
wdwlrqv, duh olqhdu/ vhh ^44`1 Hyhq li d suhglfdwh lqwhusuhwdwlrq lv qrq0olqhdu rxu
dojrulwkp suredeo| �qgv lqsxw wr fryhu d uhtxluhg sdwkv1 Li qrw/ wkhq �qglqj
d orfdo plqlpxp pd| suhyhqw wr jhqhudwh d vhohfwhg sdwk1 Krzhyhu/ zh eholhyh
wkdw wklv fdvh rffxuv yhu| uduho| vlqfh txdgudwlf +ru kljkhu rughu, gdwh pdqls0
xodwlrq lv xvxdoo| d qrqvhqvh1 Qrwh wkdw/ krzhyhu/ wkhuh pd| eh d suhglfdwh dw
zklfk zh vkrxog dowhu wkh rz ri frqwuro wr uhdfk wkh vhohfwhg rxwsxw/ dqg wklv
suhglfdwh lv qrq0olqhdu1 Lq wklv fdvh rwkhu phwkrgv edvhg rq v|perolf h{hfx0
wlrq dqg qrq0olqhdu surjudpplqj fdq eh dssolhg ru wkh sdwk fdq eh fryhuhg e|
kxpdq lqwhudfwlrq1

Wkrxjk wkh zkroh phwkrg kdv qrw ehhq lpsohphqwhg |hw/ zh kdyh vrph
suholplqdu| uhvxowv1 Wkh nh| sduw ri rxu phwkrg +zuw wkh surjudpplqj gl!0
fxowlhv, lv dxwrpdwhg whvw gdwd jhqhudwlrq1 Rxu �uvw dojrulwkp fdq jhqhudwh d
vhohfwhg sdwk yhu| txlfno| lq wkh lqwudsurfhgxudo fdvh1 +Rqo| vrph ploolvhfrqgv
lv qhhghg e| dsso|lqj d KS <3332;89 frpsxwhu1, Vlqfh wkh phwkrg lqyroyhv wkh
hyroxwlrq ri eudqfk ixqfwlrqv/ wkhuhiruh \5n0idxow ghwhfwlrq phwkrg kdv dfwxdoo|
dgguhvvhg lq sudfwlfh1

Qrzdgd|v/ erwk iruzdug dqg edfnzdug volfhv fdq eh ghwhuplqhg hyhq iru
lqwhusurfhgxudo fdvh ^7/ ;/ 4`1 Ehfdxvh zh h{shfw yhu| vpdoo volfhv zh fdq xvh
frqvhuydwlyh phwkrgv iru duud|v +dqg srlqwhuv li dq|,1 Wkh sureohp ri doldvlqj
kdv dovr ehhq uhvroyhg/ wkxv zh fdq frqfoxgh wkdw rxu phwkrg fdq eh lpsoh0
phqwhg lq sudfwlfh1

48

Uhihuhqfhv

^4` Irujäfv/ L1 dqg J|lpöwk|/ W1 Dq h!flhqw lqwhusurfhgxudo volflqj phwkrg
iru odujh surjudpv> Surf1 ri <wk Lqwhuqdwlrqdo Frqihuhqfh rq Vriwzduh Hq0
jlqhhulqj dqg Nqrzohgjh Hqjlqhhulqj 5:<05;9 Mxqh/ 4<<:

^5` Iudqno/ S1J1 dqg Zh|xnhu/ H1M1 Dq dssolfdeoh idplo| ri gdwd rz whvwlqj
fulwhuld> LHHH Wudqvdfwlrqv rq Vriwzduh Hqjlqhhulqj VH047/ ;/ 4<;;/ 47;60
47<;

^6` Kdmqdo/ Ä1 dqg Irujäfv/ L1 Dq dssolfdeoh whvw gdwd jhqhudwlrq dojrulwkp iru
grpdlq huuruv> Surf ri1 wkh LVVWD*<;/ DFP Vriwzduh Hqjlqhhulqj Qrwhv
56+5, 960:5/ Pdufk/ 4<<;

^7` Kruzlw}/ V1/ Uhsv/ W1/ dqg Elqnoh|/ G1 Lqwhusurfhgxudo volflqj xvlqj ghshq0
ghqfh judskv1 DFP Wudqvdfwlrqv rq Surjudpplqj Odqjxdjhv dqg V|vwhpv
45/ 4 +4<<3,/ 590941

^8` Krzghq/ Z1 Phwkrgrorj| iru wkh jhqhudwlrq ri surjudp whvw gdwd1 LHHH
Wudqvdfwlrqv rq Vriwzduh Hqjlqhhulqj VH04/ 8/ 4<:8/ 887088<

^9` Krzghq/ Z1 Uholdelolw| ri wkh sdwk dqdo|vlv whvwlqj vwudwhj|1 LHHH Wudqv0
dfwlrqv rq Vriwzduh Hqjlqhhulqj VH05/ 6/ 4<:9/ 53;0548

^:` Nruho/ E1 Dxwrpdwhg vriwzduh whvw gdwd jhqhudwlrq1 LHHH Wudqv1 Vriwz1
Hqj1/ ; +Dxj1,/ ;:30;:</ 4<<31

^;` Uhsv/ W1/ Kruzlw}/ V1/ Vdjly/ P1 dqg Urvd|/ J1 *Vshhglqj xs volflqj* DFP
VLJVRIW Hqjlqhhulqj Qrwhv 4<+8, 44053 Ghfhpehu/ 4<<71

^<` Uhsv/ W1/ Edoo/ W1/ Gdv/ P dqg Oduxv/ M1 Wkh Xvh ri Surjudp Sur�olqj iru
Vriwzduh Pdlqwhqdqfh zlwk Dssolfdwlrq wr wkh \hdu 5333 Sureohp1 Surf1
ri wkh Iliwk DFP VLJVRIW V|psrvlxp rq Irxqgdwlrq ri Vriwzduh Hq0
jlqhhulqj dqg Vl{wk Hxurshdq Vriwzduh Hqjlqhhulqj Frqihuhqfh/]xulfk/
Vzlw}huodqg/ Vhsw1 4<<:1 dqg lq OQFV 4634/ 6:;06<7

^43` Zhlvhu/ P1 Surjudp Volflqj1 LHHH Wudqvdfwlrqv rq Vriwzduh Hqjlqhhulqj
VH043/ 7/ 4<;7/ 765077<1

^44` Zklwh/ O1M1 dqg Frkhq/ H1L1 D grpdlq vwudwhj| iru frpsxwhu surjudp
whvwlqj1 LHHH Wudqvdfwlrqv rq Vriwzduh Hqjlqhhulqj VH09/ 6/ 4<;3/ 57:0
58:1

49

Slide 1

10/13/98 Copyright 1998 by Hewlett Packard Company - FS 1

Product Quality Profiling (PQP)Product Quality Profiling (PQP)

Model OverviewModel Overview
Felix SilvaFelix Silva
Hewlett Packard CompanyHewlett Packard Company
LSG System Test LabLSG System Test Lab

Slide 2

10/13/98 Copyright 1998 by Hewlett Packard Company - FS 2

Product Product QualityQuality Profiling (PQP) Profiling (PQP)

Working DefinitionWorking Definition
A tool to enable the alignment betweenA tool to enable the alignment between

customer requirements and product (orcustomer requirements and product (or
design) by explicitly correlating key productdesign) by explicitly correlating key product
requirements to customer needs andrequirements to customer needs and
expectationsexpectations

Slide 3

10/13/98 Copyright 1998 by Hewlett Packard Company - FS 3

Product Product QualityQuality Profiling (PQP) Profiling (PQP)

bb ObjectivesObjectives
•• Facilitate the translation of “customer experience”Facilitate the translation of “customer experience”

elements into verifiable and quantitative attributeselements into verifiable and quantitative attributes
for system development and testfor system development and test

•• Help establish commonly agreed upon goals ofHelp establish commonly agreed upon goals of
product performance by clearly understandingproduct performance by clearly understanding
product environment constraintsproduct environment constraints

•• Contribute to the accurate characterization ofContribute to the accurate characterization of
customer operational profilescustomer operational profiles

Slide 4

10/13/98 Copyright 1998 by Hewlett Packard Company - FS 4

Product Product QualityQuality Profiling (PQP) Profiling (PQP)

bb CharacteristicsCharacteristics
•• Places value on customer task-related activities ratherPlaces value on customer task-related activities rather

than product feature setthan product feature set
•• Addresses the breadth of customer environments andAddresses the breadth of customer environments and

tasks rather than the depthtasks rather than the depth
•• Improves requirements management by means ofImproves requirements management by means of

prioritizationprioritization, , traceability traceability and tradeoff analysisand tradeoff analysis
•• Data collection mechanisms for required informationData collection mechanisms for required information

already exist and/or require minor changesalready exist and/or require minor changes

Slide 5

10/13/98 Copyright 1998 by Hewlett Packard Company - FS 5

Product Quality Profiling (PQP)Product Quality Profiling (PQP)

Terminology
Activity:
Weighted compound attribute containing details about target
customer product usage model

Customer Usage Scenario:
End user action in support of a task (i.e., Spreadsheet p&p,Word
Processing p&p, Drawings/Illustrations p&p)

Task:
Element of work performed by end user (i. e., Mailing Lists,
Document Generation, System Administration)

Slide 6

10/13/98 Copyright 1998 by Hewlett Packard Company - FS 6

Product Quality Profiling (PQP)Product Quality Profiling (PQP)

Terminology (CTND)
Solution:
All of the systems that together meet a customer need

Solution Profiling Factor:
Measurable customer-bound product attribute to be targeted for
validation and verification in the context of product development

Product Quality Profile:
Collection of solution profiling factors for a particular product agreed
upon as collective goals of product customer fit

Slide 7

10/13/98 Copyright 1998 by Hewlett Packard Company - FS 7

ProductProduct QualityQuality Profiling (Profiling (PQPPQP))

Concept Hierarchy

Solution

Task

Activity
Customer

Usage
Scenario

Slide 8

10/13/98 Copyright 1998 by Hewlett Packard Company - FS 8

Model

SOLUTION PROFILING FACTOR 3

Activity to Profile
Score

ACTIVITY 1

ACTIVITY 2

ACTIVITY 3

ACTIVITY 4

.

ACTIVITY N

+

ACTIVITY 1

ACTIVITY 2

ACTIVITY 3 +

SOLUTION PROFILING FACTOR 2

ACTIVITY 1

ACTIVITY 2

ACTIVITY 3

ACTIVITY 4

.

ACTIVITY N

+ Activity to Profile
Score

Customer Type
Customer expertise: i.e. Novice, Intermediate, Advanced

Customer Usage Scenario
End user action in support of a task

Model Coverage
- T e c h n i c a l s u p p o r t a n d
Product Quality aspects of the
Customer Satisfaction Index
(CSI) - Other elements of CSI
include account management,
Customer Services, and Billing
- Also covers use scenarios,
environment, how customer
gets work done, and systemic
m o d e l o f c l i e n t a s b a s i c
requirements of transition to
"Customer Centric" product
development

TERMINOLOGY

A
C

TI
V

IT
Y

 S
E

Ts
Activity Grouped Solutions

Activity ScoreCustomer Usage
ScenarioCustomer Type

PRODUCT QUALITY PROFILING
Activity-Based Model - March 98

+ + +

STEP
1

ACTIVITY 1

ACTIVITY 2

ACTIVITY 3

ACTIVITY 4

.

ACTIVITY N

SOLUTION

SOLUTION PROFILING FACTOR 1

Activity to Profile
Score

ACTIVITY 1

ACTIVITY 2

ACTIVITY 3

ACTIVITY 4

.

ACTIVITY N

+

STEP
2

STEP
3

Environment
Group of Hardware, Network Options, and SW used to produce work

Task Score
Number indicating the relevance of activity attributes to the market

Solution
All of the systems that together meet a customer need

Activity
Weighted compound attribute containing details about target customer
product usage model

STEP
4

Activity List Feature A Feature B Feature C Feature D Feature E Feature F

Feature
Relevance

Index
Activity 1 5 5 2 8 5 5 30
Activity 2 5 5 3 5 7 8 33
Activity 3 9 9 9 5 2 5 39
Activity 4 5 5 2 2 5 5 24
.
Activity N 10 10 3 8 8 8 47

Feature Weight 34 34 19 28 27 31 173
Feature Group Weight

Feature Group 2Feature Group 1

87 86

Organize and Rank Activities

Align Activities to Solution Options

Link Solution-Bound Activity Sets to
Profiling Factors for Scoring

Evaluate Feature Set Relevance to Solution-Bound Activity
Sets

C
at

al
og

ue
d

S
et

s

GOALS

Solution Profiling Factor
Measurable customer-bound product attribute to be targeted for validation
and verification in the context of product development
Product Quality Profile
Collection of solution profiling factors for a particular product agreed upon as
collective goals of product customer fit

PMT

TASK/ACTION ACTIVITY

Revision 2.0 - Felix Silva

Market +
Operating

Environment

HW NW SW

Market
Market Segment: SOHO, Corporate, MIS, Government, DTP, Graphic Arts,
Advertisement

Factor- Goal 1

Factor- Goal 2

Factor- Goal 3

Factor- Goal N

Slide 9

10/13/98 Copyright 1998 by Hewlett Packard Company - FS 9

Example

EASE OF USE

Activity to Profile
Score

ACTIVITY 1

ACTIVITY 2

ACTIVITY 3

ACTIVITY 4

.

ACTIVITY N

+
ACTIVITY 1

ACTIVITY 2

ACTIVITY 3 +

REALIABILITY

ACTIVITY 1

ACTIVITY 2

ACTIVITY 3

ACTIVITY 4

.

ACTIVITY N

+

CONSIDERATIONS

A
C

TI
V

IT
Y

 S
E

Ts

Activity Grouped Solutions

HWord Processing
Proofing & PrintingAdvanced

PRODUCT QUALITY PROFILING
Model Illustration

+ + +

STEP
1

PRINT QUALITY

+

STEP
2

STEP
3

Solutions
Solutions can be catalogued as an individual task or a
connection of related tasks. STEP

4

Activity List 1200 DPI RET

Multi-
speed
fuser

Universal
Tray Duplex

HCI
Device

Feature
Relevance

Index
WordProcessing P&P 5 5 2 8 5 5 30
Bus./Presentation G. P&P 5 5 3 5 7 8 33
Drawings/Illustrations P&P 9 9 9 5 2 5 39
Forms P&P 5 5 2 2 5 5 24
.
PIM schedule P&P 10 10 3 8 8 8 47

Feature Weight 34 34 19 28 27 31 173
Feature Group Weight

Paper HandlingPrint Quality

87 86

Organize and Rank Activities

Align Activities to Solution Options

Link Solution-Bound Activity Sets to
Profiling Factors for Scoring

Evaluate Feature Set Relevance to Solution-Bound Activity Sets

C
at

al
og

ue
d

S
et

s

GOALS

PMT

MAILING LISTS

SYSTEM
ADMINISTRATION

DOCUMENT
GENERATION WordProcessing P&P

Bus./Presentation G. P&P

Drawings/Illustrations P&P

Forms P&P

.

PIM schedule P&P

M

H

H

M

.

L

H

M

M

M

.

L

Activity RASC FSC

=

H

H

H

M

.

L

APSC

RASC
Raw Activity Score

FSC
Factor Score

APSC
Activity to Profile Factor Score

Revision 2.0 - Felix Silva

SOHO +
Operating

Environment

PII TCP OFFI
CE

WordProcessing P&P

Bus./Presentation G. P&P

Drawings/Illustrations P&P

Forms P&P

.

PIM schedule P&P

H

M

M

M

.

L

REL.

MTBF
MTTR

PQ

Adhesion
Archivability

Fusing
Banding
Ghosting

Slide 10

10/13/98 Copyright 1998 by Hewlett Packard Company - FS 10

Product Product QualityQuality Profiling (PQP) Profiling (PQP)

bb What PQP is:What PQP is:
•• A mechanism to balance product technology,A mechanism to balance product technology,

marketing, and user experiencemarketing, and user experience
•• An activity that facilitates defining systemAn activity that facilitates defining system

requirements based on end user tasks profilesrequirements based on end user tasks profiles
•• A pipeline for adding structure to requirements dataA pipeline for adding structure to requirements data

already being minedalready being mined
•• A practical tool to help in the requirements elicitationA practical tool to help in the requirements elicitation

processprocess

Slide 11

10/13/98 Copyright 1998 by Hewlett Packard Company - FS 11

Product Quality Profiling (PQP)Product Quality Profiling (PQP)

bb What PQP is not:What PQP is not:
•• The solution to requirements elicitationThe solution to requirements elicitation
•• A substitute for market researchA substitute for market research
•• A guarantee of perfect market-user productA guarantee of perfect market-user product

matchmatch
•• A substitute for requirement specificationsA substitute for requirement specifications
•• A compulsory prescription for featureA compulsory prescription for feature

developmentdevelopment

Slide 12

10/13/98 Copyright 1998 by Hewlett Packard Company - FS 12

Fit within SW Requirements Engineering Activities

Modified from:
John Bracket, p26
Software Requirements
Engineering Overview
1992 Carnegie Mellon
University

Context Analysis

Requirements Elicitation

Requirements Communication

Requirements Representation

Requirements Assessment

Domain Analysis

Exploration of Design Feasibility

Preparation for Requirements Validation

Product
Quality

Profiling

Slide 13

10/13/98 Copyright 1998 by Hewlett Packard Company - FS 13

Product Product QualityQuality Profiling (PQP) Profiling (PQP)

bb Advantages and potentialAdvantages and potential
•• Requires definition of attributes early inRequires definition of attributes early in

development phasedevelopment phase
•• Highly Highly leverageableleverageable once a baseline is established once a baseline is established
•• Instant picture of highest profile environments toInstant picture of highest profile environments to

help in mitigating riskhelp in mitigating risk
•• Useful for derivatives, product rolls, and nextUseful for derivatives, product rolls, and next

generation productsgeneration products
•• Prudently using test resourcesPrudently using test resources

Slide 14

10/13/98 Copyright 1998 by Hewlett Packard Company - FS 14

• Activity data

• Raw Activity Score

• Preliminary Solution Sets

• Contribute to profiling factor
weighting

• Goal Setting

Roles and Responsibilities

• Feature to activity weight

• Contribute to profiling factor
weighting

• Goal setting

• Goal Setting

• Contribute to profiling factor
weighting

• Update Model

• Goal Setting

• Contribute to profiling factor
weighting

• Goal Setting

• Contribute to profiling factor
weighting

Slide 15

10/13/98 Copyright 1998 by Hewlett Packard Company - FS 15

Product Quality Profiling (PQP)Product Quality Profiling (PQP)

bb PQP and SW DevelopmentPQP and SW Development
•• Increased effectiveness of alpha and betaIncreased effectiveness of alpha and beta

programs - and the likeprograms - and the like
•• Feature development clearly linked to end-userFeature development clearly linked to end-user

attributesattributes
•• More effectively scope and deploy developmentMore effectively scope and deploy development

resourcesresources
•• Easier to maintain momentum on technologicalEasier to maintain momentum on technological

innovation without eroding existing user baseinnovation without eroding existing user base

Slide 16

10/13/98 Copyright 1998 by Hewlett Packard Company - FS 16

ProductProduct QualityQuality Profiling (PQP) Profiling (PQP)

bb Effectiveness MeasuresEffectiveness Measures
•• Alignment of user verifiable scenarios intoAlignment of user verifiable scenarios into

quantifiable goals linked to the Customerquantifiable goals linked to the Customer
Satisfaction Index (CSI)Satisfaction Index (CSI)

•• Accuracy of usage profiles/simulationsAccuracy of usage profiles/simulations
•• Ease of structuring activity sets into productEase of structuring activity sets into product

solution offeringssolution offerings
•• Timeliness of PQP matrix deliverableTimeliness of PQP matrix deliverable

Slide 17

10/13/98 Copyright 1998 by Hewlett Packard Company - FS 17

Product Quality Profiling (PQP)Product Quality Profiling (PQP)

bb ConclusionsConclusions
•• PQP is an effective tool for structuringPQP is an effective tool for structuring

customer experience attributes to evaluatecustomer experience attributes to evaluate
product fitproduct fit

•• Tedious at first, but pays good dividends inTedious at first, but pays good dividends in
the long runthe long run

•• PQP as a discipline helps organizationsPQP as a discipline helps organizations
focus on the practicality of SW solutions tofocus on the practicality of SW solutions to
minimize any SW gold-platingminimize any SW gold-plating

Felix Silva
 1998 by Hewlett Packard Company. All rights reserved.

- 1 -

Product Quality Profiling: A practical model to capture the experiences of
software users

Felix M. Silva
Hewlett Packard

LaserJet Solutions Group Test Lab
11311 Chinden Blvd

Boise, ID 83714-1021
USA

e-mail: fsilva@boi.hp.com

Abstract:
When a software development engineer watches a user navigate through software the
first time, the reaction is often shock and dismay. This reaction is largely due to the
disconnect between how the user sees software and how the development engineer
views it. Product Quality Profiling (PQP) is a model to help the system test
engineer/organization bridge the gap between development engineers and software
users. This paper presents the Product Quality Profiling model as a tool to structure
customer experience attributes in alignment with product requirements and other
significant quality attributes.

Background
Since the inception of the System Test Lab,
it was assumed that end-user usage
scenarios, work tasks, and environment
(desktop) details were all neatly wrapped up
in a package which could be used for
generating system level test cases to
validate the effectiveness of LSG product
solutions. Not soon after making our first
commitment to test a product, we realized
that gathering this information was going to
be a difficult and daunting task.
Nonetheless, the research was done, as it
was critical to validating configuration
attributes for the product. This exercise
indicated clearly that collecting customer
experience information in this manner would
not be optimal if we planned to handle more
than one project every six months. Bear in
mind that this product was a "simple" printer
without many accessories and simplified
operating modes.

Could we find a more effective method for
gathering customer experience attributes?
Initial research on this topic indicated that
while our products have been successful
and allowed us to maintain high market
share, customer experience attributes are
very fragmented in the product definition and
development process. It has been difficult to

pinpoint one single area where the flow of
attributes could be readily observed,
catalogued or prioritized for validation.
Finding a mechanism or tool to facilitate the
collection and organization of these
attributes was the thrust for the creation of
the Product Quality Profiling (PQP). With
the help of a task force, a PQP model was
created to meet the needs mentioned
above.

Product Quality Profiling (PQP) -
Discussion

The PQP model is a tool to enable the
alignment between customer requirements
and product (or design) by explicitly
correlating key product requirements to
customer needs and expectations1.
Objectives of PQP include:

♦ Facilitate the translation of “customer
experience” elements into verifiable and
quantitative attributes for system
development and test

♦ Help establish commonly agreed upon
goals of product performance by clearly
understanding product environment
constraints

♦ Contr ibute to the accurate
characterization of customer operational
profiles

Felix Silva
 1998 by Hewlett Packard Company. All rights reserved.

- 2 -

PQP is geared towards aligning customer
actions into logical groups that preserve the
essence of these actions and allow the
translation of customer views into prioritized
descriptive elements useful for product test
and development. This translation process
embodies the fo l lowing four major
characteristics:
♦ Places value on customer task-related

activities rather than product feature set
♦ Addresses the breadth of customer

environments and tasks rather than the
depth

♦ Improves requirements management by
means of prioritization, traceability and
tradeoff analysis

♦ Organizes data collection mechanisms
for required information which already
exist and/or require minor changes

The characteristics above are quite clear on
highlighting customer or consumer behavior
as the key factor to capture for effective
product deployment. In addition, PQP
preserves a systemic view of the product
within the targeted operating environment.
As such it provides these value add
attributes:

♦ A mechanism to balance product
technology, marketing, and user
experience 2

♦ An activity that facilitates defining
system requirements based on end user
tasks profiles

♦ A pipeline for adding structure to
requirements data already being mined

♦ A practical tool to help in the
requirements elicitation process

♦ As the product is fine-tuned, PQP helps
confirm that testing efforts are directed
properly and if something changes or is
altered, it becomes easier to quantify
the impact

PQP - Model Details
The first order of business is to provide an
introduction to the model terminology and
the relationships among the terms. A
customer usage scenario represents an
end-user action in support of a task (i.e.,
Spreadsheet proofing & printing, Word
Processing p&p, Drawings/ Illustrations
p&p). An activity is a weighted compound

attribute containing details about target
customer product usage model. At the next

level we define a task as an element of work
performed by the end-user (i. e., Mailing
Lists, Document Generation, System
Administration). A solution represents all of
the systems that together meet a customer
need. An alternate way of looking at this
definition is the set of tasks that must be
addressed by the product in the customer
environment. A solution profiling factor is a
measurable, customer-bound product
attribute to be targeted for validation and
verification in the context of product
development. Finally, a product quality
profile is the collection of solution profiling
factors (for a particular product) agreed
upon as collective goals for product
customer fit.

The drawing in figure 1 represents the
overall concept of a solution. As such, the
atomic level is the customer usage scenario.
At the next layer, we detect groups of
activities that contain different customer
usage scenarios. Activities are ultimately in
support of an item of work or a task that the
end-user needs to accomplish. At the
simplest level, a task can represent a
solution. In reality, a solution is created to
support logically grouped tasks (market
niche).

Solution

Task

Activity

Customer
Usage

Scenario

Figure 1 - Concept Hierarchy

Felix Silva
 1998 by Hewlett Packard Company. All rights reserved.

- 3 -

SOLUTION PROFILING FACTOR 3

Activity to Profile
Score

ACTIVITY 1

ACTIVITY 2

ACTIVITY 3

ACTIVITY 4

.

ACTIVITY N

+
ACTIVITY 1

ACTIVITY 2

ACTIVITY 3 +

SOLUTION PROFILING FACTOR 2

ACTIVITY 1

ACTIVITY 2

ACTIVITY 3

ACTIVITY 4

.

ACTIVITY N

+ Activity to Profile
Score

Model Coverage
- T e c h n i c a l s u p p o r t a n d
Product Quality aspects of the
Customer Satisfaction Index
(CSI) - Other elements of CSI
include account management,
Customer Services, and Billing
- Also covers use scenarios,
environment, how customer
gets work done, and systemic
m o d e l o f c l i e n t a s b a s i c
requirements of transition to
"Customer Centric" product
development

A
C

TI
V

IT
Y

 S
E

Ts

Activity Grouped Solutions

Activity ScoreCustomer Usage
ScenarioCustomer Type

PRODUCT QUALITY PROFILINGPRODUCT QUALITY PROFILING
Activity-Based Model - March 98Activity-Based Model - March 98

+ + +

STEP
1

ACTIVITY 1

ACTIVITY 2

ACTIVITY 3

ACTIVITY 4

.

ACTIVITY N

SOLUTION

SOLUTION PROFILING FACTOR 1

Activity to Profile
Score

ACTIVITY 1

ACTIVITY 2

ACTIVITY 3

ACTIVITY 4

.

ACTIVITY N

+

STEP
2

STEP
3

STEP
4

Activity List Feature A Feature B Feature C Feature D Feature E Feature F

Feature
Relevance

Index
Activity 1 5 5 2 8 5 5 30
Activity 2 5 5 3 5 7 8 33
Activity 3 9 9 9 5 2 5 39
Activity 4 5 5 2 2 5 5 24
.
Activity N 10 10 3 8 8 8 47

Feature Weight 34 34 19 28 27 31 173
Feature Group Weight

Feature Group 2Feature Group 1

87 86

Organize and Rank Activities

Align Activities to Solution Options

Link Solution-Bound Activity Sets to
Profiling Factors for Scoring

Evaluate Feature Set Relevance to Solution-Bound Activity
Sets

C
at

al
og

ue
d

S
et

s

GOALS

PMT

TASK/ACTION ACTIVITY

Revision 2.0 - Felix Silva

Market +
Operating

Environment

HW NW SW

Factor- Goal 1

Factor- Goal 2

Factor- Goal 3

Factor- Goal N

The concept of activities is key to the PQP
model. Activities3 represent the capture of
customer experience instances of highest
relevance to the product. Consequently, by
developing and validating the product
against them, we insure that the deployed
solution meets task-specific customer needs
instead of unfocused feature wants. By
focusing on activities, the core set of product
features will meet all defined customer
usage scenarios with a high degree of
reliability.

For example (in the LaserJet arena), the
activity of supporting insurance travel and
real estate offices would be part of the
customer usage scenario containing word
processing proofing and printing. There are
many others. Word processing is in turn
only part of the work involved in the task of
generating a report. As with other activities,
the entire solution the customer uses
includes their PC, Printer, monitor, e-mail,

hard copy & file habits and tools. The
product is evaluated in terms of the part it
should play in this entire sequence.

The Product Quality Profiling Model consists
of 4 main steps [See Figure 2 (Model
Diagram) for clarity]:

1. Organize and Rank Activities
2. Align Activities to Solution Options
3. Link Solution-Bound Activity Sets to

Profiling Factors for Scoring
4. Evaluate Feature Set Relevance to

Solution-Bound Activities

Step 1 is quite basic; however, it is one that
is often not done in a highly structured
manner. The cylinder in the model
represents a "core sample" of many possible
activities that exist within the realm of
product use. As such, the attributes of this
core sample represent a very specific
consumer action of product use that
embodies its associated operating

Figure 2: PQP Model Diagram

Felix Silva
 1998 by Hewlett Packard Company. All rights reserved.

- 4 -

environment. Assigning each activity a
weight (or score) can prioritize these
attributes to indicate a relevant rank among
all of the other activities that fall within the
context of product-related end user tasks.
Once a superset of these activities is
created, we proceed to Step 2.

Step 2 consists of logically grouping
activities into sets for which a solution is
created. A different number of activities will
be associated with a particular solution.
Activities will likely be present in more than
one solution, but their relative importance
will differ when viewed within the context of
that solution. The objective of this step is to
line up the activities that make sense as a
package to be addressed by a solution
offering. The outcome of this step will be a
number of prioritized activity grouped
solutions.

Step 3 represents an additional level of
activity scoring, but within the context of
specific solution profiling factors. We begin
by examining the relationship of each
activity grouped solution set to a solution
profiling factor and re-weighing the activity
within the context of the factor. This yields a
compound score for the activity that is not
only relevant in terms of supporting
customer usage, but is also relevant along
other customer loyalty vectors such as the
Customer Satisfaction Index. In the
LaserJet Solutions Group (LSG), this added
measure of activity evaluation is carried out
at the Program Management Team (PMT)
level with the expectation of setting goals for
each factor during product definition stages.
Once this step is completed, the catalogued
sets of activities whose relevancy is clearly
traceable and self documented is available
project-wide.

Step 4 is a suggested way of mapping,
evaluating, and tracking the relevance of
features to solution-bound activities. Using
a matrix similar to this one, it is possible to
quantitatively assign a score to each feature
that bears a direct relationship to the level of
support the feature has on a particular
activity. In this way, it is easy to identify
errant features and to strengthen weaker
ones. In lieu of explicitly detailed
requirements documentation, one could use
this matrix to distribute resources in

development and test to those areas of
highest importance with a high level of
confidence that the focus on detailed
requirements documentation would solidify
resource decisions once it becomes
available. Finally and most importantly, the
focus of any product decision will both
backtrack to customer activity sets and not
to features and help maintain the product
course based on answering consumer
needs and balancing the technology drive.

PQP and Software Development
A great software development challenge is
to validate the product against real customer
use cases or scenarios. Regarding
LaserJets, we make use of programs such
as alpha, beta, delta, and multiple install
testing (MIT) to help establish a baseline of
readiness for product release. While we
typically get a "feel good" validation type
from these kinds of tests, their deployment
and management would be even more
effective if we structured some of the
elements of these programs along the lines
of activities and customer profiling. By
proactively organizing, cataloging, and
prioritizing consumer use actions, we can
select the most effective sites for each of the
different test programs.

We have discussed mapping features to
activities and scoring them to determine
their relevance. This method is routinely
used by Microsoft to avoid jumping into
defining a product by features instead of
customer needs. This concept can be
readily applied to any commercial software
product in the same manner thus, allowing
us to get a better substantially structured
knowledge of our customers. This is an
asset of major importance to software
development since we can clearly scope
and focus teams on a core set of features
that will effectively meet customer needs
while at the same time dedicate teams to
explore future customer delight technical
features. In other words, we can determine
with more accuracy the planning needed to
implement the core solutions while getting a
leg up on technological innovation.

PQP Benefits
Obtaining "good enough" or adequate levels
of quality in a product does not translate into
poor quality. For instance, as users become

Felix Silva
 1998 by Hewlett Packard Company. All rights reserved.

- 5 -

more familiar with printing technology, they
also demand better reliability and simpler
product operation. It is based on these
premises that PQP methodology offers the
following advantages:

• Product attribute definition early in
development phase

• High leverage once a baseline is
established

• Instant picture of highest profile
environments to help in mitigating risk

• Useful for product derivatives, product
rolls, and next generation products

• Prudently using test resources
• Determining "finish" point

The creation of activity sets and solution
groups for a product are intuitively front-end
actions in product development. These key
components are fundamental to PQP. As a
result, products that consider profiling
information as a stated requirement will build
validation mechanisms strategies before the
first line of code is written. Without a doubt,
PQP is a learning process. Initially, it is a bit
tedious, but not necessarily difficult to
assemble useful profiling information for a
single product in a divisional product line.
However, it will be quite easy to leverage
PQP efforts from one product into similar
ones aiming for the same target market.

The development of product quality profiles
is an automatic way of systematically
prioritizing the most relevant user scenarios
and environments where the product will be
used. This carries along the additional
advantage of providing additional data
points to aid in the product risk management
process.

One great advantage of customer driven
profiles is the ability to preserve a validation
environment that can be deployed to
validate not only standard development
cycle products, but also derivatives and
product rolls. Given that the attributes of the
PQP are correct and maintained with market
trends and user behavior over the project
life, the validation of product variants is an
effective way of assessing product fit. PQP
can act as a customer-experience
regression test suite that validates
functionality within the context of end-user
work activities. It also becomes a leveraged

asset usable by Customer Support, R&D,
Manufacturing and Marketing over the life of
the product.

Conclusion
PQP is an effective tool for structuring
customer experience attributes to evaluate
product fit. The PQP methodology is built
upon a framework that provides details
about user environments, work tasks, and
relative prioritization of user activities in
support of these tasks. Current trends in
customer loyalty indicate that to remain
competitive, we can no longer rely on
technological innovation alone. It is
imperative that we understand what
consumers actually do and how our
products are used to support their work.
PQP provides a channel to grasp this
understanding by translating customer
experience attributes into practical use
cases. The collection of the attributes
necessary for PQP implementation already
exists in various forms. Implementing the
methodology is therefore a matter of
establishing the proper partnerships with the
customer data gathering organizations
(market research, product marketing,
technical marketing, Customer Support) and
those who will make project decisions based
on the profiles (PMTs).

References

1 Tran, T., and Sherif, J., "Quality Function

Deployment (QFD): An Effective
Technique For Requirements
Acquisition."

2 Norman, D., The Invisible Computer, MIT
Press, Cambridge MA, 1998.

3 Cusumano, M., and Selby, R., Microsoft
Secrets, The Free Press, New York
NY, 1995.

Felix Silva
1998 by Hewlett Packard Company. All rights reserved.

- 6 -

APPENDIX A
Product Quality Profiling
Customer Usage Scenario Breakdown

This is a sample list of CUS and related tasks for LaserJets – Each product will have to develop their own sets depending on their markets.

Task Customer Usage Scenarios Sub-scenarios Comments
Mailing Lists ♦ Spreadsheet proofing & printing

♦ Word Processing proofing &
printing

♦ Drawings/Illustrations proofing
and printing

♦ Forms proofing and printing
♦ Internet printing
♦ Workgroup e-mail printing
♦ Accounting proofing and printing
♦ Project Management schedule

printing

♦ Collation
♦ Multiple copies
♦ Stacking

This task refers to letters, labels and
envelope printing to handle low
volume mail mass production.

Document Generation – Composition,
Redaction & Distribution

♦ Word Processing proofing &
printing

♦ Business/Presentation Graphics
proofing and printing

♦ Drawings/Illustrations proofing
and printing

♦ Forms proofing and printing
♦ Internet printing
♦ Workgroup e-mail printing
♦ Personal Information

Management journal printing

♦ Collating
♦ Multiple copies
♦ Stacking
♦ Stapling
♦ Duplexing

Generic task related to the creation of
documents such as letters, memos,
notes, papers, books, etc.

Telecommunications ♦ Document faxing
♦ Internet printing

♦ Faxing Lists
♦ Multiple Copies

Document Warehousing/Archival ♦ Document scanning
♦ OCR

♦ Multiple page document scanning

Felix Silva
1998 by Hewlett Packard Company. All rights reserved.

- 7 -

EASE OF USE

Activity to Profile
Score

ACTIVITY 1

ACTIVITY 2

ACTIVITY 3

ACTIVITY 4

.

ACTIVITY N

+
ACTIVITY 1

ACTIVITY 2

ACTIVITY 3 +

REALIABILITY

ACTIVITY 1

ACTIVITY 2

ACTIVITY 3

ACTIVITY 4

.

ACTIVITY N

+

CONSIDERATIONS

A
C

T
IV

IT
Y

 S
E

T
s

Activity Grouped Solutions

HWord Processing
Proofing & PrintingAdvanced

PRODUCT QUALITY PROFILINGPRODUCT QUALITY PROFILING
Model IllustrationModel Illustration

+ + +

STEP
1

PRINT QUALITY

+

STEP
2

STEP
3

Solutions
Solutions can be catalogued as an individual task or a
connection of related tasks. STEP

4

Activity List 1200 DPI RET

Multi-
speed
fuser

Universal
Tray Duplex

HCI
Device

Feature
Relevance

Index
WordProcessing P&P 5 5 2 8 5 5 30
Bus./Presentation G. P&P 5 5 3 5 7 8 33
Drawings/Illustrations P&P 9 9 9 5 2 5 39
Forms P&P 5 5 2 2 5 5 24
.
PIM schedule P&P 10 10 3 8 8 8 47

Feature Weight 34 34 19 28 27 31 173
Feature Group Weight

Paper HandlingPrint Quality

87 86

Organize and Rank Activities

Align Activities to Solution Options

Link Solution-Bound Activity Sets to
Profiling Factors for Scoring

Evaluate Feature Set Relevance to Solution-Bound Activity Sets

C
at

al
og

ue
d

S
et

s

GOALS

PMT

MAILING LISTS

SYSTEM
ADMINISTRATION

DOCUMENT
GENERATION WordProcessing P&P

Bus./Presentation G. P&P

Drawings/Illustrations P&P

Forms P&P

.

PIM schedule P&P

M

H

H

M

.

L

H

M

M

M

.

L

Activity RASC FSC

=

H

H

H

M

.

L

APSC

RASC
Raw Activity Score

FSC
Factor Score

APSC
Activity to Profile Factor Score

Revision 2.0 - Felix Silva

SOHO +
Operating

Environment

PII TCP OFFI
CE

WordProcessing P&P

Bus./Presentation G. P&P

Drawings/Illustrations P&P

Forms P&P

.

PIM schedule P&P

H

M

M

M

.

L

REL.

MTBF
MTTR

PQ

Adhesion
Archivability

Fusing
Banding
Ghosting

APPENDIX B

Felix Silva
1998 by Hewlett Packard Company. All rights reserved.

- 8 -

APPENDIX C
Quality Profiling Factors – Subset sample of attributes used on LaserJets

Factor Attributes
Reliability ♦ Hours of trouble-free operation

Design ♦ Sturdy and well-built
♦ Convenient Layout and design
♦ Noise level when printing
♦ Size
♦ Having an attractive appearance

Print Quality ♦ Adhesion, Archivability, and Fusing (a measure how well
the toner sticks to the paper)

♦ Banding (a measure of sensitivity of the printing process to
mechanical noise)

♦ Ghosting (a measure of the sensitivity of the charging
process to the electrophotography process (EP), a measure
of the effectiveness of the self-cleaning feature of the drum)

♦ Image placement accuracy and registration (a measure of
the firmware and hardware to control the positioning of the
image on paper)

♦ Line width (a measure of the effectiveness of the EP to
align dots in order to form a line)

♦ Offset (a measure of the effectiveness of the self-cleaning
feature of the fuser)

♦ Optical density and Gamut (a measure of the firmware to
control and produce correctly colors and shades)

♦ Print Defects

Ease of Use ♦ Easy to understand printer control panel and messages
♦ Easy to replace toner cartridges
♦ Easy to clear paper jams
♦ Clear on-screen messages
♦ Able to print on different sizes of paper
♦ Able to print on different mediums
♦ Easy to print on any printer on network
♦ Ability to manage all users’ print jobs
♦ Ability to stop print jobs
♦ Ease of diagnosing and resolving network problems

Prints Consistently ♦ Across different media types
♦ Across related application types

Slide 1

1Improving the Requirements Engineering Process©

Quality Week Europe ‘98

Improved Requirements Engineering
Based on Defect Analysis

-

Otto Vinter
Manager Software Technology and Process Improvement

Brüel & Kjaer Sound & Vibration Measurement
email: ovinter@bk.dk

Slide 2

2Improving the Requirements Engineering Process©

Defect Analysis from Error Logs

Basic Process Improvement Idea

• Analyze error logs from previous projects to extract
knowledge on frequently occurring problems

• Change the development process by defining the
optimum set of methods and tools available to prevent
these problems from reappearing

• Measure the impact of the changes in a real-life
development project

Slide 3

3Improving the Requirements Engineering Process©

The PRIDE Background

ESSI-PET (PIE no. 10438)
(The Prevention of Errors through Experience-Driven Test Efforts)

Project Results
• Requirements related problems are our prime cause of

bugs (>33%)
• With improved test efficiency, released products could

contain as many as 70% bugs related to requirements

Requirements Related Bugs Are Caused by:
• Missing requirements (1/3)
• Misunderstood requirements (1/3)
• Changes to requirements (1/5)

Slide 4

4Improving the Requirements Engineering Process©

Defect Analysis from Error Logs

Definitions
• Bugs are anything between serious defects and

suggestions for improvements
• Bug reporting starts in the integration phase

Error Logs Analysed
• PC Windows software development project
• Project sizes app. 8 person years
• 200 bugs analyzed from the error logs
• Bug reports covered a period until 12 months after first

release

Slide 5

5Improving the Requirements Engineering Process©

Defect Analysis from Error Logs

Bug Categorisation
• Based on a bug classification scheme by Boris Beizer:

- Boris Beizer: Software Testing Techniques,
Second Edition, Van Nostrand Reinhold

• Comprehensive set of bug categories
• Contains statistics from many projects

Analysis of Requirements Issues
• Error source (forgotten, misunderstood, tacit, wrong ...)
• Interface where the bug occurred
• Quality factor (functionality, reliability, usability, ...)
• Complexity of bug (correction cost)
• What could prevent the bug

Slide 6

6Improving the Requirements Engineering Process©

Defect Analysis From Error Logs

What we found:
• 51% of the bugs were requirements related

Major requirements issues:
• Usability 64%
• External Software (3rd party & MS products) 28%
• Functionality 22%
• Other than the above 13%

(NB: there can be several issues in one bug)

Slide 7

7Improving the Requirements Engineering Process©

Defect Analysis From Error Logs

Complexity (Correction Costs):

• 92.5% of the requirements related bugs were easy to
correct, even when found late in the project.

• Difficult to fix problems (7.5%) were mostly related to
external software (third party & MS products).

• However, finding and fixing the difficult problems
takes 45% of the time

Slide 8

8Improving the Requirements Engineering Process©

Techniques to Prevent Requirements Issues

Groups of techniques identified
• 1xx Demand Analysis
• 2xx Usability Techniques
• 3xx External Software
• 4xx Tracing techniques
• 5xx Risk analysis techniques
• 6xx Formal specification techniques
• 7xx Inspection / Checking techniques
• 8xx Other techniques

Some 40 techniques were considered
- well-known
- from check lists
- invented when needed

Slide 9

9Improving the Requirements Engineering Process©

Estimated Effect of Prevention Techniques

External S
oftw

are

Stre
ss Test (3

01)

Functio
nal P

rototype,

Daily
 Tasks (2

30)

Product E
xpert

Screen Review (2
80)

Functio
nal P

rotoype,

Stre
ss Cases (2

32)

Paper M
ockup,

Daily
 Tasks (2

10)

Orth
ogonality

 Check

(721)

%

Perfo
rm

ance

Specific
atio

n (8
20)

Slide 10

10Improving the Requirements Engineering Process©

Proposed Methodology

Requirements Elicitation and Validation
• Scenarios (101)

- Relate demands to use situations. Describe tasks for each scenario.

• Usability Test, Daily Tasks, Navigational Prototype (220)
- Check that the users are able to use the system for daily tasks,

based on a navigational prototype of the user interface.

Verification of Requirements Specification
• Let Product Expert Review Screens (280)

- Let a product expert check for deviations from earlier product styles.

• External Software Stress Test (301)
- Test that the external software fulfills the expectations in the

requirements, with special emphasis on extreme cases.

• Orthogonality Check (721)
- Check of requirements specification to see whether an operation or

feature can be applied whenever it is useful.

• Performance Specifications (820)
- Check of requirements specification to see whether it contains

performance goals for the requirements.

Slide 11

11Improving the Requirements Engineering Process©

Experimentation with the Elicitation Techniques

Quantitative Results
• Error logs were analysed and compared to a similar

project
• same team, same platform, ...
• person hours within 10 %
• but almost 4 times increase in new screens

• Developers were almost 3 times as productive in the
development of the user interface

• Usability issues per new screen reduced by: 72 %

• Total reduction in error reports: 27 %
- Requirements related reports: 11 %
- Non-requirements related reports: 37 %

Slide 12

12Improving the Requirements Engineering Process©

Experimentation with the Elicitation Techniques

Qualitative Results
• Scenarios gave the developers a clear vision of the user

needs for the product
• User interaction with the product was totally changed as

a result of the usability tests
• User reactions extremely positive
• Selling steadily more than twice as many
• Product was released in December 1997 and orders could

be shipped before the end of the year

Slide 13

13Improving the Requirements Engineering Process©

In Conclusion

• Scenarios capture the most important user needs
• Usability tests on early prototypes verify these needs
• The requirements verification techniques will further

increase the prevention of bugs

• The impact on the perceived quality of the product is
much greater than on the prevention of bugs

• The benefits of using the scenario and usability test
techniques have a major impact on our business

• The requirements elicitation techniques are rapidly being
adopted by other projects at Brüel & Kjaer

• Defect analysis is a simple and effective way to assess
and improve the software development process

Slide 14

14Improving the Requirements Engineering Process©

European System and Software Initiative (ESSI)

An Accompanying Measure to ESPRIT
• The European Strategic Programme for Research and

Development in Information Technologies

ESSI Objectives
• Promote Improvements in the Software Development

Process in Industry
• Improve Current Practice by Applying State-of-the-art in

Software Engineering
• Evaluate State-of-the-art Supports
• Disseminate Experience across Borders and Industrial

Sectors

ESSI Lines of Actions
• Process Improvement Experiments
• Dissemination, Education and Training
• Software Best Practice Networks

Slide 15

15Improving the Requirements Engineering Process©

The PRIDE Process Improvement Experiment

A Methodology for
Preventing Requirements Issues from

Becoming Defects
(PRIDE)

PRIDE Objectives
• Extract knowledge on frequently occurring problems in

the requirements engineering process
• Change the development process by defining the

optimum set of methods and tools available to prevent
these problems reappearing

• Measure the impact of the changes in a real-life
development project

Subcontractor: Copenhagen Business School (Prof. S.Lauesen)

Slide 16

16Improving the Requirements Engineering Process©

The Beizer Bug Classification Scheme

1. Requirements and Features
2. Functionality as Implemented
3. Structural Bugs
4. Data
5. Implementation (standards violation,

and documentation)
6. Integration
7. System and Software Architecture

(incl. Third Party Products)
8. Test Definition or Execution Bugs
9. Other Bugs, Unspecified

Each category detailed to a depth of up to 4 levels

Slide 17

17Improving the Requirements Engineering Process©

Defect Analysis from Error Logs

Category Our Analysis Beizer Statistics
1.Requirements 26,0 % 8,1 %
2. Functionality 35,4 % 16,2 %
3. Structural 14,4 % 25,2 %
4. Data 2,2 % 22,4 %
5. Implementation 2,8 % 9,9 % (5,9 %)
6. Integration 0,6 % 9,0 %
7.Architecture (2,7 %) 7,1 % 1,7 %
8. Test 7,1 % 2,8 %
9.Unspecified 4,4 % 4,7 %
TOTAL 100,0 % 100,0 %

Slide 18

18Improving the Requirements Engineering Process©

Requirements Related Categories

• Requirements and Features as Specified
• Functionality as Implemented

- Requirements misunderstood
- Features missing or changed
- Domain problems

• External Hardware Interfaces and Timing
• External Software Interfaces

- Operating system
- Third party software

• Test Design
- Requirements misunderstood

Slide 19

19Improving the Requirements Engineering Process©

Defect Analysis From Error Logs

Disclaimer:
• Error reports only show which problems are left after

coding and unit testing
(e.g. late in the development process)

(A “re-inspection” of the requirements documents
only showed a weak correlation
with the issues found in the error reports)

Slide 20

20Improving the Requirements Engineering Process©

Cost / Benefit Calculations

Hitrate technique =

(Σ(Σ bugs FindProbability bug , technique) /) / BugCount

Savings technique =

(Σ(Σ bugs (FindProbability bug , technique * Benefit bug)

 - Cost technique) /) / DevelopmentCost

Note: Benefit equals FindFixCost

Slide 21

21Improving the Requirements Engineering Process©

Estimated Effect of Prevention Techniques

External S
oftw

are

Stre
ss Test

Functio
nal P

rototype,

Daily
 Tasks

Product E
xpert

Screen Review

Functio
nal P

rotoype,

Stre
ss Cases

Paper M
ockup,

Daily
 Tasks

Orth
ogonality

 Check

%

Perfo
rm

ance

Specific
atio

n

Slide 22

22Improving the Requirements Engineering Process©

The Effect of Combined Techniques

Number of Techniques

%

Slide 23

23Improving the Requirements Engineering Process©

Techniques Selected for Experimentation

• Scenarios (101)
- Relate demands to scenarios. Describe the tasks in each scenario.

• Functional Prototype Usability Test, Daily Tasks (230)
- Check that the users are able to use the system for daily tasks.

• Let Product Expert Review Screens (280)
- Let a product expert check for deviations from earlier product styles.

• External Software Stress Test (301)
- Test that the external software fulfills the requirements, with special

emphasis on extreme cases.

• Orthogonality Check (721)
- Specific check of requirements specification to see whether an

operation or feature can be applied whenever it is useful.

• Initial Value Check (730)
- Specific check to see whether objects on screens have meaningful

initial contents.

• Performance Specifications (820)
- Specify performance for frequent tasks. Set specific performance

goals for affected requirements.

Slide 24

24Improving the Requirements Engineering Process©

The Optimum Combination of Techniques

Combining the 4 best techniques on the
analysed project:

• would have found 37,5% of requirements related bugs
• and saved 6,6 % on development cost

The 18 month project could have gained
1 month on time-to-market !

Slide 25

25Improving the Requirements Engineering Process©

Techniques Used in Experiment

Scenarios
Relate demands to use situations. Describe the essential
tasks for each scenario.
Write down short descriptions for each known use
situation. A report from focus groups is a good source.
Otherwise interview product and domain experts.

Usability Test on a Navigational Prototype
Check that the users are able to learn and use the system
for daily tasks.
This technique uses a navigational prototype of the user
interface, tests it with users simulating daily tasks,
revises the design, tests it again, and so on until the
result is acceptable.

Slide 26

26Improving the Requirements Engineering Process©

Experimentation with the Elicitation Techniques

Quantitative Results
• Error logs were analysed and compared to a similar

project
• same team, same platform, ...
• person hours within 10 %
• but 5 times increase in new screens

• Total number of error reports: - 27 %
• Requirements related reports: - 11 %
• Non-requirements related reports: - 37 %

• Requirements Issues
- Usability issues: + 5 %

• Usability issues per new screen: - 79 %

- Other requirement issues: - 36 %

Slide 27

27Improving the Requirements Engineering Process©

Results of the Experiment

• Usability tests were performed on a Navigational
prototype using MS Word6 Bookmarks

• Three iterations of the prototype was needed

• Scenarios and tasks were included as part of the
requirements specification

• The prototype acted as a visual supplement to the
requirements specification

• The requirements phase was longer than normal
• The specification and design phase was almost

eliminated
• The rest of the development process proceeded as usual

Slide 28

28Improving the Requirements Engineering Process©

Important Techniques

• 101 Scenarios
• 21x Paper mockup usability test

- 210 Daily tasks
- 212 Stress cases

• 23x Functional prototype usability test
- 230 Daily tasks
- 232 Stress cases

• 280 Let product expert review screens
• 301 External software stress test
• 70x Formal inspections

- 702 Formal inspection of mockup
• 71x Object model checks

- 710 Improved check of object model
• 72x Consistency reviews

- 721 Orthogonality check
• 730 Initial value check
• 820 Performance specifications

Slide 29

29Improving the Requirements Engineering Process©

Usability Techniques (1/2)

200 User data model

21x Paper mockup usability test
• 210 Daily tasks
• 211 Rare tasks
• 212 Stress cases

22x Screen mockup usability test
• 220 Daily tasks
• 221 Rare tasks
• 222 Stress cases

23x Functional prototype usability test
• 230 Daily tasks
• 231 Rare tasks
• 232 Stress cases

Slide 30

30Improving the Requirements Engineering Process©

Inspection / Checking Techniques (1/2)

70x Formal inspection
• 700 Formal inspection of req.spec.
• 701 Formal inspection of object model
• 702 Formal inspection of mockup

71x Object model checks
• 710 Improved check of object model
• 711 Object model with external objects

72x Consistency reviews
• 720 Consistency check
• 721 Orthogonality check
• 722 Uniformity check

Slide 31

31Improving the Requirements Engineering Process©

Scenario Example

Production Planning in a Shipyard

Detailed production planning is done by a man in the
foreman's office. At times there is a busy traffic of workmen
from the shipyard and from subcontractors, who want to
know what to do next. Or they may have encountered a
problem with a job. The primary job of the detail planner is to
ensure that the right person gets the right job instruction.
The job instruction is an index card with a description in text
and sketches.

Task A: Give a workman the right job to do
Task B: Report job completion with wage information, materials used ...
Task C: Find someone else to do the job if problems are encountered
Task D: Write a letter to a subcontractor
. . . .

Source: Jens-Peder Vium, IQM

Slide 32

32Improving the Requirements Engineering Process©

Reactions to Techniques Practised until now

Scenarios (101)
- “I am in fact deeply surprised. The scenarios made it possible for us

to see the flow through the system in a very concrete way.”
- “In the beginning of the project I was quite sceptic. I thought it would

take too long time. But now I think we get a much more live and
exciting requirements specification as a result of the scenarios. It
will also make it much easier to make a prototype”.

- “It has been an exciting experience to use scenarios. When you had
the scenarios then the requirements were dropping out themselves”

Usability Test of Functional Prototype (230)
- “It only took a week to develop the original functional prototype in

Visual Basic, and the modifications from the first set of tests to the
next was performed overnight in the hotel room”

- “The closer we got to the real users, the clearer became the actual
tasks that they performed”

- “We got more information out of the tests than we are able to
incorporate in the product. We found features that we had never
thought about, as well as features that were irrelevant to the users”

Slide 33

33Improving the Requirements Engineering Process©

Scenario example 2: (Road Test)

Road tests are done in the car when it is driving on special
test roads. The purpose of the recordings is to identify noise
sources, comparing them to earlier measurements, and
eventually removing the noise through changes to the car
design.
The engineer will record noises from various parts of the car
when it is driving at various speeds, when it is turning, when
it is breaking, etc. The microphone will have to be mounted at
various places not accessible from the drivers seat.
Usually, the engineer has a plan for what to measure, but
circumstances may change so that he has to do something
different and later find out what he actually did and which
sounds relate to what.
Back at the lab the sounds will be analyzed by the engineer
himself, or - in many cases - someone else.

Slide 34

34Improving the Requirements Engineering Process©

Scenario example 3: (Noise Source Analysis)

The test object (Air Conditioner, Car engine, Jet engine) is
moved into a test cell, and the emitted noise from the object
is measured at various points on a surface around the object.
The purpose is to present a contour-map across the surface
that shows where the noise comes from, so that the engineer
can see exactly where to change the design of the test
object, to reduce the noise most effectively.
When interesting behaviour of the noise, e.g. a steep change
in noise level or -flow, is observed at certain positions, a finer
grid around that position is established. The measurements
require that sound intensity probes are moved over the
surface manually or controlled by a robot. The measured
spectra are inspected manually for each point before the
probe is moved to the next position.
When all measurements have been made, the test cell can be
used for other test objects. Calculations of the sound power
emitted from the test object and presentations of the results
are performed separately.

© Brüel & Kjær QWE ‘98 Page 1 of 9

Improved Requirements Engineering
Based on Defect Analysis

Otto Vinter
Brüel & Kjær Sound & Vibration Measurement A/S, DK-2850 Naerum, Denmark

Email: ovinter@bk.dk

 Søren Lauesen, Jan Pries-Heje
Copenhagen Business School, DK-2000 Frederiksberg, Denmark

Email: slauesen@cbs.dk, pries-heje@cbs.dk

Abstract

The basis for this paper has been a thorough analysis of error reports from actual projects. Error reports
which were requirements related have been studied in detail with the aim of finding effective prevention
techniques, and try them out in practice. The paper will cover some of the analysis results, a set of effective
prevention techniques, and also some practical experiences from using some of these techniques on real-life
development projects.

1. Introduction

At SQW’96 and QWE’97 Brüel & Kjær reported the experiences of a software process improvement (SPI)
project where we demonstrated that the introduction of static and dynamic analysis in our software
development process had a significant impact on the quality of our products.

The basis for this project was a thorough analysis of error reports from previous projects which showed the
need to perform a more systematic unit test of our products. However, the analysis also showed that the
major cause of bugs stemmed from requirements related issues.

We have now conducted another SPI project where we have analysed the requirements related bugs in order
to find and introduce effective prevention techniques in our requirements engineering process.

The analysis of the requirements related bugs led to a set of techniques that would have been effective on the
analysed projects. Some of these techniques were selected for experimentation (validation) on a real-life
project. This project is now complete, and the product released. We have analysed the error reports from this
project and the practical experiences and major impacts of the techniques used will be reported.

© Brüel & Kjær QWE ‘98 Page 2 of 9

2. Analysis of Requirements Issues

There is no generally accepted way of making a requirements specification. Recommendations like the
IEEE Guide [1] and Davis [3] are definitely helpful, but most developers have great troubles following
them. What should be included and what not? How can you formulate functional requirements without
committing to a specific user interface? How can you formulate "what" without describing "how"?

Through our analysis of error reports in a previous SPI project aimed at improving the efficiency of our
testing process [4] [5] we have found that requirements related bugs are the major cause for bugs. We
therefore decided to conduct this SPI project [6] aimed specifically at these type of bugs in order to find
and introduce effective prevention techniques for requirements problems in our development process.

In both projects we have classified bugs according to a taxonomy described by Boris Beizer [2]. For the
current SPI project, however, we have limited the study to those bugs which can be related to
requirements issues. We found that requirements related bugs represented 51% of all the bugs analysed.

Furthermore we have found that requirements issues are not what is expected from the literature.
Usability issues dominate (64%). Problems with understanding and co-operating with 3rd party
software packages and circumventing their errors are also very frequent (28%). Functionality issues
that we (and others) originally thought were the major requirements problems only represent a smaller
part (22%). Other issues account for 13%. The sum of these figures adds up to more than 100%
because one bug may involve more than one issue.

Usability errors also seem to be rather easy to correct even when found late in the development process,
e.g. in or after the integration phase. Problems with 3rd party products, however, are generally very
costly to correct/circumvent.

This has had an impact on our methodology, tools and training. It had to be much more focused on
usability problems, and early verification and validation techniques, rather than correctness, and
completeness of requirements documents.

3. Potential Prevention Techniques

When we classified the bugs, we tried to imagine what could have prevented each bug. We started out
with a list of known techniques and added to it when no technique seemed to be able to prevent the bug
in question. Later when we discussed hit-rates for each technique, we improved and specified each
technique further.

Many well-known techniques were considered but dropped, because we could see no use for them in
relation to the actual bugs. Initially, for instance, we thought that argument-based techniques could be
useful, but the error reports did not show a need for them. Others like formal (mathematical)
specifications, seemed of little value. Techniques with focused early experiments on different kinds of
prototypes, seemed much better suited to catch real-life bugs.

© Brüel & Kjær QWE ‘98 Page 3 of 9

Many of the proposed techniques are “common sense” techniques that are moved up from the design
phase to the requirements phase and formalised. When they are used in this context they will ensure the
right quality of the product.

The result was a detailed list of some 40 prevention techniques grouped under the following major
subjects:

- 1xx Demand analysis (including scenarios)
- 2xx Usability techniques (including prototypes)
- 3xx Validation and testing of external software
- 4xx Requirements tracing
- 5xx Risk analysis
- 6xx Improved specification techniques (e.g. formal/mathematical)
- 7xx Checking techniques (including formal inspections)
- 8xx Other techniques (including performance specifications)

4. Determining the Optimum Set of Techniques

Each error report was then assigned an estimated hit-rate for each technique, and the estimated
effectiveness of each technique was calculated. We also assigned a benefit for preventing each error
report, so that we were able to calculate the cost/benefit ratio of each technique, and then select the
optimum set of techniques to be employed in our real-life experiment on a baseline project.

The results are shown in the figure below for the top seven techniques with respect to savings. The hit-
rates are shown as a percentage of the total number of bugs in the project. The savings are shown as a
percentage of the total development effort.

External S
oftw

are

Stre
ss Test (3

01)

Functio
nal P

rototype,

Daily
 Tasks (2

30)

Product E
xpert

Screen Review (2
80)

Functio
nal P

rotoype,

Stre
ss Cases (2

32)

Paper M
ockup,

Daily
 Tasks (2

10)

Orth
ogonality

 Check

(721)

0

2

4

6

8

10

12

Hitrate Savings

Perfo
rm

ance

Specific
atio

n (8
20)

We have chosen to show only the top scorers with respect to savings. Other techniques had hit-rates
comparable to the ones shown above, but with lower savings (even negative) because of high costs.

%

© Brüel & Kjær QWE ‘98 Page 4 of 9

When more than one technique is used at the same time one must be aware, that combining two
techniques does not simply add their hit-rates, because the first technique "filters" away some problems,
leaving fewer problems for the second technique to detect. And this has an effect on the savings too. In
general it will be better to combine techniques that find different kinds of problems. We have applied
the principle of dynamic programming to calculate these combined hit-rates and savings and have found
the best combinations with respect to savings.

The combination of the four best techniques above on the analysed project would have resulted in a
combined hit-rate of 19% of all error reports (37% of the requirements related), and a combined saving
of 6 % on the total development effort, which would have been approximately 1 month on the 18 month
schedule of the project.

5. The Requirements Engineering Methodology

The results of the analysis were presented to the members of a new development project. Based on the
detailed list of techniques and hit-rates/savings, the team took part in the final decision on the
techniques of the methodology.

The techniques of the methodology are:

• Requirements Elicitation and Validation
• Scenarios (101)

- Relate demands to use situations. Describe the essential tasks in each scenario.
• Navigational Prototype Usability Test, Daily Tasks (220)

- Check that the users are able to use the system for daily tasks based on a navigational
prototype of the user interface.

• Verification of the Requirements Specification

• Let Product Expert Review Screens (280)
- Let a product expert check screens for deviations from earlier product styles.

• External Software Stress Test (301)
- Test that the external software fulfills the expectations in the requirements, with special

emphasis on extreme cases.
• Orthogonality Check (721)

- Check the requirements specification to see whether an operation or feature can be
applied whenever it is useful.

• Performance Specifications (820)
- Check the requirements specification to see whether it contains performance goals for the

requirements.

The analysis of error reports had not found that technique 101 (Scenarios) was effective in itself.
However, since usability was such an important issue, we needed a technique to define the tasks that
users should perform during the usability tests. We therefore included 101 as one of the techniques in
the methodology, also because other sources indicated that scenarios were quite effective to improve
developer understanding of the domain.

© Brüel & Kjær QWE ‘98 Page 5 of 9

Originally the team focused on technique 230 (Functional Prototype Usability Test, Daily Tasks) as
the choice of prototype for usability tests, because they were worried that they would not get enough
out of a paper mockup (210) or a navigational prototype (220). On the other hand we were worried that
a functional prototype would not be available for usability tests until too late to allow for the changes to
requirements that would be uncovered by these tests.

What actually happened was that after the use situations (scenarios) had been described, the team could
not wait for a functional prototype to be developed. In only two weeks they developed a first prototype
with navigational facilities (screen mockup). Both VisualBasic and the Bookmark feature in Word 6
was used to develop further prototypes. These navigational prototypes were immediately subjected to
usability tests, and the amount of issues found and corrected convinced the team that a navigational
prototype would be sufficient.

Thus, the technique that is included in our methodology is not 230 (Functional prototype usability test,
daily tasks), but another of the analysed techniques: 220 (Screen mockup usability test, daily tasks).
Even though this technique is estimated to have only half the hit-rate and much lower savings than
technique 230.

6. Experiences with the Techniques During the Experiment

The development team picked up the scenario and usability test techniques with great enthousiasm. In
interviews, statements like the following were heard:

Scenarios (101):
“I am in fact deeply surprised. The scenarios made it possible for us to see the flow through the

“In the beginning of the project I was quite sceptic. I thought it would take too long time. But now I
think we get a much more live and exciting requirements specification as a result of the scenarios.
It will also make it much easier to make a prototype”.
“It has been an exciting experience to use scenarios. When you had the scenarios, then the
requirements popped up by themselves”

Screen Mockup Usability Test, Daily Tasks (220):
“It only took a week to develop the original prototype in Visual Basic, and the modifications from
the first set of tests to the next were performed overnight in the hotel room”
“The closer we got to the real users, the clearer became the actual tasks that they performed”
“We got more information out of the tests than we are able to incorporate in the product. We found
features that we had never thought about, as well as features that were irrelevant to the users”

The other techniques of the methodology were never applied by the team in practice. Introducing so
many new techniques at the same time on a project turned out to be too ambitious.

The requirements engineering process took longer than expected, but the specification and design
phases were reduced, so the resulting delay was not considered critical. The rest of the development
process was conducted in the ususal fashion, following the normal procedures for development of

© Brüel & Kjær QWE ‘98 Page 6 of 9

software at Brüel & Kjær. The baseline project was completed in December 1997 and the product was
released.

7. Results of the Experiment

We have analysed the bugs from the completed project in the same manner as we did in the original
analysis reported in chapter 2-4. We compare the results to another project previously developed by the
same team on the same platform and under similar circumstances. The actual number of person months
on the two projects is within 10%.

The major difference between the two projects is that the project used for experimentation was expected
to be very user interface intensive. Actually it contains almost 4 times as many new screens as the
project we compare it to.

The application it was intended to support had previously resulted in at lot of “shelfware” products both
from B&K and our competitors, because the customers were unable to grasp the intricacy of the
measurement standard that should be followed. The usability techniques to be experimented with would
seem especially suited for the experiment.

7.1. Effect on Requirements Related Issues

We have found an overall reduction in error reports of 27% from the previous generation of the product
to the experimented product. The reduction in the number of requirements related error reports was
11%. According to our analysis, the actually used techniques (101 and 220) were estimated to achieve
a combined hit-rate of 8% of all error reports and 15% of the requirements related.

When we study the distribution of requirement issues according to quality factors, we see a slight
increase in usability issues (5%), whereas other requirements issues (functionality etc.) have been
reduced by 36%. The immediate reaction to this is that the usability techniques employed have not
reduced usability issues.

However, the impact of usability techniques is closely linked to the complexity of the user interface.
The baseline project had almost 4 times as many new screens as the previous project we compare it to,
all of comparable complexity. If we adjust for this difference, we actually have achieved a 72%
reduction in usability issues per new screen, which is quite extraordinary.

Furthermore, the baseline project only spent 33% more person months to deliver almost 4 times as
many new screens of comparable complexity. This almost 3 times difference in productivity can be
explained by the design and development of the user interface being a stable process once the
navigational prototype (screen mockup) had been validated in usability tests. In the previous project the
new screens were constantly subject to change all through to the end of the project.

Finally, we have analysed the error reports from the baseline project to study hit-rates and savings in
order to find further techniques that could have been employed with effect on the remaining bugs. We
have found that none of the usability test techniques on prototypes are any longer among the top 7
candidates with respect to savings.

© Brüel & Kjær QWE ‘98 Page 7 of 9

This shows that the usability test techniques have been effective in preventing requirements related
bugs, and that using a navigational prototype (screen mockup) instead of a functional prototype seems
to be adequate to prevent this type of bugs. This is important since the cost to build a navigational
prototype is lower than building a functional prototype and can be performed much earlier in the
development life-cycle.

Furthermore the requirements verification techniques of our methodology are still on the top of the list
with respect to savings, and ranked relatively as follows: 280 (Let Product Expert Review Screens),
820 (Performance Specifications), and 721 (Orthogonality Check). This shows that these verification
techniques of the methodology could have been an important supplement to the validation techniques
actually used.

The baseline project did not use external software, so technique 301 (External Software Stress Test)
has not been validated. Our original analysis showed that this technique would have been very effective
in preventing problems that are difficult to fix on projects with new external software.

7.2. Other Effects

What is also surprising is that not only did we experience a reduction in bugs related to requirements
issues, we found an even higher reduction in other bug categories (37%). We have been very puzzled
about this unexpected result. We have thought of several causes that might have influenced the result.

1. The primary effect of the used techniques
2. Derived effects of the used techniques
3. Focus on a team improves their productivity no matter what else is changed.
4. Random effects
5. A change in the experimenters’ evaluation of the reports
6. Differences in the team/culture/domain/project

Since we are comparing the results with another project previously developed by the same team, within
the same domain, and under similar circumstances, we can eliminate cause 6.

Two out of three persons on the evaluation team (cause 5) have taken part in all the analyses and
comparisons of error reports. The analysis reported in chapter 2-4 took place two years ago, but we
have had to revisit of some of the original error reports during the present comparison of results, and
we found a reasonable agreement with our previous analysis.

We cannot completely rule out random effects (cause 4). However, the observed differences are within
standard confidence limits so the reduction cannot be attributed to random effects only.

Nor can we rule out the Hawthorne effect (cause 3), which states that merely focusing on a team
improves their productivity no matter what else is changed. But statements from developers suggest
that the primary and derived effects of the techniques (cause 1 and 2) are the main causes for the
reduction in error reports.

© Brüel & Kjær QWE ‘98 Page 8 of 9

The derived effect on other types of bugs than the requirements related can be explained by the fact that
most of the developers achieved a deep understanding of the domain in which the product was going to
be used from describing use situations (scenarios) and taking part in the usability tests.

This invariably leads to reduced uncertainty and indecision among the developers on what features to
include and how they should be implemented and work. As one developer said during an interview:

“After the scenarios had been written they were often used in design discussions in the project
group. The one that was best at relating to the scenarios won the discussions.”

Another developer mentioned that this was the first project he had experienced without turbulence from
uncertain requirements.

8. Business Benefits

We have seen a significant reduction in error reports due to the scenario and usability test techniques.
However, the impact of these techniques on the perceived quality of the released product is even greater
than the prevention of bugs.

Describing use situations (scenarios) enabled the team at a very early stage in the requirements
engineering process to capture the most important demands seen from a user/customer perspective. The
developers therefore got a very clear vision of the product before the requirements were fixed.

The subsequent usability tests on very early prototypes verified that the concepts derived from the
descriptions of use situations (scenarios) still matched the users’ needs and could be readily understood
by them in their daily use situations.

The user interaction with the product was totally changed as a result of the usability tests. The first
prototype raised incredibly many issues, especially compared to how little time it took to develop. A
completely revised second version of the prototype still raised many issues during usability tests, so a
third version of the prototype was made. This acted as a validation of the changes that had been made
to the user interface.

When Brüel & Kjær experts were presented with the prototype, the response was: “That is really smart,
why haven’t we done that before, why haven’t we focused on getting the measurements in the box instead

The product was released in December 1997 just in time for orders to be shipped before the end of our
financial year. It is the opinion of the project team that it would have been impossible to achieve this
goal, if they had not used the new techniques. Too many problems would have been discovered too late.

The product has now been on the market for more than 7 months and it steadily sells more than twice
the number of copies than the product we have compared it to. This is in spite of the fact that it is
aimed at a much smaller market niche, and that the price of the new product is much higher.

© Brüel & Kjær QWE ‘98 Page 9 of 9

9. General Observations

Analysis of error reports is a cheap and effective way for companies who wish to get started on a
software quality process improvement programme. It is not necessary to perform comprehensive
measurements on development activities, and wait until enough data has been collected.

We have found that using the already available information on bugs in the company has provided us
with enough information to create real attention with management to initiate change programmes even
before the effects of the proposed changes were substantiated.

Setting up a process improvement programme is now an experience-driven incremental task where
measurements are only performed when experience shows that there is a real need (problem) for the
data to make an informed decision on how to change part of the development process.

This approach to process improvement will guarantee constant management attention because of
immediate results, and acceptance amoung developers since only important measurements need be
collected by them.

10. Acknowledgements

Our SPI projects have been funded as Process Improvement Experiments by the Commission of the
European Communities (CEC) under the ESSI programme: European System and Software Initiative.
The goal of the ESSI programme is to promote improvements in the software development industry so as to
achieve greater efficiency, higher quality, and greater economy. This is accomplished by applying state-of-
the-art in software engineering in a wide range of industries.

We also want to acknowledge persons at Brüel & Kjær: Kai Ormstrup Jensen (now with DELTA) and
Per-Michael Poulsen (now with NOKIA Telecommunications), who have been deeply involved in the
analysis, definition, and introduction of the prevention techniques. And the project manager of the
baseline project Flemming Petersen, who accepted the challenge to experiment with the new techniques,
and stood by his decision when schedule pressure increased.

11. References

[1] ANSI/IEEE, Guide to Software Requirements Specifications, ANSI/IEEE Std. 830, 1984.
[2] Boris Beizer, Software Testing Techniques. Second Edition, Van Nostrand Reinhold NY, 1990.
[3] A.M. Davis, Software Requirements, Analysis and Specification, Prentice-Hall, 1990
[4] Otto Vinter, Per-Michael Poulsen, Knud Nissen, Jørn Mærsk Thomsen, “The Prevention of Errors

through Experience-Driven Test Efforts. ESSI Project 10438. Final Report”, Brüel & Kjær A/S, DK-
2850 Nærum, Denmark, 1996. (http://www.esi.es/ESSI/Reports/All/10438).

[5] Otto Vinter, Per-Michael Poulsen, Knud Nissen, Jørn Mærsk Thomsen, Ole Andersen, “The Prevention
of Errors through Experience-Driven Test Efforts”, DLT Report D-259, DELTA, DK-2970
Horsholm, Denmark, 1996.

[6] Otto Vinter, Søren Lauesen, Jan Pries-Heje, “A Methodology for Preventing Requirements Issues
from Becoming Defects. ESSI Project 21167. Final Report”, Brüel & Kjær Sound & Vibration

© Brüel & Kjær QWE ‘98 Page 10 of 9

Measurement A/S, DK-2850 Nærum, Denmark, 1998. (http://www.esi.es/ESSI/Reports/All/21167)
(To appear when approved by CEC).

Test Cases from Use Cases - 1

Generating Test Cases
From Use Cases
Automatically

Robert M. Poston

Test Cases from Use Cases - 2

Test Cases from Use Cases
◆ Purpose: To describe the specification-based testing process

of generating test cases from use cases

◆ Outline:

✦ Testing in the life cycle process

✦ Back end testing

✦ Specification-based testing

✸ Front-end defect prevention

✸ Requirements in text

✸ Requirements in use cases

✦ Generating test cases from use cases

Test Cases from Use Cases - 3

Testing in Life Cycle Models

◆ All contemporary life cycle models allocate
30% or more
of project time and resources to testing.1

10% 10% 20% 10% 10% 10% 30%
Analyze
Need/

Problem

Specify
Rqmts.

Design
Application

Design
Classes

Code
Classes

Test
Classes

Test Application

Requirements
Process

Design
Process

Implementation
Process

Testing
Process

Test Cases from Use Cases - 4

Back End Testing

◆ Traditionally testing is back end work.
◆ The testing phase includes two kinds of work:

✦ Testing - Failure detection and risk determination
✦ Reworking - Failure elimination

Testing
Process

Analyze
Need/

Problem

Specify
Rqmts.

Design
Application

Design
Classes

Code
Classes

Test
Classes

Testing

ReWorking (Debugging)

Test Cases from Use Cases - 5

Specification-Based Testing

Specification-Based
Testing

Specification
or Model

Front End

Test cases designed from

Earliest starting phase

May also be called Black Box

Code

Back End

Product-Based
 Testing

Code-Based
or White Box

Test Cases from Use Cases - 6

Automated Specification-Based Testing

◆ Automated specification-based testing
reduces work time in two ways:

✦ Defect prevention
increases quality and reduces rework

✦ Test automation
increases productivity

Test Cases from Use Cases - 7

Defect Prevention

◆ 55% or more of software failures discovered by
end users and system testers are caused by
problems with requirements.2

Testing
Process

Requirements
Process

Analyze
Need/

Problem

Specify
Rqmts.

Design
Application

Design
Classes

Code
Classes

Test
Classes Testing

Bad requirements cause rework.
ReWorking (Debugging)

Test Cases from Use Cases - 8

Requirements Defects

◆ The most probable defects in requirements are
well known: 3

✦ Ambiguous words and phrases

✦ Incomplete statements

✦ Inconsistent functions

✦ Untestable functions

✦ Untraceable functions

✦ Undesirable design impositions

Test Cases from Use Cases - 9

Preventing Requirements Defects

◆ The methods for preventing the most probable defects
in requirements have been widely published. 4, 5, 6

✦ Rigorous definitions prevent ambiguities.

✦ Usage checkers prevent inconsistencies.

✦ Checklists prevent incompleteness.

✦ Standards prevent testablity problems.

✦ Standards prevent traceability problems.

✦ Rules prevent undesirable design impositions.

Test Cases from Use Cases - 10

Preventing Requirements Defects

◆ Tools can incorporate all methods for
preventing most probable defects in
requirements.

Testing
Process

Requirements
Process

Design
Application

Design
Classes

Code
Classes

Test
Classes Testing

ReWorking (Debugging)Requirements
Modeling

Tool

Test Cases from Use Cases - 11

Preventing Requirements Defects

◆ A requirements modeling tool must
✦ model in a language that end users can

understand with little training

✦ capture all information a tester needs to
produce test cases

✦ prevent most probable defects

Test Cases from Use Cases - 12

Preventing Requirement Defects

◆ The Use Case Modeling Notation meets the
three tool requirements when

Test-ready models contain sufficient
information for test generation.

Extended to enable test-ready models

Restricted to system-level models
System-level models do not show modules,
subsystems, or internal objects.

Test Cases from Use Cases - 13

Requirements in Text

◆ Here is a natural language requirement.

✦ The Customer Service System (CSS) shall help
a Sales Agent calculate a price quote for a
product requested by a Caller.

Caller Agent

Quote_a_Price

Use Case

◆ With its graphical equivalent.

Test Cases from Use Cases - 14

Requirements in Use Cases
◆ Requirement: The Customer Service System shall help a Sales

Agent calculate a price quote for a product requested by a Caller.

AgentCaller Use Case
calls

invokes

displays screens

Quote_a_Price

requests data

provides data
enters data

calculates pricepresents price

Test Cases from Use Cases - 15

Use Case Model

Use Case

Quote_a_Price

AgentCaller

calls
invokes

displays screens
requests data

provides data
enters data

calculates price
presents price

The Use Case
Diagram

The Event Trace
or Sequence

Diagram

A Use Case Model
 has three parts:

The use case itself

Test Cases from Use Cases - 16

System-Level Use Case Model

Use Case

Quote_a_Price

System-Level
Use Case

=
Requirement

Object-Level
Use Case
= Design

Use Case

Objects

W
ha

t
th

e
sy

st
em

 m
us

t d
o.

H
ow

 th
e

sy
st

em
w

ill
 d

o
it.

Test Cases from Use Cases - 17

Test-Ready, System-Level Use Cases

Use Case

Quote_a_Price

Test-ready means that a use case contains
sufficient information for test generation.
Actors: end users and
external systems

Action

Time:
sequence
 of
events

Standard use cases
do not contain data
or logic information.

Test Cases from Use Cases - 18

Test-Ready, System-Level Use Cases

Use Case

Quote_a_Price

D1, D2

D3, D4

Externally observable
data itemsExternally

observable
conditions or
business rules

C1

C2

To be test-ready a model must contain
actor, action, data, logic, and time information.

Test Cases from Use Cases - 19

Test-Ready, System-Level Use Cases

Example externally observable data items:

Text
Range - [A-Z] 1,36
List - Jones, Smith, Won

Numeric
Range - min=19, max=65, res=1
List - 12, 14, 18, 21

Structures

D1, D2

D3, D4

Test Cases from Use Cases - 20

Test-Ready, System-Level Use Cases

Example externally observable conditions or
business rules:

dataitem A == dataitem B
Deposit > 0
Year A > Year B

C1

C2

Test Cases from Use Cases - 21

Specification-Based Testing

Specification-Based testing requires
system-level, test-ready models
which contain

actor,
action,
data,
logic,
and
time information.

Use Case

Quote_a_Price

D1, D2

D3, D4

C1

C2

Test Cases from Use Cases - 22

Preventing Requirements Defects

◆ Using a tool to create test-ready, system-
level use cases in the requirements phase
prevents requirements defects and reduces
rework time.

Testing
Process

Requirements
Process

Design
Application

Design
Classes

Code
Classes

Test
Classes Testing

ReWorkingRequirements
Modeling

Tool

reduces time needed for

Test Cases from Use Cases - 23

Implement System
Test Cases

Design System
Test Cases

Front-End Testing

◆ Preventing defects in requirements makes
requirements stable enough to begin testing
earlier in the lifecycle.

Design
System

ReWork

Run
Tests

Check
Tests

Implement System

Req. Modeling
Tool

Test Cases from Use Cases - 24

Test Generation from Use Cases

◆ A specification-based test generator
produces test cases and reduces work.

Design
System

ReWork

Run
Tests

Check
Tests

Implement System

designs and documents system test cases

Req.Modeling
& S-B Test

Generation Tool

Test Cases from Use Cases - 25

Generating Test Cases from Use Cases

Information Source

Specification

 Action

 Information

 Logic

 Events

 States

Data Sampling Rule

Test Design Technique

 Action-Driven

 Data-Driven

 Logic-Driven

 Event-Driven

 State-Driven

Historically Frequent Defect

Most Probable Defect

 Missing or Bad Action

 Bad Boundary or Class

 Missing or Bad Logic

 Missing or Bad Event

 Incorrect Initialization

Select samples of stimuli that will find failures.

Test Cases from Use Cases - 26

Test Case Design7

◆ Test Design Step 1:

✦ For each Requirement (Action)

✦ Sample Stimuli (Causes or Inputs)

◆ Test Design Step 2:

✦ Combine samples to produce test cases

Test Cases from Use Cases - 27

Action-Driven Test Design

Specification

 Action

 Information

 Logic

 Events

 States

Rule: Select valid and
 invalid samples
 for each stimulus
 or input that is
 used by an action.

Subdomains

Invalid

Valid

Reference or
Average
Value

Reason: To find defects
 of incorrect and
 missing actions.

Functional Testing

Out-of-Type or
Not-in-List

Value

Test Cases from Use Cases - 28

Valid

Invalid

Data-Driven Test Design (1)

Rule: Select samples on
 boundaries and just
 below and just above
 the boundaries
 (first & last, fastest &
 slowest, highest &
 lowest).

Specification

 Action

 Information

 Logic

 Events

 States

Boundary Value Analysis

Reason: To find defects
 of boundary handling,
 such as off-by-one errors.

Boundary
Values

Adjacent
Values

Test Cases from Use Cases - 29

Data-Driven Test Design (2)
Equivalent Class Analysis

Rule: Select one member from
a class of values when all
members of the class receive
equivalent treatment by the
code.

Specification

 Action

 Information

 Logic

 Events

 States

Temperature

0

20

40

60

80

100
Hi
Temp.

Normal
Temp.

Low
Temp.

Reason: To find defects
 of incorrect class
 handling.

Test Cases from Use Cases - 30

Logic-Driven Test Design
Cause-Effect Graphing

aka
Business Rule Testing

Rule: Select data samples
 that will cause each
 logical expression to
 be exercised with a
 true and a false
 evaluation.

Specification

 Action

 Information

 Logic

 Events

 States

Room_Temp
=

High_temp.
?

True
Go swimming.

False
Watch
video.

Reason: To find defects
 of incorrect logic
 processing.

Test Cases from Use Cases - 31

Event-Driven Test Design

Rule: Sample each event as a
 Boolean item to indicate
 that the event has
 or has not occurred.

Specification

 Action

 Information

 Logic

 Events

 States

Performance Testing

Message
arrives

Message
fails to arrive

Reason: To find defects
 of incorrect time
 synchronization.

Test Cases from Use Cases - 32

State-Driven Test Design

Rule: Select input data samples
 that will cause each state
 transition to occur in every
 state where the transition
 should occur and in one
 state where the transition
 should not occur.

Specification

 Action

 Information

 Logic

 Events

 States

Open Edit Save Close

Open Edit Close

Initialization-Reinitialization Testing

Reason: To find defects
 of incorrect action
 sequences.

Test Cases from Use Cases - 33

Test Case Design

◆ Test Design Step 1:

✦ For each Requirement (Action)

✦ Sample Stimuli (Causes or Inputs)

◆ Test Design Step 2:

✦ Combine samples to produce test cases

Test Cases from Use Cases - 34

Construct the sample or testing space.

Reference
(Average Sample)

Low Boundary
(First in List)

High Boundary
(Last in List)

Just above
Low Boundary

Just below
High Boundary

Just below
Low Boundary

Just above
High Boundary

Out-of-Type
or Not-in-List

Test Design Step 2: Combine Samples

Start with a sample or number line.

Test Cases from Use Cases - 35

Test Design Step 2: Combine Samples
Combine the number lines to form the sample or testing space.

Valid Space
(All Stimuli
are Valid.)

Invalid
Space

(One or
more

stimuli
 is invalid.)

Test Cases from Use Cases - 36

Test Design Step 2: Combine Samples

Specification Samples

 Action

 Data

 Logic

 Events

 States

Rule 1 - The Screening
Vector: Combine one
sample from each
stimulus so that all
stimuli are held at

 1. Reference values
 2. Low boundaries
 3. High boundaries Scr

ee
nin

g

Vec
to

r

Reason: To minimize
number of test cases
and assure basic
operation.

2

1

3

Test Cases from Use Cases - 37

Test Design Step 2: Combine Samples

Rule 2 - The Debugging
Vector: Combine the
reference sample from
all stimuli except one,
and vary that one
through all of its sample
values.

Reason: To speed debugging.

Specification Samples

 Action

 Data

 Logic

 Events

 States Scr
ee

nin
g

Vec
to

r

2

1

3

4 610 8 9
Debugging Vector

15 7

11
12

14
13

17

15
16

1

D
e

bu
g

gi
ng

V
e

ct
or

Test Cases from Use Cases - 38

Reason: To increase
coverage for special
situations.

Test Design Step 2: Combine Samples

Rule 3 - Combine the
few samples taken in all
combinations.

Robustness Testing

Note: Logic-, Event-, and State-Driven samples MAY add additional test cases.

Specification Samples

 Action

 Data

 Logic

 Events

 States

14 610 8 95 7

11
12

14
13

17

15
16

1

3 . ..
. . . .
. . . .

. . . .

. . . .

. . . .

. . . .

. . . .
2

. . . .

. . . .

. . . .

. . . .

. . . .
. . . .
. . . .
. . . .

Test Cases from Use Cases - 39

Primary
Specification-Based

Test Design
Technique

Action-Driven

Data-Driven

Logic-Driven

Event-Driven

State-Driven

Run specification-based test cases and measure code coverage. Any code not covered is extra.

Test Design Techniques and Defect Groups

Missing
actions

data

Wrong actions caused by
incorrect processing of

Extra
actions

logic events states

Software Defect Groups

Test Cases from Use Cases - 40

Summary - Experiences

◆ Manual Specification-Based Testing: Case Study 1

Defect count dropped 94% from

1.2 failures per 1,000 lines of code to

0.072 failures per 1,000 lines of code. 8

◆ Automated Specification-Based Testing: Case Study 2

Productivity increased 100 fold from

100 test cases in 20 days to

1,000 test cases in 2 days. 9

Test Cases from Use Cases - 41

References

1 Jones, Capers, Software Quality: Analysis and Guidelines for Success, International
Thompson Computer Press, Boston, MA, 1997, p. xxiv.

2 Davis, Alan, “System Testing: Implications of Requirements Specifications,” Information
and Software Technology, Vol. 32, No. 6, July/August 1990, pp.407-414.

3 ANSI/IEEE Standard 830, A Standard for Requirement Specifications, IEEE, New York, NY, 1984,
1988, 1992 .

4 Ibid, ANSI/IEEE.
5 Ibid, Davis.
6 Poston, Robert, M., “Preventing The Most Probable Errors in Requirements,” IEEE

Software, September 1987, Vol. 4, Num. 5, pp. 86-88.
7 Poston, Robert M., Automating Specification-Based Software Testing, IEEE Computer

Society Press, Los Alamitos, CA, 1996, pp. 25.
8 Poston, Robert M. “Counting Down to Zero Software Failures,” Automating

Specification-Based Software Testing, IEEE Computer Society Press, Los Alamitos,
CA, 1996, pp. 230.

9 Adhikari, Richard, “Development Process is a Mixed-Bag Effort,” Client/Server
Computing, February 1996, pp. 65-72.

Off-The-Shelf Vs. Custom Made Coverage Models,

Which Is The One for You?
Shmuel Ur, Avi Ziv

Yael Shaham-Gafni - Presenter

IBM Research Lab in Haifa, Israel

email: {sur, aziv,gafni@vnet.ibm.com}

November 1998

QWE’98 1 of 19

☞ Introduction

☞ Benefits and risks of using coverage

☞ Code coverage

☞ Functional coverage

☞ Comparison between code and functional coverage

☞ Comet - general purpose tool for functional coverage

☞ General guidelines for coverage usage

☞ Conclusions

Outline

QWE’98 2 of 19

What Is Coverage?

Coverage:
Any metric of completeness with respect to a test selection criteria

☞ Testing is based on samples

☞ Definitions:

• Coverage Task - A boolean predicate on a test

• Coverage Model - A set of coverage tasks

• Complete Coverage - Covering all the (legal) tasks in that model

QWE’98 3 of 19

Benefits of Using Coverage

☞ Measure the “quality” of a set of tests

☞ Supplement test specification by pointing to untested areas

☞ Help in creating compact and comprehensive regression suites

☞ Help in definitions of testing requirements and specifications

☞ Enable better understanding of tested program

QWE’98 4 of 19

Risks of Using Coverage

☞ Using coverage without commitment to use results
☞ Generating simple tests to cover specific uncovered tasks

➙ The painted wall analogy

☞ Some coverage models are ill suited to deal with common problems
➙ Missing code

☞ Low coverage goals

QWE’98 5 of 19

Code Coverage

☞ Measures the execution of tests against the source code of the
program

☞ Required in many standards

☞ Easy to use

☞ Many available tools
➙ At least one tool for almost every language and OS

☞ Many existing models
➙ Control flow models - statement, branch, multi condition, ...
➙ Fault-based models - mutations
➙ Dataflow models - C-use, P-use, ...

☞ Measure coverage uniformly on the whole program

QWE’98 6 of 19

Functional Coverage

☞ Coverage is based on the function of the design

☞ Coverage models are specific to a given design

☞ Models cover
➙ The inputs
➙ Internal states
➙ Scenarios
➙ Parallel properties
➙ Bug Models

QWE’98 7 of 19

The Functional Coverage
Process

☞ Defining the domains of coverage
➙ Where do we want to measure coverage
➙ What attributes (variables) to put in the trace

☞ Defining models
➙ Defining tuples and semantics on the tuples
➙ Restrictions on legal tasks

☞ Collecting data
➙ Creating traces
➙ Processing the traces to measure coverage

☞ Coverage analysis and feedback
➙ Monitoring progress and detecting holes
➙ Refining the coverage models
➙ Generating regression suites

QWE’98 8 of 19

Functional Coverage Example -
Parcel Sorting System

QWE’98 9 of 19

Parcel Sorting System -
Model Definition

Attribute description and values:
• Height - (Height of parcel in milimiters)/100+1 (max 6)
• Width - (Width of parcel in milimiters)/100+1 (max 6)
• Length - (Length of parcel in milimiters)/100+1 (max 6)
• Master - 1 if parcel processed by master else 0
• Num_processors - Number of busy processors when the parcel started (1-6)
• Num_addresses - Number of addresses are on the parcel (0-4)
• Flush - Name of the stage prior to Flush
• Finish - Name of the stage prior to Finish
• Success - confidence above 0.8 in recognition

Restrictions:
• There are at most six busy processors at a time
• If the parcel was sent to the master all slaves were busy

QWE’98 10 of 19

Code vs. Functional
Coverage

☞ Availability:
• Code: many available commercial tools
• Functional: almost no commercial tools available

☞ Cost:
• Code: cost of tools is usually low, no additional costs
• Functional: higher cost to develop tools and models

☞ Ease of use:
• Code: easy to use. Plug and play
• Functional: need expertise in definition and implementation of

models

QWE’98 11 of 19

Code vs. Functional
Coverage

☞ Learning curve:
• Code: users can benefit from tool almost immediately
• Functional: need some time to learn how to define and implement

models

☞ Experience gathered:
• Code: vast experience on usage, coverage targets, etc.
• Functional: little experience, harder to reflect from one project to

another

QWE’98 12 of 19

Code vs. Functional
Coverage

☞ Focus:
• Code: Uniformly spread on all the entire program

+Covers the entire program
- Cannot focus on area of concern

• Functional: Focuses on areas of concern
+Check coverage where most important
- Impossible to use on the whole program

☞ Adapting to testing resources:
• Code: Hard to adapt because of hard coded models
• Functional: Easy to adapt. Can use right number of models and of

the appropriate complexity

QWE’98 13 of 19

Code vs. Functional
Coverage

☞ Missing code:
• Code: Not fitted to deal with missing code
• Functional: Can deal with missing code

☞ Impact on project:
• Code: Impact only on testing and testing requirements
• Functional: Many areas of impact

• Better understanding of program and environment
• Helps in test specification and requirements
• Impacts from early stages of design

QWE’98 14 of 19

Which Coverage Method
to Use

☞ Functional Coverage Should be used on:
➙ High risk area
➙ Complex, error prone areas
➙ Changes to existing code (maintenance)

☞ Code Coverage Should be used:
➙ On all code written given sufficient resources are available
➙ As a criteria for finishing unit testing

QWE’98 15 of 19

Comet -
General Purpose Tool for Functional Coverage

Objective :
A generic tool for measuring coverage with respect to user-
defined functional coverage models

☞ Inputs:

➙ Coverage models (events, relations)

➙ Event traces (e.g., test programs, simulation traces)

☞ Outputs:

➙ Coverage reports

• Coverage statistics: what is covered

• Coverage progress
➙ Regression test suite with coverage properties

QWE’98 16 of 19

Comet Methodology

☞ Emphasis on Functional Coverage

➙ The coverage is on the function, not the program
➙ The models can be as focused and detailed as desired

☞ Separate coverage models from coverage measurement tool

➙ The same tool supports many different coverage models

☞ User defines coverage models as a part of the test plan

➙ Less test requirements to write by hand

QWE’98 17 of 19

Comet - Overall Structure

Relational Database
Event
Trace

TCL

Coverage
Analyzer

Processing
Engine

Insertion
Engine

Trace
Analyzer

Model
Definition

Coverage
reports

Regression

Comet

tests/
traces

Suites

QWE’98 18 of 19

Coverage Guidelines

☞ Look for the most complex, error prone part of the application

☞ Create the coverage models at high level design. This will improve
the understanding of the design and automate some of the test
plan.

☞ Create the coverage model hierarchically. Start with small simple
models and combine them to create larger models.

☞ Before you measure coverage check that your rules are correct on
some sample tests.

☞ Try to generalize as much as possible from the data; X was never 3
is much more useful than the task (3,5,1,2,2,2,4,5) was never
covered.

QWE’98 19 of 19

Conclusions

☞ Code coverage is easier to use, cheaper and more
available than functional coverage

☞ Functional coverage is an excellent way to improve the testing of
risky, error prone areas

☞ Functional Coverage can help in all design stages. Functional
coverage models should be created at high level design

☞ Combining Code and functional coverage can lead to high quality
verification.

☞ For more information
 http://oop.cs.technion.ac.il/236804-Fall-1997/papers/pub.html

1

Off-The-Shelf Vs. Custom Made Coverage Models,
Which Is The One for You?

Shmuel Ur and Avi Ziv
IBM Haifa Research Lab

MATAM
Haifa 31905, Israel

email: {sur, aziv@vnet.ibm.com}

Abstract
We compare the benefits and costs of using off-the-shelf coverage tools vs. application
specific coverage tools. We start with an overview of coverage, its benefits and its risks. We
elaborate on relatively unfamiliar functional coverage as a way to create custom made
coverage models. We explain what functional coverage models are, how to create them
and their great benefits with an example from our experience. We provide guidelines on
how to decide if coverage should be used at all and whether code based or functional
coverage (or both) should be used.

1 Introduction

Testing is one of the biggest problems of the software industry. The cost of testing is usually between 40-
80% of the development process (70% for Microsoft) as compared with less than 20% for the coding itself
[4]. The practice of letting the users find the bugs and fixing them in the next release is becoming
dangerous and costly for three main reasons: reputation and brand-name are harmed, replacing the
software can be very costly when there is a large install base, and litigation can be expected if the software
error caused harm to the user. Therefore, one has to be certain that testing resources are used efficiently and
that the testing is thorough.

The main technique for demonstrating that the testing has been thorough is called test coverage analysis
[10]. Simply stated, the idea is to create, in some systematic fashion, a large and comprehensive list of
tasks and check that each task is covered in the testing phase. Coverage can help in monitoring the quality
of testing, assist in creating tests for areas that have not been tested before, and help with forming small yet
comprehensive regression suites [5].

Coverage, in general, can be divided into two types: code or functional. Code coverage concentrates on
measuring syntactic properties in the execution, for example, that each statement was executed, or each
branch was taken. This makes code coverage a generic method which is usually easy to measure, and for
which many tools are available. Examples include code coverage tools for C [9], C++ [13], and Java [14].
Functional coverage, on the other hand, focuses on the functionality of the program, and it is used to check
that every aspect of the functionality is tested. Therefore, functional coverage is design and
implementation specific, and is more costly to measure. Currently, functional coverage is usually
implemented manually or by using custom made tools.

In this paper, we describe functional coverage and how it should be used in the testing process, starting
from test requirements and specifications, and going all the way until and beyond the release of the
product. We discuss the advantages and disadvantages of functional coverage and compare it to code
coverage. Based on this comparison, we provide guidelines on which type of coverage best fits the user’s
needs and how it should be used.

Since functional coverage models are derived from the specifics of the program specifications and
implementation, it is impossible to find off-the-shelf tools that fit the user’s coverage models. Moreover,
the development of tools for specific models is usually too expensive and time consuming. The result is

2

that functional coverage tools are usually simple and do not have the rich functionality of code coverage
tools. To overcome this problem, we developed, at IBM’s Haifa Research Laboratory a new functional
coverage tool that separates the coverage models which are defined by the user, from the tool itself. The
user can define custom made coverage models that fit the design in the best way, while enjoying all the
benefits of a coverage tool, such as data collection and processing, creation of coverage reports, and
generation of regression suites with high coverage.

The rest of the paper is organized as follows: In Section 2, we provide a short background on what
coverage is and what the benefits and risks of using it are. In Sections 3 and 4, we describe code and
functional coverage. In Section 5, we describe Comet, a coverage tool that was developed at IBM’s Haifa
Research Laboratory. Comet enables the user to define her own coverage models and still enjoy the rich
functionality of an off-the-shelf coverage tool. In Section 6, we compare the two coverage methodologies
and provide some guidelines on who should use each methodology and how to use it. In Section 7, we
provide some general guidelines for the use of coverage. Section 8 concludes the paper.

2 The Benefits and Risks in Using Coverage

Coverage is defined as any metric of completeness with respect to a test selection criteria [3]. Many such
metrics have been suggested in the past [3], of which statement coverage is the most common. Full
statement coverage means that every statement in the program has been executed by the tests. Coverage is
one of the more systematic ways to check that the testing has been thorough. When using any coverage
model, of which many are available [11], a metric is created against which the quality and completeness of
the testing is measured.

The most commonly used coverage metrics are based on the control flow of the program, such as
statement coverage and branch coverage, however, many other metrics exist. Some coverage metrics are
based on the data flow of variables, like define-use [3], while others are not based on the program code but
on the inputs or the specifications.

Coverage is usually used to find new testing requirements that have been overlooked in the test plan.
Many times the test requirements are written during the design and do not take into account the details of
the implementation. For example, the implementation of a sorting function might use two different
algorithms, depending on the size of the array sorted, a detail which is not in the specifications. In this
case, statement coverage might show that the inputs never included the case of a short array, that use one of
the algorithms, and that a new test is needed. Working with coverage as a guide to improve the quality of
testing has been shown to be a cost effective use of resources [12].

Another application of coverage that is commonly used, is generation of regression suites [10].
Generation of regression suites has to deal with two contradictory requirements; the suite must be small so
that it is economical to execute it after every design change, yet it must be comprehensive in order to find
the bugs that were introduced. Coverage enables us to find a relatively small set of tests which is
comprehensive in the sense that it covers the required metric [5].

Besides these uses, coverage provides other benefits to the testing process that are often overlooked.
One such benefit is the use of coverage or, more specifically, functional coverage, to assist in defining
testing requirements and specifications. Another benefit of functional coverage is that it helps to achieve a
better understanding of the tested program during definition of the coverage models.

While the use of coverage as an aid to the testing process has a lot of benefits, centering the testing
process around coverage has its own risks. A common misconception about coverage is that the testing
methodology should be to decide on an appropriate coverage metric and then generate a set of tests that
covers it. This is not advisable for a number of reasons, the main one is demonstrated by the following
analogy to wall painting.

Assume that one uses a process which paints a wall with an inch of protective paint. A quality
assurance process (coverage) chooses a hundred points at random at which to drill and measure

3

the paint thickness. If at all of the points there is an inch of paint, then we have a reasonably good
assurance that the wall is well painted. However, what do we do if at 50 points the layer of
painting is not thick enough? If we tell the painter the location of these 50 points and he fixes them,
the fact that the 100 points arenow covered no longer guaranties that the wall is covered because
our painting (test generation) process and our coverage process are not independent. One way to
overcome this difficulty is to inform the painter that some region of the wall is not well painted.
This is equivalent in testing to generating a test requirement (as opposed to a specific test) from an
uncovered point.

Another drawback of coverage is that many coverage models are ill suited to deal with many common
problems. For example, control flow models, such as statement and branch coverage, are ill suited to deal
with missing code. If, for example, a case statement should have six cases but, in practice, it has only four,
statement or branch coverage will not help you find it. One way to overcome this difficulty is to use several
coverage models, which are derived from different domains, so that one model will cover the weaknesses
of another model.

A different risk in using coverage is setting low coverage goals. It has been shown that using coverage
to assess quality with a lower coverage target (50%-90%) is not useful [12]. The reason is that the
probability of having bugs in hard-to-cover areas tends to be larger than the probability of bugs in well
covered areas. Therefore, it is better to use simpler coverage models with high coverage goals than more
complex models with lower coverage goals.

3 Code Coverage

Code coverage, usually just called coverage, is a technique that measures the execution of tests against the
source code of the program. For example, one can measure whether all the statements of the program have
been executed. The main uses of code coverage are assessing the quality of the testing, finding missing
requirements in the test plan and constructing regression suites.

A number of standards, as well as internal company policies, require the testing program to achieve
some level of coverage, under some model. For example, one of the requirements of the DOA standard
[15] is 100% statement coverage.

Many coverage tools that support all major programming languages exist. Every tool implements a
number of coverage models for a particular combination of operating system, compiler and programming
language. Most of them work by instrumenting the source code and adding counters which can later be
used by the tool’s user interface to show the status and progress of the coverage in some detail. To apply
such a tool, one typically has to recompile the software with the tool and execute the tests. After the tests
are executed, there is usually some interface that highlights the parts of the program that were not covered.

Almost all coverage tools implement the statement and branch coverage models. Multi-condition
coverage, a model that checks that each part of a condition (e.g. A or B and C) had impact, is also
implemented by many tools. Fewer tools implement the more complex models such as define-use,
mutation, and path coverage variants [6].

The main advantage of code coverage tools is their simplicity of use. The tools come ready for the
testing environment. No special preparations are needed in the programs and understanding the feedback
from the tool is straightforward. The main disadvantage of code coverage tools is that the tools do not
“understand” the application domain. Therefore, it is very hard to tune the tools to areas which the user
thinks are of significant.

4 Functional Coverage

Unlike code coverage, where the execution of tests is measured against the program source code,
functional coverage focuses on the functionality of the program, and it is used to check that every aspect of

4

the functionality is tested. Therefore, functional coverage is design and implementation specific, and is
harder to measure. Currently, functional coverage is mostly done manually.

Functional coverage is considered by some to be black-box testing [6], since it involves models based
on the specifications of the application. We believe that functional coverage is much more varied.
Functional coverage models can be based on the specifications of the application, but they can also be
derived from the implementation. Functional coverage models have many flavors. Models can cover the
inputs and outputs of the program or they can look at the internal state of the program (e.g., values of
variables). Functional coverage models can be snapshot models, that look at the state of the program at a
certain time, or they can be temporal models that deal with scenarios. Usually, functional coverage models
involve looking at several properties in parallel. Our experience shows that many bugs can be found only
when a number of events happen concurrently [1]. Therefore, covering each event on its own is not
sufficient. A simple example for a snapshot model is covering all the possible values of the input
parameters of a function. An example for a temporal model is looking at the changes in the values of global
variables between consecutive activations of a function. Thread interleaving and synchronization in a
multi-threaded system is a source of many bugs. Therefore, a coverage model that looks at all the reasons
for thread switching is a good example for a coverage model that is based on a bug model (A bug model is
a set of requirements for finding bugs of a type that have been uncovered before.)

The first and most important step in the functional coverage process is deciding what to cover or, more
precisely, on what coverage models to measure coverage. In order to make coverage successful and use it
to influence the testing process, it is important to choose the correct types of coverage models. First, it is
important to choose coverage models for areas which the user thinks are risky or error prone. Next, the size
of the model should be chosen in accordance with the testing resources. The model size (number of tasks)
should not be too large, making it impossible to cover the model, given the testing time and resources
available. From our experience, we found that the best way to create effective models is to start from small
models and later refine them or combine them to create bigger and more complex models.

Often, some of the tasks in the coverage model areillegal tasks, that is, coverage tasks that should not
occur. The reasons could be limitation on the inputs - the sum of angles of a triangle is 180 - or
implementation details - two threads that write to the same resource should never be in the write stage of
the semaphore at the same time. Specifying the illegal tasks is an important part of coverage model
definition.

After definition of the coverage models, the next step is data collection. There are two broad categories
of coverage data collection techniques. The first, which is used in most of the code coverage tools, is to
create a counter for each task and modify it on the fly whenever the task is found. The second is to print the
necessary data to a trace file that is later processed.

One of the historical problems of functional coverage, which stems from the fact that the models are
implementation specific, is lack of automation. However, although each model is unique, the coverage
processes of different models have much in common. Tasks have to be updated in tables, regression suites
have to be created, coverage reports on sub-models and on progress have to be made. We have created a
coverage tool, named Comet [7], that handles all the common requirements, and we have created over a
hundred coverage models for a number of customers for widely varying applications (mainly in hardware).
A more detailed description of Comet and the methodology behind it is given in Section 5.

The ability to focus on points of concern, which is one of the main advantages of functional coverage,
carries a risk. The risk is that only functional coverage will be used, and therefore,only the parts which are
of concern will be tested thoroughly. Since creation of coverage models requires some effort, the parts
which are not of special concern could be neglected. For these parts, it is better to use generic, off-the-
shelf, code coverage models than nothing at all.

4.1 Example - Parcel Sorting System
We demonstrate applying a functional coverage to a parcel sorting system that was developed at IBM’s

5

Haifa Research Laboratory. In this system, a 6 PowerPC SP system (a multi processor system) is used to
sort parcels. The parcels are sorted in a number of phases. In the first phase, the top surface of the parcel is
scanned, its dimensions are measured, and the lenses are focused. Then, a processor is assigned to the
parcel. In the second stage, a high resolution image of the top surface is created, the image is decoded so
that the address and bar-code on it are understood. In the third stage, the weight of the parcel is acquired.
The information including the size, weight and address is then delivered to the host. The parcel sorting
system is depicted in Figure 1. This system contains many technologies, such as voting between two
powerful OCR engines, fuzzy dictionary search for address validation, parallel processing and leading
edge image data transfer (50MB/sec).

The coverage model described below is designed to check that the system has been stressed by different
inputs. The model checks that every type of parcel size and every type of address, is encountered. The
model verifies that a parcel has been internally processed in every way and by every processor, and that the
processing can be correctly interrupted at any stage. The correlation between success (correct decoding of
addresses), parcel type, and system load is measured.

A coverage model is composed of a list of tasks. A convenient way to specify tasks is as tuples of
variables or attributes. The list of tasks in the coverage model is the cross product of the lists of all the
possible values for each attribute. For example, the coverage model that we illustrate here, has attributes of
a single parcel and the load of the system during the processing of that parcel. Figure 2 gives the list and
description of the attributes for the parcel sorting system model. Some of these attributes, such as
Num_addresses , are values of variables in the program. Some, likeWidth, are calculated from a
single variables, and others, such asNum_processors andFlush , require processing of the trace. Not
all the tuple values are possible. Restrictions on the possible tuples are imposed by limitations on the
inputs caused by the environment, or by the implementation. Examples of restrictions for the parcel sorting
model are:

• There are no more than six busy processors at one time

• When a parcel is sent to the master, all the slaves are busy.

Note that the process of finding restrictions is an iterative process. An initial set of restrictions is

Figure 1. Structure of the parcel sorting system

6

generated. After looking at the traces, exceptions to some of the restrictions are found. Each exception
signals a bug in the implementation, a problem in the trace generation, or an incorrect restriction, all of
which happen in practice. Also, holes in the coverage measurement that are found may indicate restrictions
that were previously overlooked.

Functional coverage models are usually built in a hierarchical way, one on top of each other. We start
with small models that examine specific areas, such as the dimensions of a package in the parcel system.
Later on, these small models are merged to create larger models. Figure 3 shows the hierarchy of the
models for the parcel sorting system. The advantage of using hierarchical models is that problems can be
found at an earlier stage of the testing. New rules on sub-models imply new rules on the containing
models. Another advantage is that the coverage process is tested first on simple models which makes it
easier to debug and cover. Note that not all the models in the hierarchy need to be implemented explicitly.
Some models, especially very simple ones, like Model 2 in Figure 3, can be viewed as projections of larger
models. Usually, smaller models are implemented if we want to use them to find new restrictions and
estimate the size of the big model, so that we will be able to assess if the large model is feasible.

Whenever the parcel sorting system is operating, it creates, as a by-product, a trace of the messages
between the processes in the system. This trace includes information such as dimensions for every

Attribute list:
(Height, Width, Length, Master, Num_processors, Num_addresses, Flush,

Finish, Success)

Attribute description and values:

•Height - (Height of parcel in milimiters)/100+1

•Width - (Width of parcel in milimiters)/100+1

•Length - (Length of parcel in milimiters)/100+1

•Master - 1 if parcel processed by master else 0

•Num_processors - Number of busy processors when the parcel started (1-6)

•Num_addresses - Number of addresses are on the parcel (0-4)

•Flush - Name of the stage prior to Flush

•Finish - Name of the stage prior to Finish

•Success - confidence above 0.8 in recognition

Figure 2. Attribute list for parcel sorting system model

Model 1:Parcel Size - (Height, Width, Length)
Model 2:Number of addresses - (Num_addresses)
Model 3:Load - (Master, Num_processors)
Model 4:Messages - (Flush, Finish)
Model 5:Success - (Success)
Model 6:All Parcel types - Model 1 + Model 2
Model 7:Load and Messages - Model 3 + Model 4
Model 8:Messages and Success - Model 4 + Model 5
Model 9:Complete model - Model 6 + Model 7 + Model 5

Figure 3. Models hierarchy for parcel sorting system

7

incoming parcel. It also includes messages which contain the arrival and departure time of a parcel, which
processor processed it, and intermediate status of the parcel processing. This trace is processed and, from
the information relating to each parcel, we create a tuple that is used in the coverage.

After collecting coverage information for some time we look for coverage holes which we do not
succeed to find when generating tests. We first look at each variable separately as there are a fewer tasks to
look at this way. We may find out, for instance, that we never saw a parcel on the master processor
(Master = 1). After we make sure that we have full coverage for each variable, we look at combinations
of some of the variables.

There are several possible reasons for holes in the coverage. We have already discussed missing
restrictions, in which case we simply add new restrictions. Bugs in the application or the coverage process
are also a possibility. However, the most common cause, and the reason for coverage in the first place, is
that some tests are missing. We use coverage holes as pointers to areas which need more testing. We iterate
the process until the coverage is complete or, more commonly, resources or time are exhausted. Eventually
the restrictions will be almost accurate.

In many cases, the number of tasks in the coverage model seems daunting. For example, for the
coverage model in Figure 2 with no restrictions, the number of tasks is 6*6*6*2*6*5*7*7*2=1,375,920. In
practice, the number of tasks is usually not a problem. The first reason is that the restrictions in many cases
reduce the number of tasks by a number of orders of magnitude. In [7] we discuss a model in which the
restrictions reduce the number from 30,000,000 to 1,500. The second reason is that one does not start with
the full model but with partial models which have a smaller number of tasks.

5 General Purpose Tool for User Defined Coverage Models

One of the properties of functional coverage is that the coverage models are application specific. On the
other hand, a common property of most coverage tools is that the coverage models which the tool is
designed to handle, are hard-coded into the tool. Therefore, in order to make the tools applicable to many
users, the models that are implemented in these tools are generic. The result is that there are almost no
commercially available coverage tools for functional coverage in general, and specifically for the coverage
models that the user needs.

This leaves a user who wants to use functional coverage with two options: to do coverage manually, or
to build her own coverage tool for her models. The first option makes the coverage work tedious and time
consuming and creates a severe limit on the size of the models that can be implemented. The second
solution may require a large development effort for a tool that might be used once for a single program.
Usually, tools that are built for a single use are less elaborate in the functionality they provide to their users.
Such tools also tend to be error-prone. The result is that such tools cost much more than commercial tools
and provide much less functionality.

In [7], we propose a different methodology for functional coverage. This methodology calls for
separation of the coverage model from the coverage measurement tool. The idea behind this methodology
is that most of the functionality provided by existing coverage tools, such as data gathering and coverage
reports, is independent of the coverage models, and is thus similar in all tools. The main difference
between coverage tools is the models they implement. Therefore, a single, general purpose tool, that will
be oblivious to the coverage model and provide all the functionality of existing tools, can be used to
provide all the coverage needs of a user both for generic and specific models.

To provide all the needed functionality of a coverage tool to a specific model, the tool has to be aware of
the exact specifications of the model. Therefore, one of the inputs to the tool is the definition of the models.
The definition of a model has to be done in a language which is simple enough for a user to use, yet rich
enough to describe all the models that the user wants to cover. Our experience shows that a language that
contains the predicates used in first order temporal logic (and, not, exist, for all, before, after, etc.)
combined with the use of simple arithmetic (natural numbers, arithmetic and relational operators), is

8

sufficient.
The advantages of using such a general purpose coverage tool are enormous. First, it allows its users to

define their own models, according to their specific needs, and still enjoy all the functionality of a
dedicated coverage tool without the need to develop such a tool. It therefore provides users with a means to
measure coverage on models which were not available to them before. The tool also allows organizations
to use a single tool for most of their coverage needs, and not be forced to buy and maintain a set of tools,
one for each coverage model. Another advantage of explicit and external model definition is that it enables
sharing of coverage models between projects. Finally, the tool enables its users to adapt their coverage
models to their testing resources, and refine these models during testing. For example, users that can afford
only quick and dirty testing can define coarse grain models with a small amount of tasks, while users that
want to do comprehensive testing can define finer grain models.

Based on the methodology described above, we have developed a coverage measurement tool named
Comet. Comet enables users to define their own coverage models, gather and process traces to measure the
coverage of these models, and generate coverage reports on the results of the measurement. Comet relies
on a relational database in order to supply a comprehensive and stable environment needed for the
coverage measurement process itself and an analysis of the coverage results.

Comet consists of three major parts, as shown in Figure 4: theInsertion Enginewhose task it is to insert
events from input traces into the database, theProcessing Enginewhose task is to process the traces in the
database in order to detect coverage tasks according to the model definition, and theCoverage Analyzer
which analyzes the measurement results and prepares coverage analysis reports according to the user
definition.

Since Comet is oblivious to the coverage model and it can receive many types of traces, it requires two
user-provided additions that do not exist in other tools. The first addition is the definition of the coverage
model which is done using Comet’s GUI. The second addition is a trace analyzer that converts the format
of the traces to a standard format that Comet can handle. A more detailed description of Comet can be
found in [7].

6 Comparison Between Code and Functional Coverage

In this section, we compare the advantages and disadvantages of code coverage and functional coverage.
The comparison is based on the following criteria: availability of tools, cost, ease of use, learning curve,

Relational Database
Event
Trace TCL

Coverage
Analyzer

Processing
Engine

Insertion
Engine

Trace
Analyzer

Model
Definition

Coverage
reports

Regression

Comet

tests/
traces

Suites

Figure 4. Comet Structure

9

portability, ability to focus on areas of concern, experience gathered, and ability to cover the entire design.
Based on this comparison, we suggest several guidelines on where and when these coverage methods
should be used. The summary of the comparison is shown in Table 1.

Code coverage is a well established method. Many tools are available for almost any programming
language. Code coverage has been extensively used in the industry. It is estimated that 20-30% of the
testers have used it at least once. Most of the code coverage tools are inexpensive, easy to use, and do not
require any (manual) changes in the code. The results they provide are easy to understand. We have had
experience in the past in which we have found bugs using branch coverage tools less than an hour from the
time the tool was introduced. These tools give a general sweep of the entire code for areas which where not
used or not sufficiently used. The cost of the tools is relatively small, and their running time overhead is
usually between 20% to 100%.

Another big advantage for code coverage is the vast experience that has accumulated from using it.
There are many experts and publications, such as [3] and [10], that provide guidelines on how to deploy
coverage, which coverage models should be used, what the accepted levels of coverage for each model are,
and how to interpret coverage results.

Code coverage tools have some built-in faults. The first is that these tools do not find missing code.
Another problem is that a coverage tool is not available for some environments (e.g., language, operating
system) and therefore, since code coverage tools are expensive to create, in this environments coverage is
not used.

Traditionally functional coverage was outside of the commercial tools domain. When functional
coverage was needed, a domain specific tool was written in order to check it. Tools written for single
applications are usually not very elaborate as far as their report generation capability or graphical user
interface are concerned. The main advantage that these tools have is that they do exactly what the user
wants. The disadvantages are cost, as they do not have the economy of scale, and that the tools are
relatively simple and bug prone. With the introduction of functional coverage tools, such as Comet,
functional coverage becomes a viable option in many more circumstances. The advantages of such a
general purpose coverage tool over domain specific tools are enormous, as explained in Section 5.

Property Code coverage Functional coverage

Availability Many available commercial tools Almost no commercial tools available

Cost
Cost of tools is usually low,
no additional costs

Higher cost to develop tools and models

Ease of use Easy to use. Plug and play
Need expertise in definition and
implementation of models

Learning curve
Users can benefit from tool almost
immediately

Need some time to learn how to define
and implement models

Experience gathered
Vast experience on usage, coverage
targets, etc.

Little experience, harder to reflect from
one project to another

Focus
Uniformly spread on all the entire pro-
gram

Focuses on areas of concern

Adapting to testing
resources

Hard to adapt because of hard coded
models

Easy to adapt. Can use right number of
models and of the appropriate complexity

Missing code Not fitted to deal with missing code Can deal with missing code

Impact on project
Impact only on testing and testing
requirements

Many areas of impact

TABLE 1. Comparison between code and functional coverage

10

More effort, more time, and more expertise are required in the deployment of functional coverage. The
technical work of implementing a functional coverage model takes several hours, and requires a better
knowledge of the tool than the use of a code coverage tool. Moreover, the knowledge on how to create
good functional coverage models requires additional expertise and special training. This means that the
learning time for using functional coverage is much longer than for code coverage.

As far as ease of use, learning curve, and cost are concerned, code coverage has the advantage.
However, it is our experience that functional coverage models have many advantages as well. Creating a
functional coverage model, as opposed to using an off-the-shelf tool, gives the application engineer a fresh
point of view on his applications. It is our experience that creating the coverage models by itself, without
even collecting the information, is considered worthwhile by our customers. We have found, through many
examples, that the people who design and code the program cannot predict which configurations or
scenarios are possible in the programs. Analyzing possible scenarios will, in some cases, find bugs. For
this reason, functional coverage is now being incorporated into the high level design stage of a very large
project that we work with.

Functional coverage methodology enjoys a number of other advantages over code coverage. The first
and most important is the ability to create coverage models for areas of concern. For example, in
maintenance where most of the total cost is spent, small changes are made to existing, tested, software.
One would like to be able to focus the tests and coverage only on the areas of these changes. By using
functional coverage, one can focus the resources where they are needed. Other examples include
applications which contain a complex logic part, such as a scheduler in an operating system. One would
like to ensure that the level of testing for such sections of the application is very high.

The ability to focus on certain areas also helps with adapting the coverage to the available testing
resources. With code coverage, if you do not have the amount of resources needed to do statement
coverage you will probably not do coverage at all. If your resources are more than sufficient to cover
everything your coverage tool marked, you will not be able to use your additional resources. Functional
coverage models can be as detailed or as high-level as desired. This advantage has an accompanying
disadvantage: if you want to test the application, and there is nothing specific you want to focus on, then
code coverage is better than functional coverage.

Functional coverage is less vulnerable to the problem of missing code then code coverage, since it is
usually derived from the specification, not the code itself. Missing specification is still an area of concern
but it can be circumnavigated in most cases if the coverage model is well defined.

Code coverage should be used for a uniform check on the test plan. Whenever the testing resources are
enough to complete the test plan, code coverage is a cost effective way to find missing requirements which
should be added. Functional coverage, on the other hand, should be risk driven. A few areas of the
application which either contain risk or are very complex and error prone should be identified and
functional coverage should be applied to them. If there is no specific area which is of concern, then only
code coverage should be used. If the resources are not enough for using coverage for the entire code base,
but there are areas of specific risk, only functional coverage should be used. This can be the case when
maintenance is done where only small changes in tested software need to be tested thoroughly. For these
kinds of changes, specific models can be made and the testing will focus on the changes.

7 General Guidelines for Usage of Coverage

In this section, we try to share some of our experience as to how coverage should be applied. Coverage
should not be used if the resources used for it can be better spent elsewhere. This is the case when the
budget is very tight and there is not enough time to even finish the test plan. In such a case, designing new
tests is not useful as not all the old tests will be run. Coverage should be used only if there is a full
commitment to make use of the data collected. Measuring coverage in order to report coverage percentile
is practically worthless. Coverage points out parts of the application that have not been tested and guides

11

test generation to these parts. Moreover, it is very important to try to reach full coverage or at least set high
coverage goals, since many bugs hide in hard-to-reach places. It is usually worthwhile to create an
automatic test generator instead of generating all the tests manually. The combination of an automatic test
generator and coverage is very potent as the tests can be biased in the direction in which coverage is
missing.

Coverage is a very useful criteria for test selection for regression suites. Whenever a small set of tests is
needed, the test suite should be selected so that it will cover as many requirements or coverage tasks as
possible.

When coverage and reviews are used for the same project reviews can put less emphasis on things that
coverage is likely to find. For example, a review for dead code is unnecessary if statement coverage is used,
a review for boundary error in loops is redundant if the appropriate mutation coverage model [8] is used,
and manually checking that some values of variable can be attained is not needed if the appropriate
functional coverage model is used.

When there is a coverage expert who helps a number of projects, such as in our organization, an effort
should be made to make the coverage reports as succinct as possible. It is more useful to have feedback of
the form functionSORTwas never called than line 2 in functionSORTwas never executed (as well as lines
5,8,11...). For functional coverage this comment is even more important. A functional coverage model is
usually anN dimensional space over some variables. The information that a single point has not been
covered is not as useful as the information that a sub-space (as large as possible) was not covered.

The following guidelines are applicable only to functional coverage:

• First, the most complex, error prone part of the application has to be identified. Coverage models
should be written for these parts at the high level design stage. The benefits are a fresh look at the
design, a good start for the automation of the test plan and creating a model that will fit the
implementation as it evolves, assuming that it still implements the same design in contradiction to code
coverage, where coverage can start having an impact only after tests have been executed.

• Coverage models should be created hierarchically. One should start with simple small models and
combine them to create larger models. Figure 3 illustrates a hierarchy of functional coverage models.
Using hierarchical models enables us to debug the coverage process on simple cases and find problems
in the coverage models early.

• Restrictions should be created at model creation time. It is our experience that programmers have a very
hard time specifying the correct restrictions (They never do.) but that they find that they learn a lot
about the design. Before coverage is measured, sample traces should be looked at to check that the
restrictions are correct.

8 Conclusions

In this paper, we compared functional coverage to code coverage. We have shown that each has its own
merits and drawbacks. It has been our experience, as well as the experience of anyone that we know has
used coverage, that coverage is worth doing. Almost anyone, and under any timing and budget
consideration, can benefit from some form of coverage. However, one has to commit to coverage and use it
properly.

Functional coverage is a more powerful testing technique then code coverage, since it can focus on
areas of concern, and contribute to the design and verification processes in many more ways. On the other
hand, functional coverage is more complicated and requires more resources than code coverage. We
therefore recommend that it should be reserved to those parts of a program that are of special concern.
Code coverage, on the other hand, can and should be uniformly applied to the entire application.

12

References
[1] Y. Abarbanel-Vinov, and S. Ur. Processor Bug Classification and Modeling, IBM’s Haifa Research Lab

internal document, 1996.
[2] J. Baumgartner and R. Raghavan. Method to compute test coverage in complex computer system simulation.

IBM Technical Disclosure Bulletin, 40(3):1-4, March 1997.
[3] B. Beizer.Software Testing Techniques. Van Nostrand Reinhold, 1990.
[4] F. P. Brooks.The Mythical Man-Month: Essays on Software Engineering, Addison-Wesley, 1995.
[5] E. Buchnik and S. Ur. Compacting regression-suites on-the-fly.In Proceedings of the 4th Asia Pacific Software

Engineering Conference, pages 385-94, December 1997.
[6] S. Cornett. Software Test Coverage Analysis, http://www.bullseye.com/webCoverage.html
[7] R. Grinwald, E. Harel, M. Orgad, S. Ur, and A. Ziv. User defined coverage - a tool supported methodology for

design verification, to appear inProceedings of the 35th Design Automation Conference, June 1998.
[8] W.E. Howden. Weak mutation testing and completeness of test sets,IEEE Transactions on Software

Engineering, 8(4):371-379, July 1982.
[9] J.R. Horgan, S. London and M.R. Lyu. Achieving software quality with testing coverage measures,Computer,

27(9):60-69, September 1994.
[10] B. Marick. The Craft of Software Testing, Subsystem Testing Including Object-Based and Object-Oriented

Testing. Prentice-Hall, 1995.
[11] C. Kaner. Software negligence and testing coverage, Inproceedings of STAR 96: the Fifth International

Conference, Software Testing, Analysis and Review, pages 299-327, June 1996.
[12] R. Stewart. Unit test coverage as leading indicator of rework,EuroSTAR 97, November 1997.
[13] C-Cover - Test Coverage Analyzer for C/C++, http://www.bullseye.com/webCcover.html
[14] DeepCover for Java, http://www.rstcorp.com/DCJava.html
[15] Software test and evaluation guidelines, Department of the Army, Pamphlet 73-7

10/13/98

1

Practical Approach To Using
Software Metrics

Presented by

Howard Chorney

Quick Quote

“Numbers are only numbers, and
alone cannot tell you anything

unless you know what your looking
for.”

10/13/98

2

P
S

C

Internetworking

2YHUYLHZ

� Why use metrics?

� Sizing the test effort

� Practical metric set

� Getting Started

P
S

C

Internetworking

:K\�8VH�0HWULFV
� Vehicle to check what is planned against reality.

� Checks status of test effort.

� Flags any potential problems.

� Tracks condition of product throughout
development cycle.

� Takes the emotion out of the ship decision.

� Helps plan follow on projects.

10/13/98

3

P
S

C

Internetworking
+RZ�$UH�0HWULFV�0RVW

(IIHFWLYH
� By setting project goals

� Understanding project goals

� Measuring goals against reality

P
S

C

Internetworking

6L]LQJ�7KH�7HVW�(IIRUW

� Goals of my organization

� Find and identify defects!!

� How do you know what your planning for?

� How do you know your there?

� Challenges and variables

� Coding styles

� Product type

� Functional complexity of components

10/13/98

4

P
S

C

Internetworking

'HIHFW�3UHGLFWLRQV

� What is it, why use it, how can it help us?
� Method of predicting defects in a software development

project

� Gives product team a baseline for testing

� Calculating defects
� Defects per KLOC x estimated LOC / 1,000

� How do we know we did it right?

P
S

C

Internetworking

$VVRFLDWHG�5LVNV

� Need some up front data.

� Not an exact science disparities will exist between
prediction and reality. Could be viewed as
consulting the magic oracle.

� Takes time to refine the prediction method.

� May be view as a quota system.

� May not be applicable for all test efforts.

10/13/98

5

P
S

C

Internetworking

'HIHFW�)LQG�5DWH

� Provides high level view of defect discovery on a
cumulative basis.

� Flags anomalies in the test effort.
� Discovery rate decreasing to early in the project

� Need to re-evaluate test strategy.

� Front end coding practices paying off.

� Discovery rate not decreasing at end of project
� High quantity of defects, may need to re-evaluate release

decisions.

� Need to re-evaluate test strategy early on in project.

� Need more testing resources.

P
S

C

Internetworking

'HIHFW�)LQG�5DWH��&RQWLQXHG�

� Used to verify defect prediction metrics.
� Flags amount of defects remaining in product.

� Can be tailored to component level.

� Can be used on a weekly or monthly level.

� Not effective for reporting detailed spikes.

10/13/98

6

P
S

C

Internetworking

6DPSOH�'HIHFW�)LQG�5DWH�*UDSK
�/RZ 'LVFRYHU\ 5DWH $W 3URGXFW 5HOHDVH 7LPH�

Find Rate

0

50

100

150

200

Time

D
ef

ec
ts

Find Rate

P
S

C

Internetworking

6DPSOH�'HIHFW�)LQG�5DWH�*UDSK
�+LJK 'LVFRYHU\ 5DWH $W 3URGXFW 5HOHDVH 7LPH�

Find Rate

0

50

100

150

200

250

300

Time

D
ef

ec
ts

Find Rate

10/13/98

7

P
S

C

Internetworking

:HHNO\�'HIHFW�)LQG�5DWH

� Charts defects on a week by week basis.
� Effective in monitoring test effort

� Can detect more detailed spikes during test effort.

� Effective in monitoring product condition.
� Details find rate throughout project.

� Measures test effort against project goals.

P
S

C

Internetworking

:HHNO\�)LQG�5DWH�*UDSK

Weekly Defect FindRrate

0

5

10

15

20

25

Time

D
ef

ec
ts

10/13/98

8

P
S

C

Internetworking

:HHNO\�)LQG�5DWH�*UDSK
7UDFNLQJ 0XVW)L[$QG 7RWDO 'HIHFWV

Weekly Defect find Rate

0

5

10

15

20

25

Time

D
ef

ec
ts Total

Must Fix

P
S

C

Internetworking

:HHNO\�)L[�5DWH

� Monitors defect fix rate on a weekly basis.

� Assists in assessing the defect regression strategy.
� Understanding when the majority of fixes are done, can

assist in planning when resources will be needed to
verify fixes.

� Assists in understanding product stability issues.
� If fix rate is high at end of development cycle, how can

product be stable?

� Can be combined with Weekly Find Rate graph
for comparing incoming defects to fixed defects.

10/13/98

9

P
S

C

Internetworking

:HHNO\�)L[�5DWH�*UDSK

Weekly fix rate

0
5

10
15
20
25
30
35
40
45

Time

D
ef

ec
ts

Total

P
S

C

Internetworking
*UDSK�&KDUWLQJ�:HHNO\�)LQG

5DWH�7R�)L[�5DWH
Find To Fix Comparison

0
5

10
15
20
25
30
35
40
45

Time

D
ef

ec
ts Find Rate

Fix Rate

10/13/98

1

P
S

C

Internetworking

8QUHVROYHG�7R�5HVROYHG

� Unresolved
� Open

� Acknowledged

� Answered

� InWork

� Deferred

� Resolved
� Fixed

� Closed

� Rejected

P
S

C

Internetworking

8QUHVROYHG�7R�5HVROYHG��FRQWLQXHG�

� Monitors the amount of unresolved defects to
resolved defects
� Show product development team the relationship

between unresolved and resolved defects.

� Helps assess the work to be done to clean up
unresolved cases.

� Caution!!
� Cross over line can fluctuate, should monitor for set

pattern before making condition judgment.

10/13/98

1

P
S

C

Internetworking

8QUHVROYHG�WR�5HVROYHG�*UDSK

Unresolved to Resolved Defect Ratio

0

50

100

150

200

250

300

350

Time

D
ef

ec
ts Unresolved

Resolved

P
S

C

Internetworking

*HWWLQJ�6WDUWHG

� Ask yourselves these question
� Are metrics something that might be useful to your

product development team.

� What is your current situation and what information
does your product development team need.

� Does the product development team understands it’s
goals.

� What tools will help us monitor our goals against
reality.

10/13/98

1

P
S

C

Internetworking

*HWWLQJ�6WDUWHG�&RQWLQXHG�

� Five Basic Steps
� Assess

� Assess what you need to do.

� Research
� Many publications are available with many different methods.

� Choose
� Choose the metrics that give you the information you need

� Implement

� Refine
� It will take time to get what you need, be prepared to work on

it.

P
S

C

Internetworking

,QWHUHVWLQJ�5HDGLQJ

� Capers Jones, Software Quality Analysis And Guidelines For Success.
International Thompson Computer Press, 1997

� William Perry, Effective Methods For Software Testing. Wiley-QED, 1995

� Tom Demarco, Controlling Software Projects: Management, Measurements
and Estimations. Prentice Hall, 1982

� Stephen H. Kan, Metrics And Models In Software Quality Engineering.
Addison Wesley, 1995

� Robert B. Grady, Deborah L. Caswell, Software Metrics: Establishing A
Company Wide Program. Prentice Hall, 1987

� Robert B. Grady, Practical Software Metrics For Project Management And
Process Improvement. Prentice Hall, 1992

1

A Practical Approach To Using Software
Metrics

Howard Chorney
Software Quality Manager

Process Software Corporation
Framingham, Massachusetts

chorney@process.com

1.0 Introduction
As Development Managers, Quality Managers and Project Leaders in today’s

rapid time to market environment, we face many interesting challenges. During my
experience, I have found some of the more interesting challenges to be: how do we track
the condition of a software project under development? How do we avoid unpleasant
surprises a week before we are about to ship? How do we set quality goals for the
product and how do we measure that we are meeting the goals? How do we know when a
product’s condition is stabilizing? Most importantly, how do we know we can ship?
Other important questions are how do we scope the test effort for the project? What’s the
scope of the test effort? What are we capable of testing in the time frame allotted? How
can resources be allocated or re-allocated to meet the testing needs? How do we do a
better job from a testing standpoint on the next project?

It has been my personal experience throughout my career that many organizations
have made these decisions based solely on gut feeling and emotions. I have especially
found this to be true in a smaller company with little or no resources dedicated to
software quality processes or initiatives. Unfortunately the consequences of adhoc
planning and making uninformed decisions have resulted in the inability to make product
ship dates for causes such as product quality problems or inadequate testing. These types
of decisions have also resulted in products being released prematurely, resulting in high
product rework costs and customer satisfaction issues. High product rework costs cannot
only affect an organization financially, they can also cause delays in follow product work,
which affects time to market concerns.

Fortunately these problems can be avoided through the use of software metrics.
There are many metrics that can be used to provide the project development team with the
information needed to track the condition of the product and the condition of the test
effort during the development cycle. This information can be used to aid the team to
make informed decisions about the product. There are also metrics that can be used by the
test team to aid in the planning stage and execution stage of the test effort.

2

A Practical Approach To Using Software Metrics

The most difficult part of the use of metrics is not interpreting metrics
themselves, it is determining the information needed from the metrics and then choosing
the correct metric to yield the desired information. This paper will focus on using a
specific set of software metrics I have used as a software quality manager during the
development cycle, and what information the metrics have provided me. It will also
discuss the individual metrics within the set, including what each metric reports, where
the metric is best used in a project, the advantages and disadvantages (if applicable) of
each metric, and how certain metrics cross check each other. Finally, it will focus on how
to implement the use of software metrics.

Metrics are tools at our disposal to aid us and flag us when things are not going
along as we had planned. Metrics are not foolproof and results may vary from time to
time. However, Metrics are an excellent tool to look for trends. When a metric is
deviating from a stated or predicted trend it gives us the opportunity to go investigate the
reason for the deviation. In some cases we may discover real problems and may need to
address something in our product development effort. In other cases we may find that the
trend we have predicted is inaccurate and may need to adjust our information. In any case
it is better understand potential problems early when something can be done, then when it
is too late.

2.0 Sizing the test effort
In all of the organizations I have been associated with, the overall charter of the

group has been to find and identify defects in the product. Based upon this charter a few
of the challenges in the planning effort have been to understand where to look for defects,
understand how to look for defects, and understand if all the defects have been found.
Additional challenges are figuring out how to measure the fact that we are getting
anywhere close to finding all the defects we need to find, where are the risk areas in the
product, and how much time is it going to take to find all the defects.

When the Q.A. manager or project leader is sizing up the test effort for an
upcoming project, there are many factors that need be taken into account when trying to
figure out all the defect information discussed above, and planning the testing resources
to find them. One basic element to resource planning is if you do not understand how
many defects you have to find, how can you plan for finding them? I have not found one
surefire method to provide all the information I need to estimate this work accurately, nor
do I believe there is one. However I would rather use a method that gives me some
measurable information over an adhoc guessing method. In choosing a method for
measurable resource planning one must be willing to accept the fact that no method is
completely accurate and each method will most likely have to be used and refined
throughout multiple project cycles.

3

A Practical Approach To Using Software Metrics

2.1 Planning Challenges
When looking at the factors and addressing the challenges, there are variables in

the planning process depending upon whether the project is based upon new product
development or based upon making enhancements to an existing product. One also has to
look at variables in the coding methodology, such as whether the development effort
consists of porting existing code to a new platform, enhancing existing code or
developing brand new code.

Other challenges are based upon the complexity of the functionality of the
components being developed. Looking at the functional specification should aid in
determining the functional complexity of the component, and aid in designing functional
tests for the component. However, the question remains, will a design from a functional
spec ensure the ability to exercise all the code paths and meet all the test requirements
needed to adequately test the component and find all the defects within the component?
Code coverage tools are an excellent aid to ensure code path coverage and are highly
recommended when ever possible. However, older operating systems and legacy
applications often do not lend themselves very well to code coverage tools and many do
not have any tools associated with them.

Once coverage is planned from a functional specification, will there be enough
information to define the total time needed to test the component and if so, how can one
measure success or failure from a time standpoint? One way to track this information is to
make time estimate based upon “x” amount of time per command and have the tester
executing the tests keep a record of the time spent to verify the accuracy of the estimation.
To ensure some consistency the functional test matrix could include a time section with
specific parameters defined around the recording of time, to handle exceptions such as
time taken to reproduce problems, etc. Note that the data out is only as good as the
individuals keeping the records. Another factor, is keeping the records can be very time
consuming and interfere with hands on test time. The data could also vary if different
testers are inputting the data, regardless of the process parameters. This form of time
estimation would have to be done with every component in the product, which could be a
very time consuming effort in itself.

When taking all these factors into account and attempting to formulate a
somewhat accurate resource plan, it is helpful to find a method that takes all factors into
account in an overall sense. The method to be discussed allows a project planner to come
up with a measurable mean to predict the number of resources needed during a project by
attempting to understand the amount of defects to be found. The method can also use
other metrics discussed further on in this paper to track the number of defects found
throughout the project life cycle.

4

A Practical Approach To Using Software Metrics

2.2 Defect Prediction Metric
 The defect prediction metric is usually derived at the beginning of a project. The
defect prediction method is based upon a fairly simple premise, it estimates the number of
defects that might be present in a software product. Then it calculates how long it takes
your organization to find the defects. As discussed earlier, no method is totally accurate.
However, during my experiences I have found that this method provides a good baseline
for resource estimates, and it can be refined and updated from project to project. When
first starting out with the defect prediction method it may be a good idea to
use it in conjunction with an organization’s existing resource methods for comparison
purposes.

In order to really implement the defect prediction method, it is best to have some
sort of existing product history in the company. This may be a difficult approach to use
for a company producing their first ever product. It also may be difficult to use if your
company has not practiced the recording of defects when a defect is found. One of the
more important things to remember when using the defect prediction method is an
organization needs to start somewhere.

2.3 Calculating Defects
 Defects prediction is based upon known or estimated lines of code and measured
defects per KLOC. (KLOK = 1,000 line of code). It obviously is not possible to get the
defect per KLOC numbers on a new project. However, by looking at historical data in
previous product development efforts, a baseline for defects per KLOC can be formed for
initial use in the defect prediction effort. If an organization is practicing code reviews, it
is important to understand if the defect information is recorded and included in the KLOC
number when planning test resources. It has been my experience, that an estimate of 50
defects per KLOC is a good starting point to work from, when initial data is unavailable.

 Another caveat is that predicting the lines of code to be produced is not an exact
science. The lines of code prediction will have to be an estimate and the estimate needs to
come from the engineering development team. In the past I have learned, when a
developer specs out their work, the developer is usually pretty close at estimating their
lines of code. I have also learned that using a 10% plus or minus factor in the estimate is a
safe practice.

Once the numbers of lines of code are predicted, and the average defects per
KLOC have been established, divide the total lines of code by 1,000 and then multiply
that number by the average defects per KLOC number. This provides the baseline number
for predicted number of defects in the product. This baseline can be set for the entire
product for one component. Once the baselines are set, using the defect find rate curve for
defect tracking can be measured against the baseline during the life of the product
development project. One note of caution, after a baseline has been set it is important to
A Practical Approach To Using Software Metrics

5

work with the test team to ensure the defect prediction metric is not viewed as a quota
system. If the rate is achieved and defects are still being found, work should still continue
in the defect finding efforts.

The defect find rate curve can also be broken down by components and used with
the defect prediction method to measure the test effort via component. There is an
advantage to tracking the defect rate by component. It allows the test team to understand
if a particular test strategy is effective by measuring defects found against the baseline. If
a test strategy has been defined, a baseline has been established and the defect yield has
peaked far before the baseline has been reached, the test team now has a flag that the test
strategy may have to be re-evaluated. Re-evaluation of the test strategy could consist of
changing the test tactics, or it could mean that the original defect prediction rate is
incorrect. In either case it alerts the test team to potential issues in the component.

2.4 Tracking Defect Prediction Results
Using the defect find rate curve along with the defect prediction method allow the

product development team to track several things. As in component level tracking, it flags
potential problems with test strategies, if the find rate curve levels out far before the
defect prediction rate has been met. It allows the team to track defect prediction accuracy
and helps the team adjust it’s defect prediction methods. If the defect find rate is still
rising, the defect prediction metric has not been met and if the product is close to it’s
scheduled ship date, it flags potential quality risks with the product. If this is tracked on a
weekly basis, actions could be taken to add or shift resources to different areas of the
product.

2.5 Utilizing Defect Prediction Results
How can the defect prediction method be used in resource projections? Once the

baseline is established, the product team needs to understand what it will take to find the
amount of projected defects. From a human resource standpoint it is advantageous to
understand the rate at which the test team can find defects. This can include all methods
of finding defects from code reviews to automated test development to test execution.
Understanding this will allow the product team to understand how many defects can be
found by existing test resources in the time allotted for the product development project
and if additional resources will be needed to find the rest of the defects. If no additional
resource can be added, it allows the product development team to understand potential
quality risks come product release time.

Summarizing the perceived advantages of understanding and using the defect prediction
method:

• Combined with a Defect-Find-Rate-Per-Hour metric, the defect prediction
metric helps the product development team understand the scope of the test
effort and how many resources will be needed to test the product.

A Practical Approach To Using Software Metrics

6

• Provides the product development team an estimate of how many defects
remain in the project at any one point in time.

• Combined with the Defect-Find-Rate Curve metric, the defect prediction
metric can provide the product development team information to determine if
the product test strategy for identifying software defects is on target.

Summarizing the perceived risks of using the defect prediction method:
• Defect prediction is not 100% precise; some disparities will exist between

predictions and reality.
• May be viewed as a quota system and the defect finding effort might diminish

after all the predicted defects are found.
• This metric might not work perfectly the first time it is used. It might take a

few product releases to learn how to more accurately estimate product defects.

3.0 Defect Find Rate Curve Metric
The defect find rate curve metric displays the total amount of defects found during

the product development life cycle. This metric is a cumulative find rate of total defects
over time. This metric is charted by a graph displaying the number of software defects
over time. How does this metric provide value to the product development team? By
using this metric the team can monitor defect discovery rates, and cross check defect
prediction metrics as previously discussed.

3.1 Defect Discovery Rates
The defect find rate curve aids the product development team in observing at what

point during a project the majority of defects are found. It can be argued that this metric is
not totally accurate and the slope of the defect discovery rate will increase and decrease
depending upon how the test effort is planned. However, by understanding trends and
setting defect discovery goals, this metric can measure the test effort against the planned
goals, and raise flags when things are not going as planned.

One disadvantage of this metric is that it can not pickup detailed spikes and
display peaks and valleys to look at more detailed information; using a weekly defect find
rate metric would be more beneficial. The weekly defect find rate metric will be
discussed in the next section.

A summary of potential information this metric can highlight:
• Defects are found as predicted and the product development team believes the

test effort is on track.
• The defect find rate curve has not flattened out in the final stages of product

development, indicating more defects are still in the product.
• A quantity of defects remains based upon the original Defect Prediction

Metric.

A Practical Approach To Using Software Metrics

7

• The defect find rate curve has flattened out too early in the product
development effort and alerts the product development team to re-adjust the
test effort to identify the remaining defects.

• Indicates where the bulk of the testing effort is most effective.

3.2 Examples of Defect Find Rate Graph
Looking at the graph, in theory the find rate climbs steeply during the early to

middle stages of development. As product development enters the final stages, defects
should be harder to find and the curve should flatten out. Figure 1 displays a project
where the defect discovery has decreased over time and the defect find rate curve has
flattened out.

Find Rate

0

50

100

150

200

Ju
ne

Ju
ly

A
ug

S
ep O
ct

N
ov

D
ec

M
ar

A
pr

M
ay

Time

D
ef

ec
ts

Find Rate

Figure 1

Figure 2 displays a project where the defect discovery has failed to decrease over time
and the defect find rate curve continues to climb.

Find Rate

0
50

100
150
200
250
300

Ju
ne

Ju
ly

A
ug

S
ep O
ct

N
ov

D
ec

M
ar

A
pr

M
ay

Time

D
ef

ec
ts

Find Rate

Figure 2

A Practical Approach To Using Software Metrics

8

This metric can also be designed to display a comparison between total defects versus
must fix defects as shown in Figure 3.

Find Rate

0

20
40

60
80

100
120

140
160

180
Ju

ne

Ju
ly

A
ug

S
ep O
ct

N
ov

D
ec

M
ar

A
pr

M
ay

Time

D
ef

ec
ts

Total

Must fix

Figure 3

4.0 Weekly Defect Find Rate
This metric charts defects found on a week-by-week basis. This metric plots defects
found on a weekly basis and is charted by a graph displaying the number of software
defects found over time. How does this metric provide value to the product development
team? This metric is an excellent tool for monitoring the test effort and condition of the
product.

4.1 Monitoring The Test Effort
By understanding trends and setting defect discovery goals, this metric can

measure the test effort against those goals and raise flags when things are not going as
planned. For example, when planning the test effort it should be expected that the defect
discovery levels will be higher when testing code new to the product, either in the form of
new features, or enhancements to existing features. Using the weekly defect find rate, a
product development team can monitor the test effort to see if defects are actually being
found when the testing is scheduled to take place.

4.2 Monitoring The Product Condition
This metric can also be used to help determine product quality. In theory the find

rate should stay high during the early to middle stages of development. As product
development effort enters the final stages, defects should be harder to find and the weekly
find rate should decrease.

Summary of potential information this metric can highlight:
• Defect find rates are decreasing during final stages of product development.

A Practical Approach To Using Software Metrics

9

• High rate of defects are still found during final stages of product development.
• The time needed to find problems during all stages of the test effort.
• Identifies proper test effort is taking place during product development.

4.3 Examples Of Weekly Defect Find Rate Graphs
Figure 4 displays a graph where the majority of the defects have been found

during the early to middle stages of the test effort. Some of the spikes may indicate time
required to develop test suites, time to reset test beds, or personnel issues.

Figure 4

Weekly Defect Find Rate

0

5

10

15

20

25

1/
7/

96

1/
21

/9
6

2/
3/

96

2/
17

/9
6

3/
3/

96

3/
17

/9
6

3/
31

/9
6

4/
14

/9
7

4/
28

/9
7

5/
11

/9
6

5/
25

/9
6

6/
7/

96

6/
21

/9
6

7/
3/

96

Time

D
ef

ec
ts

Defects

10

A Practical Approach To Using Software Metrics

This graph is also easily tailored to depict the software defect find rate by defect
severity levels as displayed in Figure 5.

Weekly Defect Find Rate

0

5

10

15

20

25
1/

7/
96

1/
21

/9
6

2/
3/

96

2/
17

/9
6

3/
3/

96

3/
17

/9
6

3/
31

/9
6

4/
14

/9
7

4/
28

/9
7

5/
11

/9
6

5/
25

/9
6

6/
7/

96

6/
21

/9
6

7/
3/

96

Time

D
ef

ec
ts

Total

Must Fix

Figure 5

5.0 Weekly Closure Rate
This metric charts the software defect closure rate on a week-by-week basis. The

metric is charted by a graph displaying closed software defects over time. How does this
metric provide value to the product development team? It is an excellent tool for
monitoring the progress of defect fixes, assessing the defect regression strategy and
understanding the product’s stability.

5.1 Monitoring The Progress Of Defect Fixes
By charting the fix rate on a weekly basis the product development team can

easily assess the progress of the Open Defect fix rate. By understanding trends and setting
goals for defect fixing, the weekly defect find rate can flag the product development team
when things are not going as planned. For example; if the fix rate is low and there are a
number of outstanding defects that need to be addressed, an adjustment of resources can
be made to increase the defect fix rate.

5.2 Assessing The Defect Regression Strategy
By charting the fix rate on a weekly basis the product development team can

assess the amount of defects that have been fixed, and plan the resources needed to verify
the fixes. If resources cannot be spared to verify the fixes, the potential risk factor can be
assessed at an early stage, and contingency plans can be made. Note that, at first using the
defect fix rate in this capacity does not allow for much up-front planning, however over a
period of a few product releases the product development team can observe patterns and
plan resources for follow on product accordingly.

11

A Practical Approach To Using Software Metrics

5.3 Understanding Product Stability
In theory, at the beginning of product development, the software defect closure rate will
be low. As time goes on, the weekly closure rate should increase as more software defects
are being fixed. During the final stages of product development, the weekly closure rate
should decrease. By charting the fix rate on a weekly basis and understanding trends and
goals the product development team can be flagged when things are not going along as
planned. Figure 5 is a sample graph of a product becoming stable as time goes on.

5.4 Find To Fix Comparison
Comparing the weekly defect find rate with the weekly fix rate can also be a

useful aid when determining product stability. This gives the product development team a
quick snap shot of the condition of the product under development.

Summary of potential information this metric can highlight:
• A low closure rate versus a high rate of opened defects indicates that the

product might not be very stable. Doing this on a week-by-week basis should
call attention to this problem early, so it is possible to:

⇒ Make adjustments in resource allocation to correct the problem.
⇒ Determine if the product development schedule is at risk.

• If the closure rate is low and the known defect rate is low, then the product is
fairly stable.

5.5 Examples Of Weekly Defect Find Rate Graphs
Figure 6 displays a graph where the majority of the defects have been fixed at an

early enough time to allow for regression testing to take place on a fairly stable product.

Weekly Fix Rate

0
5

10
15
20
25
30
35
40
45

1/
7/

96

1/
21

/9
6

2/
3/

96

2/
17

/9
6

3/
3/

96

3/
17

/9
6

3/
31

/9
6

4/
14

/9
7

4/
28

/9
7

5/
11

/9
6

5/
25

/9
6

6/
7/

96

6/
21

/9
6

7/
3/

96

Time

D
ef

ec
ts

Total

Figure 6

12

A Practical Approach To Using Software Metrics

Figure 7 is a sample graph of a product failing to become stable as time goes on. Please
note the amount of activity at the end of the project. All the last minute changes never
allow the product to become stable.

Weekly fix rate

0
5

10
15
20
25
30
35
40
45

1/
7/

96

1/
21

/9
6

2/
3/

96

2/
17

/9
6

3/
3/

96

3/
17

/9
6

3/
31

/9
6

4/
14

/9
7

4/
28

/9
7

5/
11

/9
6

5/
25

/9
6

6/
7/

96

6/
21

/9
6

7/
3/

96

Time

D
ef

ec
ts

Total

Figure 7

This graph is easily tailored to depict the weekly closure rate by defect severity levels as
displayed in Figure 8.

Weekly Fix Rate

0
5

10
15
20
25
30
35
40
45

1/
7/

96

1/
21

/9
6

2/
3/

96

2/
17

/9
6

3/
3/

96

3/
17

/9
6

3/
31

/9
6

4/
14

/9
7

4/
28

/9
7

5/
11

/9
6

5/
25

/9
6

6/
7/

96

6/
21

/9
6

7/
3/

96

Time

D
ef

ec
ts

Total

Must Fix

Figure 8

13

A Practical Approach To Using Software Metrics

Figure 9 depicts a graph comparing the weekly defect find rate with the weekly fix rate.

Find To Fix Comparison

0
5

10
15
20
25
30
35
40
45

1/
7/

96

1/
21

/9
6

2/
3/

96

2/
17

/9
6

3/
3/

96

3/
17

/9
6

3/
31

/9
6

4/
14

/9
7

4/
28

/9
7

5/
11

/9
6

5/
25

/9
6

6/
7/

96

6/
21

/9
6

7/
3/

96

Time

D
ef

ec
ts Find Rate

Fix Rate

Figure 9

6.0 Total Resolved-to-Unresolved Defect Rate
This metric compares the total number of open and unresolved software defects

against the total number of resolved software defects. For this case unresolved defects
refer to open. Deferred defects, resolved refers to fixed, closed and rejected defects. This
metric is charted by a graph displaying unresolved and resolved defects
over time. How does this metric provide value to the product development team? It
metric is a tool for displaying the gaps between the amount of total unresolved defects to
amount of total resolved defects.

6.1 Comparing The Gaps
In theory, as the product development effort progresses the amount of unresolved

defects should exceed the amount of resolved defects during the early stages of
development. Eventually, the amount of resolved cases should exceed the amount of
unresolved cases. At this point, the quality of the product potentially should be
improving.

This metric is best used as a high level snapshot when projecting product quality. On it’s
own this metric should not be used solely to project product quality. In many cases the
amounts of unresolved to resolved defects may fluctuate for a period of time. It is best to
observe the gap between unresolved and resolved defects widen, before projecting any
quality claims. This metric has increased value when used in conjunction with the weekly
find rate and fix rate metrics.

14

A Practical Approach To Using Software Metrics

6.2 Examples Of Unresolved to Resolved Graphs
Figure 10 depicts a project where the unresolved defects and resolved defects

fluctuate before the gap widens.

Unresolved to Resolved Defect Ratio

0

50

100

150

200

250

300

350

1/
7/

96

1/
21

/9
6

2/
3/

96

2/
17

/9
6

3/
3/

96

3/
17

/9
6

3/
31

/9
6

4/
14

/9
7

4/
28

/9
7

5/
11

/9
6

5/
25

/9
6

6/
7/

96

6/
21

/9
6

7/
3/

96

Time

D
ef

ec
ts Unresolved

Resolved

Figure 10

7.0 Taking the First Step To Get Started
Now that a basic set of metrics have been discussed, the next question is; is this

information something that would be valuable to your product development team? If the
answer is yes, what are the steps your team needs to take to move forward? Every product
development team’s needs are different. A recommended first step to any product
development team is getting together and analyzing the current issues occurring during
the product development cycle, then formulating a plan to address each issue.

As far as using metrics are concerned, the first and foremost step is to formulate
quality and test goals around the product development effort. If the product development
team does not understand what it needs, a metrics program cannot provide much
information. There are many publications on the market today that discuss setting quality
and testing goals and using metrics to check the actual results against the goals. It is
highly recommended, before embarking on any program. To review at least one
publication that may be beneficial to a product development team wanting to implement
quality metrics.

Finally, whether your product development team chooses to use the methods and
metrics discussed in this paper, or it chooses a completely different set of metrics, it is
absolutely worthwhile to take the time and implement some form of software quality
metrics. Immediate results may not be achieved, and it may take some time to understand

15

A Practical Approach To Using Software Metrics

how to set goals and use the information, but eventually the time invested will payoff, and
the overall payoff will be developing a better software product.

Some Interesting Reading

Capers Jones, Software Quality Analysis And Guidelines For Success. International
Thompson Computer Press, 1997

William Perry, Effective Methods For Software Testing. Wiley-QED, 1995

Tom Demarco, Controlling Software Projects: Management, Measurements and
Estimations. Prentice Hall, 1982

Stephen H. Kan, Metrics And Models In Software Quality Engineering. Addison Wesley,
1995

Robert B. Grady, Deborah L. Caswell, Software Metrics: Establishing A Company Wide
Program. Prentice Hall, 1987

Robert B. Grady, Practical Software Metrics For Project Management And Process
Improvement. Prentice Hall, 1992

1

Quality Week Europe‘98 Copyright Allianz Lebensversicherungs-AG and Fraunhofer IESE 1998 1/20

Quality Assurance Technologies
for the EURO Conversion

Industrial Experience at Allianz Life

ESSI PIE No. 27839
HYPER

Brigitte Klein
Allianz Lebensversicherungs-AG

Reinsburgstr. 19
D-70178 Stuttgart

Lionel Briand, Bernd Freimut,
 Oliver Laitenberger, Günther Ruhe

Fraunhofer IESE
Sauerwiesen 6

D-67661 Kaiserslautern

Quality Week Europe‘98 Copyright Allianz Lebensversicherungs-AG and Fraunhofer IESE 1998 2/20

• Introduction - The Company and its IT Department

• EURO Conversion - Characteristics and challenge

• HYPER Project - Motivation and objectives

• Improvement Approach - Software process improvement
 program and results

• Technology - Perspective-based inspections,
 statistical quality control,
 goal-oriented measurement

• Procedure - People, process, and technology

• Initial Results - Initial evaluations and assessments

• Lessons Learned - Initial experiences

• Outlook - Further actions

Session Agenda

2

Quality Week Europe‘98 Copyright Allianz Lebensversicherungs-AG and Fraunhofer IESE 1998 3/20

The Company: Alliance Life Assurance

• member of the world-wide Allianz Group

• market leader of life assurances in Germany

• premium income DEM 12.5 billion, insured sum DEM 305 billion

• number of insurance policies: 7,723,000

• currently 5.500 employees

• further information on web-page: http://www.allianz-leben.de

The IT Department

• more than 500 employees, 350 of them application developers

• development of commercial software, mainly online transaction applications
with very large databases (about 8500 programs)

• building up a new generation of client-server applications

• our goal: to reach level 3 to 4 of the SEI maturity model in the Year 2000

Introduction

Quality Week Europe‘98 Copyright Allianz Lebensversicherungs-AG and Fraunhofer IESE 1998 4/20

Characteristics

• about 100 employees involved in the project

• overall effort: about 300 person months (4 IT / 6 User Departments)

• project with several levels and final dates

• involving about 250 programs (PLI, C, ASS), 550 amount fields,
14 neighbouring information systems concerning the adaptation

Challenge

• strategic importance for the company as market leader

• competition is largely based on quality and functionality of IS

• to conclude life insurance contracts either in DEM or in EURO at the
beginning of 1999

• to master the complexity and large extent of the conversion

• to guarantee the essential quality of the final software systems

EURO Conversion project

3

Quality Week Europe‘98 Copyright Allianz Lebensversicherungs-AG and Fraunhofer IESE 1998 5/20

Improvement approach
Software process improvement program (since 1993)

• to quantify the quality of products & processes (È measurement programs)

• to better understand the current situation and its causes

• to identify and implement improvements

• to detect, formalise, and structure experience (È experience base)

• to continuously improve the maturity of processes and products

Results

• about 30% of the development effort is testing effort

• about 50% of detected defects originate in early phases

• too much rework required

• requirements not stable enough

• communication between project members must be improved

• effectiveness and efficiency of inspections are too low

Quality Week Europe‘98 Copyright Allianz Lebensversicherungs-AG and Fraunhofer IESE 1998 6/20

HYPER Project
“H igh Quality of Software Products by Early Use of Innovative Reading

Techniques”

Motivation

• to improve software quality through usage inspections with PBR

• to enhance customer satisfaction through early verification of requirements

• to improve communication between project members

• to improve control of the overall verification and validation process

• to use the results from the HYPER Project for broader use of PBR

Objectives

• to improve productivity by finding defects earlier

• to reduce the number of defects originating in prior phases

• to reduce test effort and overall effort

• to improve customer satisfaction

4

Quality Week Europe‘98 Copyright Allianz Lebensversicherungs-AG and Fraunhofer IESE 1998 7/20

Fraunhofer IESE in Kaiserslautern
Fraunhofer Society (FhG):

– 48 institutes

– ~ 9,000 employees

– budget of 1.3 billion DEM

FhG IESE:
– 60 full-time employees (45

scientific) from 9 countries on 3
continents
Head: Prof. Dr. Dieter Rombach

– Sister institute near Washington
D.C.
Head: Prof. Dr. Vic Basili

Further Info → Visit our WWW page:
 http://www.iese.fhg.de

4BBSCSÓDLFO

,BJTFSTMBVUFSO

*U[FIPF

3PTUPDL

#FSMJO

1PU[EBN

.BHEFCVSH

8JMEBV

%SFTEFO

$IFNOJU[

+FOB

*MNFOBV

)BNCVSH

#SFNFO

)BOPWFS

4DINBMMFOCFSH

%PSUNVOE

%VJTCVSH

"BDIFO

&VTLJSDIFO

%BSNTUBEU

8ÓS[CVSH

&SMBOHFO

8FSUIFJN

,BSMTSVIF

1GJO[UBM

4UVUUHBSU

'SFJTJOH

.VOJDI

)PM[LJSDIFO

(BSNJTDI�

1BSUFOLJSDIFO

'SFJCVSH

8FJM

8JOUFSTXFJMFS

0CFSQGBGGFOIPGFO

4U��*OHCFSU

#SVOTXJDL

$MBVTUIBM�

;FMMFSGFME

)BMMF

5FMUPX

/VSFNCFSH

Quality Week Europe‘98 Copyright Allianz Lebensversicherungs-AG and Fraunhofer IESE 1998 8/20

Perspective-based Inspections

5

Quality Week Europe‘98 Copyright Allianz Lebensversicherungs-AG and Fraunhofer IESE 1998 9/20

Problem • Software quality is a multi-dimensional concept
– Quality properties depend on responsibilities in the

development process
• Inspectors get little guidance

– Inspection result is not repeatable
• Inspectors replicate each others effort

– Effort for additional inspectors is not justified

PBR
Solution

• Read a software artifact from specific perspectives of interested
people (customer).

• Provide procedural descriptions (scenarios) for how to perform
the checking.

• Let inspectors create and document intermediate checking
products in order to make results repeatable.

• Assign perspectives to inspectors (n:n).

Perspective-based Reading

Quality Week Europe‘98 Copyright Allianz Lebensversicherungs-AG and Fraunhofer IESE 1998 10/20

Perspective-based Reading (2)

} What quality factors are interesting?

} How to extract information?

} How to probe extracted information?

PBR Scenario

Introduction

Instructions

Questions

6

Quality Week Europe‘98 Copyright Allianz Lebensversicherungs-AG and Fraunhofer IESE 1998 11/20

• Inspections are valuable since defects are detected early, before
they propagate to subsequent development phases.

• Maximize number of defects found by re-inspecting defect-prone
documents.

• Objective decision when to re-inspect.

• Estimate the number of remaining defects with Defect Content
Models.

How to decide when to re-inspect

Context

Goal

Problem

Solution

Quality Week Europe‘98 Copyright Allianz Lebensversicherungs-AG and Fraunhofer IESE 1998 12/20

Defect Content Estimation
• Origin in biology: Estimate the size of populations

based on incomplete samples

• Based on the overlap of detected defects, the total
number of defects can be estimated

• Various models with different assumptions exist.

• Count number of inspectors detecting a defect. Sort
defects descendingly. Fit curve through data points.

Capture-
Recapture
Models

Detection Profile
Method

Application of Detection Profile Methods

defect index [x]

nu
m

be
r

of
 in

sp
ec

to
rs

 d
et

ec
tin

g
de

fe
ct

 [
m x

]

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

y=5.155*exp(-0.087*x)+eps

predicted total
number of defects

7

Quality Week Europe‘98 Copyright Allianz Lebensversicherungs-AG and Fraunhofer IESE 1998 13/20

• Proportion of test effort saved
due to the introduction of inspections

inspectioncost = avg. costs to find and fix defect in inspections
testcosts = avg. costs to find an fix defect in test

• Evaluate benefits of technology transfer

• By developing benchmarks, inspections can be
compared within an organization or with industry

• If necessary, combine objective measurement and
subjective measurement.

Measuring cost-effectiveness
How?

Why?

Issues?

testcostsctstotal_defe#

costinspection_defectsinspection#testcosts_defectsinspection#

×
×−×

Quality Week Europe‘98 Copyright Allianz Lebensversicherungs-AG and Fraunhofer IESE 1998 14/20

• GQM Goal:

� Explicitly specified based on the improvement
goals of the organization

� Defined with respect to:
object, purpose, quality focus, from a
viewpoint, relative to a particular context

• Question: Operationally defines GQM goal

• Model:Specifies how to combine & compute
measurement data to answer a question

• Metric: Associated with question(s) to answer
them in a quantitative way

Interpretation

D
ef

in
iti

on

Goal

Q1
Model1

Q2
Model 2

Q3
...

M1 M2 M3 ...

Measurement: The GQM Approach

8

Quality Week Europe‘98 Copyright Allianz Lebensversicherungs-AG and Fraunhofer IESE 1998 15/20

Measurement Goals for Allianz
• Characterize the inspection approach

– effectiveness (i.e., its capability to find defects)

– efficiency (i.e., its cost-effectiveness)

– factors impacting effectiveness and efficiency

– cost-benefits

• Characterize the defect slippage

– Do inspections decrease analysis and design defects detected in
testing?

• Characterize the project’s effort distribution

– Do inspections reduce the testing and rework effort?

• Evaluate Defect Content Models

– Can they be applied within Allianz?

Quality Week Europe‘98 Copyright Allianz Lebensversicherungs-AG and Fraunhofer IESE 1998 16/20

ProcedureProcedureProcedure

Process

Technology

People

The people
• teach the technology and motivate all participants
• no boss as a participant in the inspection meeting
• no personnel data evaluations (base of confidence)
• do not detect defects, but gain findings (-> positive atmosphere)
• only interpret data evaluations together with the project members
• “Everybody is a winner, nobody a looser!”

Motivate & Coach

Evaluate & Improve

 Use & AdaptIntroduction

Implementation

Training

9

Quality Week Europe‘98 Copyright Allianz Lebensversicherungs-AG and Fraunhofer IESE 1998 17/20

The process (what)

À The inspection process:

• early planning inspections (project deliverables, perspectives, deadlines)

• developing and concluding the scenario for each perspective

• preparation of each inspection by moderator, author, and inspectors

• performing the inspection meeting and finishing the inspection

À The evaluation process:

• developing the GQM Plan

• investigating, collecting, and evaluating data concerning the GQM Plan

• feedback sessions together with the project members

• store new experience in our experience base for future reuse

The technology (how)

• perspective-based inspections; goal-oriented measurement

Procedure

Quality Week Europe‘98 Copyright Allianz Lebensversicherungs-AG and Fraunhofer IESE 1998 18/20

Lessons Learned
Initial experiences regarding the technology

• understandable and practice-oriented technology transfer

• especially suitable for deliverables with different perspectives

Initial experiences regarding the process
• scenarios especially helpful for inspectors with less experience

• all perspectives at the same time at one table !

• templates for inspection minutes & data investigation very helpful

• considerable additional effort for project & coaching team

Initial experiences regarding the people
• early commitment with the management to get qualified inspectors

• constructive atmosphere during the inspection meeting

• acceptance of later users increases considerably by involving them early

• motivation of all project members through high identification with the results

10

Quality Week Europe‘98 Copyright Allianz Lebensversicherungs-AG and Fraunhofer IESE 1998 19/20

Initial Results
À Four inspections of user-interface descriptions

• distribution of product related findings according to
� severity: 78.3% are very critical (A) or critical (B) findings
� impacts*: user-friendliness 74.5%, functionality/correctness 19.1%,

standards/directions 6.4%

• � causes*: ambiguous 29.8%, alternative 21.3%, new 19.1%,
extraneous 17%, others 12.8%

• effectiveness: 2 findings*/page; efficiency: 2.2 findings*/person day

• initial effort - benefit (È rate 1: 1.8) :
 � 28.1 person days (inspection effort)
 � 51.5 person days (primary benefit = estimated effort savings)

• additional benefits: esp. higher user satisfaction, relief of the call-center

• Defect Content Models: - Detection Profile Method provides plausible
 estimates

Legend: * (findings of severity A + B)

Quality Week Europe‘98 Copyright Allianz Lebensversicherungs-AG and Fraunhofer IESE 1998 20/20

Outlook
Further actions

• perform further inspections

• continue measurement program concerning the GQM Plan

• perform overall data evaluations at the end of the project regarding to
ROI, defect slippage to testing, rework effort, testing effort, overall effort,
user satisfaction, etc

• interpret analysis results together with the project team

• gather experience & continue “lessons learned”

• store our experience in our experience base for future reuse

• develop experience package for measurement and PBR inspections

• use the results from the HYPER project for optimizing the
inspection process and for broader use of PBR inspections

• publish our results and experiences internally and externally

Page 1

Quality Assurance Technologies for the EURO Conversion – Industrial Experience at Allianz
Life Assurance

Lionel Briand, Bernd Freimut, Oliver Laitenberger, Günther Ruhe Brigitte Klein
Fraunhofer IESE Allianz Lebensversicherungs-AG
Sauerwiesen 6 Reinsburgstrasse 19

D-67661 Kaiserslautern D-70718 Stuttgart
{briand,freimut,laiten,ruhe}@iese.fhg.de Brigitte.Klein@Allianz.de

Abstract
Early software quality assurance is essential to mastering EURO conversion projects. Allianz Life
Assurance sets a specific priority for it by using innovative software inspection technologies, that is,
Perspective-based inspections, in the early phases. In addition, quantitative models are used to control
the defect content of the inspected artifacts as well as to assess the perspective-based inspection
approach. This paper describes these technologies, their transfer to Allianz Life Assurance, and their
impact on software quality.

1 Introduction
The unified European currency (EURO) implies substantial technical changes to existing software

systems. Each change in a software system may inject new defects, which decreases its quality. A
failure resulting from a low quality EURO adaptation would have substantial consequences for a
company. Among others, the company’s image and reputations would be damaged. Apart from high
quality, a further pressing requirement is that the EURO transition must be completed by December 1st,
1999 - the end of the financial year. This deadline causes enormous time pressure, which is considered
a prevalent defect driver in software projects.

The Allianz Life Assurance, which is a member of the worldwide Allianz Group and market leader
of life-insurance companies in Germany set up a strategy for adapting their software system to the
EURO. In 1995, a working group was founded with the task of intensively investigating the effects of
the unified European currency on the financial markets. Another project group dealing with the
technical and organizational effects was created in 1996. This project group listed a number of
measures that are necessary in connection with the introduction of the unified European currency.
Finally, Allianz Life founded a EURO Core Team for coordinating the internal adaptation process. The
core team consists of staff members of those areas of the company that are affected by the EURO
introduction. This includes almost all areas of the company, since insurance products and their rates are
just as much affected by the unified currency as payment transactions, billing, and sales.

Within the EURO conversion project at Allianz Life, there is a specific task force in charge of
maintaining the high quality of its existing software systems. It investigates innovative quality
assurance technologies in the framework of the ESSI Process Improvement Experiment (PIE)
"HYPER" (project number 27839). This ESSI PIE is part of an overall software quality improvement
program performed at Allianz Life Assurance. The results of the PIE will be included in the entire
improvement program so that future projects can benefit from them.

The Fraunhofer Institute for Experimental Software Engineering (FHG IESE) is a subcontractor in
the ESSI PIE. FhG IESE is one of the leading institutions in the area of applied software engineering
research and technology transfer. It provides expertise in innovative quality assurance technologies as
well as in their qualitative and quantitative evaluation.

The transfer of innovative software inspection technologies to the Allianz EURO conversion
projects represents the core of the ESSI PIE. Software Inspection is an industry-proven best practice for
software quality assurance. They can have a resounding effect on reducing rework cost and delivery
time, because a reduced number of defects slip through successive development phases. This is
especially the case when software artifacts developed early in the life cycle (e.g., requirements and
design artifacts) are inspected. However, to exploit their full potential, software inspection must call for
a close and strict examination of the inspected artifact. This requires systematic reading techniques that
tell inspection participants what to look for and more important how to scrutinize a software artifact for
defects.

However, existing inspection approaches often lack systematic reading techniques. To overcome
this limitation, Allianz Life Assurance is performing Perspective-based inspections on their
requirements and design artifacts. Perspective-based inspections leverage the basic inspection approach
of Fagan and others [Fagan, 1976] [Gilb and Graham, 1993] with the Perspective-based reading

Page 2

technique (PBR) [Basili et al., 1996]. PBR defines specific inspection viewpoints from which to inspect
an artifact. In addition, PBR provides guidance for inspection participants on how to scrutinize a
software artifact in a systematic manner.

Since Allianz Life Assurance achieved promising results with Perspective-based inspection in
previous projects, they decided to investigate its effect on artifact and process quality in the context of
the EURO conversion project. The main objective of this investigation is to optimize their inspection
parameters, such as effectiveness (i.e., the capability of detecting defects) and efficiency (i.e., the cost-
effectiveness) of Perspective-based inspections.

The vehicle for this investigation is goal-oriented measurement according to the
Goal/Question/Metric paradigm (GQM) [Briand et. al.,1997a], [Basili et. al.,1994]. Based on well-
defined, company-specific measurement goals, the interesting quality aspects (e.g., inspection effort,
testing effort, defects and their cause, characterization of inspected artifacts) as well as the qualitative
and quantitative description of context factors that may impact the quality aspects (e.g., size,
experience of inspectors) are defined. These definitions are refined into measures to be collected during
the measurement program. Analysis and interpretation of the collected inspection data is based on the
characterization and understanding of the organizational context and active participation of project
team members in feedback sessions, where the measurement results are discussed.

To further exploit the collected inspection data for practical application, quantitative models are
built to help manage and optimize Perspective-based inspections. Furthermore, a Return-On-
Investment (ROI) model is developed to evaluate this inspection approach. The model helps assess
whether costs in terms of the up-front investments in Perspective-based inspection remain significantly
lower than benefit in terms of both reduced rework and testing effort. In addition, defect content
models are developed to control inspections. This kind of models, such as Capture-Recapture Models
[Eick et. al., 1992][Briand et. al., 1997b], are used to determine after an inspection how many defects
still remain in the inspected artifact. Based upon the number of remaining defects, one can decide
whether the document has to be inspected for a second time. Thus, the decision about re-inspection is
objective and based on tangible information.

This paper describes each of these technologies in more detail. Moreover, it presents initial
empirical results regarding the application of Perspective-based inspections on requirements documents
in the context of a EURO adaptation project at Allianz Life. Experiences and lessons learned regarding
the technology transfer of innovative inspection technologies are identified. This may be beneficial to
software development projects in general and to other EURO conversion projects in particular.

2 The EURO Conversion - Challenge for Software Development at Allianz
Life

2.1 Allianz Life Assurance and its IT Department
Allianz Life Assurance, the market leader of life insurance companies in Germany, is part of the

Allianz Group, which has become the largest insurance group in the world. Allianz Life currently has
about 5,500 employees and about 200 trainees. The premium income in 1997 was about 12.5 billion
DEM, the insured sum 305 billion DEM with a total number of 7,723,000 insurance policies.

The IT Department of Allianz Life consists of more than 500 employees, with 350 of them being
application developers. As one of the earliest users and innovators of IT Technology, Allianz Life has a
long and very successful tradition of developing commercial software mainly in the area of online-
transaction applications with very large databases.

Allianz Life has about 8,500 programs written in PL/I, C, or Assembler. These programs are mainly
running on a Host environment. Client-server architectures have only recently been established to
achieve higher efficiency and flexibility of development processes. Currently, Allianz Life is building
up a new generation of client-server applications. Another strategic task is to increase the portability of
our systems, due to the demand for higher mobility for improved customer satisfaction.

The Euro conversion costs are estimated to be about 30 million DEM, of which 70% is going to be
EDP adaptation. The total amount of costs for all Allianz companies in Germany will be approximately
110 million DEM. These amounts, however, also contain the investments to be made for the Y2K
conversion. Since all software systems must be checked anyway, there will be synergistic effects.

2.2 The EURO Conversion: Characteristics and Challenge
Ever since July 1st, 1994 the European domestic market for insurance companies has been a reality

in Germany. The introduction of the EURO will further increase price transparency and competition in
Europe. At the same time, there will be greater differences in the quality of products. In the future,

Page 3

quality, size, and international orientation of a company will also provide even greater competitive
advantages on a common European market.

The three-year transition period to the EURO gives companies the chance to keep conversions
flexible. Companies will be affected by the changes in payment transactions and in financial
investment activities directly on January 1st, 1999. It is true though that, at the beginning, the EURO
will only exist as accounting currency.

But there is much more: The entire stock of forms, conditions, stipulations, applications, brochures,
and job instructions must be checked for changes that may be required. The three-year transition period
is therefore appropriate.

Allianz Life Assurance will not convert to the new currency at once. By law, we are required to
convert our contracts by January 1st, 2002. The asset conversion to EURO will be done precisely to the
Cent. If it is necessary to round or even any amounts, it will be done to the benefit of our customers.

If a customer desires to have his contract converted at an earlier date, we will, of course, comply
with that wish. Starting on January 1st, 1999, our payment systems will be multi-currency, meaning that
payments can be made either in DEM or in EURO - independent of the currency of the contract. Thus,
it is not necessary to adjust the insurance contract, if the customer’s bank account is already converted
to EURO. The stipulations of the contract will continue to be valid to the complete extent after the
conversion of the insurance policy inventory to EURO.

In the transition phase, insurance policies may still be concluded on a DEM basis. Starting on
January 1st, 1999 we will also offer our customers the option of entering into new insurance contracts
in EURO. At first, the amounts will only be converted to EURO on the basis of a DEM rate catalog. A
EURO rate catalog is expected to be available no later than the year 2000. In the EURO rate catalog,
conditions and rates will be reflected in whole EURO amounts, i.e., they will also be re-calculated and
re-established. In doing so, we pursue a customer-oriented business policy.

Additionally, Allianz Life Assurance has to adapt applications for the KAG (Allianz Investment
Trust), a subsidiary of the Allianz Group, which will also offer their services in EURO or DEM at the
beginning of 1999. Then, starting December 1st, 1999 at the latest, all customer accounts will be carried
in EURO.

 First of all, we derived a strategy regarding how to implement the new European currency in our
systems to fulfill all customer needs. This concept is very important and determines the flexibility of
our systems in the future. Thus, we need to achieve a very high quality in implementing the customer
requirements.

The EURO conversion project represents an effort of about 300 person months and has started at
the beginning of 1998. It involves about 100 developers from a number of different departments across
the entire organization. To master the complexity and state of the conversion, the project will be
performed in several stages.

About 250 current applications in programming languages like PL/I, C and Assembler, 550 amount
fields and interfaces of 14 neighboring information systems have to be adapted to the new currency.

Competition on the insurance market is largely based on quality and functionality of information
systems. In the past, IT Technology supported mainly the administrative parts. Quality was defined in
terms like performance, reliability, effort of development and operation, etc. Today, competition is
much stronger and services and products must be adjusted to the requirements of the changing markets.
Therefore, criteria like time-to-market, flexibility, ease-of-use, etc. have a much higher significance.

Due to this strategic importance of the EURO Conversion for Allianz Life Assurance, the high
quality of software products is an absolute necessity.

2.3 Improvement Approach at Allianz: Software Process Improvement Program and
Results

The first initiative to improve quality assurance was launched in 1988. Allianz Life applied walk-
throughs and inspections at different stages of the development process. However, a number of issues
were raised. Primarily, there was a deficit in the technological expertise including knowledge on how
to optimally adapt these techniques to the organization. Other reasons were insufficient preparation for
application of the different quality assurance techniques, a lack of training and motivation of the
participating persons, and a disappointing cost-benefit ratio.

The next step in the software process improvement program was initiated in 1993. The analysis
had shown that technology transfer requires more detailed knowledge about software development
processes. Allianz Life understood that process changes must be driven and accompanied by

- specific goals formulated in quantitative form
- an appropriate characterization of the environment (organization, project)
- the definition of essential product, process, and context attributes, and

Page 4

- the application of an evolutionary learning cycle following the experimental approach.
In strong collaboration with the Software Technology Transfer Initiative Kaiserslautern, Allianz

Life initiated a ‘Goal-oriented measurement initiative’ [Günther et. al. 1996],[Leippert and
Ruhe,1998].

The overall framework of all subsequent improvement activities was based on the following
principal steps:

- quantify the quality of products and processes by application of goal-oriented measurement,
- better understand the current situation and its causes,
- identify and implement improvements,
- detect, formalize and structure experience,
- continuously improve the maturity of processes and products.
For an initial set of three baseline projects, measurement programs based on the Goal-Question-

Metrics paradigm were established to better understand and analyze effort, stability of requirements,
and maintenance. What did Allianz Life learn from the measurement programs? Among other things,
Allianz Life found that

- the importance of testing for quality assurance is overestimated (too much effort invested),
- communication and common understanding between all departments participating in a project

is currently a weakness and has to be improved,
- too many defects are introduced in early stages (requirements analysis, design) are detected

during testing,
- effectiveness and efficiency of verification (inspections) is currently low,
- the overall effort for testing (currently 30% of development effort) has to be reduced through

early use of verification.
The current situation is characterized by possessing quantitatively based knowledge on the

processes and products including success factors. This allows constructive guidance on how to improve
existing software development processes. The HYPER project is considered as the initial step in this
new area of controlled and experience-based process improvement actions.

2.4 The ESSI PIE Project ‘HYPER’: Motivation and Objectives
HYPER is an ESSI PIE project that is promoted by the European Commission. ESSI is an initiative

for optimal software technologies and a domain of the ESPRIT program that joins together industry
research & development projects and the steps for the application of software technologies. PIE stands
for process improvement experiment, which aims at improving software development processes by
applying software technologies.

HYPER is the abbreviation for “High Quality of Software Products by Early Use of Innovative
Reading Techniques“. It is an experiment based on the results of the software process improvement
program. The project is devoted to the application of innovative and cost-efficient reading techniques
to documents of the early phases of the life-cycle (requirements analysis and design). The baseline
project for applying and evaluating inspections with innovative reading techniques is the EURO
Conversion project. For participating in the HYPER experiment, the entire EURO Conversion project
would be much too extensive; therefore one important part of it has been selected.
Software Inspections with innovative reading techniques have shown to be a very effective way of
detecting defects early in the development process. Thus, substantial effort can be saved, since defects
detected later are known to be significantly more expensive.

The HYPER project started on June 1st, 1998 and has a duration of 18 months. Hence, it will be
finished on November 30th, 1999. The planned effort for the Hyper project amounts to 223 person days.
The project is coordinated by the IT Department of Allianz Life and supported by the Fraunhofer
Institute for Experimental Software Engineering (FhG IESE) with up-to-date knowledge and
experience on innovative reading techniques and quality control techniques. Motivation for the HYPER
project from the business point of view comes from the urgent need

- to improve quality assurance through the use of innovative software inspection techniques,
- to achieve higher quality and stability of requirements,
- to contribute to better customer satisfaction by early verification of original requirements,
- to better control the overall verification and validation process, resulting in better resource

usage,
- to enhance and improve communication and common understanding between the different

departments involved in product development,
- to use the results from the baseline project as starting point for broader use of innovative

reading techniques within an organization-wide software improvement initiative.

Page 5

From the technical point of view, the objective of the experiment is to investigate and establish
customer-specific scenario-based reading techniques as an essential element of existing software
inspection approaches. Quality control techniques and goal-oriented measurement is used to
demonstrate quantitatively that proper usage of a systematic reading technique, such as perspective-
based reading (PBR),

- improves productivity by finding defects when they are less expensive to correct,
- reduces the number of defects originating in phases prior to the ones where they are detected,
- reduces both test and overall project effort, and
- improves customer satisfaction.

2.5 The Technology Provider: Fraunhofer Institute for Experimental Software
Engineering

The Fraunhofer-Gesellschaft (FhG) e.V. is the largest funding organization for applied research and
technology transfer in Germany. The Fraunhofer-Institute for Experimental Software Engineering in
Kaiserslautern, Germany, founded in January 1996, is headed by Prof. Dr. Dieter Rombach, and
concentrates on applied research and technology transfer in various areas of software engineering.
Additionally, IESE is affiliated with the Fraunhofer-Center Maryland (FC-MD) to work together on
projects with multinational as well as US national organizations.

Experimental Software Engineering employs experiments as an instrument for software technology
transfer. Based on the recognition that well-understood and quantitatively manageable software
development and maintenance processes need to be customized to a company’s specific business goals
and characteristics, new and innovative software technologies need to be carefully evaluated before
being transferred into practice. After transfer, they need to be continuously optimized based on
feedback gained from measurements.

Our customers are companies from many different branches, of any size, and from a large number
of countries. In order to service such a large variety of customers, we have increased our efforts in
building up domain knowledge in key application areas such as telecommunications, automotive
systems, and banking/insurance/trade, formed a separate service center for small and medium-size
companies, and hired scientists from foreign countries to staff international customer projects.

Transfer of advanced industrial-strength software engineering technologies is the central task of the
Fraunhofer IESE. We therefore maintain a transfer-oriented network of collaborations with technology
providers, such as universities, with research and development departments of large organizations, with
providers of tools that support our technologies, and with strategic partners that otherwise support our
work. Competence gained from collaboration with these providers enables the IESE to conduct
technology transfer projects with customers, i.e., with the users of our technology. On the technology
side, we have to monitor the latest developments, identify promising technologies, and experimentally
evaluate and improve them to create industrial-strength technologies. On the customer side, our
competencies are to identify strengths and weaknesses of organizations, to define strategic
improvement goals with our customers, to implement continuous improvement programs, to set up
means to monitor progress of the changes introduced, and to capture and store experiences made.

The cooperation partners of the Fraunhofer IESE range from very large global players to very small
companies. They can be roughly grouped into four categories:

- Large national and international companies that seek help in their mid- to long-term endeavor
of quality improvement in software development.

- Large national and international companies that can afford their own R & D departments and
that search for competent research partners.

- Medium-size companies that want to set up improvement programs but are usually under very
tight budget and schedule constraints.

- Small companies that need ready-to-use, evaluated technologies that yield short-term return on
investment.

In addition to bilateral cooperation, in 1997, the IESE has started a multi-national consortium of
international companies that team up in this joint endeavor to advance their software engineering
competence on a global scale, i.e., across different sites and business units and in collaboration with
other leading companies in the scene as well as other application domains.

Page 6

3 Meeting the Euro-Conversion Challenge with Technologies for Early
Quality Assurance

3.1 Motivation for Early Quality Improvement
The development of software artifacts involves a series of development activities in which there are

many opportunities for the injection of defects. Defects may begin to occur at the very beginning of the
development process when the requirements of a software artifact may be erroneously or imperfectly
specified, as well as during the later design and development stages when these requirements are
implemented.

Many techniques have been proposed to reduce the software defect rate. Amongst them are
techniques that help software developers prevent defects, such as formal methods, and others that help
them detect and remove existing defects. The most prominent approach of the latter is testing. Testing
is confined to a stage immediately prior to operation and maintenance. However, severe consequences
can result when defect detection and correction activities are confined to the later stages of
development. First, even with the best testing techniques, it is not likely that a software product will
become defect free before operation. Second, late defect detection and correction has a negative effect
on cost. This is because the later in the life cycle a defect is found, the higher is the cost of its
correction. Consequently, if higher quality and lower cost are the goals, defect detection and correction
should not be isolated to a stage at the end of the development process but should be incorporated into
each phase of the development process. This must be particularly the case for early development
phases. Barry Boehm [Boehm, 1981] has stated that one of the most prevalent and costly mistakes
made in software projects today is deferring the activity of detecting and correcting software problems
until late in the project. Hence, the prevalent reason for early investment in quality is to catch severe
defects early before the cost of their correction escalates or threatens the completion of the project.

Software inspection has emerged as one of the best techniques to detect and remove defects early in
the development cycle. In its full generality, a software inspection is a structured process in which a
peer group rigorously examines the description of a software artifact, looking for possible defects.
After Fagan’s seminal work in 1976, Fagan, and others, have shown that software inspection can lead
to the detection and correction of anywhere between 50 and 90 percent of the defects in a software
artifact [Fagan, 1976], [Gilb and Graham, 1993]. Moreover, since inspections can uncover defects
shortly after they are introduced, rework costs (i.e., the costs associated with correcting defects) are
considerably reduced.

3.2 The Technologies: Perspective-Based Inspections and Statistical Quality Control

3.2.1 Description of Perspective-based Inspections

3.2.1.1 Scope of Perspective-based Inspections
Software inspection in general and perspective-based inspection in particular consists of numerous

activities including planning, defect detection, defect collection, and defect correction. As depicted in
Figure 1, the planning activity is performed by the organizer who is responsible for setting up an
inspection for a particular software artifact. Throughout the defect detection step inspectors
individually scrutinize a software artifact for potential defects using a particular reading technique (i.e.,
the Perspective-based reading technique). Inspectors document all potential defects they find on a

Figure 1 Software Inspection

Page 7

defect report form. As some of the potential defects documented on the defect report forms might prove
not to be real defects, inspectors together with the author and a moderator perform an inspection
meeting. The goal of the inspection meeting is to decide upon which of the potential defects are real
ones. In addition, new defects might be detected during the inspection meeting. Defect detection,
however, is not the primary goal of this meeting. Throughout the meeting, one of its participants
documents all real defects on a meeting report form. In the final activity, the author corrects the real
defects.

Although each of these activities are vital for an effective inspection, it is the defect detection
activity, or "reading" as it is commonly called, that is considered the key part of an inspection [Basili
et. al., 1997] and which therefore needs to be supported with adequate reading techniques.

Several kinds of reading techniques have been defined in the literature, the simplest of which is the
ad-hoc reading approach. As its name implies, this technique provides no explicit advice as to how to
proceed, or what specifically to look for, during the reading activity, so inspectors must resort to their
own intuition- and experience-based heuristics to determine how to go about an inspection. A
significant improvement over the ad-hoc approach is the so-called checklist approach [Fagan, 1976], in
which an inspector is at least given a list of questions to answer. The checklist-based technique thus
gives inspectors advice about what to look for in an inspection.

The next level of sophistication is offered by scenario-based reading techniques [Basili et. al.,
1997]. The basic idea of a scenario-based reading technique is the use of so called scenarios that
describe how to go about finding the required information, as well as what that information should look
like. In doing so, scenario-based reading techniques assign clear responsibilities to inspectors and
require each of them to take an active role in an inspection. In these two ways, they are similar to active
design reviews suggested by Parnas and Weiss [Parnas and Weiss, 1987] for the inspection of design
artifacts. However, active design reviews provide little if any guidance to inspectors on how to perform
the reading activity.

Of the several forms of scenario-based reading techniques defined to date [Porter et al.,
1995], [Cheng and Jeffrey, 1996], [Basili et al., 1996], experiments have shown the Perspective-Based
Reading (PBR) technique to be among the most effective. The basic idea behind this approach is to
inspect an artifact from the perspectives of its individual stakeholders, with the assumption that
collectively these will increase the coverage of the defect space. Such a viewpoint-oriented approach
follows the current thinking on quality: everybody, even someone internal to an analysis, design, or
coding process, is considered a customer (i.e., stakeholder) and also has customers. Since different
stakeholders are interested in different quality factors or see the same quality factor quite differently, a
software artifact needs to be inspected from each stakeholders viewpoint.

3.2.1.2 Description of Perspective-based Reading

3.2.1.2.1 Goal of Perspective-based Reading

The basic goal of PBR is to examine the various descriptions of a software artifact from the
perspectives of the artifact’s various stakeholders for the purpose of identifying defects. Each software
artifact is inspected from the perspective of each stakeholder involved in the software lifecycle in such
a way as to determine if the descriptions satisfy the stakeholders’ particular needs. A stakeholder may
be, for example, an external customer who wants to ensure the completeness of the inspected
requirements document. If each description of the artifact meets the stakeholders’ quality
requirements, the end product, that is the final software artifact will meet the specified quality goals.
An inspector in a perspective-based inspection reads the inspected descriptions from the perspective of
a particular stakeholder. The reading process is driven by perspective-based scenario.

3.2.1.2.2 Perspective-based Reading Scenarios

Throughout the reading process, inspectors follow a perspective-based reading scenario (in short:
scenario). A scenario tells an inspector how to go about reading an artifact from one particular
perspective and what to look for.

As shown in Figure 2, the scenario consists of an introduction, instructions, and questions framed
together in a procedural manner. The introductory part describes the stakeholder's interest in the artifact
and explains the quality factors most relevant for this perspective. The instruction part describes what
kind of descriptions an inspector is to use, how to read the descriptions, and how to extract the
appropriate information from them. While identifying, reading, and extracting information, inspectors
may already detect some defects. However, the motivation for providing guidance for inspectors in
form of instructions on how to perform the reading activity is three-fold. First, instructions help an
inspector gain a focused understanding of the artifact. Understanding involves the assignment of
meaning to a particular description and is a necessary prerequisite for detecting more subtle defects,

Page 8

Scenario

Introduction

Instructions

Questions

} What quality factors are interesting?

}How to extract information?

}How to analyze extracted information

Figure 2 Contents of a scenario

which are often the expensive ones to remove if detected in later development phases. Second, the
instructions require an inspector to actively work with the descriptions. Third, the attention of an
inspector is focused on the most relevant information, which avoids the swamping of inspectors with
unnecessary details.

Once an inspector has achieved an understanding of the artifact, he or she can examine and judge
whether the artifact as described fulfills the required quality factors. For making this judgement an
inspector is supported by a set of questions which are answered while following the instructions.
Following a scenario in this manner is in line with the natural definition of "reading", which is the
systematic examination of an artifact’s description to gain certain information for a particular purpose.

Figure 3 shows an example for reading from the perspective of a tester.
However, there is not one best way to do Perspective-based reading and, more general, Perspective-

based inspection. To be most successful, the Perspective-based inspection approach needs to be tailored
to the particular development environment, such as Allianz. This will be described in a later section.

3.2.2 Statistical Quality Control

3.2.2.1 When is an Inspection completed? – Defect Content Estimation
One of the inspections main benefits is that they detect defects before they propagate to subsequent

development phases and into the field where they cause high rework expenditures. In practice,
however, it has been shown that the effectiveness of inspections can vary widely. To reduce the
variability, quality control techniques can be applied. Quality control in this sense means that an
inspection is considered complete only if the document has passed a certain quality threshold. Many
researchers and companies have defined this threshold in terms of the number of defects detected.
However, a more appropriate threshold would be the number of defects remaining.

Tester’s Scenario

The main goal of a tester is to ensure the testability of the system. High quality thus corresponds to
full testability. Assume that you have to develop some test cases for the system in order to perform
acceptance testing. A test case consists of a set of input values plus a set of output values and/or
state changes expected for each combination of values. Follow the instructions below and answer
the questions carefully.

Locate the operations for the system under inspection. Identify the input and output parameters for
each single operation. Define equivalence classes for these parameters. Use these equivalence
classes to define a minimal set of test cases to fully exercise the operations.

While following the instructions answer the questions:
1. Do the input and output parameters as described in the document represent the input and
 output parameters intended by the operation?
2. Can all possible equivalence classes of input values be properly addressed by the operation?
3. Are operations’ preconditions indicated to help define input parameters for test-cases?
4. Are operations’ postconditions defined to indicate the results of a test-case?

Figure 3 Reading from a tester’s perspective

Page 9

Although quite intuitive, this quality definition imposes a practical problem: In order to compute
the number of remaining defects we have to know the actual number of defects. Defect Content Models
aim at estimating this total number of defects.

Based upon the data collected during an inspection, the total number of defects is estimated. After
subtracting the number of defects found, an estimate for the number of remaining defects can be
obtained. If this estimate indicates that most of the defects have been detected by the inspection, the
document is considered to be of a sufficient level of quality. On the other hand, if the estimate indicates
that many defects remain in the document, a second inspection of the document should be performed.

3.2.2.2 Defect Content Estimation Methods
Basically, existing defect content estimation methods can be classified into two approaches:

Capture-Recapture Models [Briand et. al., 1997b] and Graphical Approaches points [Wohlin and
Runeson, 1998]. Capture-Recapture Models have their origin in biology and wildlife research. They are
used to estimate the size of animal populations. In these disciplines it is often practically difficult or
impossible to track and record all animals. Thus, population size has to be estimated based on several
incomplete samples of the population.

Transferred to inspections the basic concept can be described as follows. Suppose two inspectors
inspect a software artifact with a total of N defects. The first inspector detects n1 of these defects while
the second inspector detects n2 of these defects. Usually, both inspectors do not detect exactly the same
defects, thus let m2 be the number of defects detected by both inspectors.

If we now assume, that each inspector has a probability pi (i=1,2) of detecting defects, we have
E(ni)=Npi and E(m2)=Np1p2, where E(x) denotes the expected value of x. Thus, we can denote N as

)(

)()(

2

21

mE

nEnE
N

⋅
=

and derive an estimator for the number of defects as

2

21ˆ
m

nn
N

⋅
=

This estimator is known in biology and wildlife research as Lincoln-Peterson Estimator ([Otis et. al.,
1978]).

Various models with different assumptions on the kind of defects (do they have the same
probability of being detected or do different defects have different probabilties?) and on the capabilities
of the inspectors (do all inspectors have the same probability of finding defects or do different
inspectors have different probabilities of finding defects) are suitable for inspections [Briand et. al,
1997b].

Alternatives for capture-recapture models are graphical approaches. The rationale behind these
approaches is that defects are sorted to some criterion and a curve is fitted to the data points [Wohlin
and Runeson, 1998]. The most mature of these approaches is the Extended Detection Profile Method
(EDPM)[Briand et. al., 1998b]. For each defect, one calculates how many inspectors detect that defect.
The defects are then sorted in descending order according to the number of inspectors detecting them,
and are plotted in a graph as shown below.

Inspection

x defects not found

Defect Content Estimation Control

x too large: Re-Inspect!

x small enough: Proceed!

Figure 4 Controlling inspection with Defect Content Estimation

Page 10

A curve is fitted through these data points and the total number of defects is determined by the
largest defect index for which the curve is above 0.5. Depending on the shape of the data points, an
exponential or linear curve is fitted.

The appealing properties of these approaches are that i) few and simple data have to be collected in
order to apply these defect content models, ii) a decision on re-inspection can be made as soon as the
inspection is finished, and iii) it is applicable to analysis and design inspections, thus allowing
decisions on document quality to be made early in the life cycle [Cai, 1998].

3.2.2.3 Does the effort invested in inspections pay off? – Controlling inspections’ ROI
At first, organizations have to invest effort into inspections. Documents have to be distributed to

inspectors, inspectors have to carefully analyze the document to be inspected, meetings with all
inspectors, a moderator, and the author have to be held. This initial effort should, of course, pay off in
later phases (e.g., by means of a reduced testing effort)

In order to determine the actual pay off in a quantitative manner, we have to define formally the
cost-effectiveness, also called efficiency, of inspections. A definition of efficiency suitable to evaluate
the introduction of inspections in an organization has been proposed by Kusumoto [Kusumoto et. al.,
1992]. His definition can be interpreted as the proportion of testing cost saved due to the introduction
of inspections.

If we consider inspections and testing as the only two defect detection activities, the efficiency
definition can be explained as following:

During an inspection we detect NInsp defects. What did we save by detecting these defects? If we
had found these defects later in testing we would have had spent a testing effort of NInsp x testcost for
these defects, where testcost denotes the average cost to find and fix a defect during testing. However,
this saved testing effort does not denote exactly the savings due to inspections. To compute the cost
saved we have to take into account the cost of the inspection itself. This cost can be denoted as NInsp x
inspcost, where inspcost denotes the average cost to find and fix a defect in an inspection. Thus, the
total cost saved is denoted as NInsp x testcost - NInsp x inspcost. This cost saved is normalized by the
effort required to find all defects during testing. If Ntotal denotes the total number of defects in the
software system, the cost to find all defects during testing becomes Ntotal x testcost.

Thus, the definition runs

testcostN

inspcostNtestcostN
efficiency

total

InspInsp

×
×−×

=

This definition can be generalized to any stages of defect detection activities such as unit test,
integration test, and acceptance test

3.2.2.4 Adapting Efficiency Definitions to Real Projects
In many cases the application of models, such as the efficiency model presented above, to actual

software projects is limited since not all required data can be possibly collected. For example, the
efficiency model above requires the average cost to find and fix a defect during testing. However, the
cost to fix a defect may not always be collected, which is the case for Allianz Life Assurance. Thus we
have two possibilities: to choose a different efficiency definition usable with the collected data or to
obtain the missing data by other means.

Our approach is to obtain missing actual data via subjective measurement based experts’ opinion.
To perform this subjective measurement in a accurate manner, a number of well-known, thoroughly

Principle of Graphical Approaches

defect index [x]

nu
m

be
r

of
 in

sp
ec

to
rs

 d
et

ec
tin

g
de

fe
ct

 [m
x]

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

y=5,155*exp(-0,087*x)+eps

predicted total
number of defects

Figure 5 Detecion Profile Method

Page 11

studied heuristics are described in the literature regarding expert judgement [Vose, 1996]. One of them
is referred to as availability and is defined as the ability of the expert to remember past occurrences of
the events related to the quantity to estimate.

If we want to ensure that we will obtain an accurate efficiency estimates, we need to consider these
heuristics to re-express the efficiency model above. In other words, this must be a function of
parameters that can be assessed either based on existing, objective measurement or through expert
assessment complying with the availability heuristic, that is relating to events being a regular part of
the expert’s life.

For example, the efficiency model above can be re-formulated as:

)
testcost

inspcost
1(

N

N
efficiency

total

Insp −×=

where efficiency is expressed in terms of data that can be objectively measured (i.e., the number of
defects found during inspections NInsp and the total number of defects detected Ntotal) and a ratio that is
determined by subjective measurement (i.e., the effort/cost ratio between finding and fixing a defect
during inspections and test).

Such a ratio complies with the availability heuristic since it is strongly related to the everyday
developer’s experience of isolating and fixing defects throughout the project life cycle. We therefore
expect experts to provide us with reasonably accurate estimates for this ratio. However, we also have to
take into account the inherent uncertainty associated with such estimates, for example by asking the
expert to provide minimum, most likely, and maximum values. These values are then converted to a
probability distribution (e.g., a triangular distribution) over the inspcost/testcost range. Then, using
objective measurement for NInsp and Ntotal, and the probability distribution of the inspcost/testcost ratio,
we can use Monte-Carlo simulation [Vose, 1996] to obtain an efficiency probability distribution where
the larger the variance, the larger the uncertainty of our estimate regarding efficiency.

The whole efficiency estimation process is illustrated in Figure 6 where X1 and X2 denotes the
input parameters of the efficiency model: X1=NInsp/Ntotal, X2 = inspcost/testcost.

3.2.3 How to collect and analyze data: The GQM-Approach
Beside the introduction of the inspection technology, we want to characterize in a quantified

manner the inspection process itself and its impact on the development process. As basis for this
quantification we introduce GQM-based measurement programs. The GQM approach provides
guidelines for defining measurement goals, refining them into measurable entities, and providing a
context for data analysis and interpretation. Two major processes characterize this approach. First, the
explicit measurement goals are refined in a top-down manner into measures via questions and models
tailored to the environment where measurement takes place. Second, the collected data are interpreted
in a bottom-up manner in the context of the defined models and measurement goals. During both
processes, the expected stakeholders are actively involved in the definition of measurement goals, the
derivation of measures, and in the interpretation of measurement results.

The GQM-approach consists of six steps and specifies how to plan, implement, and analyze GQM-
based measurement programs:

1. Pre-study: In this step the organizational context is characterized, a suitable pilot project is
selected, and training and motivation for the measurement program is performed.

2. Identification of GQM goals and definition of GQM plans: The GQM goal describes for which
purpose the measurement program is performed. With this explicit goal, the measurement
program is given in a clear context. A GQM goal is defined by considering five aspects: what

X1=20/50

Max =1:10
Likely =1:15
Min =1:20

2010 15
X2

p

efficiency=f(x1,x2)

Expert opinion

Objective data

X1=20/50

1000 x

efficiency

N
o

of
 o

bs

M
C

 Sim
ulation

Figure 6 Evaluating cost-effectiveness using experts’ opinion

Page 12

object is investigated, why the object is investigated, which property of the object (quality
focus) is under study, who is going to use the measurement results, and in which environment
the measurement takes place. A set of questions and models is derived that refine the
measurement goal. Finally, a set of measures is derived to address the questions and models.

3. Development of measurement plan: The measurement plan defines for the measures identified
in the GQM plan by whom, how, and when the measures should be collected.

4. Data Collection, analysis, and interpretation: Data validation and analysis are performed by
measurement experts. The interpretation of the analysis’ results is performed in feedback-
sessions and in close collaboration with the project team. This interpretation is used to interpret
trends, take corrective actions concerning the project, process, or measurement program.

5. Post-mortem analysis of data: The analysis of the completed project is performed and feedback
provided to the organization.

6. Packaging: The experience and findings gained from the measurement program are stored in
an experience base to provide support for future projects. Examples for such experience
packages might be baselines for defect distributions or lessons learned.

3.2.4 Synergy Effect of the Technologies
Combining Perspective-based inspection with methods for statistical quality control offers unique

synergy effects for software process improvement. Since Perspective-based inspections follow a
disciplined and structured process, they provide the vehicle for collecting high quality defect data and
data on the inspections themselves. The Goal-Question-Metric paradigm can be applied to structure the
data collection effort. GQM offers a systematic approach to translate measurement needs into models
and metrics. The collected data can then be exploited by using statistical quality control techniques,
such as Defect Content Models. The combination of techniques, therefore, offers some strong benefits.
First, when some of these other statistical quality control and measurement techniques are
implemented, the data collected by perspective-based inspections can be used to quantify quality
improvement. Second, such techniques help predict latent problems, that is, those that have not been
identified in the inspected artifact yet. Hence, a decision can be made, on an objective basis, regarding
whether to re-inspect a certain document or not. Finally, inspection data has value beyond correcting
the defects in the work product inspected. They may be analyzed for the purpose of process
improvement, a usage which has been exploited for defect prevention, for example, at IBM [Jones,
1985]. There, statistics of the types of defects that are found can suggest reasons why certain defects
occur, and indicate potential areas of improvement like better training for programmers or clearer
documentation.

3.3 Technology Transfer to Allianz

3.3.1 Inspection Training
Introducing a software engineering best practice, such as perspective-based inspection, within an

established development environment is a challenging endeavor. The challenge is to reach the critical
mass of skill and motivation that is necessary to sustain a consistent and effective use of the new
process, as a standard part of the development activity. To provide the motivation for perspective-based
inspection, FhG IESE performed two training sessions at Allianz in which the perspective-based
inspection approach has been introduced and explained to the training participants. Each training
session consisted of three main parts: Motivation, inspection principles, and perspective-based reading.

The first part, that is, motivation, explained the reasons for performing perspective-based
inspections at Allianz. It consisted of a more company specific part performed by Allianz and a more
general motivation part performed by FhG IESE. In the company specific part, some initial results from
the application of perspective-based inspection in a different Allianz project were already available and
were used for this purpose. Among others, the more general motivation part explained the benefits of
early defect detection to participants.

The second part, that is, inspection principles, explained the essentials of software inspection in
terms of the activities performed (process), the roles that participants have in the process, the
documents filled out throughout the process, and reading techniques. Finally, the perspective-based
reading technique was explained to the training participants. After the training, each participant had
acquired the knowledge to take an active role in a perspective-based inspection.

3.3.2 GQM Measurement Program
Besides the introduction of inspections, their impact on the software development process and the

resulting software product has to be assessed in a quantitative manner. This assessment helps the

Page 13

gauging whether the introduction of inspections was successful. It can also be used as a baseline for
future projects, and it enables the identification of improvement opportunities.

For these reasons, a GQM based measurement program is conducted in the project implementing
inspections. Explicit measurement goals were motivated by the expected benefits from inspections:
Inspections are supposed to reduce the number of early defects detected late during testing decreasing
the testing and rework effort. Additionally, the inspection process and its cost-benefit relationship are
analyzed.

In close co-operation with FhG IESE, the process engineering group of Allianz, and the project
leader of the involved project, a GQM plan was derived which
(1) characterizes the inspection process in terms of its effectiveness (i.e., its ability to detect defects)

and efficiency (i.e., its cost-effectiveness) and analyzes factors impacting these properties,
(2) characterizes the proportion and kinds of defects that are detected by testing but are caused in the

early development phases,
(3) characterizes the effort distribution of the development project,
(4) evaluates the cost-benefit relationship of the Perspective-based inspection approach,
(5) evaluates the accuracy of defect content models.

The development of the GQM plan involved both selecting appropriate models such as the
efficiency model presented in 3.2.2.3. and knowledge acquisition to capture the implicit quality models
of the Allianz project participants.

In addition to the development of the GQM plan, the members of the development team are trained
in the basic principles of the GQM approach. This is to ensure that the project members understand the
rationale for their interpretation. This understanding is an essential prerequisite for motivating the
development team members to provide the required data.

4 Application of the technology to the Euro conversion project

4.1 Current Status of HYPER
The initial phase of the project was devoted to describing the situation before the PIE, to train

involved project team members in basic technologies, and to establish the measurement program for
qualitative and quantitative analysis. During the kick-off meeting, objectives and basic activities of the
project were discussed with the project team. Their motivation and understanding are an essential
prerequisite for the success of the project.

Next, the inspection process had to be adapted and tailored to the environment of Allianz. This
adaptation also involved the definition of user-scenarios, which take into account the specific context
factors of Allianz and the development projects.

Based upon this inspection process, the first inspections were conducted. This enables us to present
the experience gained during the first steps and to present initial analysis results.

4.2 Procedure concerning the People, the Process, and the Technology
The success of the technology transfer is not only influenced by the technologies themselves. It

depends on several factors: the people, the process, and the technology. Each of these components has
to be addressed.

The people
The key to a successful technology transfer is to have motivated people. The people have to be

motivated to change to new procedures and processes and to apply them continuously.
Efficient and tailored transfer of the Perspective-based inspection approach and the goal-oriented

measurement approach was crucial. The project members realized the benefits of inspections and the
accompanying measurement program.

Beside the motivation aspect, the training primarily enables the project members to apply the
technology. This is especially true for the inspection process. However, the training courses also are a
first step to establish the related know-how for subsequent reuse in future projects.

Once the people are convinced and enabled to perform the inspection process, they must be
continuously motivated to apply it further. Therefore, a very important issue is to establish a positive
and constructive working atmosphere.

A cornerstone to do so is that people can express themselves without fear of possible negative
consequences. Therefore, the inspection team should not include personnel at different hierarchical
levels. Otherwise, the authors might be intimidated by the defects detected in their document.
Inspectors could also be inhibited when their superior is present. They might be afraid to blame
themselves or to contradict the statements of the superior.

Page 14

To promote the positive atmosphere further, Allianz uses a special word for issues raised during an
inspections: “finding” (German: Erkenntnis). This word is not a synonym for “defect”, because it
comprises, on the one hand, defects in a narrower sense and on the other hand, questions, improvement
proposals, and comments. Besides, the meaning of the word “finding‘ is entirely positive, so that
negative associations do not arise at all. This has a favorable effect on the inspection meeting:
Inspectors are not detecting defects, but collecting findings.

Another crucial issue for maintaining a positive atmosphere concerns the handling and usage of
collected data. Once people fear that the data can be used against them, for example to evaluate their
individual performance, they will stop providing accurate, complete data. Therefore, a trusting
relationship has to be built up by assuring all project members that no personnel evaluation will take
place. All analysis that will be made are anonymous and there should be no reason of worrying about
negative personal consequences.

In this context it is also very important to interpret the data analysis results together with the project
members. This is important since they are the only ones to know exactly the context in which to
interpret the results. The project team thus has the guarantee that there will be no misguided
interpretations with possibly negative impacts.

A way to involve the project members is the organization of feedback sessions, which are part of
the GQM approach. With these feedback sessions, every project member is therefore integrated in the
process improvement initiative from the beginning to the end. Additionally, the feedback sessions serve
to collect valuable lessons learned regarding the performance of inspections.

As a conclusion, one can say that the success of Perspective-based inspections and its associated
measurement program strongly depends on a win-win situation of all participants. Hence, we follow
the principle “Everybody is a winner, nobody a loser” or as Tom DeMarco puts it “Blame the process,
not the people!”.

The process
Besides motivating the people to adopt inspections, tailoring the inspection process to the specific

Allianz environment is another essential issue. The Allianz inspection process is performed as follows:
At first, the inspections are planned early. Based on the project deliverables it is decided which of

those documents are extremely important for the project and, therefore, selected to be inspected. For
each document, the required perspectives and the meeting date are defined. For each perspective, the
scenarios are developed for each document in cooperation with the representatives of the perspectives.

Based upon the devised planning, the moderator – normally the project leader –coordinates the
inspection meeting. This coordination involves setting up the actual inspection date, selecting the
inspectors, and selecting a room. One week before the meeting date, at the latest, the inspection papers
(document to be inspected, target, scenario, and cover letter) have to be sent to the inspection
participants. The inspectors have to prepare the inspection by reading the document beforehand; the
authors prepare themselves and the moderator prepares the agenda.

The performance of an inspection meeting follows this agenda. Each inspection participant has a
well-defined role: inspector, moderator, author, recorder, consultant, or guest. The inspectors speak
about their findings and decide if the finding is correct. If so, the finding is recorded in the minutes.
The moderator ensures that the atmosphere is constructive, that the schedule is followed, and that
nobody digresses from the subject. Discussions are allowed only on a small scale. Further discussions
are beyond the scope of an inspection meeting, because solutions should be developed by the project
team and not by the inspection team. Solutions are only relevant to an inspection meeting if they can be
quickly devised. The consultant is responsible for the adherence to the prescribed inspection process
and also acts as a co-moderator.

After the inspection meeting, the recorder writes the minutes. These minutes are the basis for the
correction of the document by the author. Once, the author adapted the document, it is sent to the
inspection participants who may give their feedback on the corrections.

The data collection and subsequent analysis is not seen as an add-on to the inspection process but as
an integral part of the entire approach. Based on the developed GQM plan, the required data are
collected during all development activities in general and for inspection activities in particular.
Examples of such collected data are various effort values (e.g., effort spent for the inspection meeting
or reading the document) or classifications of defects (e.g., the severity or impact of a defect).

As soon as data analysis results are available, feedback sessions involving the project members are
performed. The results of these sessions are used to change and optimize the inspection process or to
package experiences to be stored in Allianz’ experience base for future reuse.

Page 15

The technology
An essential parameter in the inspection process is the reading technique. PBR was adapted for

Allianz. Usually, a separate scenario is meant to be developed for each perspective. However, when
developing the single scenarios for the Euro conversion project, we realized that the quality aspects for
one perspective might also be interesting for the inspectors of other perspectives. Therefore, we
adapted the development of scenarios in such a way that we combined the scenarios for all perspectives
into a single scenario. For each document to be inspected, we have thus one single scenario with
questions and activities. For each of these questions and activities, there are annotations that denote to
which perspective they originally belong to.

4.3 Initial Results: Initial Evaluations and Assessments
The HYPER project is currently in progress. Therefore, we can only present here initial results from

the first four inspections for which measurement was taken. Due to the small number of inspections,
only qualitative results can be provided that are to be further investigated through additional interviews
with the project members and further data collection on subsequent inspections. Such a qualitative
analysis should be considered as a way to help focus our future investigations and identify hypotheses
to be verified in the remainder of the project.

In the first subsection, we investigate the kind of findings detected during these inspections.
Second, we compare the inspections with respect to their effectiveness and efficiency. Third, we
attempt an early evaluation of the costs and benefits of inspections. Finally, we investigate the
application of defect content models.

4.3.1 Data Source
The results are based on four inspections performed for the EURO Conversion project. The

inspected documents were user-interface descriptions capturing the system requirements to be
implemented. They consisted of screens’ descriptions, that will help answer client calls in the service
center, and settlement letters of accounts, which will be sent to the client.

Since the inspected documents come from the same project and are of the same type, we can
assume that they have a similar defect density and the number of pages can be assumed to be a simple
but reasonable size measure. These assumptions have been deemed reasonable by the inspection
participants and help simplify the data collection analysis.

4.3.2 Classification of findings
 As alluded previously, inspections aim at collecting findings. A finding can be characterized by the
following pair: Finding = (Class, Reference). Class denotes whether an issue was raised, a question
was raised, an improvement proposal was made, or a comment has been written down.

Questions are used to identify problems that need to be further investigated or discussed outside the
inspection meeting. Improvement proposals aim at collecting suggestions for future versions of the
product or for future coordination strategies between different departments. Comments record
additional, relevant information related to the project.

Reference may denote the object related to a finding (the inspected product, another product in the
project, the development process). It may also refer to another project when additional or new
requirements to interfacing systems are identified. It refers to the development process when it is
decided to change the project’s process. When findings concern other documents that were developed
or have to be developed, they are classified as ‘other product in the project’. Issues (a specific class of
findings) that concern the inspected product are usually referred to as defects in the literature but it was
decided to use Allianz’ terminology in this paper.

Each finding is characterized by three attributes: Severity denotes the importance of the finding.
There are three levels: very critical (A), critical (B), and interesting (C). Cause denotes the kind of
error was committed that led to the finding. Impact denotes the impact the finding would have had if it
had not been detected.

Severity
Figure 7 shows the severity of the detected findings. A proportion of 78,3% of all findings had

either a very critical (A) or critical (B) severity and only 21,7% were of severity interesting (C). The
large proportion of very critical and critical findings suggests that inspections are useful, as they lead
to essential improvements in the product. Yet, their net benefit still needs to be investigated and
compared to their cost.

Page 16

Pareto Chart & Analysis : Variable Cause

 Count Cumul. Percent

C
ou

nt
s

P
er

ce
nt

14

10
9

8

2 2
1 1

0

20

40

60

80

100

0

5

10

15

20

25

30

35

40

45

Ambiguous
Alternative

New
Extraneous

Forgotten
not concrete

Inconsistent
Wrong

Pareto Chart & Analysis:Variable: IMPACT

 Count Cumul. Percent

C
ou

nt
s

P
er

ce
nt

35

9

3

0

20

40

60

80

100

0

5

10

15

20

25

30

35

40

45

User-friendliness Functionality Standards

Figure 8 Finding Distributions

Severity of the detected findings

C, 21,7 %

B, 28,3 %

A, 50,0 %

Figure 7 Severity Distribution

Impact
Looking at Figure 8 reveals that mostly findings of type User-friendliness and Function are

detected. The high prevalence of user-friendliness findings can be attributed to the type of the inspected
documents. User-friendliness and understandability are the main quality aspects of user-interface
descriptions.

In light of Allianz’ business goals, i.e., “better customer satisfaction”, these inspections were thus
successful as most findings would have had a direct consequence on user’s satisfaction.

Cause
The most prevalent finding causes were ambiguity, alternative, new, and extraneous. The high

proportions of categories alternative and new suggest that inspections are an effective means to elicit
new ideas through discussions. This might also explain in part the high proportion of effort invested in
meetings, as discussed below in Section 4.3.3.

A high proportion of findings of type ambiguity and extraneous help generate more understandable
letters for customers and provide better information systems to support customer service. This
statement was confirmed when interviewing the inspections’ participants.

4.3.3 Comparing Effectiveness and Efficiency
In order to analyze the effectiveness of inspections (i.e., their capability of detecting findings) as

well as their efficiency (i.e., their cost-effectiveness), these values were computed and displayed in
Figure 9. The effectiveness is defined as the number of findings of severity A and B per unit of size and
the efficiency is defined as the number of findings of severity A and B per unit of effort.

Page 17

Effectiveness of Inspections

Average: 1,97 critical and very critical findings per page

Inspection

E
ffe

ct
iv

en
es

s
(#

fin
di

gs
(A

&
B

)/
#p

ag
es

)

3,2

1,142857

3

0,548387

0,0

0,6

1,2

1,8

2,4

3,0

3,6

0 1 2 3 4 5

Efficiency of of inspections

Average: 2,23 critical or very critical findings per person day

Inspection

E
ffi

ci
en

cy
 (

 #
fin

di
ng

s(
A

&
B

)/
 e

ffo
rt

)

2,98405

1,10949

1,991266

2,836443

0,0

0,4

0,8

1,2

1,6

2,0

2,4

2,8

3,2

0 1 2 3 4 5

Figure 9 Effectiveness and efficiency for all inspections

Investigating the relationship between reading effort density and effectiveness

y=0,168+1,519*x+eps

preparation effort per page

ef
fe

ct
iv

en
es

s

Case 1

Case 2

Case 3

Case 4

0,2

0,6

1,0

1,4

1,8

2,2

2,6

3,0

3,4

0,0 0,4 0,8 1,2 1,6 2,0

Figure 10 Effectiveness impacted by effort density

Inspection 2 appears to have significantly lower effectiveness and efficiency. The inspection team
consisted of inspectors who had less experience in the application domain. Therefore, the moderator
had to provide the inspectors with additional explanations and background information. This resulted in
a higher meeting effort and, therefore, a lower efficiency value.

On the other hand, the inspection team of inspection 4 was nearly identical to the inspection team of
inspection 2. Furthermore, the same kind of document was inspected. Therefore, the inspection team
could benefit from the experience gained during inspection 2. Most likely, this resulted into a smaller
inspection effort and, therefore, a higher efficiency value.

Similarly, inspection 4 shows a low effectiveness value. This inspection was special in the sense
that the inspected document was significantly larger than the other documents, but the effort invested
was not much different than for the other inspections. The effort per unit of document size is thereafter
referred to as effort density.

In order to investigate further the effect of effort density, we computed it for each defect detection
steps (preparation by reading, meeting). This effort density denotes the effort that is spent per unit of
size. The result is shown in Table 1.

For inspections 2 and 4, which showed the smallest effectiveness values, these inspections also
showed less preparation effort per unit of size. Thus, it might be a plausible interpretation is that effort
density has an impact on inspection effectiveness. In addition, we looked at the relation between
preparation effort density and effectiveness (see Figure 10). This scatterplot seems to confirm the
impact, as there is a visible correlation between preparation effort density and effectiveness.

However, more data points are required to make final statements and provide sound statistics. A
sufficient number of data points can then be used to determine a functional relationship between effort
density and effectiveness. Such a relationship can then be practically applied to plan the preparation
effort that is required to achieve a certain level of quality, that is, effectiveness. [Briand et. al, 1997c]

For example, the simple regression line in Figure 10 indicates that, for each additional hour of
preparation, roughly 1.5 critical and very critical, additional findings will be found in a page on
average. Yet, it must be taken into account that this line is based only on a few inspections. When more

data will be available, it would also be interesting to see whether the relationship between effectiveness
and effort density starts to plateau above a certain level of effort density. Such a plateau would indicate
a threshold above which additional effort does not pay off in terms of effectiveness

Page 18

Inspection effort

Estimated saving

Primary Cost Benefit

Project leader estimates effort saved due to inspection

0

2

4

6

8

10

12

14

16

18

Case 1 Case 2 Case 3 Case 4

Figure 11 Primary benefits

#findings
(A&B) per
page

Preparation
effort [person-
hours]

Preparation
effort per page

Meeting effort
[person-hours]

Meeting effort per
page

1 3.2 9.00 1.80 28.00 5.60
2 1.14 9.50 1.36 40.30 5.76
3 3 2.90 1.45 15.00 7.50
4 0.55 4.55 .15 30.00 .97

Table1: Effort and effort densities
The scatterplot shows also that effort density is not the only factor having an impact on

effectiveness. The effectiveness value for inspection 2 is significantly lower than the value that is
predicted by the regression line between effectiveness and effort density (Figure 10). A plausible
explanation is that the inspection team consisted of inspectors with less experience in the application
domain. Therefore, the impact of the training and experience of inspectors on effectiveness should be
carefully investigated in the future.

In conclusion, we can say that a lower preparation effort per size (i.e., preparation effort density) is
a plausible strong driver of effectiveness. Yet, more data have to be collected to make final statements
about a relationship. It is important to note, however, that effort density does not explain all the
effectiveness variation. As discussed earlier, inspection 2 has a lower effectiveness than expected
which could be attributed to the lack of application domain experience of the inspectors.

4.3.4 Cost-Benefit Analysis
In order to assess whether the introduction of inspections was successful, the costs of inspections

have to be compared with their benefits. The costs of inspections are determined by the effort spent on
inspections (e.g., training, creating scenarios, planning, preparation, meeting, etc.) The benefits are
twofold. First, effort is saved due to the early detection of defects, as otherwise the defects have to be
removed later on, thus incurring higher costs. Second, an inspection can have additional, indirect
benefits such as a better communication between the participants.

As a first attempt to evaluate the costs and benefits of inspections, the project leader assesses
subjectively the benefits of the inspection after the inspection meeting has taken place. First, the effort
saved in later phases due to the early detection of defects is subjectively estimated (referred to as effort
savings or “primary benefit”) by inspection participants. In Figure 11, for each inspection, the total
inspection effort spent is compared with the effort savings. It can be observed that, for all inspections,
the effort savings are larger than the invested effort. Therefore, from this point of view, the investment
in inspections seems to be beneficial. This result should, however, be interpreted carefully since the
uncertainty regarding the estimated effort savings is currently unknown and should be the object of
further investigation. A more accurate way to quantitatively assess the cost-effectiveness of inspections
is the efficiency model presented in Section 3.2.2.3. During the course of the HYPER project, the data
required for this model will be collected and used to estimate cost savings.

Yet, inspections do not only provide benefits in terms of saved correction effort. There are also
indirect benefits. After each inspection, the project leader assesses these benefits on an ordinal scale:
(none, low, medium, high). Figure 12 shows these benefits. If we look at the median scores for each
indirect benefit considered, we can see that user satisfaction, call-center relief, and follow-up projects
show the highest scores.

Page 19

The high benefit of user satisfaction indicates that the involvement of the future (internal) clients in
early phases and through inspection led to the definition of a more appropriate system. This contributes
to Allianz’ business objective (“Better customer satisfaction of delivered products”) that motivated the
introduction of inspections in the first place.

The benefit follow-up projects can be explained as follows: Next year, there will be a new project
dealing with the topic of creating more customer-friendly letters. The inspected documents contained
several standard letters. Thus, the findings of the inspections will be valuable for the follow-up project.

The benefit of call-center relief is explained as follows: As a result of the inspections, Allianz’
clients receive letters that are easier to read and understand. This results in fewer phone calls to the
call-center, whose workload is therefore reduced.

The high maximum values of all benefits indicate that, in some circumstances that remain to be
determined, most of the indirect benefits mentioned above can be obtained through inspections. Since
some significant scoring variation can be observed for most indirect benefits, further investigation is
required to identify the factors than can help obtain such benefits.

Effort Distribution
Figure 13 shows the effort distribution for all inspection steps. As it can be seen, meeting and

preparation show by far the highest proportions. The proportions across inspection steps are
surprisingly similar across inspections, except for meeting preparation, which shows slightly more
variation.

The large amount of meeting effort reflects the fact that the inspection meeting is not only used to
collect findings found during preparation. It also serves as an additional defect detection step and as a
tool for coordination and communication among the various project stakeholders. The latter point could
be a point of further investigation since shorter meetings might help reduce a substantial inspection
time span and thus facilitate their implementation under tight schedule pressure.

4.3.5 Defect Content Estimation
First, an appropriate defect content estimation method had to be selected to satisfy the constraints

under which Allianz is performing inspections. Capture-Recapture Models have the most stringent
requirements on the inspection process. They require the inspectors to note all the defects they detect
and agree on common defects during preparation and meeting, respectively. Defects detected during

Max
Min

Median

Additional Benefit

Benfits

(0
=

no
ne

, 1
=

lo
w

, 2
=

m
ed

iu
m

, 3
=

hi
gh

)

0

1

2

3

be
tte

r
co

m
m

in
ic

at
io

n

be
tte

r
tim

el
in

en
es

s

pr
oc

es
s

im
pr

ov
em

en
t

fo
llo

w
 u

p
pr

oj
ec

t

in
sp

ec
to

rs
 le

ar
n

be
tte

r
us

er
 s

at
is

fa
c

ca
llc

en
te

r
pe

rf
or

m
an

ca
llc

en
te

r
ef

fe
ct

iv
e

ca
llc

en
te

r
re

lie
f

Figure 12 Additional benefits

Effort Distribution for inspection steps in person hours

(Mean of all inspections)

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

Training
Develop Scenario

Planning
Preparation

Prepare Meeting
Meeting

Create minutes
Correction

Agreement
Benefit-Estimation

Effort distribution of inspection activities in percent

P
er

ce
nt

 o
f

to
ta

l i
ns

pe
ct

io
n

ef
fo

rt

0

10

20

30

40

50

60

70

Training
Develop Scenario

Planning
Preparation

Prepare meeting
Meeting

Create Minutes
Agreement

Benefit-Estimation

Max
Min

Mean

Figure 13 Effort Distribution for inspections

Page 20

meetings have to be distinguished from those found during preparation. So far, such detailed data is not
collected in the inspections under study.

In addition, Capture-Recapture Models are inaccurate for inspections where a large proportion of
defects is detected by only one inspector [Briand et. al. 1998]. This is the case for the data at hand and
can be explained by the fact that user-interface descriptions do not mainly contain defects but also
generates many new ideas and alternative solutions. Therefore, the Extended Detection Profile Method
(EDPM), as presented above, seems to be the most reasonable approach within the Allianz
environment.

During this early stage of the HYPER project, where no testing data are available, only initial,
qualitative evaluations regarding the accuracy of the defect estimates can be made. In the remaining
course of the project, we are going to determine the total number of defects in the inspected documents
by tracing back defects to the document where they were introduced. Thus, we will be able to compare
the actual and estimated numbers of defects in the inspected documents.

For the initial evaluation, we compare the detected numbers of findings (severity A and B) in the
inspected product, which is Allianz’ equivalent of a defect, with the corresponding EDPM estimates.

#findings (AB)
detected: D

EDPM Remaining findings:
EDPM-D

Estimated proportion
of remaining findings
(EDPM-D)/EDPM

Insp1-AB 16 25 9 36%
Insp2-AB 7 11 4 36%
Insp3-AB 6 6 0 0%
Insp4-AB 17 32 15 47%

Table2: Defect Content Estimates
Interestingly, inspection 3 shows a predicted number of remaining findings equal to 0. Since we can

expect that the document has reached a relatively stable and mature state after a second inspection, this
suggests that the EDPM estimate is reasonable. In addition, Inspection 4 which has the largest
document and the lowest effort density also shows the largest number of remaining defects, which is
also consistent with intuition. Overall, these are qualitative indications that the EDPM estimates are
plausible ones.

Yet, these findings have to be confirmed by analyzing defects detected during testing. For example,
based upon this estimate we would expect the document in inspection 4 to be more defect-prone than
the other documents during the testing phase.

4.4 Lessons Learned about the people, the process, and the technology
There are several important lessons that we have learnt. In the following, we will group these

lessons into three categories: people, process, and technology.

People
First, it is necessary to motivate and inform all people concerned about the new technologies to

introduce. This is true not only for the developers but also for the management. Thus, the commitment
of the management is an essential prerequisite for technology transfer. If managers are not convinced
of the benefits of inspections, they might be tempted to assign to inspections those employees who are
readily available and not those who are most qualified. Therefore, managers have to understand the
entire scope and general conditions under which inspections and data collection take place.

For the motivation and training of the future inspection participants, the training courses provided
by FhG IESE showed to be of valuable help. These training courses were developed taking into
account the specific context of Allianz. With these training courses, our developers were motivated and
capable of performing Perspective-based inspections and motivated for goal-oriented measurement.

Another crucial point to the transfer of inspections was the creation of an open and constructive
atmosphere during inspection meetings. It is the main task of the moderator to create and maintain this
atmosphere. For example, s/he has to be able to cope with possibly antagonistic participants. Special
moderator training is therefore helpful for the people who are going to this responsibility. However, the
inspection participants should also be reminded that they play an important role in ensuring a
constructive atmosphere in inspection meetings.

A positive side effect of the inspection meeting is also that all relevant stakeholders get the
opportunity to discuss their findings. This speeds up the quality assurance process since the decisions
made during the inspection meeting, with the consent of all inspectors, would have taken weeks in
other circumstances.

Page 21

Also, the Allianz’ term for defect, i.e., ‘finding’, proved to be of psychological importance. In
particular, it conveys a positive meaning, which ease the introduction of inspections. An additional
psychological benefit of inspections is that the inspectors identify themselves with the inspection’s
results since these were obtained through joint discussions.

A final important aspect of Perspective-based inspection was the early involvement of Allianz
employees who later on deal with the inspected documents. Since these employees often have direct
access to external customers, they can bring in their experience how the inspected product should look
like in order to achieve high customer satisfaction. This was perceived very beneficial.

The technology
Perspective-based inspections were found to be easy to use and practical. The approach was very

suitable for the Allianz’ environment, where various stakeholders are interested in the project
deliverables to be inspected. Additionally, the scenario for the perspectives was very helpful, especially
for inspectors with little experience in the domain and perspective-based inspections.

The process
In order to support the inspection process, a template for the inspection minutes was a simple and

effective tool. The template was on one hand useful for tracking the inspection process. For example, it
contains information on who will inspect the document, it guides the task of the recorder, it helps
determine and schedule the steps after the inspection meeting, and it serves as an input to the
corrections performed by authors. On the other hand, the template also guides the data collection
during the inspection. For example, it contains information regarding finding classification schemes.
Overall, the inspection participants judged this template to be ‘very helpful’.

A template for data analysis was also developed and assisted the coaching team to validate the
collected data with respect to their completeness. Additionally, computer-based tools, such as common
spreadsheet applications, are extremely valuable to perform and visualize analysis results.

A very crucial aspect during the measurement program is to continuously support and motivate the
project members to collect data, since measurement requires a constant, additional effort. In our case,
the project team members have to specify their project effort and classify defects. Usually, these data
collection tasks are regarded as additional burden. Thus, especially in the initial phase of a
measurement program, a coaching team has to constantly demonstrate the benefits of measurement to
project members.

Since the development team has to focus on its development tasks, the coaching team analyzes the
inspection data. Data collection, validation, and analysis as well as the final experience packaging have
to be performed by a separate unit, in this case the coaching team.

4.5 Outlook for project HYPER: further actions
The results and lessons learned presented so far were made on an initial, small set of inspections

within the EURO conversion project. Further inspections will be performed and the measurement
program is continued in order to investigate the benefits of perspective-based inspections and effective
ways to plan, control, and improve them, from both the standpoints of effort and quality.

The next steps of the project will first include the analysis of the collected data according to the
defined GQM measurement plan. We will then further assess the direct and indirect benefits of
Perspective-Based Reading (PBR) inspections. In particular, we will focus on reduction in defect
slippage to testing and reduced test and rework effort. The data will also be used to improve the
benefits of PBR inspections by better planning and controlling them and through a better understanding
of the efficiency factors that drives them, e.g., inspectors’ experience.

The analysis results will be then presented to inspectors and project participants in order to interpret
them in context, get feedback, and identify relevant directions for further investigation. Following the
GQM approach, this will be performed through structured, feedback sessions [Briand et. al. 1997a].

The experience and lessons learned gathered throughout the project will be gathered and stored in
the Allianz Life Assurance experience base. This involves the development of an operational
experience package including a user-oriented manual providing guidelines and heuristics for the
application of both goal-oriented measurement and PBR inspections. The overall project results will
also be reported and will be used to support further dissemination and of the newly introduced
technologies.

The results will be published both internally within Allianz (e.g., at established meetings and
workshops for best practice experience exchange) and externally (e.g., conferences).

Page 22

5 Summary and Conclusions
The EURO conversion implies tremendous changes to existing software systems across Allianz

divisions. Due to this strategic importance of the EURO conversion for Allianz Life Assurance, high
quality of the final software system is a necessity. For this reason, Allianz Life Assurance investigates
innovative quality assurance technologies in the framework of the ESSI Process Improvement
Experiment (PIE) "HYPER" (Project no. 27839). This ESSI PIE is part of a wider-scope software
quality improvement program performed at Allianz Life Assurance. The innovative quality assurance
technologies include Perspective-based inspections and quantitative models to control the defect
content of the inspected artifacts as well as to assess the Perspective-based inspection approach.

Software Inspection is an industry-proven best practice for software quality assurance. Yet,
inspections have shown a wide variation in terms of benefits across the industry [Briand et. al. 1998a].
In order to exploit their full potential, we believe that software inspections require:
- Systematic reading techniques that tell inspection participants what to look for and, more

importantly, how to scrutinize a software artifact for defects.
- Ways to control the resulting quality of an artifact after inspection, e.g., remaining number of

defects, and decide about further inspection.
- Ways to plan inspections to ensure enough effort is assigned to meet quality requirements.
- A good understanding of the driving factors that may optimize their benefits.

Perspective-based inspections provide effective, systematic reading techniques that leverage
existing Fagan-like inspection approaches. PBR inspections define specific inspection viewpoints that
focus upon specific sets of quality properties. In addition, PBR provides guidance for inspection
participants on how to scrutinize a software artifact in a systematic manner. Capture-recapture models
and other related graphical approaches help assess defect content after inspections. Based on the data
collected through our GQM measurement plan, models can also be built to understand the relationships
between effort and other factors (e.g., inspector experience) with inspection effectiveness.

In this paper, we presented initial empirical results regarding the application of PBR inspections on
requirements documents. In particular, we investigated the effectiveness and efficiency of requirement
inspections. Although the results are very preliminary and qualitative in nature, a plausible driver of
effectiveness we identified was the effort spent on gaining findings and the inspector experience with
respect to the application domain. An analysis of the inspection findings also shows the tangible
benefits of PBR inspections, both in terms of effort saved and more indirect benefits. For the
documents inspected so far, these indirect benefits mainly translate into an improvement of the user-
friendliness of the end software product and, thus, a higher user satisfaction. This is plausible when
considering that, in this study, user-interface descriptions were inspected.

Finally, a convenient way to estimate the remaining finding potential after inspection was identified
in the Allianz Life Assurance context. Although the evaluation is very preliminary, the Extended
Detection Profile Method (EDPM) estimates seemed plausible. Further validation of the constructed
model will be undertaken once testing defect data will be collected.

6 Acknowledgment
We would like to thank the project and inspection members of HYPER for their cooperation and

willingness to provide data.

7 References
Ackermann et. al.
1989

Ackerman, A. F., Buchwald, L. S., and Lewsky, F. H. (1989). Software Inspections:
An Effective Verification Process. IEEE Software, 6(3):31-36.

Basili et. al. 1996 Basili, V., Green, S., Laitenberger, O., Lanubile, F., Shull, F., Sorumgard, S., and
Zelkowitz, M. (1996). The Empirical Investigation of Perspective-based Reading.
Journal of Empirical Software Engineering, 2(1):133-164.

Basili 1997 Basili, V. R. (1997). Evolving and Packaging Reading Technologies. Journal of
Systems and Software, 38(1).

Boehm 1981 Boehm, B. W. (1981). Software Engineering Economics. Advances in Computing
Science and Technology. Prentice Hall.

Briand et. al.
1997a

Lionel C. Briand, Christiane Differding, and H. Dieter Rombach, Practical Guidelines
for Measurement-Based Process Improvement, Software Process Improvement and
Practice Journal, vol. 2, no. 3, 1997

Page 23

Briand et. al.
1997b

Lionel Briand, Khaled El Emam, Bernd Freimut, and Oliver Laitenberger, Quantitative
Evaluation of Capture Recapture Models to Control Software Inspections, in
Proceedings of the 8th International Symposium on Software Reliability Engineering,
pp. 234-244, 1997. Also available as International Software Engineering Network
Technical Report ISERN-97-221

Briand et. al.
1998a

L. Briand, K. El-Emam, T. Fußbroich, and O. Laitenberger. (1998). Using Simulation
to Build Inspection Efficiency Benchmarks for Development Projects. In Proceedings
of the 20th International Conference on Software Engineering, pages 340-349. IEEE
Computer Society Press, 1998.

Briand et. al.
1998b

Lionel C. Briand, Khaled El Emam, and Bernd G. Freimut, A Comparison and
Integration of Capture-Recapture Models and the Detection Profile Method, , in
Proceedings of the 9th International Symposium on Software Reliability Engineering.
Also available as International Software Engineering Network Technical Report
ISERN-98-11, Fraunhofer Institute for Experimental Software Engineering, 1998.

Cai, 1998 Kai-Yen Kai. (1998). On Estimating the Number of Defects Remaining in Software,
Journal of Systems and Software, vol. 40, pp. 93-114.

Cheng and
Jeffrey 1996

Cheng, B. and Jeffrey, R. (1996). Comparing Inspection Strategies for Software
Requirements Specifications. In Proceedings of the 1996 Australian Software
Engineering Conference, pages 203-211.

Fagan 1976 Fagan, M. E. (1976). Design and Code Inspections to Reduce Errors in Program
Development. IBM Systems Journal, 15(3): 182-211.

Gilb 1993 Gilb, T. and Graham, D. (1993). Software Inspection. Addison-Wesley Publishing
Company.

Günther et. al.
1996

Holger Günther, H. Dieter Rombach, and Günther Ruhe, Kontinuierliche
Qualitätsverbesserung in der Software-Entwicklung, Wirtschaftsinformatik, vol. 38,
pp. 160--171, Apr. 1996.

Jones 1985 Jones, C. L.. (1985). A Process-Integrated Approach to Defect Prevention, IBM
Systems Journal, vol. 24, No. 2. pp. 150-167.

Leippert and
Ruhe 1998

Friedrich Leippert and Günther Ruhe, “Software Best Practice Activities -- An
Interesting Experience at Allianz Life (Germany).'” ESSI g-r-a-m: Newsletter of the
Software Best Practice Community, Feb. 1998.

Wohlin and
Runeson, 1998

Claes Wohlin and Per Runeson. (1998). Defect Content Estimation from Review Data.
Proceedings of the 20th International Conference on Software Engineering. pp. 400-
409

Parnas 1987 Parnas, D. L. (1987). Active Design Reviews: Principles and Practice. Journal of
Systems and Software, 7:259-265.

Porter et.al. 1995 Porter, A. A., Votta, L. G., and Basili, V. R. (1995b). Comparing Detection Methods
for Software Requirements Inspections: A Replicated Experiment. IEEE Transactions
on Software Engineering, 21(6): 563-575.

Vose, 1996 Vose, D. (1996). Quantitative Risk Analysis: A Guide to Monte Carlo Simulation
Modelling. John Wiley Sons.

1 All ISERN reports can be accessed via http://www.iese.fhg.de/ISERN/pub/isern_biblio_tech.html

Banestyrelsen rådgivning ScanRail Consult

An Experience in Automatic
Verification of

Railway Interlocking Systems

Jakob Lyng Petersen
ScanRail Consult
jlp@rdg.bane.dk

Banestyrelsen rådgivning ScanRail Consult

Introduction

• Motivation of ScanRail consult:
– Interlocking systems using new technology

Long verification process

• Automatic black-box verification
 (medium sized station

w/ 22 points, 23 signals)

Banestyrelsen rådgivning ScanRail Consult

STERNOL programs
Composing instantiated generic objects

Signal

SIG 1

Point

PT 1

Signal

SIG 2

Signal

SIG 3

SIG 1 SIG 2

SIG 3

PT 1

Banestyrelsen rådgivning ScanRail Consult

STERNOL evaluation
• Guarded variable assignments:

Instr := {SwitchLeft if

 ConditionLeft
 SwitchRight if

 ConditionRight
 ...}

• Iterate until fixed point is found

Banestyrelsen rådgivning ScanRail Consult

STERNOL semantics

• Semantics: Set of fixed point states;
A conjunction of formulas of the form:

var = expr ⇐ bexpr

Program-formula is true in all possible
fixed point states

var1 = expr1 ⇐ bexpr1 ∧ ...∧ ...
varn = exprn ⇐ bexprn

Program ≡≡

Banestyrelsen rådgivning ScanRail Consult

The Stålmarck method
If a propositional formula

ϕ ≡ ¬ (Program ⇒⇒ Req)
is self-contradictory then there exits an n for
which this is discovered by n-saturating ϕ

The Stålmarck algorithm computes
n-sat ϕ in Ο(|ϕ|2n + 1)

Emperically: often n = 0 or n = 1 will
suffice!!

Banestyrelsen rådgivning ScanRail Consult

A Local Requirement
LockAllocReq: A point must not switch position if it
is part of an allocated train route

Don’t
switch!

Banestyrelsen rådgivning ScanRail Consult

Proving local requirements

• We need only consider a generic Point-
object

• Size: 5131 subformulas, 276 integer
variables

• Easily proved in 4 sec.

Banestyrelsen rådgivning ScanRail Consult

A non-local requirement
LockFlankReq: Pt1 must not switch position
if implementing flank protection for an
allocated train route

Pt1Don’t
switch!

Banestyrelsen rådgivning ScanRail Consult

Problems in proving non-local
requirements

• A non-generic requirement
• Size of entire program:

– 388000 subformulas, 17000 int. vars.
– Potential state space > 10100000

• 0-sat: 20 sec,1-sat: 20 hrs. (no result)
2-sat? Forget it!
Counter model: not found within reasonable

Banestyrelsen rådgivning ScanRail Consult

“Projecting” programs
Throw away formulas which don’t influence
“interesting” variables

y = 3 ⇐⇐ w = 3 ∧∧ u < 2

x = 0 ⇐⇐ a ≠≠ 6 ∧∧ b = 2

x = 2 ⇐⇐ a = 6 ∧∧ b ≠≠ 2

z = 7 ⇐⇐ a = 5 ∧∧ d = 8

z = 8 ⇐⇐ b = 2 ∨∨ a ≠≠ 5

Projecting onto {z}:

Projecting onto {z}:

Banestyrelsen rådgivning ScanRail Consult

Projection properties

• If projected programs fulfill req., so does
non-projected program

• Counter models for project are not
trustworthy

• Minor reductions using project: 10%
• Using project typically between 50% and

90%

Banestyrelsen rådgivning ScanRail Consult

Is LockFlankReq fulfilled?

• Applying project:
– 2-sat possible (< 3 hrs), but no result!

After 2-sat: counter model easily found
Counter model can be extended

 is not fulfilled.
might be...

Banestyrelsen rådgivning ScanRail Consult

Conclusions

• Local requirements tend to be easily proved
Non-local requirements are difficult to
handle; apparently not
implemented

• Defensive programming might help
Programs should be designed with the

An Experience in Automatic Veri�cation of Railway Interlocking Systems

Jakob Lyng Petersen

ScanRail Consult

e-mail: jlp@rdg.bane.dk

Abstract

This paper presents experiences in applying formal ver-
i�cation to a large industrial piece of software. The area
of application is railway interlocking systems which has
earlier been addressed in for instance [10], [9], [8], and
[7]. We try to prove requirements of the program con-
trolling the Swedish railway station Alings�as by using
the decision procedure which is based on the patented
St�almarck algorithm. While some requirements are eas-
ily proved, others are virtually impossible to manage
due to a very large potential state space, which is in
excess of 10100000. We present what has been done in
order to get, at least, an idea of whether or not such
di�cult requirements are ful�lled or not, and we ex-
press thoughts on what is needed in order to be able to
successfully verify large real-life systems.

1 Introduction

In recent years the use of computer-controlled industrial
systems has increased. When these are safety critical,
the need to verify the safety requirements of such a sys-
tem is evident. As the size and complexity grows, the
need for well-designed programs based on suitable ab-
stractions as well as for computerized veri�cation tools
becomes more urgent. European Norms such as [20, 21]
are recommending use of formal methods (and hence,
computerized veri�cation tools). Obviously, many in-
dustrial manufacters and customers desire that as much
as possible of the veri�cation is done automatically, quick-
ly and, hence, with low �nancial costs.

In this paper, which is a survey of some of the results
of the PhD thesis [16], we present experiences with a
case study: automatic veri�cation of requirements of an
in-use interlocking system which controls the Swedish
railway station Alings�as. Alings�as is a medium-sized
railway station containing 22 points and 33 signals.

Our aim is to avoid the need for detailed knowledge
about the actual program implementation. Since the
program requirements are derived from requirements to
the physical devices controlled and observed by the pro-
gram (i.e., they are expressed solely in terms of input

and output variables) we only have to know how the
program interacts with its surroundings. An automatic
theorem prover, on the other hand, should be able to
sort out the complicated structure of the actual imple-
mentation.

The veri�cation is based on applying the descision
procedure NP-Tools, developed by the Swedish com-
pany Logikkonsult NP AB. It is based on the patented
St�almarck algorithm[17, 18, 19].

Others have tried to verify properties of railway in-
terlocking systems, e.g. [13, 6, 2]. Groote, Koorn and
van Vlijmen have mangaged to verify several require-
ments for a small Dutch railway station [8], and their
results indicated that applying the St�almarck method
might be more e�cient that applying other techniques,
including ROBDDs[3].

The satis�ability checker Sato[24] has proved very
e�cient on some problems, but, unlike NP-Tools, does
not incorporate arithmetic.

2 Railway terminology

A railway station (see Figure 1) consists of a number of
tracks divided into track segments.

track segments

signal

signal
point

signals

point

Figure 1: A simple station with two points, four signals
and ten track segments. Track segments are separated
by the >s.

A point is used to control how a train can pass
through a branching track segment. A point is in \left-
hand position" if it allows a train to drive through the
left branch, in \right-hand position" if it allows a train

1

to drive through the right branch. A point is said to be
locked if the control program prevents the point from
changing position.

A train route is a list of track segments which can
be allocated or deallocated. If a train route is allocated,
trains are allowed to drive through its track segments,
otherwise not.

Flank protection for train route:

Point: Pt2

Pt2 in left-hand position

Point: Pt1

Allocated train route

Figure 2: When Pt1 is part of an allocated train route,
Pt2 must be in left-hand position in order to implement

ank protection, hence, preventing trains from driving
towards the allocated train route from the lower track
segments.

A point is implementing
ank protection for an allo-
cated train route, if the point (which is not itself part of
the train route) is positioned such that a train/wagon
driving through the point is not directed into a track
segment of the train route, and if this would happen
in case the point was positioned di�erently. Figure 2
visualizes the concept.

3 The interlocking program

The program controlling the station is written in the
language STERNOL [1, 14], which has been developed
by ADTranz (formerly ABB Signal) in Sweden. STER-
NOL is used to construct interlocking programs for rail-
way applications.

The source code of a STERNOL program consists
of implementations of a few generic objects. To form a
program for an actual railway station, the generic ob-
jects are instantiated and connected according to a site-
data �le. That two objects, O1 and O2, are connected
means that O1 is able to read some variables which are
being assigned by O2 and vice versa. Each instantiated
object forms a set of base formulas. The program is the
union of all the objects. A number of variables are asso-
ciated each object. The values of the variables indicate
the state of an object.

The generic objects are typically designed to con-
trol each kind of physical device of the station such as
a point, a signal or a level crossing. The object connec-
tions re
ect the topology of the physical objects of the
station.

The program works by repeatedly performing an
evaluation cycle, i.e., the values of output and local vari-
ables are updated according to the values of the input
variables when the cycle begins.

The program source code can be translated directly
into a set of logical formulas, base formulas, which are all
true for any variable assignment which is possible when
an evaluation cycle terminates. In this paper we are
only concerned with the resulting set of base formulas.
A base formula has the form:

v = e(be

where v is a variable, e is an integer expression and be

is a boolean expression.
An example of base formulas controlling an output

variable, Instruction, which gives an instruction to a
point is (simpli�ed):

Instruction= SwitchLeft (Command = TryLeft ^

Condition OKL

Instruction= SwitchRight (Command = TryRight ^

Condition OKR

where Instruction and Command are program variables,
SwitchLeft and SwitchRight are constants, and Conditi-
on OKL and Condition OKR are propositions (express-
ing statements about other program variables) which
are true when the point is allowed to switch into left-
hand position and right-hand position (respectively) and
false otherwise.

A value assignment making all the base formulas
true is a possible evaluation-cycle result for the program
only if no variable is assigned a value which is not in its
(declared) value domain and if for each variable, there is
exactly one base formula of that variable such that the
right-hand side of the (is true. In the following we
shall only take such well-formed variable assignments
into consideration.

4 Formalizing requirements

The safety requirements for railway stations are basi-
cally that trains must not collide and must not de-
rail. However, these requirements are implemented by
a number of requirements for the physical devices of a
station and by a set of assumptions about the accepted
behaviors of trains (based on the regulations of the rail-
way authority in question). A number of requirements

2

exists for the Swedish railway stations [7]. We shall ex-
amine two of these:

LockAllocReq: A point should be locked if it is part
of an allocated train route

LockFlankReq: A point should be locked if it imple-
ments
ank protection for an allocated train route

We note that both requirements are generic in the sense
that they do not mention any speci�c points or train
routes. By studying the program documentation, it
is possible to �nd the corresponding program require-
ments. LockAllocReq looks the same for all the point
objects of the station:

Point:Status 6= DeallocFree)

Point:Instruction 6= SwitchLeft ^

Point:Instruction 6= SwitchRight

where Point refers to some point object, Status and
Instruction are variables of that object and DeallocFree

is a symbolic constant indicating that the point is not
part of an allocated train route and is not occupied by
a train, and SwitchLeft and SwitchRight are symbolic
constants standing for point instructions \switch to left-
hand position" and \switch to right-hand position", re-
spectively.

The other requirement will look di�erently depend-
ing on what objects are a�ected by the given train route
and which
ank protecting point we are examining. We
chose one instance of the requirement. This instance
is reduced by simpli�cations which can be justi�ed by
making observations about the concrete topology of the
station. See [15] for a more detailed discussion of this.
The situation is similar to the one depicted in Figure 2.
We end up with the requirement0

@ Pt1:Position = Left ^
Pt1:Status = Alloc ^
Pt2:Position = Left

1
A)

Pt2:Instruction 6= SwitchRight

where Pt1 and Pt2 are speci�c point objects of the sta-
tion, Position is a variable of the objects and Left is a
symbolic constant indicating that a point is in left-hand
position. Alloc is a symbolic constant indicating that
the point is part of an allocated train route.

5 The NP-Tools theorem prover

The theorem prover NP-Tools is an interface to the
patented St�almarck proof procedure for propositional
logic [17, 18].

Brie
y, the method is based on constructing sub-
formula natural deduction proofs. The basic concept is
that of n-saturation [23]. The n-saturation of a set of
formulas is the set of all (sub-formula) conclusions that
can be drawn using a proof with at most n simultaneous
hypotheses. E.g., the 0-saturation of a set of formulas is
the set of conclusions that can be drawn using a proof
without any hypothetical reasoning at all.

In order to get as many conclusions as possible with-
out the need for hypothetical reasoning, the proof proce-
dure includes all valid simple inference rules involving a
single logical connective. This includes rules that would
be redundant under standard presentations of natural
deduction, e.g. rules such as

� ` A _ B � ` :A

� ` B

and
� ` :A

� ` :(A ^ B)

The proof procedure uses a single hypothetical inference
rule expressing the principle of the excluded middle:

�; A ` B �;:A ` B

� ` B

Proofs in NP-Tools are done as refutation proofs: to
prove that a formula B follows from some assumption
set A, the negation of B is added to A and the resulting
set is n-saturated (for some n). If absurdity (contradic-
tion) is among the conclusions of the saturation, B has
been shown to follow from A. If a proof can be found
using n-saturation, the problem is said to be n-easy.

If NP-Tools fails to �nd a proof, it will attempt to
�nd a counter model, e.g. an assignment of truth values
to propositional variables, where all formulas in A are
true, but B is false.

Clearly, the lower the n, the faster the saturation.
0-saturation can be done in linear time in the size of
the problem. General n-saturation can be done in time
O(s2n+1) where s is the size of the problem. The impor-
tant property of the method is that \practical" problems
can often be solved with n equal to 0 or 1 [11]. This
means that in practise the procedure can handle very
large problems.

In addition to the propositional reasoning, NP-Tools
includes a (very) incomplete handling of integer arith-
metic1.

The size of a problem in NP-Tools is usually mea-
sured in the number of triples|a data structure of the
theorem prover. Roughly, the number of triples corre-
sponds to the number of operators (logical connectives,

1Integer arithmetic is of course always incomplete since it is
undecidable, but the arithmetic in NP-Tools is particularly weak,
as the theorem prover is intended for propositional logic.

3

relational or arithmetical operators) in the the problem
formulas.

For a fuller explanation of the St�almarck method,
see [16] and [23].

6 Verifying requirements using

NP-Tools

By using NP-Tools to saturate a set consisting of the
base formulas of a program and a negated requirement,
we can use it to attempt to prove whether or not given
program requirements are ful�lled.

LockAllocReq can be proved in two fundamentally
di�erent ways. We can either consider a generic point
object, or consider each of the actual points in the rail-
way station in question.

Considering a generic point object is the most ele-
gant approach, since a successful proof implies that the
requirement will be ful�lled for any point in any rail-
way station whatsoever. On the other hand, since a
generic object has no \real" neighbours, the proof must
take into account every possible combination of input
data from the potential neighbours|even combinations
that could never be generated by an actual neighbour
in an instantiated STERNOL program. This makes it
possible that a generic object might fail to ful�ll the re-
quirement even if it will always be ful�lled by an object
in an instantiated program.

Attempting to prove LockAllocReq for a generic point
object turns out to be easy. The point object generates
5131 triples and 276 arithmetic variables. The require-
ment can be proved using 1-saturation in 65 seconds2

or by using 0-saturation to prove two sub-requirements,
each using about 2 seconds of runtime.

LockFlankReq is not so easily managed. A generic
proof is not feasible since the requirement deals with
the relation of the points to other objects. A direct
attempt to prove the requirement for the points Pt1 and
Pt2 fails. The problem turns out not to be 1-easy, and
2-saturating the problem (as well as �nding a possible
counter model) takes unreasonably long time. Another
approach must be taken.

7 Reducing the state space of a

program

The main reason why LockFlankReq causes troubles
is that the state space of the program is very large.

2All timing �gures refer to NP-Tools 2.1 running on a HP
715/80 workstation.

The size of the program, represented in NP-Tools, con-
sists of about 388000 triples and 17000 integer vari-
ables. This gives us a potential state space of roughly
2388000 � 10116800. In order to overcome the state space
problems, we try to reduce the state space of the pro-
gram with respect to the requirement we are consider-
ing. The �rst approach is to only regard the program
objects which are constrained by the requirement: if we
can prove that such a cluster of objects cannot enter
a state which would violate the requirement no mat-
ter how other parts of the program behaves, then we
have proved that the program ful�lls the requirement.
LockFlankReq constrains variables of the objects Pt1
and Pt2 only, so we consider only the program frag-
ment consisting of those two objects. This drastically
reduces the state space of the problem. However, the
reduction is still not enough, so further reductions are
needed.

7.1 Program projections

Another idea is to eliminate all base formulas which do
not a�ect the value of the \interesting" variables. Here
the interesting variables are the ones mentioned by the
requirement. We do so by \projecting" a program onto
a set of variables.

An integer expression is constructed by integer con-
stants, variables and the usual arithmetic operators.
De�ne the variables of an integer expression by:

Vi(c) = ; Vi(v) = fvg Vi(�e) = Vi(e)

Vi(e1 op e2) = Vi(e1) [Vi(e2)

Similarly, a boolean expression is constructed by rela-
tions between integer expressions and the usual boolean
operators. De�ne the variables of a boolean expression
by:

Vb(:be) = Vb(be)

Vb(e1 relop e2) = Vi(e1) [Vi(e2)

Vb(be1 bop be2) = Vb(be1) [Vb(be2)

De�ne the immediate dependences of a variable x in
the base formula

' b= v = e(be

as

ID(x; ') b=
8>><
>>:

fvg [Vi(e) [Vb(be) i� x 2 fvg [
Vi(e) [
Vb(be)

; otherwise

4

For a set of base formulas, �, de�ne

ID(x;�) b= [
'2�

ID(x; ')

De�ne the dependences of a variable, x, in the program,
�, as

D(x;�) b= fxg [
[

y2ID(x;�)

D(y;�)

De�ne the dependences of a set of variables, X , as:

D(X;�) b= [
x2X

D(x;�)

Finally, by the variable of a base formula, we write:

V ar(var = expr (bexpr)

and by this mean var, i.e., the identi�er on the left-hand
side of the \=" sign.

We can now de�ne the projection of � onto a set of
variables, X by

' 2 project(�; X) , ' 2 � ^ V ar(') 2 D(X;�)

The idea of this projection is similar to that of program
slicing [22, 8].

7.2 Modi�ed projection

Unfortunately, a projection of the program onto the
variables of LockFlankReq does not lead to very large
reductions. To obtain a more signi�cant reduction, we
can eliminate all base formulas which do not directly
have an e�ect on the value of one of the variable which
we project onto. Consider the base formula: v = e (
be. This base formula in
uences the value of the vari-
able v. So if v is one of the variable projected onto, this
base formula should be included in the result. However,
we do not necessarily want to include it if v is not one
of the variables projected onto, even if one of these vari-
ables occur in the e or be. Thus, the base formulas of
the projection-result are the ones determining the value
of the interesting variables (and the variables they are
controlled by etc.) and not necessarily the base formu-
las of variables which are controlled by the interesting
variables. A new modi�ed projection can be de�ned by
changing the de�nition of immediate dependency:

ID(x; v = e(be) b= �
Vi(e) [Vb(be) i� v = x

; otherwise

We shall refer to the modi�ed projection as projectM ,
and the \complete" projection de�ned in Sect. 7.1 as
projectC .

Theorem 1 For all sets of base formulas, �, all sets
of variables, X, and all requirement formulas, �: if
projectM (X;�) j= � then projectC(X;�) j= �.

Proof. The complete projection contains everything that
the modi�ed projection does (a proof of this can be
found in [16]). The extension theorem for propositional
logic says that

If � j= � then � [� j= �

Since (by the property stated above)

projectC(X;�) = projectM (X;�) [�

for some set of base formulas �, Theorem 1 follows di-
rectly from the extension theorem. 2

Methods for reducing the size of problems has previ-
ously been addressed in the literature. The interlocking
program for Alings�as could probably be reformulated
such that the compositional model checking suggested
by Clarke, Long and McMillan[5] could be applied. It
seems, however impractical for a system as large as the
interlocking system, and a lot of work would have to be
done in parting the program into small processes etc.
Clarke, Grumberg and Long has suggested to apply a
number of abstractions depending on the nature of the
problem [4]. It is not obvious, however, that these ab-
stractions could be applied well to the interlocking pro-
gram. At least, a lot of work would have to be spent
in understanding in detail how the program works|the
idea of this paper is to examine how far we can get
without such insight. Also, the work of Kurshan[12] is
probably related.

8 Verifying with projection

Because of Theorem 1 we can prove LockFlankReq if we
can prove that the requirement is ful�lled by the base
formulas resulting from applying the modi�ed projec-
tion onto the variables occurring in LockFlankReq.

By using projectM after having made trivial reduc-
tions of the program, the size of the program objects
Pt1 and Pt2 was reduced by 84%. This made it possi-
ble to try a 2-saturation on the problem in about three
hours. Unfortunately, this was not enough to prove
LockFlankReq. This means that either we have to go
to even higher saturation levels or that the requirement
is not ful�lled. Trying a 3-saturation is infeasible, since
this would take an enormous amount of time, so instead
NP-Tools was asked to try to �nd a counter model for
the requirement. After a few hours, a counter model for
the reduced program was found. That is, LockFlankReq
is not ful�lled by the projected program.

5

8.1 False counter models

This does not necessarily mean that the requirement
is not ful�lled, since it may not be possible to extend
the counter model to be a counter model for the non-
reduced program. Consider the following set of base
formulas:

x = 0 (z = 8 ^ a 6= 6

x = 2 (z = 7 ^ a = 6

z = 7 (a = 5 ^ d = 8

z = 8 (b = 2 _ a 6= 5

Suppose we project the formulas (using projectM) onto
fzg. The result does not contain the base formulas for
x. Suppose that there are no other base formulas for
x and z. It is now possible to �nd a model (for the
projection) where z = 7. We notice that this must mean
that a = 5 (since exactly one of the two base formulas
of z must have the expression on the right-hand side of
(true). Considering the un-projected set, we see that
this means that x must have the value 2 if z = 7, but it
cannot have that value if a = 5. Hence, there is no well-
formed variable assignment where z = 7. That is: it
may be possible to �nd a model for a projection which
cannot be extended to a model for the non-projected
program.

The found counter models for LockFlankReq may
not be true counter models after all!

8.2 Extending the counter model

Once the counter mode for the problem reduced by a
modi�ed projection was found, it could be extended
rather easily to a counter model for the same problem
reduced by a complete projection (and this could again
be extended to a model for Pt1 and Pt2). So, require-
ment LockFlankReq is not ful�lled by the part of the
program consisting of the objects Pt1 and Pt2.

It is, however, still not certain that the counter model
can be extended to a counter model for the entire pro-
gram. Since there are a large number of counter models
for the system consisting of Pt1 and Pt2 only, it may
be quite di�cult to extend the counter model to be a
counter model for the entire program. Of course, we
could add more and more objects, each time extending
the model. However, if, at a certain point, the model
cannot be extended, we would have to backtrack and try
out all remaining possibilities. Doing so corresponds to
letting the program �nd a counter model for the entire
program|and we already know that takes too long time
for any practical use.

This leaves us with an unanswered question: is Lock-
FlankReq ful�lled by the program or not? All we can

say is that it is not ful�lled when we only consider the
objects mentioned by the requirement. It may be that
other objects of the program can never enter a state
that forces Pt1 and Pt2 to get into a state where the
requirement is not ful�lled, but we cannot tell.

This means, that either the requirement is not ful-
�lled, or the program has been made in a non-defensive
manner: \impossible3" inputs from other program ob-
jects is not handled safely. Since such assumptions are
not expressed anywhere, it makes the task of verifying
the requirements very di�cult.

9 Conclusion

We have presented experiences of formal veri�cation of
an existing railway interlocking program, based directly
on the program source code rather than on an abstrac-
tion of the program behaviour. The idea was to �nd out
how far we can come in verifying programs without a
deep insight of the program structure. An insight which
on one handmay help us decomposing the problems into
several easier problems, but on the other hand is hard4

to obtain, especially if programs are poorly documented.
Immediate conclusions are:

� By using the St�almarck method (NP-Tools) we
are able to prove properties of very large systems,
provided that the proofs are 0- or 1-easy.

� As it turns out, \local" requirements (i.e., require-
ments dealing with one program object/physical
device) tend to be 0- or 1-easy. LockAllocReq is
an example of this.

� Requirements constraining multiple objects (such
as LockFlankReq) often cannot be proved by 1-
saturation. This means that either the require-
ment is more di�cult to prove, or that it is not
ful�lled.

� Reducing a problem (e.g., by projecting the prob-
lem onto a set of interesting variables) can help us
prove 2-easy problems (but not harder problems
in realistic examples).

� LockFlankReq was actually not ful�lled (when we
only considered the objects mentioned by the re-
quirement). This could be taken as an indica-
tion that the experiences of Logikkonsult that if
a \real-life" problem is harder than 1-easy, then
it most likely is not ful�lled. However, we do not
have enough experience to jump to such conclu-
sions.

3By tacit assumptions
4And therefore costly.

6

What can we do to be able to determine whether or
not the requirements are ful�lled by programs on the
industrial scale? One could claim that theorem provers
are not yet mature to handle such programs, or one
could claim that the programs are not yet mature to be
handled by theorem provers.

Naturally, work should be done to improve the tech-
niques of theorem provers, but it may very well take a
long time before theorem provers will be able to prove
properties of programs that have not been designed with
formal veri�cation in mind (such as the Alings�as in-
terlocking program). Therefore, we might have more
immediate success by demanding that programs should
be designed such that they are manageable by todays
theorem provers. For instance, one could require that
the Alings�as interlocking program must be such that
it is possible to prove requirements just by considering
the parts of the program which are directly a�ected by
the requirement. This may very well lead to better ab-
stractions and better program design, and help making
assumptions explicit.

Acknowledgements

I would like to thank Lars-Henrik Eriksson who has been
supervising this work during my visit at Logikkonsult
NP AB in January{July 1996 while I did my PhD at
the Department of Information Technology, Technical
University of Denmark.

References

[1] ABB Signal AB. Sternol Programming Language,
1994. Doc. No. 3NSS100003A0004.

[2] A. Anselmi, C. Bernardeschi, A. Fantechi, S. Gnesi,
S. Larosa, G. Mongardi, and F. Torielli. An experi-
ence in formal veri�cation of safety properties of a
railway signalling control system. In G. Rabe, ed-
itor, Proceedings of the 14th International Confer-
ence on Computer Safety, Reliability and Security
(SAFECOMP'95), pages 474{488, Belgirate, Italy,
October 11-13 1995. Springer Verlag.

[3] R. E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on
Computers, C-35(12):1035{1044, 1986.

[4] E. M. Clarke, O. Grumberg, and D. E. Long. Model
checking and abstraction. In Proceedings of the
19'th Annual Symposium on Principles of Program-
ming Languages, Santa Fe, New Mexico, January
1992.

[5] E.M. Clarke, D.E. Long, and K.L. McMillan. Com-
positional model checking. In Proceedings, Fourth
Annual Symposium on Logic in Computer Science,
pages 353{362, Asilomar Conference Center, Pa-
ci�c Grove, California, June 5{8 1989. IEEE Com-
puter Society Press.

[6] Babak Dehbonei and Fernando Mejia. Formal
development of safety-critical software systems in
railway signalling. In Michael G. Hinchey and
Jonathan P. Bowen, editors, Applications of For-
mal Methods, chapter 10. Prentice Hall, 1995.

[7] Lars-Henrik Eriksson. Formalisering av krav p�a
st�allverk (slutrapport). Technical Report NP-K-
LHE-003, Logikkonsult NP AB, December 1995.
Preliminary version. In Swedish.

[8] J.F. Groote, J.W.C. Koorn, and S.F.M. van Vli-
jmen. The safety guaranteeing system at sta-
tion Hoorn-Kersenboogerd. Technical Report 121,
Logic Group, Preprint Series, Department of Phi-
losophy, Utrecht University, 1994.

[9] Kirsten Mark Hansen. Linking Safety Analysis to
Safety Requirements|Exempli�ed by Railway In-
terlocking Systems. PhD thesis, Department of In-
formation Technology, Technical University of Den-
mark, 1996.

[10] Kirsten Mark Hansen. Modelling railway interlock-
ing systems. In Computer Applications In Trans-
portation Systems, June 1996. Basel, Switzerland.

[11] John Harrison. St�almarck's algorithm as a HOL
derived rule. In Proceedings of the 9th International
Conference on Theorem Proving in Higher Order
Logics (TPHOLs'96), Finland, August 1996.

[12] Robert P. Kurshan. Computer Aided Veri�cation
of Coordinating Processes, chapter 8: Reduction of
Veri�cation. Princeton University Press, 1994.

[13] Matthew J. Morley. Safety Assurance in Interlock-
ing Design. PhD thesis, Department of Computer
Science, University of Edinburgh, 1996.

[14] Jakob Lyng Petersen. En uformel beskrivelse af
sternol. In Danish. Danish State Railways (DSB),
1995.

[15] Jakob Lyng Petersen. Formal requirement veri�ca-
tion of a swedish railway interlocking system. Tech-
nical Report IT-TR: 1997-005, Department of In-
formation Technology, Technical University of Den-
mark, 1997.

7

[16] Jakob Lyng Petersen. Mathematical Methods for
Validating Railway Interlocking Systems. PhD the-
sis, Department of Information Technolog, Techni-
cal University of Denmark, 1998.

[17] Gunnar St�almarck. En metod och anordning f�or
tautologicheckning. Swedish patent 467 076, 1989.
Approved 1991.

[18] Gunnar St�almarck. A system for determining
propositional logic theorems by applying values
and rules to triplets that are generated from a for-
mula. U.S. patent 5 276 897, 1989. Approved 1994.

[19] Gunnar St�almarck and M�arten S�a
und. Modelling
and verifying systems and software in propositional
logic. In B. K. Daniels, editor, Proceedings of
Safety of Computer Control Systems 1990 (SAFE-
COMP'90), pages 31{36, Gatwick, UK, 1990. Perg-
amon Press.

[20] Technical Committee CENELEC TC 9X. Cenelec
prEN 50126: Railway Applications|The Speci�ca-
tion and Demonstation of Reliability, Availability,
Maintainability and Safety (RAMS), June 1997. Fi-
nal Draft.

[21] Technical Committee CENELEC TC 9X. Cen-
elec prEN 50128: Railway Applications|Software
For Railway Control And Protection Systems, June
1997. Final Draft.

[22] F. Tip. A survey of program slicing techniques.
Technical Report CS-R9438, CWI (Centrum voor
Wiskunde Informatica), Amsterdam, 1994.

[23] Filip Wideb�ack. St�almarck's notion of n-saturation.
version 1. Logikkonsult NP AB, NP-K-FW-200,
January 1996.

[24] Hantao Zhang. Sato: A decision procedure for
propositional logic. Association for Automated
Reasoning Newsletter, 22(1{3), March 1993.

8

1

"Risk Management Technology" ©Gilb@acm.org

Slide
 1

"Risk Management Technology:
 A rich practical toolkit for identifying, documenting, analyzing

By T om Gilb,
Senior Partner ,

Result Planning L imited

T omGilb@Result-Planing.com
U R L www.Result-Planning.com

For Quality Week Brussels, Nov 11-
13 1998, Talk 4PM Thursday 12th

November 1998

"Risk Management Technology" ©Gilb@acm.org

Slide
 2A broad definition of ‘Risk’

• Risk: is an abstract concept
covering the area of control of

• A ‘risk’ is anything which itself
can lead to negative
unpredictable results.

• Risk Management is any
activity which identifies risks,
and takes action to remove,
reduce or control ‘negative
results’.

• ‘Negative results’ are any
measurable or testable
outcomes due to activity or
inactivity, which are worse
than the results planned or
expected.

2

"Risk Management Technology" ©Gilb@acm.org

Slide
 3A method for specification of risk level objectives

• We must go through the following

• Identify all critical quality and cost
aspects of the system where we
would like to control risk.

• Define exactly how to understand
variation in each critical aspect by
specifying a scale of measure

• Define one or more critical points
on the defined scale of measure
which are needed and expected for
the system to function properly

• Define Must and Plan levels for any
important to you aspects of time,
place and event. We call this using

‘qualifier’.

• We must go through
the following steps:

• Availability
• Scale: % System up

24H 7Day
• Must [Acceptance

Test] 98%
• Plan [First Year Oper.]

99.90%
•

"Risk Management Technology" ©Gilb@acm.org

Slide
 4Specification Examples

• Plan [1999, Europe, IF no war in

• Must [2001, UK, IF Euro is used in
Norway & UK] 60% ±20%

• Usability:

– Scale: Mean Time to learn
[defined tasks] to
Minimum proficiency

– Must [Release 2.0, English
Version, Task: Modifying
Files] 10 minutes.

– Plan [Release 3.0, French
& Dutch Versions, Task:
Finding a File by Content]
5 minutes.

• Qualifier: When,
Where, IF
– Avoids risk of

change or
overgeneralization

• Direct specification
of uncertainty
using ±

• Generic parameter
“[defined tasks]”

• Specific Parameter
– “Modifying Files”

3

"Risk Management Technology" ©Gilb@acm.org

Slide
 5Risk analysis of using particular solutions

• The most critical (failure of
system) risk is that the first set
of conditions has a time to
learn exceeding 10 minutes.

• The secondary risk is the
second set of conditions and a
failure there to learn in 5
minutes or less.

• It should be obvious that
the degree of risk can be
expressed in terms of the
deviation from the target
levels.

• Means that method A poses
a real risk and method B
does not, for meeting he
specified targets.

• Usability:
– Scale: Mean Time to learn [defined

tasks] to Minimum proficiency
Must [Release 2.0, English Version,
Task: Modifying Files] 10 minutes.
Plan [Release 3.0, French & Dutch
Versions, Task: Finding a File by
Content] 5 minutes.

• For example
• Method A can sometimes result in a

learning time of 10 minutes, while
method B can never result in a
learning time exceeding 4 minutes.

"Risk Management Technology" ©Gilb@acm.org

Slide
 6Specifying Uncertainty (a Risk)

• Plan 60-80
• Plan 60±30

• Plan 60 àà 90
• Plan 60?
• Plan 60??

• Plan 60 ßß Dubious Source
• Plan <60> <Fuzzy Brackets>

indicate ‘data needing improvement’

4

"Risk Management Technology" ©Gilb@acm.org

Slide
 7Avoiding risk of requirements not needed

• Plan [IF NATO
includes Russia
as Full Member]
99%

• Risk is controlled by
making the specification
totally dependent on the IF
condition.

• There is no risk that anyone
will plan to achieve 99% IF
the condition is false.

• But they are warned to plan
to achieve 99% should the
condition turn true.

"Risk Management Technology" ©Gilb@acm.org

Slide
 8Avoiding wrong strategy risk

• Strategy99
• [IF Hunger Famine

in a country,
IF Road and Rail
Transport
Unavailable]

• Aerial Supply of
Food OR Aerial
Removal of
Refugees to Food
Supply

• This shows how a strategy
(a means for achieving a
goal) can be specified, and
made totally dependent on
one or more conditions in
the Qualifier.

• This reduces the risk that
an expensive strategy is
applied under inappropriate
conditions,

• and that, for example, ‘cost
budgets’ risk being
threatened.

5

"Risk Management Technology" ©Gilb@acm.org

Slide
 9Risk Policy Summary

• .EXPLICIT RISK SPECIFICATION
• All managers/planners/engineers/testers/ quality assurance people shall immediately in writing, integrated in the main plan, specify

any uncertainty, and any special conditions which can imaginably lead to a risk of deviation from defined target levels of system

• NUMERIC EXPECTATION SPECIFICATION
• The expected levels of all quality and cost attributes of the system shall be specified in a numeric way, using defined scales of

‘Meters’ (test or measuring instruments for determining where we are

• CONDITIONS SPECIFIED
• The requirements levels shall be qualified with regard to when where and under which conditions the targets apply, so there is no

• COMPLETE REQUIREMENT SPECIFICATION
• A complete set of all critical quality and cost aspects shall be specified, avoiding the risk of failing to consider a single critical

• .COMPLETE DESIGN SPECIFICATION and IMPACT ESTIMATION
• A complete set of designs or strategies for meeting the complete set of quality and cost targets will be specified. They will be

validated against all specified quality and cost targets (using Impact Estimation Tables). They will meet a reasonable level of safety
margin. They will then be evolutionarily validated in practice before major investment is made. The

‘project time’, per ‘incremental trial’ (Evo step) of designs or strategies.
• .SPECIFICATION QUALITY CONTROL NUMERICALLY EXITED
• All requirements, design, impact estimation and Evolutionary project plans, as well as all other related critical documents such as

contracts, management plans, contract modifications, marketing plans, shall be ‘quality controlled’ using the Inspection method
[GILB93]. A normal process Exit level shall be that ‘no more than 0.2 Major Defects per page maximum, can be calculated to remain,
as a function of those found and fixed before release, when checking is done properly’ (e.g. at optimum checking rates of 1 logical page
or less per hour).

• 7. EVOLUTIONARY PROOF-OF-CONCEPT PRIORITIES
• The Evolutionary Project Management method [Gilb97, Gilb88] will be used to sense and control risk in mid-project. The dominant

– .2% steps,

– .high value to cost with regard to risk delivered first.

– .high risk strategies tested ‘offline to customer delivery’, in the Backroom of development process, or at cost-to-vendor, or with ‘research funds’ as opposed to project
budget.

"Risk Management Technology" ©Gilb@acm.org

Slide
 1010 Principles of Risk Management

• 1. Frequent Feedback
• Early frequent and measurable feedback from reality must be planned into your development process, to identify

• 2. Rigorous Requirements
• All critical success-and-failure quality/performance/cost requirements must be identified, made measurable and

tracked through design and evolutionary deployment.

• 3. Requirement Impact Estimation
• A design phase must address all critical few requirements and systematically estimate the impact of all design

• 4. Upstream Pollution Control
• All upstream documents (requirements, design) must be thoroughly inspected against a strong set of Rules for

Good Practice, and not exited to next phases until they have reached a reasonable level of Major Defect Freeness.

• 5. Personal Risk Responsibility
• People must be give personal responsibility in their sector for identification and mitigation of risks.

• 6. Design Out Risk
• Unacceptable risk needs to be ‘designed out’ of the system consciously at all levels of engineering, architecture,

purchasing, contracting, development process, motivation and maintenance process.

• 7. Maximum Risk Policy
• The total level of risk exposure at any one stage should be consciously reduced to a minimum of about 2-5% of

total budget, even with total failure of that stage alone.

• 8. Maximize profit, not minimize Risk itself
• Focus not on elimination of all risk, but on maximization of benefit to cost result delivery, even considering risks.

• 9. Backups are part of the Price
• Conscious planning and development of backup for risks is a necessary minimum cost of planning and projects.

• 10. Contract Out Risk

• Make vendors contractually responsible for risks, they will give you better advice and services as a result.

6

"Risk Management Technology" ©Gilb@acm.org

Slide
 11TWELVE TOUGH QUESTIONS

• 1. Why isn't the
improvement quantified?

• 2. What is degree of the
risk or uncertainty and
why?

• 3. Are you sure? If not,
why not?

• 4. Where did you get that
from? How can I check it
out?

• 5. How does your idea
affect my goals,
measurably?

• 6. Did we forget anything
critical to survival?

• 7. How do you know it works
that way? Did it before?

• 8. Have we got a complete
solution? Are all objectives
satisfied?

• 9. Are we planning to do the
'profitable things' first?

• 10. Who is responsible for
failure or success?

• 11. How can we be sure the plan
is working, during the project,

• 12. Is it ‘no cure, no pay’ in a
contract? Why not?

There is a detailed paper on these questions at www.result-planning.com

"Risk Management Technology" ©Gilb@acm.org

Slide
 12

Simple Impact Estimation Table

"0->32 people""0->32 people"

A1A1 B4B4 CDCD DXDX ••

0%0% 100%100% 50%50% -5%-5% 145%145%

1%1% 1%1% 1%1% 1%1% 4%4%

60%60%
±20±20

"99.9%->99.98%""99.9%->99.98%"

"0->1 million""0->1 million" 100%100%

Benefit/Cost-> Benefit/Cost->
0%0%

0.60.6

99%99%

 10% 10%
30%30%
5.05.0

41%41% 200200
%%

400%400%

?? n.a.n.a. 110?110?
9%9%±5±5

"3"3 mins mins.->1".->1"

"80%->95%""80%->95%"

"PAST->PLAN""PAST->PLAN"

(Tags of defined)(Tags of defined)
Strategies->Strategies->ObjectivesObjectives

Lieuw ZiegtermanLieuw Ziegterman of Dutch Rail suggested PAST->PLAN notation of Dutch Rail suggested PAST->PLAN notation

7

"Risk Management Technology" ©Gilb@acm.org

Slide
 13Advanced “Impact Estimation” conceptsAdvanced “Impact Estimation” concepts

AVAILABILITY

PORTABILITY

USABILITY

BUDGET

EMPLOYEES
"0->32 people"

A1 B4 CD DX •

0% 100% 50% -5% 145%

1 1 1 1 4%
60
±20

"99.9%->99.98%"

"0->1 million" 100

Benefit/Cost->
0

0.6

99

10%
30%
5.0

41 200 400%

? n.a. 110?

Quality and
 Benefit
Objectives

Rough sum of effects
of all strategies on a

single attribute's
planned

level.

Clearly not
good enough
design yet

Clearly not
good enough
design yet

Safety
margin
4XResource

Budget
tags

Sum Benefits / Sum resources
= rough relative goodness
of a strategy with respect to
all objectives.

Tags of proposed TOTAL SET of
strategies (defined elsewhere)

for meeting the quality
objectives, within resource constraints.

9±5 Explicit uncertainty estimate

"3 mins.->1"

"80%->95%"

"PAST->PLAN"

Strategies->
Objectives

USABILITY:A1

Design method A1 in all competitive products and in
our lab prototypes shows user learning time to be
under two minutes. <- Lab Report U-92USABILITY:

SCALE: Avg. Minutes for typical
 user to learn to operate our product.
METER [accept] at least 100 users.
PAST[1993, Old Product] 3 minutes.
PLAN[New Product,1999] 1 minute.
 [New Product, 1996] 30

Objective
 statement, example

Evidence Example

A1: Graphical interfaces using minimal
language, no codes, maximum
pictures, maximum user tailoring,
maximum learning about particular

Strategy Definition Example

Estimation language:

0% = no effect with respect to PAST level.

100% = expected to meet PLAN level.

negative effect= makes things worse than PAST level.

? = no basis for an estimate.

n.a. = not applicable.

"Risk Management Technology" ©Gilb@acm.org

Slide
 14Credibility Rating (for Impact Table)

• Cred. Score Meaning

• 0.0 wild guess, no credibility

• 0.1 we know it has been done somewhere

• 0.2 we have one measurement somewhere
• 0.3 there are several measurements in the estimated range

• 0.4 the measurements are relevant to our case

• 0.5 the method of measurement is considered reliable

• 0.6 we have used the method in-house

• 0.7 we have reliable measurements in-house
• 0.8 reliable in-house measurements correlate to

independent external measurements

• 0.9 we have used the idea on this project and measured it

• 1.0 perfect credibility, we have rock solid, contract-
guaranteed, long-term, credible experience with this idea on this
project and, the results are unlikely to disappear

8

"Risk Management Technology" ©Gilb@acm.org

Slide
 15Impact Tables and Risk

• Forces thorough Analysis
– Of all cost/quality impacts
– Based on facts, not opinion

• Analysis is documented
• Analysis can be quality

controlled
• Risk is explicit

– Credibility rating
– Safety factors

• Forces better definition
specification
– Requirements
– Designs
– evidence

• Acceptable Risk levels
can be controlled
– By Setting safety

factor limits in Rules
for specification

• “defect’ if not met

– By setting exit/entry
levels for Credibility
averages

• Unacceptable/not
completed if we fail to
meet these levels

"Risk Management Technology" ©Gilb@acm.org

Slide
 16Evo Plan: Deviation =Risk

Identified during project : ‘for real’

9

Tuesday, October 13, 1998 Copyright Gilb@acm.org Slide 17

Slide
 17

Achieving Project Predictability: Raytheon

140%

100%

1988 19941990

Cost At Completion / Budget %

Slide
 18

Cost of Quality over Time: Raytheon 95

The individual
learning curve ??

Cost of Rework
(non-conformance)

Cost of
Conformance

End 1988 End 1994

45%

10

Slide
 19

Raytheon 95 Software Productivity 2.7X better

+

170%

Productivity

1988 1994

Slide
 20

Overall Product Quality: Raytheon 95
Defect Density Versus Time

“Risk Management Technology” by Tom Gilb Page 1 of 18

Quality Week 98 Brussels , 12 November 98 4PM

Version 3.0 Sept. 27 1998

For Quality Week in Brussels, 11th-13th November 1998.
Talk at 4pm on Thursday, 12th November.

"Risk Management : A practical toolkit for identifying,
analyzing and coping with project risks"

By Tom Gilb,
Senior Partner, Result Planning Limited

Paper Summary
Risk management must be fully integrated into all the development and maintenance
processes for systems. It involves more than applying risk assessment methods to identify
and evaluate system risks.

To explain this broad approach to risk management, this paper discusses the way in
which Requirements Driven Management (RDM) methods contribute to handling risks.

Definition of ‘Risk’
Risk is an abstract concept expressing the possibility of unwanted outcomes.
A ‘risk’ is anything which can lead to results that deviate from the requirements.

It is in the nature of risk that the probability of risks actually occurring, and their actual
impact when they do so, can only be predicted to varying degrees of accuracy. Not all
risks can be identified in advance.

Risk Management is any activity which identifies risks, and takes action to remove,
reduce or control ‘negative results’ (deviations from the requirements).

Principles of Risk Management
In my view, the fundamental principles of risk management include:

1. Quantify requirements
All critical quality and resource requirements must be identified and quantified
numerically.

“Risk Management Technology” by Tom Gilb Page 2 of 18

Quality Week 98 Brussels , 12 November 98 4PM

2. Maximize profit, not minimize risk
Focus on achieving the maximum benefits within budget and time-scales rather than on
attempting to eliminate all risk.

3. Design out unacceptable risk
Unacceptable risk needs to be ‘designed out’ of the system consciously at all stages, at all
levels in all areas, e.g. architecture, purchasing, contracting, development, maintenance
and human factors.

4. Design in redundancy
When planning and implementing projects, conscious backup redundancy for
outmaneuvering risks is a necessary cost.

5. Monitor reality
Early, frequent and measurable feedback from reality must be planned into your
development and maintenance processes, to identify and assess risks before they become
dangerous.

6. Reduce risk exposure
The total level of risk exposure at any one time should be consciously reduced to between
2% and 5% of total budget.

7. Communicate about risk
There must be no unexpected surprises. If people have followed guidelines and are open
about what work they have done, then others have the opportunity to comment
constructively. Where there are risks, then share the information.

8. Reuse what you learn about risk
Standards, rules and guidance must capture and assist good practice. Continuous process
improvement is also needed.

9. Delegate personal responsibility for risk
People must be give personal responsibility in their sector for identification and
mitigation of risks.

10. Contract out risk
Make vendors contractually responsible for risks, they will give you better advice and
services as a result.

“Risk Management Technology” by Tom Gilb Page 3 of 18

Quality Week 98 Brussels , 12 November 98 4PM

Let’s now consider, each of these principles in turn and describe some (not all!) of the
roles that the RDM methods play in risk management. However, first here is an outline
sketch of the RDM methods:

• Planguage; a requirements specification language insisting on quantified values.

• Impact Estimation (IE); an analysis tool (a table) allowing evaluation of the
likelihood of achieving requirements and, the evaluation and comparison of different
designs (strategies). A strength of IE is that it also helps identify new designs and
uncover previously unstated requirements.

• Evolutionary Delivery (Evo); based on the work by the quality gurus Deming and
Juran, a way of working that focuses on evolutionary delivery of early, measurable,
system benefits to the customers. A system is developed, by small risk steps, in a
series of plan, develop, deliver and evaluate cycles.

• Inspection; a technique for measuring and improving technical document quality.
Technical documents are evaluated against their source documents and any prevailing
standards by Inspection teams consisting of individuals with specially assigned roles.
The overall aims are to identify defects, to identify patterns in the introduction of
defects (leading to process improvement), to help train individuals to avoid creating
defects and, to assist team-building.

Readers wanting a more detailed explanation of these methods should
look in the References.

Principle 1. Quantify requirements
All critical quality and resource requirements must be identified and quantified
numerically.

Risk is negative deviation from requirements. So, if we are going to understand risk, we
must have some way of specifying exactly what we want. If we use vague ways like
“State of the Art, World Class, Competitor-Beating Levels of Quality”, we cannot
understand and assess risk.

Planguage helps because it demands numerically quantified requirements. Using
Planguage, we must go through the following steps:

• Identify all critical quality and resource attributes of the system. In practice, this
could be ten or more critical qualities (e.g. availability) and, five or more critical
resources (e.g. operational costs).

“Risk Management Technology” by Tom Gilb Page 4 of 18

Quality Week 98 Brussels , 12 November 98 4PM

• Define exactly how to understand variation in each attribute by specifying a scale of
measure, e.g. ‘Scale: Probability of being fully operational during the office day’ and
‘Scale: Total of all monetary operational expenses including long term

• For each attribute, define one or more critical points on the defined scale of measure
which are needed for the system to function properly and profitably. There are two
important categories: ‘Must’ and ‘Plan’. A ‘Must’ level defines the system survival
level. A ‘Plan’ level defines the planned point for success. For risk management,
‘Must’ is the first level and ‘Plan’ is the second level for risk determination. A value
for any attribute less than its required Must level means total system failure. Only
when all Plan levels for all the attributes have been met can a system be declared a
success.

• For all the Must and Plan levels, define additional qualifying information. We call
this using ‘qualifiers’. You are basically defining time, place and event, i.e. when it is
critical for you to achieve a certain level of an attribute, where it is critical and under
what conditions. For example,

Plan [1999,Europe,IF European Monetary Union implemented anywhere] 99.98%

We can even give direct expression to the amount of risk we are prepared to take by a
statement such as :
Must [2001, UK, IF Euro is used in Norway & UK] 60% ±20%

In other words the range of results 40% to 80% is an acceptable upper and lower limit,
but below 40% is unacceptable.

Here is a more complete example:

Usability:
Scale: Mean time to learn [defined tasks] to minimum proficiency.
Must [Release 2.0, English Version, Task: Modifying Files] 10 minutes.
Plan [Release 2.0, English Version, Task: Modifying Files] 7 minutes.
Plan [Release 3.0, English Version, Task: Modifying Files] 5 minutes.
Plan [Release 3.0, French & Dutch Versions, Task: Finding a File by Content] 5 minutes.

In the example, the most critical (failure of system) risk is the Must level. The other
statements are only of secondary risk; they indicate the levels required to declare success.

It should be obvious that the degree of risk can be expressed in terms of the deviation
from the target levels. For example,
Method A can sometimes result in a learning time of 10 minutes, while method B can
never result in a learning time exceeding 4 minutes.

“Risk Management Technology” by Tom Gilb Page 5 of 18

Quality Week 98 Brussels , 12 November 98 4PM

This means that for the specified requirements, method A poses a real risk, but method B
does not.

A template specification of risk levels
In addition to the basic statements described above, it should be noted that there are a
wide variety of ways within Planguage to indicate that the information contains some
element of risk. Here are some examples:
Plan 60-80 Specification of a range
Plan 60±30 Specification of an upper and lower limit
Plan 60 à 90
Plan 60? Expressing that the value is in doubt
Plan 60?? Expressing that the value is in serious doubt
Plan 60 ß A wild guess Using the source of the information to show the doubt
Plan 60 ß A.N. Other Depends on A.N. Other’s credibility in setting this value
Plan <60> Fuzzy brackets indicate data needing improvement

All of the above signals can be used to warn of potential risk. Of course, the culture must
encourage such specification rather than intimidate people from using it.

Plan [IF Euro is used in UK] 99%
The above is an example where the risk is controlled by making the specification totally
dependent on the IF condition. There is no risk that anyone will plan to achieve 99% if
the condition is false. However, they are warned to plan to achieve 99% should the
condition turn true.

Note, you can also use IF qualifiers to constrain the use of a strategy (a means for
achieving a goal). This reduces the risk that an expensive strategy is applied under
inappropriate conditions.

Strategy99 [IF hunger famine in a country, IF road and rail transport unavailable] Aerial
Supply of Food.

Principle 2. Maximize profit, not minimize risk
Focus on achieving the maximum benefits within budget and time-scales rather
than on attempting to eliminate all risk.

Elimination of all risk is not practical, not necessary and, not even desirable.
All risk has to be controlled and balanced against the potential benefits. In some cases, it
is appropriate to decide to use (and manage) a strategy with higher benefits and higher
risks. I use Impact Estimation (IE) to help me assess the set of strategies I need to ensure
I meet the required objectives. My focus is always on achieving the objectives in spite of
the risks.

Outline Description of Impact Estimation (IE)

“Risk Management Technology” by Tom Gilb Page 6 of 18

Quality Week 98 Brussels , 12 November 98 4PM

The basic IE idea is simple: estimate quantitatively how much your design ideas impact
all critical requirements. This is achieved by completing an IE table. The left-hand
column of the table should contain the objectives and, across the top of the table should
be the proposed strategies. For the objectives, assuming you have expressed them using
Planguage, it is a question of listing down all the quality and resource attributes you wish
to consider. You need next to decide on a future date you want to use. This should be a
system ‘milestone’; a date for which you have specified Must and Plan levels. Then,
against each attribute, you state the current level and the Plan level for your chosen date.
(If you are especially risk averse you would use the Must level!) For the strategies, you
simply list them across the top of the IE table.

You then fill in the table, for each cell you answer the question, ‘How does this strategy
move the attribute from its current level towards the Plan level?’ First you state the actual
value you would expect and then you convert this into a percentage of the amount of
required change.

For example, Training Time for Task A is currently 15 minutes and you require it to be
10 minutes within six months. You estimate Strategy B will reduce Training Time for
Task A to 12 minutes. In other words, Strategy B will get you 60% of the way to meeting
your objective. See Table 1.

TABLE 1

 | Strategy B
 |
 | Real Impact % Impact

Training Time |
Past = 15 minutes in June 1998 |
Plan = 10 minutes by end of Dec. 1998 | 12 minutes 60%

 |
Resource = Development Budget |
Plan = $2000 up to end Dec. 1998 | $1,000 50%
--

Further improvements to specifying the impacts
There are a number of improvements to this basic idea, which make it more
communicative and credible. Here is a brief summary of them :

Uncertainty of Impact: you can specify a range of values rather than a single value.

Evidence for Impact Assertion: you can state the basis for making your estimate.
For example: "Strategy B was used for 5 projects last year in our company, and the
percentage improvement for Training Times was always 60% to 80%".

“Risk Management Technology” by Tom Gilb Page 7 of 18

Quality Week 98 Brussels , 12 November 98 4PM

Source of Evidence for Impact Assertion: Of course, some skeptic might like to check
your assertion and evidence out, so you should give them a source reference, e.g.
"Company Research Report ABR-017, pages 23-24."

Credibility Rating of the Impact Assertion: We have found it very useful to establish a
numeric 'credibility' for an estimate, based on the credibility of the evidence and the
source. We use a scale of 0.0 to 1.0 (because it can then be used later to modify estimates
in a conservative direction). See Table 2.

TABLE 2

Credibility Rating Meaning

0.0 wild guess, no credibility
0.1 we know it has been done somewhere
0.2 we have one measurement somewhere
0.3 there are several measurements in the estimated range
0.4 the measurements are relevant to our case
0.5 the method of measurement is considered reliable
0.6 we have used the method in-house
0.7 we have reliable measurements in-house
0.8 reliable in-house measurements correlate to independent

external measurements
0.9 we have used the idea on this project and measured it
1.0 perfect credibility, we have rock solid, contract-

guaranteed, long-term, credible experience with this idea
on this project and, the results are unlikely to disappear

--

Further Analysis of the IE data
Once you have completed filling in all the impacts, there are a number of calculations,
using the percentage impact estimates (%Impact), that help you understand the risks
involved with your proposed solution.

Let me stress that these are only rough, practical calculations. Adding impacts of
different independent estimates for different strategies, which are part of the same overall
architecture, is dubious in terms of accuracy. But, as long as this is understood, you will
find them very powerful when considering such matters as whether a specific quality goal
is likely to be met or which is the most effective strategy. The insights gained are
frequently of use in generating new strategies.

“Risk Management Technology” by Tom Gilb Page 8 of 18

Quality Week 98 Brussels , 12 November 98 4PM

Impact on a Quality: For each individual quality or resource attribute, sum all the
percentage impacts for the different strategies. This gives us an understanding of whether
we are likely to make the planned level for each quality or cost. Very small quality
impact sums like '4%' indicate high risk that the architecture is probably not capable of
meeting the goals. Large numbers like 400% indicate that we might have enough design,
or even a 'safety margin'.

TABLE 3
Example: Adding the percentage impacts for a set of strategies on a single quality or cost
can give some impression of how the strategies are contributing overall to the objectives.
Note Strategies A, B and C are independent and complementary.

Strategy A Strategy B Strategy C Sum of
Strategy
Impacts

Sum
Uncertainty

Reliability
900->1000
hours MTBF

0+/-10% 10+/-20% 50+/-40% 60% +/-70%

Impact of a Strategy: For each individual strategy, sum all the percentage impacts it
achieves across all the qualities to get an estimate of its overall effectiveness in delivering
the qualities. The resulting estimates can be used to help select amongst the strategies. It
is a case of selecting the strategy with the highest estimate value and the best fit across all
the critical quality requirements. If the design ideas are complementary then the aim is to
choose which strategies to implement first. If the strategies are alternatives, then you are
simply looking to determine which one to pick.

TABLE 4
A measure of the effectiveness of strategy ‘Big Idea’ can be found by adding together its
percentage impacts across all the qualities

QUALITY PAST-PLAN Big Idea
Reliability 900->1,000 hours

MTBF
50%+/-10%

Maintainability 10 min. fix to 5 min.
to fix.

100%+/-50%

150%+/-60% Estimate of total
effect of
Big Idea on all goals

“Risk Management Technology” by Tom Gilb Page 9 of 18

Quality Week 98 Brussels , 12 November 98 4PM

In addition to looking at the effectiveness of the individual strategies in impacting the
qualities, the cost of the individual strategies also needs to be considered, see next
section.

Quality to Cost Ratio: For each individual strategy, calculate the quality-to-cost ratio
(also known as the benefit-to-cost ratio). For quality, use the estimate calculated in the
previous section. For cost, use the percentage drain on the overall budget of the strategy
or use the actual cost.

The overall cost figure used should take into account both the cost of developing or
acquiring the strategy and, the cost of operationally running the strategy over the chosen
time scale. Sometimes, specific aspects of resource utilization also need to be taken into
account. For example, maybe staff utilization is a critical factor and therefore a strategy
that doesn’t utilize scarce programming skills becomes much more attractive.

My experience is that comparison of the 'bang for the buck' of strategies often wakes
people up dramatically to ideas they have previously under- or over-valued.

Average Credibility / Risk Analysis: Once we have all the credibility data (i.e. the
credibility’s for all the estimates of the impacts of all the strategies on all the qualities),
we can calculate the average credibility of each strategy and, the average credibility of
achieving each quality. This information is very powerful, because it helps us understand
the risk involved. For example, "the average credibility, quality controlled, for this
alternative strategy is 0.8". Sounds good! This approach also saves executive meeting
time for those who hold the purse strings.

Principle 3. Design out unacceptable risk
Unacceptable risk needs to be ‘designed out’ of the system consciously at all
stages, at all levels in all areas, e.g. architecture, purchasing, contracting,
development, maintenance and human factors.

Once you have the completed initial IE table, you are in a position to identify the
unacceptable risks and design them out of the system. Unacceptable risks include:

• Any quality or resource attribute where the sum of the %Impacts of all the proposed
strategies does not total 200%. (A 100% safety factor has been assumed to reduce the
risk of failure.)

• Any strategy providing i) a low total for the sum of its %Impacts, ii) very low
credibility or iii) low benefit-to-cost ratio.

“Risk Management Technology” by Tom Gilb Page 10 of 18

Quality Week 98 Brussels , 12 November 98 4PM

New strategies will have to be found that reduce these risks. In some cases, it may be
decided that the levels set for the objectives are unrealistic and they may be modified
instead.

Within software engineering, the art of designing a system to meet multiple quality and
cost targets, is almost unknown [GILB88]. However, I have no doubt that there is great
potential in conscious design to reduce risks. For example, it is a hallowed engineering
principle to be conservative and use known technology. However, this concept has not
quite caught on in software engineering technology, where ‘new is good’, even if we do
not know much about its risks. At least, with the use of an IE table there is a chance of
expressing and comparing the risk involved in following the differing strategies.

Principle 4. Design in redundancy
When planning and implementing projects, conscious backup redundancy for
outmaneuvering risks is a necessary cost.

Under Principle 3, we have discussed finding new strategies. Principle 4, takes this idea a
step further. Actively look for strategies that provide backup. An extreme example of this
practice is NASA’s use of backup computer systems for manned space missions.

Principle 5. Monitor reality
Early, frequent and measurable feedback from reality must be planned into your
development and maintenance processes to identify and assess risks before
they become dangerous.

I expect the IE information only be used as an initial, rough indicator to help designers
spot potential problems or select strategies. Any real estimation of the impact of many
strategies needs to be made by real tests (Ideally, by measuring the results of early
evolutionary steps in the field). Evolutionary Delivery (Evo) is the method to use to
achieve this (See next Principal).

Principle 6. Reduce risk exposure
The total level of risk exposure at any one time should be consciously reduced to
between 2% and 5% of total budget.

IE can also be used to support Evolutionary Delivery (Evo) as a budgeting and feedback
mechanism during project building and installation of partial deliveries [GILB98,
MAY96].

“Risk Management Technology” by Tom Gilb Page 11 of 18

Quality Week 98 Brussels , 12 November 98 4PM

The Evolutionary Delivery (Evo) method typically means that live systems are delivered
step by step to user communities for trial often (e.g. weekly) and early (e.g. 2nd week of
project).

One of the major objectives of Evo is to reduce and control risk of deviation from plans.
This is achieved by:

• getting realistic feedback after small investments
• allowing for change in requirements and designs as we learn during the project
• investing minimum amounts at any one time (2% to 5% of project time or
money) so that total loss is limited if a delivery step totally fails.

IE is of use in helping to plan the sequencing of Evo steps. IE tables also provide a
suitable format for presenting the results of Evo steps. See Table 5.

TABLE 5

Step->

Attribute

STEP1
plan
%

actual
%

Devia-
tion
%

STEP2
to

STEP20
plan

plan
cumul-

ated
to here

STEP21
[CA,NV,WA]

plan

plan
cumul-

ated
to here

STEP22
[all

others]
plan

plan
cumul-
ated to
here

QUAL-1 5 3 -2 40 43 40 83 -20 63
QUAL-2 10 12 +2 50 62 30 92 60 152
QUAL-3 20 13 -7 20 33 20 53 30 83
COST-A 1 3 +2 25 28 10 38 20 58
COST-B 4 6 +2 38 44 0 44 5 49

Table 5 is a hypothetical example of how an evolutionary project can be planned and
controlled and risks understood. The ‘deviation’ between what you planned and what
you actually measured in practice is a good indicator of risk. The larger the deviation, the
less you were able to correctly predict about even a small step. Consequently there is a
direct measure of areas of risk in the ‘deviation’ numbers.

The beauty of this, compared to conventional risk estimation methods [HALL98] is that
it:

• is based on real systems and real users (not estimates and speculation before
practical experience)
• is early in the investment process
• is based on the results of small system increments, and the cause of the risk is
easier to spot, and perhaps to eliminate, or to modify, so as to avoid the risk.

Evolutionary Project management does not ask what the risks might be. It asks what risks
have shown up in practice. But it does so at such an early stage, that we have a fair
chance to do something about the problems.

“Risk Management Technology” by Tom Gilb Page 12 of 18

Quality Week 98 Brussels , 12 November 98 4PM

Principle 7. Communicate about risk
There must be no unexpected surprises. If people have followed guidelines and
are open about what work they have done, then others have the opportunity to
comment constructively. Where there are risks, then share the information.

Hopefully, readers will by now have begun to understand that Planguage and IE are good
means of communicating risk. Let me now introduce Inspection as a third useful method.

Inspection is a direct weapon for risk reduction. [GILB93]. Early Inspections on all
written specifications is a powerful way to measure, identify and reduce risk of bad plans
becoming bad investments. The key idea is that Major defects are measured, removed,
and that people learn to avoid them, by getting detailed feedback from colleagues. A
defect is a violation of a ‘best practice’ rule. A Major defect is defined as a defect which
can have substantial economic effect ‘downstream’ (in practice, in ‘test’ phases and in the
field). By this definition, a Major defect is a ‘risk ’. So Inspection measures risks!

Many people think that the main benefit from Inspection is in identifying and removing
Major defects early (e.g. before source code reaches test phases). This is not the case.
(My experience is that Inspection is as bad as testing in % defect-removal effectiveness.
In very rough terms half of every defect present is not identified or removed.) The really
important economic effect of Inspection is not what happens at the level of a single
document, but in teaching the people and the organization. The real effect of Inspection is
in:
• • teaching individual engineers exactly how often they violate best practice rules
• • motivating the engineers to take rules seriously (really avoid injecting Major

defects)
• • regulating flow of documentation, so that high Major defect documents can neither

exit nor enter adjacent work processes.

Staff involved in Inspections learn very quickly how to stop injecting defects. Typically,
the defects introduced by an author reduce at the rate of about 50% every time a new
document is written and Inspected. For example, using Inspection, Raytheon reduced
‘rework’ costs, as a % of development costs, from 43% to 5% in an eight year period
[DION95].

Sampling
One other little-appreciated aspect of Inspection is that you can use it by sampling a small
section of a large document, rather than trying to ‘clean up’ the entire document. If the
sample shows a high Major defect density (say more than one Major/Page) then the
document is probably ‘polluted’ and action can be taken to analyze the defect sources. A
complete rewrite may be necessary using appropriate specification rules or new/improved
source documents. This is generally cheaper than trying to clean up the entire document
using defect removal Inspection or testing.

“Risk Management Technology” by Tom Gilb Page 13 of 18

Quality Week 98 Brussels , 12 November 98 4PM

Principle 8. Reuse what you learn about risk
Standards, rules and guidance must capture and assist good practice.
Continuous process improvement is also needed.

In the previous section, the importance of Inspection was discussed and rules were
highlighted as one of the essentials required to support it. It is worth emphasizing the
aspect of reuse that is occurring here. The more effort that is put into making rules more
effective and efficient by incorporating feedback from Inspections, the more productive
the Inspections and the greater the reduction in risk.

Even more benefit can be achieved if what is learnt from Inspection is used to modify the
processes that are causing the defects; Continuous Process Improvement has been shown
to have a major influence on risk. For example, Raytheon has achieved zero deviation
from plans and budgets over several years. They used a $1million/year (for 1,000
software engineers) for 8 years to do continuous software process improvement. They
report that the return on this investment was $7.70 per $1 invested on improving
processes such as requirements, testing and Inspection itself. Their software defect rate
went down by a factor of three [DION95].

Using Inspection, analysis of the identified defects to find process improvements is
carried out in the Defect Prevention Process (DPP). DPP was developed from 1983 at
IBM by Robert Mays and Carole Jones and, is today recognized as the basis for SEI
CMM Level Five. The breakthrough in getting DPP to work, compared to earlier failed
efforts within IBM, was probably in the decentralization of analysis activity to many
smaller groups, rather than one ‘Lab Wide’ effort by a Quality Manager. This follows
what the quality Guru Dr. W Edwards Deming taught the Japanese; factory workers must
analyze their own statistics and be empowered to improve their own work processes.

Analysis of ‘root causes’ of defects is very much a risk analysis effort [HALL98] and a
handful of my clients are reporting success at doing so. But, most are still working on
other disciplines like Inspection and others elsewhere in this paper.

Principle 9. Delegate personal responsibility for risk
People must be give personal responsibility in their sector for identification and
mitigation of risks.

To back up communicating about risk, people must be given ownership of the risks in
their sector (e.g. allocating ownership/sign off of IE tables and giving people specific
roles within Inspections).

“Risk Management Technology” by Tom Gilb Page 14 of 18

Quality Week 98 Brussels , 12 November 98 4PM

Principle 10. Contract out risk
Make vendors contractually responsible for risks, they will give you better advice
and services as a result.

I would like to point out that contracting for products and services gives great opportunity
to legally and financially control risks by squarely putting them on someone else’s
shoulders.

The effect of contracting a risk to someone else is that:
• you have gotten rid of the risk in some senses, but if they fail, you will still be
affected!
• the supplier (assuming they get the risk) will be more motivated to take steps to
eliminate the risks,
• be motivated to tell you exactly what you have to do the avoid being hit by risks,
• might come up with a more realistic bid and time plan to cope with the risks.

Summary
Risks can be handled in many ways and at many levels. I have tried to point out some
risk management methods which are not so well known or well treated in existing
literature. Hopefully, the need to fully integrate risk management into all the development
and maintenance processes is clear.

Table 6 and Table 7 recap the ideas presented in this paper. Table 6 is a set of policies for
risk management [See GILB98 for more detail]. Table 7 contains ‘Twelve Tough
Questions’ to ask when assessing risk.

TABLE 6: Policy Ideas for Risk Management

- EXPLICIT RISK SPECIFICATION
All managers/planners/engineers/testers/quality assurance people shall immediately in
writing, integrated in the main plan, specify any uncertainty, and any special conditions
which can imaginably lead to a risk of deviation from defined target levels of system
performance.

- NUMERIC EXPECTATION SPECIFICATION
The expected levels of all quality and cost attributes of the system shall be specified in a
numeric way, using defined scales of measure, and at least an outline of one or more
appropriate ‘Meters’ (test or measuring instruments for determining where we are on a
scale).

- CONDITIONS SPECIFIED

“Risk Management Technology” by Tom Gilb Page 15 of 18

Quality Week 98 Brussels , 12 November 98 4PM

The requirements levels shall be qualified with regard to when where and under which
conditions the targets apply, so there is no risk of us inadvertently applying them
inappropriately.

- COMPLETE REQUIREMENT SPECIFICATION
A complete set of all critical quality and cost aspects shall be specified, avoiding the risk
of failing to consider a single critical attribute.

- COMPLETE DESIGN SPECIFICATION and IMPACT ESTIMATION
A complete set of designs or strategies for meeting the complete set of quality and cost
targets will be specified. They will be validated against all specified quality and cost
targets (using Impact Estimation Tables). They will meet a reasonable level of safety
margin. They will then be evolutionarily validated in practice before major investment is
made. The Evo steps will be made at a rate of maximum 2% of budget, and 2% of
‘project time’, per ‘incremental trial’ (Evo step) of designs or strategies.

- SPECIFICATION QUALITY CONTROL NUMERICALLY EXITED
All requirements, design, impact estimation and Evolutionary project plans, as well as all
other related critical documents such as contracts, management plans, contract
modifications, marketing plans, shall be ‘quality controlled’ using the Inspection method
[GILB93]. A normal process Exit level shall be that ‘no more than 0.2 Major Defects per
page maximum, can be calculated to remain, as a function of those found and fixed
before release, when checking is done properly ’ (e.g. at optimum checking rates of 1
logical page or less per hour).

7. EVOLUTIONARY PROOF-OF-CONCEPT PRIORITIES
The Evolutionary Project Management method [GILB98, GILB88] will be used to sense
and control risk in mid-project. The dominant paradigms will be
- 2% steps,
- high value to cost with regard to risk delivered first.
- high risk strategies tested ‘offline to customer delivery’, in the Backroom of

development process, or at cost-to-vendor, or with ‘research funds’ as opposed to
project budget.

TABLE 7: Twelve Tough Questions

1. Why isn't the improvement quantified?
2. What is degree of the risk or uncertainty and why?
3. Are you sure? If not, why not?
4. Where did you get that from? How can I check it out?
5. How does your idea affect my goals, measurably?
6. Did we forget anything critical to survival?
7. How do you know it works that way? Did it before?
8. Have we got a complete solution? Are all objectives satisfied?
9. Are we planning to do the 'profitable things' first?

“Risk Management Technology” by Tom Gilb Page 16 of 18

Quality Week 98 Brussels , 12 November 98 4PM

10. Who is responsible for failure or success?
11. How can we be sure the plan is working, during the project, early?
12. Is it ‘no cure, no pay’ in a contract? Why not?

References

DION93: Raymond Dion, "Process Improvement and the Corporate Balance Sheet",
IEEE Software, July 1993, Pages 28-35.

DION95: Raymond Dion, Tom Haley, Blake Ireland and Ed Wojtaszek of Raytheon
Electronic Systems, “The Raytheon Report: Raytheon Electronic Systems Experience in
Software Process Improvement”, November 1995, SEI web-site,
http://www.sei.cmu.edu/products/publications/95.reports/95.tr.017.html/.
This is an important update of earlier reports.

GILB88: Tom Gilb, “Principles of Software Engineering Management”,
Addison-Wesley, 1988, 442 pages. ISBN 0-201-19246-2. See particularly Chapter 6,
Estimating the Risk (reproduced in Boehm, Software Risk Management, IEEE CS Press,
1989 page 53).

GILB93: Tom Gilb and Dorothy Graham, “Software Inspection”, Addison-Wesley,
1993, ISBN 0-201-63181-4, 5TH printing 1998, 471 pages.
This book covers the Defect Detection Process and the Defect Prevention Process, as well
as giving sample Rules to check by, defined processes and a well defined set of Glossary
terms to aid quantification and comparison. It is a next-generation Inspection, with
hundreds of larger and smaller improvements over initial Inspection practices.

GILB98: Tom Gilb, Various papers and manuscripts on
http://www.Result-Planning.com/. The manuscripts include:

. ‘Requirements-Driven Management using Planguage’ (1995-6)

. ‘Evolutionary Project Management’ (1997)

. ‘Requirements Engineering Language’ (1998).

HALL98: Elaine M. Hall, “Managing Risk: Methods for Software Systems
Development. SEI Series in Software Engineering”, Addison Wesley Longman, USA.
(enq.orders@awl.co.uk) , £31.95, 1998, ISBN 0-201-25592-8, 374 pages.
This book is impressive and contains a lot of useful detail and original thought. Anyone
interested in risk will enjoy and learn from the book as I did. It does not however deal
with most of the subjects in this paper {specification languages, impact estimation,
inspections, evolutionary delivery}. This in no way detracts from the book’s favorable
recommendation. It does tackle ‘quantified objectives’ much better than other texts.

MAY96: Elaine L. May and Barbara A. Zimmer, “The Evolutionary Development Model
for Software”, Hewlett-Packard Journal, August 1996, Vol. 47, No. 4, pages 39-45.

“Risk Management Technology” by Tom Gilb Page 17 of 18

Quality Week 98 Brussels , 12 November 98 4PM

The author was at HP in 1989 on a project team who were taught early versions of the
Planguage method. The article is full of practical advice and case studies gleaned from
ten major projects in eight HP divisions. It must be strongly recommended to anyone
interested in the practical implementation of Evo in a project and especially in an
organization for many projects. See also article by Todd Cotton in same issue on Evo.
HP Journal subscription free to qualified individuals: Write Distribution Manager, HP
Journal, M/S 20BH, 3000 Hanover Street, Palo Alto, CA, USA-94304, or Email:
hp_journal@hp_paloalto-gen13.om.hp.com. HP Journal is available on World Wide
Web at “http://www.hp.com/hpj/Journal.html”. (Warning HP may have moved this
site, but you can get to new site from here)

Author Biography

Tom Gilb is the author of “Principles of Software Engineering Management” (1988) and
“Software Inspection” (1993). His book “Software Metrics” (1976) coined the term and,
was used as the basis for the Software Engineering Institute Capability Maturity Model
Level Four [SEI CMM Level 4]. His most recent interests are development of true
software engineering and systems engineering methods. His sons, Kai and Tor, now work
with him.

Tom Gilb was born in Pasadena CA in 1940. He moved to England in 1956, then two
years later he joined IBM in Norway. Since 1963, he has been an independent consultant
and author.

This paper was edited by Lindsey Brodie, lindsey@brodie.source.co.uk

“Risk Management Technology” by Tom Gilb Page 18 of 18

Quality Week 98 Brussels , 12 November 98 4PM

-----End of Paper-------

 Dr. Liggesmeyer, ZT PP 2, Siemens AG, 1

s
Prediction of Project Quality by applying
Techniques to Metrics based on Accounting Data:
An Industrial Case Study

Dr. Peter Liggesmeyer, Dr. Michael Rettelbach

Siemens AG, Munich, Germany

o Motivation
o The goals
o The approach
o Description of the case study
o Measures
o Applied statistical methods
o Results
o Conclusions

 Dr. Liggesmeyer, ZT PP 2, Siemens AG, 2

s

Motivation
o Increasing application of software and system measures requires

n techniques to interprete the measurements in a correct way and
n to reduce the measurement effort to a minimum

o Measuring only makes sense, if correct conclusions can be drawn

o Measuring costs more time and money than necessary, if too many

o Manual interpretation of measures based on experience
n is complicated (multi-parameter problems),

n requires experts and
n provides on information on the dependability of the

Statistical interpretation of measures provides
a solution for these problems

Prediction of Project Quality by applying
Techniques to Metrics based on Accounting Data

 Dr. Liggesmeyer, ZT PP 2, Siemens AG, 3

s

The goals

Prediction of Project Quality by applying
Techniques to Metrics based on Accounting Data

Measure-
ment
goal

(desired
infor-

mation)

Identification
of measures
(e.g., GQM)

Measures Application
of measures

Measured
values

Validation
of
measures

Interpretation of measures
Prediction of properties

 Dr. Liggesmeyer, ZT PP 2, Siemens AG, 4

s

The approach

Prediction of Project Quality by applying
Techniques to Metrics based on Accounting Data

M1 M2 M3 M4 M5 M6 M7 M8 M9

11 19 .6 1 0 .33 6 1 .4

12 3 .3 3 2 .45 4 3 .4

1 2 .3 5 0 .66 1 3 .6

6 20 .2 5 0 .25 1 4 .5

Prognosis
M1 M2 M3 M4 M5 M6 M7 M8 M9

8 7 .4 3 1 .93 7 1 .3

1 30 .7 30 1 .88 6 5 .1

4 5 .3 4 0 .67 4 5 .5

1.0

2.2

.9

1.8

Real Data

Discriminant
Analysis

Regression
Analysis

Principal Component
Analysis

Prediction Model

 Dr. Liggesmeyer, ZT PP 2, Siemens AG, 5

s

The approach
o Steps:

n Definition of measurement tasks and selection of measures
n Model construction and calibration by measurement data,

evaluation of prediction quality
n Analysis of further measurement data based on the previously

selected model, estimation of the induced error
o Benefits:

n Determination of the set of essential, i.e., most suitable,

n Detection of errors in the initial selection step
n Prediction of system characteristics by interpreting

measurements in a systematic way

Prediction of Project Quality by applying
Techniques to Metrics based on Accounting Data

 Dr. Liggesmeyer, ZT PP 2, Siemens AG, 6

s

Description of the case study
o Determination of models for the prediction of different properties

(delay, budget overdraw, ...) using measures based on routine

o Evaluation of the models, e.g., determination of the dependability
o Selection of optimal combinations of single measures, i.e.,

identification of unnecessary measures
o Study based on 329 projects, that

n started end ended within a period of two years,
n have been planned to take at least 6 months,
n and have not been cancelled during runtime.

Prediction of Project Quality by applying
Techniques to Metrics based on Accounting Data

 Dr. Liggesmeyer, ZT PP 2, Siemens AG, 7

s

Measures
At project start:
o M1: Planned length (months)
o M2: Estimated total working hours
o M3: Estimated total budget
At measure point:
o M4: Proportion of consumed

working hours
o M5: Proportion of spent budget
o M6: Sqare of the difference of both
Additionally:
o M7: Relative height of the first account

movement (working hours)
o M8: Relative height of the first account

movement (budget)
o M9: Month of the first account movement
o M10: Month of the first account movement

Target values:
o T1, T2, T3: Relative consumption of

working hours, budget, time
o T4: Absolute difference between

planned and actual project duration

Prediction of Project Quality
by applying Stochastical ...

 Dr. Liggesmeyer, ZT PP 2, Siemens AG, 8

s

Applied statistical methods
o Application of Discriminant Analysis to predict projects that are likely

to consume more than 110% of the planned budget.
o Measurement points: 50% and 60% of the planned total project

o Application of Fisher's1 method
n determines a vector l = (l1, l2, ... ,l10) and a scalar c
n so that l1 * M1 + l2 * M2 + ... + l10 * M10 optimally distinguishes

between the two populations (here: bad . good projects), if
the result it compared to c.

o Mathematically founded optimal criterion for interpreting measured

o Calculation of prediction quality

Prediction of Project Quality by applying
Techniques to Metrics based on Accounting Data

1 Johnson, R.A., Wichern, D.W.: Applied Multivariate Statistical Analysis, Prentice Hall, 1982

 Dr. Liggesmeyer, ZT PP 2, Siemens AG, 9

s

Results
o Prediction quality:

n Apparent error rate (AER: Number of misclassifications
compared to the number of classifications): 24.6% (50%
measure point), 23.7% (60% measure point)
=> ~75% of the predictions are correct

n It is possible to take into account different costs of
misclassifications (predicting a bad project as good
predicting a good project as bad)

o Identification of the most significant measures
o Half the measures are not necessary for the prediction => reduction

of measurement costs without loosing quality

Prediction of Project Quality by applying
Techniques to Metrics based on Accounting Data

 Dr. Liggesmeyer, ZT PP 2, Siemens AG, 10

s

Conclusions
o We are fully satisfied with the hit proportion of 75%
o We are convinced it can be improved by additional measures
o Application of stochastical techniques to measures ...

n ... permits early and dependable problem identification
n ... provides a decision scheme that generates results with a

known quality and can easily be applied by non-experts
n ... saves measurement effort by identifying unnecessary

n ... identifies the most important measures as a basis for

n ... provides the basis for optimizing the measures
n ... saves money by avoiding wrong measurement interpretations

Prediction of Project Quality by applying
Techniques to Metrics based on Accounting Data

Prediction of Project Quality

by applying Stochastical Techniques

to Metrics based on Accounting Data:

An Industrial Case Study

Michael Rettelbach, Peter Liggesmeyer

Siemens AG, Corporate Technology ZT PP 2S, Munich, Germany

E-mail: fmichael.rettelbach,peter.liggesmeyerg@mchp.siemens.de

August 27, 1998

Abstract

We demonstrate that routine observations of project accounts (working hours, bud-

get, planned project length, . . .) contain enough statistically usable information for

the prediction of the outcome of projects (delay, budget overdraw, . . .). Our case study

includes more than 300 projects that started and ended within a �xed period of two

years, have been planned to take at least 6 months and have not been cancelled during

runtime.

Keywords

statistical metrics; discriminant analysis; Fisher's classi�cation; industrial case

study.

1 Introduction

The primary aim of this study was to statistically analyze accounting data recorded during
the runtime of industrial projects. In Section 2 we will state which data sets are suitable
for investigation and which metrics can be deduced. The statistical analysis based on these
metrics will be described in Section 3. The analysis includes the construction of prediction
models for di�erent conclusions, the evaluation of such models, and the selection of optimal
(linear) combinations of single metrics. In Section 4 we present computational results and
conclude this paper with a detailed interpretation of these results (Section 5).

1

2 Data and metrics

2.1 Description of the data set

Our investigations include 329 projects that started and ended within a �xed period of two
years, have been planned to take at least 6 months, and have not been cancelled during
runtime. Usual �nancial data was recorded monthly, only including planned project length,
and two accounts for working hours and budget, respectively.

2.2 Metrics

For each single project we recorded the following metrics: planned length in months (M1),
estimated total number of working hours (M2), and estimated total budget (M3). These three
are known at the beginning of the projects. After a certain proportion of the total project
time called measure point, we recorded the following: proportion of consumed working hours
(M4), proportion of spent budget (M5), and the square of the di�erence of both to consider
if both are drifting apart (M6).
We additionally investigated the suspicion that a late start of a project in combination with
a disproportionately high start of accounting will in
uence the project's outcome. Therefore
we measured the relative height of the �rst account movement of both, working hours and
budget (M7 and M8), the month of the �rst account movement (M9), and the proportion of
the planned total project time until that moment (M10).
Figure 1 shows an example of a way a project might develop, and the recorded metrics.

2.3 Target values

We investigated a bundle of target values at the end of the projects, including the relative
consumption of working hours, budget, and project time (T1, T2, T3), as well as the (absolute)
di�erence between planned and actual project time (T4).

3 Applied statistical methods

Our aim was to establish a model by applying discriminant analysis methods to the metrics.
The focus of our investigation was predicting projects that are likely to overdraw their
budget.

3.1 Fisher's discriminant function

We decided to use Fisher's method [JW82], because of the following advantages:

� Although initially designed for multivariate normal measures, it is also applicable if
this precondition is not ful�lled, performing generally well (see [FHT96]).

2

hours

budget

(absolute)
T4

20% 40% 60% 80% 100% 120%

20%

40%

80%

80%

100%

M5

M4

M6 (square!)

M7

M8

M9 (absolute)

M10 (relative)

measure point

M1 (months), M2 (hours), M3 (budget) each absolute

project finished
consumed
proportion

T3 (months absolute)

140%

relative pla

120%

Figure 1: Example of a project.

An investigation of our random variables reveals that none is normally distributed, not
even approximately. Additionally the transformation functions that are commonly
used to produce normal distributions fail for almost each of the variables (see e.g.
[JW82])

� Fisher's model is based on a linear combination of the variables. Thus, it is simple to
implement and performs fast making a prediction. Additionally the whole database can
be omitted once the coe�cients of the linear combination have been computed. This
linear combination can be implemented in generally available spreadsheet applications
like MS EXCEL.

The fast decision is a clear advantage compared with other procedures, because we
will have to apply it very often for evaluating the quality of the prediction model. We

3

will discuss this aspect in Section 3.2.

� Other methods like loglinear models or smooth density estimators failed to produce
useful discrimination models [FHT96].

The result of Fisher's procedure is a vector l = (l1; : : : ; l10) and a scalar c such that the linear
combination l1 � M1 + : : :+ l10 � M10 optimally distinguishes between the two populations. c
is the value that is used to classify an observation as belonging to the �rst or to the second
population.
Hereby we obtain a mathematically founded optimal decision criterion that substitutes the
usual manual procedure based on pure intuition. It is a rule how to combine metrics with
respect to the decision criterion for classifying objects (projects, . . .) as 'bad' or 'good'.

3.2 Evaluation of the classi�cation

To evaluate the discrimination quality of the classi�cation we investigated two distinct as-
pects: the apparent error rate (AER), which denotes the total number of misclassi�cations
compared to the total number of classi�cations, and the expected cost of misclassi�cation

(ECM), which additionally takes into account the cost of the di�erent kinds of errors [JW82].
We assume that our n observations are divided into two populations of size n1 and n2,
respectively. Furthermore, we use the following scheme to evaluate the quality of predictions.

prediction
bad good

observation bad n11 n12 n11 + n12 = n1

good n21 n22 n21 + n22 = n2

This means that n11 and n22 observations have been correctly recognized to belong to popu-
lation 1 and 2, respectively. n12 observations have been classi�ed as members of population 2
although they belong to population 1. The meaning n21 is corresponding.
The AER-value is the proportion of misclassi�cations. It is given by

AER =
(n12 + n21)

n
; n = n1 + n2:

To compute ECM we additionally need to know the costs of misclassi�cation for both kinds
of errors: classifying a type 1 observation as being type 2 (c12) and vice versa (c21). This is
important, because the costs may be signi�cantly di�erent. Thus we get

ECM =
n12c12 + n21c21

n
:

To compute both values AER and ECM we could compute a classi�cation model from all
observations and classify all observations afterwards, counting correct and wrong ones. This
approach usually underestimates both values, because the data set for �tting the model (�t

4

data set) and the data set for testing (test data set) are the same. We will refer to this
approach as simple evaluation in the rest of the paper.
Another way would be to randomly seperate all observations into �t and test data set. The
usual ratio using this approach is about 2:1. The classi�cation model is computed only using
the �t data set, and evaluated with the test data set. The drawback of this approach is that
the �nal classi�cation model does not include all information provided by the observations,
especially if there is only a small number of observations.
Although we have a large number of observations (> 300), we decided to select a third
approach, the holdout procedure. The classi�cation model is computed n times, for each of
these exactly one observation is not used (holdout). With each model exactly one observation
is classi�ed, namely the holdout, counting correct and incorrect ones.

3.3 Selection of variables

Usually everyone will agree that it is foolish to measure anything that is measurable. This is
especially true for Fisher's classi�cation. We will be able to observe that selectively leaving
out metrics will signi�cantly increase the quality of the prediction. Thus, the question is
which metrics should be omitted.
There are direct decision algorithms that compute an optimal subset of the vector of metrics.
Unfortunately, these algorithms usually include the assumption that the metrics are normally
distributed [FHT96]. As already stated, this is not true in our context. Therefore we
decided to perform an exhaustive search for the optimum, which includes 210 � 1 = 1023
combinations. Computing the holdout AER and ECM for all these would have taken about
some 20 hours on a workstation for each prediction model. This is caused by the fact that for
each variable combination 329 prediction models are to be computed. In total this requires
336,000 calculations of prediction models.
To reduce the e�ort, we applied the following approach: At �rst we use the simple evaluation
method to obtain a lower bound of the actual values for each subset of metrics. This
procedure also includes 336,000 classi�cations, but only demands 1023 computations of the
classi�cation model. After that step we use the holdout classi�cation starting with the simple
evaluation winners. We stop this procedure when we obtain a holdout evaluation better than
all remaining simple evaluations. By this way we de�nitely �nd the global maximum (or
maxima) and usually reduce the computational e�ort to a few minutes.
We will observe that the optimization of AER and ECM will result in di�erent optimal subsets
of the metrics.

4 Numerical results

We de�ned two di�erent measure points to investigate whether later measurement causes
better prediction quality. We used 50% and 60% of the planned total project time as
measurement points. One might argue that these points are too late to positively in
uence
the outcome of a project. We agree with this objection, but hold the fact against it that

5

the data lacks of quality because it is not explicitly measured for statistical purposes. Later
measurement points promise to bear measures containing more information about a project's
outcome. Our initial aim to show that prediction is possible in general with this kind of data
could be achieved this way. Thus, we obtained good arguments to establish better recording

of metrics, also in earlier project phases.

Optimizing ECM we only need to know the ratio of the misclassi�cation costs, c12=c21. We
use the values 2 and 3 as examples for this ratio, i.e., a not recognized 'bad' project causes
twice (three times) the costs as an erroneously as 'bad' classi�ed 'good' one. We denote this
as ECM2 and ECM3.

Example: Assume that we want to predict that a project will use more than 110% of
its planned budget. We split up our whole population along this borderline and found 78
projects above and 251 below it. We computed the following prediction model for all vari-
ables based on the 50% measurement points:

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

-0.19463 0.00040 -0.00266 0.01390 0.02651 -0.00061 -0.04871 0.02031 0.09850 -0.00465

cAER = -0.96212 AER = 28.88%
c2
ECM

= -0.48653 ECM2 = 0.41337
c3
ECM

= -0.89199 ECM3 = 0.56535

This table is to be read as follows. Provided you want to optimize AER, assume for a new
observation that the expenses exceed 110% of the planned budget, i�

�0:19463 � M1+ 0:00040 � M2 + : : :� 0:00465 � M10 � �0:96212 :

Based on the 60% measures we computed the following prediction model:

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

-0.19548 0.00040 -0.00238 -0.00737 0.03932 0.00019 -0.01247 -0.00805 0.15032 -0.00845

cAER = -0.53710 AER = 25.23%
c2
ECM

= -0.06150 ECM2 = 0.39210
c3
ECM

= -0.46697 ECM3 = 0.51064

Afterwards we applied the procedure for the optimization of the metrics vector as described
in Section 3.3. At �rst we wanted to optimize the AER value. For the 50% measures we
found one optimal variable subset:

AER optimized = 24.62% 50%

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 cAER

-0.19414 0.04014 -0.02791 0.08592 -0.79943

6

For the 60% measures there have been eight of them.

AER optimized = 23.71% 60%

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 cAER

-0.20360 0.03211 -0.01946 0.15873 -0.00882 -0.56303

-0.19969 -0.01141 0.04348 -0.01970 0.15472 -0.00866 -0.54047

-0.15714 -0.01339 0.04171 0.00013 -0.01579 -0.00230 -0.42866

-0.19997 -0.00048 0.03196 -0.02017 0.14927 -0.00880 -0.64202

-0.20098 -0.00049 0.03213 -0.01054 -0.00989 0.15236 -0.00909 -0.64694

-0.20316 -0.00002 0.03206 -0.01951 0.15794 -0.00895 -0.58133

-0.19906 -0.00003 -0.01156 0.04356 -0.01976 0.15364 -0.00882 -0.56425

-0.19612 -0.00047 -0.01120 0.04312 -0.02039 0.14529 -0.00863 -0.61916

Assuming c12=c21 = 2, we found

ECM2 optimized = 0.37690 50%

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 c
2
ECM

-0.00097 0.03185 -0.00084 -0.05166 0.03251 0.00864 0.79530

0.03190 -0.00081 -0.05171 0.03354 0.01107 0.99771

0.03289 -0.00081 -0.05260 0.03355 -0.10521 0.02590 1.08058

-0.00009 0.03274 -0.00084 -0.05318 0.03376 -0.10608 0.02469 0.97279

ECM2 optimized = 0.35866 60%
l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 c

2

ECM

0.00044 -0.00291 -0.01582 0.04123 -0.01380 0.00234 1.03508

0.00044 -0.00291 -0.01561 0.04125 -0.01381 0.02581 1.04862

0.00044 -0.00291 -0.01560 0.04128 -0.01383 0.02340 0.00047 1.05808

0.00044 -0.00299 -0.01478 0.03941 0.00017 -0.01357 0.94160

-0.00008 -0.01922 0.04471 -0.01351 0.02598 1.05964

-0.00007 -0.01921 0.04474 -0.01353 0.02314 0.00055 1.07077

-0.01934 0.04398 -0.01287 1.01616

-0.01852 0.04298 0.00012 -0.01286 1.01884

And for c12=c21 = 3

ECM3 optimized = 0.50456 50%
l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 c

3

ECM

-0.16714 0.03560 -0.02528 -0.86324

-0.16629 0.03547 -0.05242 0.02695 -0.86330

ECM3 optimized = 0.47720 60%

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 c
3

ECM

-0.15921 0.02563 -0.01423 -0.51516

7

In our initial study we additionally investigated budget overdraws (more than 100%), over-
draws of the accounted hours, and late project completions (� 2 months late and 17.6% of
total project time late) in the same detail. The achieved values for AER were located in the
range 1/3 to 1/4. The quality of ECM was comparable.

5 Interpretation

General observations concerning the prediction quality

Although our data set is only �t for limited service for statistical investigations we could
achieve to correctly classify 2/3 to 3/4 observations. We are very content with these values.
On the other side we could not reach AER values signi�cantly better than 25%. We suggest
two reasons for this fact. The �rst is that there are some outliers (single observations that lie
far away from most of the observations) in the data set [Wad89]. We could selectively omit
those values to improve the prediction quality. Preselection of observations in general will
give a good chance to improve the prediction quality. Excessive use of this approach, however,
will generate a set of observations that only includes few aspects of our initial one, resulting
in a bad prediction quality for new observations. Second, we strongly suspect that our
metrics explain some, but not all of the reasons for lateness or budget overdraws. Therefore
we recommend to de�ne new metrics that could contribute to a better understanding of
these reasons.

The measure points

Except of a few of our models we observed that concerning the optimal variable subsets we
always achieve a better prediction with the 60% measure point. Although this hypothesis
is not statistically proven we can recognize a clear trend: later measurement improves the
prediction quality. This is also con�rmed by the statistical test below. This discovery might
appear to be trivial to an observer, but it provides us another con�rmation that our metrics
contain the appropriate information.

Signi�cance of individual metrics

As explained earlier the procedures to directly obtain an optimal subset of variables demand
a multivariate normal distribution. The same is true for the following test. But, as stated
in [FHT96], it is usually also applied to other data to obtain a trend.
For Fisher's discriminant function di�erent mean vectors of the two populations are essen-
tial. We perform a statistical test (F-test) with signi�cance level, �, and the hypothesis, H0:
\the mean values of the metrics are equal for both populations" against the alternative, H1:
\the mean values are di�erent", using the Mahalanobis distance [FHT96]. The following
table shows the �-values that are not to be exceeded to reject H0. 1.0 is the best obtainable
value and means that the mean values of this variable for both population di�er almost for
sure. For better readability we underlined values above 99% and set those below 95% in

8

italics. We also included the same test of our other investigations with the data set: time

117 means a more than 17% overdraw of the planned project time, time 2m. an overdraw
of at least 2 months. hours 110 is the investigation concerning an overdraw of the planned
hours for at least 10%, account 110 means the study in this paper and �nally account 100

is the same study except that the populations are divided along the 100% budget line.

time 117 time 2m. hours 110 account 110 account 100

50 60 50 60 50 60 50 60 50 60

M1 1:0000 1:0000 0:9999 0:9999 0.7849 0.7849 0.9716 0.9716 0.9502 0.9502

M2 0.9321 0.9321 0.9874 0.9874 0.5407 0.5407 0.5032 0.5032 0.1943 0.1943

M3 0.9018 0.9018 0.9827 0.9827 0.6547 0.6547 0.7892 0.7892 0.2689 0.2689

M4 0:9915 0:9998 0.9896 0:9999 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000

M5 0.9812 0:9995 0.9794 0:9999 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000

M6 0.9291 0.9276 0.9507 0.9654 0.7557 0:9917 0.2955 0.9354 0.1410 0.7923

M7 0.3280 0.8032 0.6974 0.9712 0.9782 0:9930 0.9899 0:9938 0.9376 0.9194

M8 0.1933 0.8230 0.6012 0.9746 0.9876 0:9926 0:9936 0:9936 0.9333 0.9157

M9 0.0868 0.0868 0.7823 0.7823 0.9590 0.9590 0.9631 0.9631 0.9668 0.9668

M10 0.9865 0.9872 0.9310 0.9652 0.9718 0.9739 0.9502 0.9549 0.9241 0.9042

First, this table shows that (except of M6) a high signi�cance of the 50% measures comes
along with a high signi�cance of the 60% ones. Comparing the values in the table with the
number of appearences of each variable in the optimal subsets we can observe a coincidence
at least for the prediction we performed in Section 4.
Finally we discuss the suspection (cf. Section 2) that the delay and relative height of the
�rst movement of the accounts is an indicator of a project's outcome. The optimal subsets
reveal a high signi�cance of this value: each subset includes at least one of both, M7 and M8.
Removing both metrics from our measurement vector we obtain evidently worse values for
AER and ECM for new optimal subsets (original values in brackets): AER50 29.18% (24.62%),
AER60 26.75% (23.71%), ECM2

50
0.38602 (0.37690), ECM2

60
0.36474 (0.35866), ECM3

50
0.54711

(0.50456), ECM3
60

0.48632 (0.47720).

6 Summary and future work

By this study we show that routine observations of project accounts contain enough statisti-
cally usable information for the prediction of the outcome of projects. We are fully satis�ed
with the hit proportion of 75% and we are convinced this can be improved by additional,
well aimed measurements. We are encouraged to continue the research on this �eld.
With Fisher's method we provide a decision scheme that can even be used by a non expe-
rienced person (without the use of specialized software) to decide if a new project tends to
overdraw its budget (becomes late, etc.) or not. Additionally this decision is statistically
substantiated and we can anticipate the involved error. The decision can be optimized taking
into account the cost of misclassi�cation. Previously, all this had to be done by an expert,
based on the knowledge he gathered over years. With the statistical methods we formalized
this experience within a simple function.

9

Our further studies will concentrate on the inclusion of new metrics as well as tests for
suitability of other discriminant analysis methods.

References

[FHT96] Ludwig Fahrmeir, Alfred Hamerle, and Gerhard Tutz. Multivariate statistische

Verfahren. de Gruyter, Berlin, New York, 2nd edition, 1996.

[JW82] Richard A. Johnson and Dean W. Wichern. Applied Multivariate Statistical Anal-

ysis. Prentice Hall, Inc., 1982.

[Wad89] Harrison M. Wadsworth. Handbook of Statistical Methods for Engineers and Sci-

entists. McGraw-Hill, 1989.

10

Slide 1

Year 2000
Compliance Testing

John Corden
Chair, CSSA Y2000 Vendor Group

Millennium Director, CYRANO

November 1998

Slide 2

Why test?

Slide 3

Excuses (for not testing)

• My supplier has guaranteed that the
system is Year 2000 compliant

• The system was developed, from the
outset, to use 8 digit dates

• Insufficient time
• Too difficult
• Can’t be bothered

Slide 4

Some common misconceptions

• A system which stores dates using 8 digits is
Year 2000 compliant

• A system which stores dates as 6 digits isn’t
Year 2000 compliant

• You can tell whether a system is Year 2000
compliant by examining the source code

• I can sit back and do nothing and, if it breaks,
I can sue my supplier for damages

Slide 5

So TEST to:

• Find out if a system is Year 2000
compliant

• Mitigate your losses
• Prove that you’ve exercised due care

Slide 6

What do we test?

How do we test?

Slide 7

What does the system do?

?
30-Nov-1996

01-Mar-1997

£100.00

£102.52

Slide 8

What does the system do?

?
30-Nov-1999

01-Mar-2000

£100.00

£102.55

Slide 9

What does the system do?

Time

Slide 10

Identify the date sensitive I/O

Slide 11

And separate it from the work-flow

Slide 12

We can then substitute new inputs
and expected outputs

Slide 13

For a series of future date tests

Time

Slide 14

Key dates?

• 9/9/1999
• 31/12/1999
• 1/1/2000
• 28/2/2000
• 29/2/2000
• 1/3/2000
• 31/12/2000
• 1/1/2001
• etc

Slide 15

Key dates?

• 9/9/1999
• 31/12/1999
• 1/1/2000
• 28/2/2000
• 29/2/2000
• 1/3/2000
• 31/12/2000
• 1/1/2001
• etc

• 4/11/1997
• last Thursday
• today
• tomorrow
• next month
• 2/1/2000
• 15/4/2000
• 1/1/2001
• etc

Slide 16

A Year 2000 Project……….
• Programs amended, adding

logic fix for new Millennium
• Unit Test
• System Test
• Acceptance Test (user sign

off)
• Go live
• Run successfully for 15

months

Slide 17

Jan. 24, 1998

IRS describes how Year 2000 bug bungled tax
instalment agreements

N-J wire services

WASHINGTON — The IRS uncovered an unintended side
effect of its effort to eliminate the Year 2000 computer bug:
About 1,000 taxpayers who were current in their tax
instalment agreements were suddenly declared in default
due to a programming error.

Slide 18

Inventory Renovate TestAssess Implement

What’s wrong with
this approach?

Conventional Y2000
Project Plan

Slide 19

Inventory Renovate TestAssess Implement

W
as

te
d

E
ffo

rt!

Slide 20

Inventory
Validation

Test
System

Regression
Validation

Production
System Playback

Production
System

Test
System

Record

Playback

PlaybackAssessment
Validation

Source
Code

R
en

ov
at

io
n

P
ro

ce
ss

B
as

el
in

e

Test
Data

Normal
Operations

Source
Code

Renovation
Validation

Playback

Future
Date Tests

Slide 21

Conditions
Test Data

Expected Results
Date Simulation

Slide 22

What about the data?

Slide 23

Why age test data?

Slide 24

1999
2000
2001

1998

Converted
Software

1998

Converted
Software

Year 2000 testing: General idea

1999
2000
2001

Current
Software

1998

Output

OutputInput

OutputInput

Ageing 1999
2000
2001

A
geing

C
om

pare

Input

C
om

pare

FDT

RT

CDT

Slide 25

COBOL Program

Example: COBOL program today

085100*** PEOPLE OLDER THAN 18 YEARS WILL
PROCEED

085110*** DETERMINE AGE AND ASK FOR 18

085120*** TODAY-DATE IS STORED IN PIC X(6) AS
YYMMDD

085130*** BIRTHDAY IS STORED IN PIC X(6) AS
YYMMDD

085140

085150 MOVE TODAY-DATE TO TEMP

085160 SUBTRACT BIRTHDAY FROM TEMP

085170

085180 IF TEMP >= 180000

085190 GO TO FUNCTION-X

085200 ELSE

085210 GO TO FUNCTION-Y

085220 END-IF

085100*** PEOPLE OLDER THAN 18 YEARS WILL
PROCEED

085110*** DETERMINE AGE AND ASK FOR 18

085120*** TODAY-DATE IS STORED IN PIC X(6) AS
YYMMDD

085130*** BIRTHDAY IS STORED IN PIC X(6) AS
YYMMDD

085140

085150 MOVE TODAY-DATE TO TEMP

085160 SUBTRACT BIRTHDAY FROM TEMP

085170

085180 IF TEMP >= 180000

085190 GO TO FUNCTION-X

085200 ELSE

085210 GO TO FUNCTION-Y

085220 END-IF

12.08.81

System date 21.08.98

DataBase with
a birthday

Age is 17
(younger than 18!)

17

Slide 26

Test COBOL program for Y2000
System date 21.08.98System date 01.01.00

manually
change

COBOL Program
085100*** PEOPLE OLDER THAN 18 YEARS WILL

PROCEED

085110*** DETERMINE AGE AND ASK FOR 18

085120*** TODAY-DATE IS STORED IN PIC X(6) AS
YYMMDD

085130*** BIRTHDAY IS STORED IN PIC X(6) AS
YYMMDD

085140

085150 MOVE TODAY-DATE TO TEMP

085160 SUBTRACT BIRTHDAY FROM TEMP

085170

085180 IF TEMP >= 180000

085190 GO TO FUNCTION-X

085200 ELSE

085210 GO TO FUNCTION-Y

085220 END-IF

085100*** PEOPLE OLDER THAN 18 YEARS WILL
PROCEED

085110*** DETERMINE AGE AND ASK FOR 18

085120*** TODAY-DATE IS STORED IN PIC X(6) AS
YYMMDD

085130*** BIRTHDAY IS STORED IN PIC X(6) AS
YYMMDD

085140

085150 MOVE TODAY-DATE TO TEMP

085160 SUBTRACT BIRTHDAY FROM TEMP

085170

085180 IF TEMP >= 180000

085190 GO TO FUNCTION-X

085200 ELSE

085210 GO TO FUNCTION-Y

085220 END-IF

12.08.81

DataBase with
a birthday

Age is - 81
(younger than 18!)

- 81

Slide 27

Change sources (e.g. Windowing)
085100*** PEOPLE OLDER THAN 18 YEARS WILL PROCEED

085110*** DETERMINE AGE AND ASK FOR 18

085120*** TODAY-DATE IS STORED IN PIC X(6) AS
YYMMDD

085130*** BIRTHDAY IS STORED IN PIC X(6) AS YYMMDD

085131*** VARIABLE WINDOW IS DEFINED AS 20
(=200000)

085140

085150 MOVE TODAY-DATE TO TEMP

085151 IF TEMP <= WINDOW

085152 ADD 20000000 TO TEMP

085153 ELSE

085154 ADD 19000000 TO TEMP

085155 END-IF

085156 MOVE BIRTHDAY TO TEMP-B

085160*** SUBTRACT BIRTHDAY FROM TEMP

085161 IF TEMP-B <= WINDOW

085162 ADD 20000000 TO TEMP-B

085163 ELSE

085164 ADD 19000000 TO TEMP-B

085165 END-IF

085166*** FORMER LINE 85160

085167 SUBTRACT TEMP-B FROM TEMP

085170

085180 IF TEMP >= 180000

085190 GO TO FUNCTION-X

085200 ELSE

085210 GO TO FUNCTION-Y

085220 END-IF

085100*** PEOPLE OLDER THAN 18 YEARS WILL PROCEED

085110*** DETERMINE AGE AND ASK FOR 18

085120*** TODAY-DATE IS STORED IN PIC X(6) AS
YYMMDD

085130*** BIRTHDAY IS STORED IN PIC X(6) AS YYMMDD

085131*** VARIABLE WINDOW IS DEFINED AS 20
(=200000)

085140

085150 MOVE TODAY-DATE TO TEMP

085151 IF TEMP <= WINDOW

085152 ADD 20000000 TO TEMP

085153 ELSE

085154 ADD 19000000 TO TEMP

085155 END-IF

085156 MOVE BIRTHDAY TO TEMP-B

085160*** SUBTRACT BIRTHDAY FROM TEMP

085161 IF TEMP-B <= WINDOW

085162 ADD 20000000 TO TEMP-B

085163 ELSE

085164 ADD 19000000 TO TEMP-B

085165 END-IF

085166*** FORMER LINE 85160

085167 SUBTRACT TEMP-B FROM TEMP

085170

085180 IF TEMP >= 180000

085190 GO TO FUNCTION-X

085200 ELSE

085210 GO TO FUNCTION-Y

085220 END-IF

085100*** PEOPLE OLDER THAN 18 YEARS WILL PROCEED

085110*** DETERMINE AGE AND ASK FOR 18

085120*** TODAY-DATE IS STORED IN PIC X(6) AS YYMMDD

085130*** BIRTHDAY IS STORED IN PIC X(6) AS YYMMDD

085140

085150 MOVE TODAY-DATE TO TEMP

085160 SUBTRACT BIRTHDAY FROM TEMP

085170

085180 IF TEMP >= 180000

085190 GO TO FUNCTION-X

085200 ELSE

085210 GO TO FUNCTION-Y

085220 END-IF

085100*** PEOPLE OLDER THAN 18 YEARS WILL PROCEED

085110*** DETERMINE AGE AND ASK FOR 18

085120*** TODAY-DATE IS STORED IN PIC X(6) AS YYMMDD

085130*** BIRTHDAY IS STORED IN PIC X(6) AS YYMMDD

085140

085150 MOVE TODAY-DATE TO TEMP

085160 SUBTRACT BIRTHDAY FROM TEMP

085170

085180 IF TEMP >= 180000

085190 GO TO FUNCTION-X

085200 ELSE

085210 GO TO FUNCTION-Y

085220 END-IF

Insert a window „20“

Slide 28

Test COBOL program for Y2000 (1)
System date 21.08.98System date 01.01.00

Converted COBOL Program
085100*** PEOPLE OLDER THAN 18 YEARS WILL PROCEED

085110*** DETERMINE AGE AND ASK FOR 18

085120*** TODAY-DATE IS STORED IN PIC X(6) AS YYMMDD

085130*** BIRTHDAY IS STORED IN PIC X(6) AS YYMMDD

085131*** VARIABLE WINDOW IS DEFINED AS 20 (=200000)

085140

085150 MOVE TODAY-DATE TO TEMP

085151 IF TEMP <= WINDOW

085152 ADD 20000000 TO TEMP

085153 ELSE

085154 ADD 19000000 TO TEMP

085155 END-IF

085156 MOVE BIRTHDAY TO TEMP-B

085160*** SUBTRACT BIRTHDAY FROM TEMP

085161 IF TEMP-B <= WINDOW

085162 ADD 20000000 TO TEMP-B

085163 ELSE

085164 ADD 19000000 TO TEMP-B

085165 END-IF

085166*** FORMER LINE 85160

085167 SUBTRACT TEMP-B FROM TEMP

085170

085180 IF TEMP >= 180000

085190 GO TO FUNCTION-X

085200 ELSE

085210 GO TO FUNCTION-Y

085220 END-IF

085100*** PEOPLE OLDER THAN 18 YEARS WILL PROCEED

085110*** DETERMINE AGE AND ASK FOR 18

085120*** TODAY-DATE IS STORED IN PIC X(6) AS YYMMDD

085130*** BIRTHDAY IS STORED IN PIC X(6) AS YYMMDD

085131*** VARIABLE WINDOW IS DEFINED AS 20 (=200000)

085140

085150 MOVE TODAY-DATE TO TEMP

085151 IF TEMP <= WINDOW

085152 ADD 20000000 TO TEMP

085153 ELSE

085154 ADD 19000000 TO TEMP

085155 END-IF

085156 MOVE BIRTHDAY TO TEMP-B

085160*** SUBTRACT BIRTHDAY FROM TEMP

085161 IF TEMP-B <= WINDOW

085162 ADD 20000000 TO TEMP-B

085163 ELSE

085164 ADD 19000000 TO TEMP-B

085165 END-IF

085166*** FORMER LINE 85160

085167 SUBTRACT TEMP-B FROM TEMP

085170

085180 IF TEMP >= 180000

085190 GO TO FUNCTION-X

085200 ELSE

085210 GO TO FUNCTION-Y

085220 END-IF

12.08.81

DataBase with
a birthday

Age is 18
(equal 18!)

18

Slide 29

Test COBOL program for Y2000 (2)
System date 21.08.98System date 01.01.00

Converted COBOL Program
085100*** PEOPLE OLDER THAN 18 YEARS WILL PROCEED

085110*** DETERMINE AGE AND ASK FOR 18

085120*** TODAY-DATE IS STORED IN PIC X(6) AS YYMMDD

085130*** BIRTHDAY IS STORED IN PIC X(6) AS YYMMDD

085131*** VARIABLE WINDOW IS DEFINED AS 20 (=200000)

085140

085150 MOVE TODAY-DATE TO TEMP

085151 IF TEMP <= WINDOW

085152 ADD 20000000 TO TEMP

085153 ELSE

085154 ADD 19000000 TO TEMP

085155 END-IF

085156 MOVE BIRTHDAY TO TEMP-B

085160*** SUBTRACT BIRTHDAY FROM TEMP

085161 IF TEMP-B <= WINDOW

085162 ADD 20000000 TO TEMP-B

085163 ELSE

085164 ADD 19000000 TO TEMP-B

085165 END-IF

085166*** FORMER LINE 85160

085167 SUBTRACT TEMP-B FROM TEMP

085170

085180 IF TEMP >= 180000

085190 GO TO FUNCTION-X

085200 ELSE

085210 GO TO FUNCTION-Y

085220 END-IF

085100*** PEOPLE OLDER THAN 18 YEARS WILL PROCEED

085110*** DETERMINE AGE AND ASK FOR 18

085120*** TODAY-DATE IS STORED IN PIC X(6) AS YYMMDD

085130*** BIRTHDAY IS STORED IN PIC X(6) AS YYMMDD

085131*** VARIABLE WINDOW IS DEFINED AS 20 (=200000)

085140

085150 MOVE TODAY-DATE TO TEMP

085151 IF TEMP <= WINDOW

085152 ADD 20000000 TO TEMP

085153 ELSE

085154 ADD 19000000 TO TEMP

085155 END-IF

085156 MOVE BIRTHDAY TO TEMP-B

085160*** SUBTRACT BIRTHDAY FROM TEMP

085161 IF TEMP-B <= WINDOW

085162 ADD 20000000 TO TEMP-B

085163 ELSE

085164 ADD 19000000 TO TEMP-B

085165 END-IF

085166*** FORMER LINE 85160

085167 SUBTRACT TEMP-B FROM TEMP

085170

085180 IF TEMP >= 180000

085190 GO TO FUNCTION-X

085200 ELSE

085210 GO TO FUNCTION-Y

085220 END-IF

12.08.81

DataBase with
a birthday

12.08.81

12.08.83

manually
change

Age is 16
(younger than 18!)

16

Slide 30

12.08.81

Converted COBOL Program

Test COBOL program for Y2000 (3)

12.08.81

085100*** PEOPLE OLDER THAN 18 YEARS WILL PROCEED

085110*** DETERMINE AGE AND ASK FOR 18

085120*** TODAY-DATE IS STORED IN PIC X(6) AS YYMMDD

085130*** BIRTHDAY IS STORED IN PIC X(6) AS YYMMDD

085131*** VARIABLE WINDOW IS DEFINED AS 20 (=200000)

085140

085150 MOVE TODAY-DATE TO TEMP

085151 IF TEMP <= WINDOW

085152 ADD 20000000 TO TEMP

085153 ELSE

085154 ADD 19000000 TO TEMP

085155 END-IF

085156 MOVE BIRTHDAY TO TEMP-B

085160*** SUBTRACT BIRTHDAY FROM TEMP

085161 IF TEMP-B <= WINDOW

085162 ADD 20000000 TO TEMP-B

085163 ELSE

085164 ADD 19000000 TO TEMP-B

085165 END-IF

085166*** FORMER LINE 85160

085167 SUBTRACT TEMP-B FROM TEMP

085170

085180 IF TEMP >= 180000

085190 GO TO FUNCTION-X

085200 ELSE

085210 GO TO FUNCTION-Y

085220 END-IF

085100*** PEOPLE OLDER THAN 18 YEARS WILL PROCEED

085110*** DETERMINE AGE AND ASK FOR 18

085120*** TODAY-DATE IS STORED IN PIC X(6) AS YYMMDD

085130*** BIRTHDAY IS STORED IN PIC X(6) AS YYMMDD

085131*** VARIABLE WINDOW IS DEFINED AS 20 (=200000)

085140

085150 MOVE TODAY-DATE TO TEMP

085151 IF TEMP <= WINDOW

085152 ADD 20000000 TO TEMP

085153 ELSE

085154 ADD 19000000 TO TEMP

085155 END-IF

085156 MOVE BIRTHDAY TO TEMP-B

085160*** SUBTRACT BIRTHDAY FROM TEMP

085161 IF TEMP-B <= WINDOW

085162 ADD 20000000 TO TEMP-B

085163 ELSE

085164 ADD 19000000 TO TEMP-B

085165 END-IF

085166*** FORMER LINE 85160

085167 SUBTRACT TEMP-B FROM TEMP

085170

085180 IF TEMP >= 180000

085190 GO TO FUNCTION-X

085200 ELSE

085210 GO TO FUNCTION-Y

085220 END-IF

System date 01.01.00 System date 21.08.98

add 498 days

23.12.82

 add 498 days

Test Data
Aging

DataBase with
a birthday

Age is 17
(younger than 18!)

17

Slide 31

CYRANO Y2000 Products

• CYRANO MillenniumTest
– record business processes using contemporary

dates
– replay using future dates
– automatically validate date sensitive I/O for Y2000

compliance

• CYRANO DataAge
– Semantic data date ageing

• CYRANO DateWarp
– Date Simulation

Slide 32

Inventory Renovate

Test

Assess Implement

De-risked Y2000
Project Plan

QUALITY ON TIME!QUALITY ON TIME!

Slide 33

EIF
(joint CSSA & EIF initiative)

Code of Practice
Year 2000 Software Product &

System Testing

Slide 34

Slide 35

Has it been tested in
accordance with the EIF Code

of Practice?

Slide 36

BSI DISC PD2000-1
www.bsi.org.uk/disc/year2000.html

EIF Code of Practice
http://www.cssa.co.uk/home/pubs/practice/y2ktest.htm

Slide 37

Testing Budget

Slide 38

Testing Budget

• Overall Y2000 remedy costs $1 to $5 per LOC
Testing = 50% of overall cost

• Testing = $500k to $2.5m per million LOC (=circa 800
programs)

• Testing = 5 to 25 man years per million LOC
• So, for example, a major retail bank might be

spending $150m on testing!

Slide 39

BUT!

Slide 40

Using automated test tools

Slide 41

Case study - Major Bank (D)

• 40 million LOC
• Overall budget $40-100m
• <80 man years testing planned
• Testing 8 to 20% of planned overall spend

Slide 42

Case study - HP TMO

• 14 million LOC
• Overall budget $10m to $30m (!!)
• <10 man years testing planned
• Testing <10% of planned overall spend

Slide 43

So...

• Planned testing spend is around 10 to 20% of overall
budget

• 1million LOC = 1 to 2 man years of testing = £60-
100k

Slide 44

Conclusions
• Test to:

– determine Year 2000 compliance
– mitigate losses
– prove that you’ve exercised due care
– prove that you haven’t introduced new

defects as a side effect of Year 2000
renovation

• Use automated test tools to reduce
testing effort by 60-80%

Slide 45

jcorden@cyrano.com

www.cyrano.com

www.cssa.co.uk

Slide 1

Req. Mgmt. - Simple Tools
… Simple Processes

Leslie Allen Little
Aztek Engineering
lal@aztek-eng.com

Slide 2

Outline for this talk

z Why build rather than buy?
z Keys to successfully building tools
z Examples of tools to build
z ReqTrack - A simple but powerful tool
z ReqTrack - Costs to implement

Slide 3

Why you should consider
building Simple Tools

z Powerful and robust application
environments are available (MS OFFICE)

z With realistic goals, costs are minimal
z By leveraging the application

environment, maintenance is minimal
z Ability to adapt/evolve your tools
z Ability to reach higher productivity
z Commercial tools expensive/unstable

Slide 4

Why you should keep
Processes Simple

z The simpler the processes, the more likely
it will be used

z Simple processes do not require complex
tool support

z Simple processes are implemented fast
z Starting simple and learn by example …

then expand!

Slide 5

Example of Simple Tools
to aid Processes

z Automating Software Reviews and
Inspections

z Human Resource Allocation for project
management tracking process

z Defect Tracking
z Requirement and Test Case Management

Slide 6

The Typical Requirements
Process Model

This is the requirements document. It
is a high level overview of all
requirements for product XYZ.

CReq #1 - We shall produce XYZ for
target market ABC

The reasoning behind req #1 is that
...

CReq #2 - XYZ's packaging shall
consist of a red box with a white
ribbon.

...
This is the design document for
XYZ. Since the purpose of XYZ is to
provide automatic gizmo treatment
whenever the sun goes down, we
have our first requirement

DReq #1 - A 133Mghz processor
board with 32 Mbytes of DRAM shall
be the required hardware target for
XYZ.

....

Requirements for Project XYZ

File

Cabinet

Slide 7

Why not this Requirements
Process Model?

Requirements
dB

Workstation

Macro requests document update

All requirements are retrieved from dB
and inserted into document.

Laser printer

Slide 8

Now everyone can have
access … all the time!

ReqTrack
a

Requirements
Database

Manager uses
ReqTrack to examine
requirements and to

comment on
proposed ones

Developer uses
ReqTrack to examine

requirements and to
comment on

proposed ones Meetings held
to hash out
details of
requirements

Paper
documents are

no longer static,
they change as
the database is

updated

Mark
etin

g c
an

rem
ote

ly a
cce

ss

ReqT
rac

k to
 ex

am
ine

, pr
opo

se,
 an

d

com
ment

 on
 req

uire
ment

s

Slide 9

… and everyone can see
what they need easily ...

View of All Requirements for a
given developer

View of all
Requirements for a

specified target market

View of all Requirements
for next release of a

product

ReqTrack

Slide 10

ReqTrack - A Closer Look

z Requirement Management
y Linkages between Word and Access DB
y Linkages between requirements and tests
y Definitions Repository
y Proposal Mechanism
y Review Mechanism
y Recorded History of Requirement Changes
y Online Help
y Ability to easily change behavior

Slide 11

ReqTrack - A Closer Look

z Test Case Management
y Linkages between requirements and tests
y Definitions Repository
y Proposal Mechanism
y Review Mechanism
y Recorded History of Test Case Changes
y Recorded History of all Test Case Executions
y Online Help
y Ability to easily change behavior

Slide 12

Implementation Costs

z MS Access VBA Code
y 1200 NCSL (Non-Commented Source Lines)
y ~400 NCSL automatically generated

z MS Word VBA Code
y 350 NCSL

z Development Effort for ReqTrack
y 6 man-months effort

Slide 13

Final Thoughts

z You should consider building simple tools
because
y With today’s tools … the costs are right

x Implementation costs reasonably low
x Maintenance costs very low if tool kept simple

z Process tool aids are prime candidates
z ReqTrack is free for you to start with

Requirement Management -

Simple Tools ... Simple Processes

Leslie Allen Little
Aztek Engineering

2477 55th St. Suite 202
Boulder, CO 80301

lal@aztek-eng.com www.aztek-eng.com

Aztek Engineering Requirement Mangement - Simple Tools ... Simple Processes

2

Table of Contents

1 ABSTRACT...4

2 INTRODUCTION...4

3 WHAT IS A REQUIREMENT MANAGEMENT PROCESS? ..5

3.1 WHY IT IS IMPORTANT..5
3.2 HOW TO CREATE THE PROCESS ...5

4 REQTRACK AND REQUIREMENT MANAGEMENT..6

4.1 A WORD ABOUT THE TOOL ... REQTRACK ..6
4.2 ESTABLISHING A FORMAL REQUIREMENT PROCESS ..6

4.2.1 Simple Yet Comprehensive ..6
4.2.2 Recording of Definitions and Terms ..6
4.2.3 Avoiding Ambiguous Requirements ...7
4.2.4 Gatekeeper and Champion of the Process ...8
4.2.5 Discussion Mechanism for Proposed Requirements ...8
4.2.6 Ability to Maintain Proposed Requirement States..10

4.2.6.1 Requirement Process Flow ..10
4.2.7 Timeliness in Handling of Proposals ...11
4.2.8 Clearly Communicated Vision of the Process and Management Buy-in11
4.2.9 Requirements as Living Organisms ...12

5 COMMON PITFALLS OF REQUIREMENT MANAGEMENT...12

5.1 NO REQUIREMENTS DISCUSSIONS..12
5.2 CAN'T AGREE UPON REQUIREMENTS LANGUAGE ..12
5.3 REQUIREMENTS STORAGE EXCLUSIVELY USING PAPER DOCUMENTS...13
5.4 NO ACCOUNTABILITY...13
5.5 NOT ASSOCIATING REQUIREMENTS WITH TESTS ..13
5.6 DEPTH VERSUS BREADTH..13
5.7 DEFINING ALL TERMS ...13
5.8 MINIMIZING THE EXPECTATION GAP - SETTING THE RIGHT EXPECTATIONS13

6 CONCLUSIONS ...14

7 ACKNOWLEDGMENTS...14

8 TRADEMARKS..14

9 APPENDIX 1...14

10 REFERENCES..16

Aztek Engineering Requirement Mangement - Simple Tools ... Simple Processes

3

Table of Figures

Figure 1 - ReqTrack Definitions Screen.. 7

Figure 2 - Proposal Comments .. 9

Figure 3 - Comments Report ... 10

Figure 4 - Default Proposed Requirement Process .. 11

Aztek Engineering Requirement Mangement - Simple Tools ... Simple Processes

4

1 Abstract
There appears to be a certain misconception regarding what commercially available requirement
management packages will do for an organization. Commercially available packages are still young to
the market1, and as such are reasonably expensive and evolving. Where they will end up and what
features they will support are still largely uncertain. Many of the essential capabilities, offered by these
packages, are easily duplicated using Microsoft Office as a development platform.

The objective of this paper is to share simple, workable ideas that when accompanied by Microsoft
Office based software provide many of the capabilities available today in commercially available
requirement management packages. In this way, organizations can try out a requirement management
system, learn to change the work habits and processes prior to, or instead of, purchasing a system. Thus,
this paper discusses

• The requirements management process—what it is; why it is important; how to effectively create
such a process

• Common misconceptions and pitfalls of the requirement management process

• Using ReqTrack as the tool to aid in the requirement management process

2 Introduction
Over the years, numerous studies have indicated that the cost of correcting errors increases
exponentially the longer the error remains in the system. Conclusions from these findings suggest that
attacking the process associated with formulation and management of requirements may be the most
cost-effective manner in reducing software product costs.

A handful of tool vendors have recognized this and have created products to facilitate the requirement
management process. Unfortunately, the fact remains that for the commercially available requirement
tools, there are

• A limited selection of these tools

• There is a wide range of approaches to requirement management

• There is no connectivity between requirements and test cases

• The majority of the tools are reasonably expensive (see Appendix 1).

When one examines the current requirement management processes instituted at most organizations, it
is apparent that a requirements management tool alone will not solve the requirement management
process problem. What is required is a holistic approach to requirement management, some simple tools
to aid the process, a champion of the ideas, and management buy-in. This paper takes this approach by
discussing the requirement management process with examples taken from ReqTrack, a requirement
management tool the author has created using Microsoft Office products.

It is the author's hope that many of those reading this material will decide to learn about requirement
management through the use of ReqTrack. Managing your requirements is critical to the success of all
projects since they are the definition of the product.

1 Infancy when you consider that the earliest surviving products became available during the past few years.

Aztek Engineering Requirement Mangement - Simple Tools ... Simple Processes

5

3 What is a Requirement Management Process?
A requirement management process is the formal act of defining how requirements are created, modified
during the life cycle of the product, and retired. A more specific definition by way of INCOSE2 is

Requirement management is the identification, derivation, allocation,
and control in a consistent, traceable, correlatable, verifiable manner
of all the system functions, attributes, interfaces, and verification
methods that a system must meet including customer, derived
(internal), and specialty engineering needs. 1

Requirements management, when properly performed, reduces the time that engineers spend finding the
information that they need to do their job, eliminates version mix-ups, and reduces errors.

3.1 Why It is Important
The implementation of any tool requires a process and requirement management is no different. In fact,
you probably already have processes associated with your requirement management system now, be it
formal or informal. The more formal the process, i.e., how requirements come into existence, how they
are reviewed and adapted, how the information generated during this process is captured or lost, etc., the
more likely your process will meet its intended objectives. Using a tool to aid in this process increases
the likelihood that the process will succeed as long as the tool is flexible and can be melded to fit your
process.

3.2 How to Create the Process
The creation of a requirement management process is most easily performed by

• Reviewing the common capabilities of requirement management tools (see section 9 for a list of
current tools)

• Examining your organizations methods and modes of work habits

• Combining your organizations work methods with accepted practices from requirement
management research and development

As you will see in the remainder of this paper, there are a number of requirement management process
issues to consider, with some of the more important ones being the need to

• Provide information to the interested parties for requirement proposals

• Provide definitions for all potentially ambiguous terms

• Link requirements into a hierarchy of requirements (parent and children requirements)

• Identify responsibility for requirements implementation via components and ultimately developers

• Link requirements with test cases to provide for accountability

2 INCOSE is the International Council on System Engineering, is a professional organization of systems engineers that fosters the
definition, understanding, and practice of systems engineering

Aztek Engineering Requirement Mangement - Simple Tools ... Simple Processes

6

4 ReqTrack and Requirement Management
The purpose of ReqTrack is to provide a simple tool to aid in the process of requirement management.
The tool has wider applications in that it also serves as a repository for test cases that are linked to
requirements. The following paragraphs describe the tool as part of describing the process.

4.1 A Word About the Tool ... ReqTrack
ReqTrack is implemented using VBA in both the Access and Word modules of Microsoft Office. The
ReqTrack system requirements are as follows:

• Pentium processor with 16 MB of RAM

• 2 MB of free disk space

• Windows 95 on each user PC using Word Extensions

• Word for Windows 97 on each user PC

• Access 97 installed on each user PC

• ODBC driver for Access on each user PC using Word Extensions

The application is relatively easy to set up and features online help. To request a copy, contact the
author at lal@aztek-eng.com. Enhancements are incorporated from the user community and
modifications should be submitted back to the author for consideration.

4.2 Establishing a Formal Requirement Process
If one starts with the assumption that product quality is desirable, then formal processes and tools must
be developed or obtained. These processes and tools can be quite simple or complex. Contrary to
popular belief, obtaining the latest gizmo from a tool vendor will not necessarily solve your problem.
Without forethought and the implementation of a formal requirement process, the latest costly
requirement tool is most likely destined for failure irrespective of how expensive it is. The
implementation of the tool and a process are the key ingredients to success.

On the other hand, with a formal process in place, the simplest of tools can aid and abate the process of
forming, refining, and managing requirements. The remainder of this document discusses a requirement
management process along with how to use ReqTrack to aid in that process.

4.2.1 Simple Yet Comprehensive

Most things one undertakes in life are governed by the 80/20 rule. You try to resolve 80% of your
problems with 20% of the effort. The same is true of a requirement management process. For most
products, such a system is sufficient. One should try to create a reasonably comprehensive system with a
minimum of resources. The typical mistake is to build a grandiose system that never can be deployed
while your products suffer from having no formal process in place. Start small and add the increased
comprehensiveness as you mature the product and processes.

4.2.2 Recording of Definitions and Terms

Most requirement specifications are written in native languages. A direct result of using native
languages to specify requirements is the fact that they are inherently riddled with the problem of
ambiguity.

One alternative to the problem of ambiguity is to write requirements with mathematical rigor.
Unfortunately, this alternative is neither palatable nor plausible for most systems and engineers.

Aztek Engineering Requirement Mangement - Simple Tools ... Simple Processes

7

Another approach is to instill discipline in the requirement formulation process such that ambiguities are
minimized. The simplest and most common method of doing this is to make liberal use of a requirement
definitions table. Figure 1 shows a screen capture of the definition table within ReqTrack. This
mechanism is used liberally by ReqTrack users to define ambiguous terms in an attempt to minimize
confusion with respect to requirements.

Figure 1 - ReqTrack Definitions Screen

4.2.3 Avoiding Ambiguous Requirements

The source of ambiguities is not limited to misunderstandings about definitions but also includes general
clarity issues. When trying to properly word a requirement, it is the author's responsibility to concisely
express the essence of what is required of the system. Unfortunately, in most cases, the initially
proposed requirement is not always correctly understood. To avoid this problem, a simple but formal
process where requirements can be proposed, reviewed, and approved is critical.

Another important method of avoiding ambiguities is to provide context. In most natural language
requirement systems, the requirement writer adds a lot of context to the surrounding text of the
requirement. This rich context provides a better understanding of what the requirement is all about.
ReqTrack provides for this capability by allowing users to link requirements from the ReqTrack
database to a Word document.

Another area where context is developed and many times lost is in the discussion phase of requirement
proposals. Again, ReqTrack provides a method for storing proposal discussions regarding a requirement
for later perusal (see section 4.2.5).

Aztek Engineering Requirement Mangement - Simple Tools ... Simple Processes

8

4.2.4 Gatekeeper and Champion of the Process

Every process, particularly when new, must have a champion. To prevent requirements creep3, a
gatekeeper should scrutinize each and every requirement being proposed to decide if it is worthy and
really required. In many projects, the gatekeeper is a quality assurance representative for the project.
The gatekeeper and champion of the process doesn't necessarily have to be the same person but there
needs to be enough overlap in the roles to support it. The following are the key responsibilities of both a
gatekeeper and champion of the process:

• Makes sure that proposals are properly aired; that the correct stakeholders are participants in the
process; and that the process keeps moving. In other words, the gatekeeper is the facilitator of the
requirement process.

• Encourages the use of the process and continues to improve upon it. In other words, they are the
champions of the requirement process.

• Examines all requirements for redundancy, conciseness, ambiguity, testability, etc.

4.2.5 Discussion Mechanism for Proposed Requirements

It’s quite natural to consider the process of proposing requirements and approving them as an initial
state that occurs when a project is just beginning and it is true that this occurs. Unfortunately, some
people think that this is where requirement management stops. Requirements are proposed, or at least
should be easily proposed, throughout the product life cycle. ReqTrack facilitates this process by
allowing any participant to the project to propose requirements at any time during the project. As part
of proposing requirements, ReqTrack supports a discussion forum of written discussions.

The exact nature of how the proposal process works is, to some degree irrelevant, since the essence of
the process is that there is a process and a reasonably suitable tool to aid in the process. What's
important is that there is a process and that it is used.

Figure 2 shows an example of the comment form within ReqTrack while Figure 3 provides an example
of a report where requirements were grouped on a filter and proposal status state.

3 The undesirable phenomenon of requirements being slowly added to a product over time without conscious acceptance of the new
requirements

Aztek Engineering Requirement Mangement - Simple Tools ... Simple Processes

9

Figure 2 - Proposal Comments

There are several advantages of having recorded discussions for proposed requirements with two of the
more important being

• Recorded histories of decisions made with respect to a product are important, particularly in the
maintenance phase of a project. As you know, many times the developers that implement a product
move to new projects once development has completed. Maintenance programmers then join the
project to maintain what others have developed. Without a history of why certain decisions were
made, these new developers must guess as to the reasoning behind certain decisions.

• Preserving the link between a customer's requirement definitions and the eventual requirements
used to build the product provides the ability to ensure the quality of a software system beyond its
first release2.

Aztek Engineering Requirement Mangement - Simple Tools ... Simple Processes

10

Figure 3 - Comments Report

4.2.6 Ability to Maintain Proposed Requirement States

As discussed previously, ReqTrack provides a change proposal process for requirements. In order to
support such a process, though, ReqTrack must track three things

• Who needs and has reviewed the proposed requirement

• The proposed requirement's state at any given time

• Who is currently responsible for continuing to move the requirement forward

Given these three items, a reasonably simple process diagram can be managed as shown in Figure 4.

4.2.6.1 Requirement Process Flow

The following is a high-level process flow for requirement state transition

1. Requirements are placed either in a Word document, in ReqTrack, or both. When entered into a
Word document, requirements that have a given state can be highlighted for easy identification.

2. Requirements are usually reviewed internally prior to being reviewed by the customer. Note that all
requirements to be reviewed must be entered into ReqTrack prior to review.

3. Issues and comments as a result of reviewing the requirements are entered into ReqTrack as
proposal comments.

Aztek Engineering Requirement Mangement - Simple Tools ... Simple Processes

11

4. After initial review, requirements can be rejected or accepted. If further review is necessary (such
as by the customer), then this can be indicated.

5. Almost any state transition is reasonable given the states that exist. Reports and queries can be
easily constructed to aid in any requirement state analysis needed.

Figure 4 - Default Proposed Requirement Process

Developer
Review

Deprecated

Accepted
Customer
Review

Tech Lead
Review

System Test
Review

Deprecated with
customer review

Accepted

Superseded
Superseded

Superseded

Rejected ,
needs

customer review

Accepted

 Superseded
 State

Req.
Proposed

 Proposed And/Or
 Deprecated State

Requirement
Proposal

Originator

Req.
Proposed

Deprecated without
customer review

Superseded

 Rejected State

Developer
Agrees to

Reject

 Implemented
 State

 Approved
 State

Proposal
Accepted

Proposal
Accepted

by Customer

Deprecated

Developer
determine

they are done.

4.2.7 Timeliness in Handling of Proposals

The objective is to ratify or reject requirement proposals within a reasonably short period of time. For a
system to run smoothly, the project team has to decide what the reasonable gestation period is and then
strive to keep things moving smoothly without great delays; otherwise, the process is subjected to a loss
of faith by the participants. With ReqTrack, reports and queries can be easily created to aid in this
process.

4.2.8 Clearly Communicated Vision of the Process and Management Buy-in

Informally or formally, all participants need to have a sense of belonging to the project. Without it, the
requirement management effort will be wasted. Formally maintaining requirements is beneficial to all
those who work on the project. Once the database of requirements is created, the benefits will begin to
be realized.

Aztek Engineering Requirement Mangement - Simple Tools ... Simple Processes

12

For this to happen though, make certain to document a process4 and then stick to it. Tweaks can be made
to smooth the process as you go but be certain to feedback the changes to all involved.

Lastly, management must provide adequate time to implement and utilize the process. Without
management buy-in, participants will be pressured to ignore or minimize the potential usefulness of the
process.

4.2.9 Requirements as Living Organisms

As mentioned previously, a common problem facing today's developer is that of the rapid pace that
software projects evolve. By implication, this means that the requirements of the project evolve quite
rapidly also. Combined with this rapid evolution of requirements is that software projects are
perpetually caught in a crunch mode. There simply isn't enough time to write and test the code, let alone
to keep documentation up-to-date. Unfortunately, this quite often leads to an abundance of implicit
requirements being introduced into the project.5 Implicit requirements are a poor project characteristic.
Implicit requirements are, by their very nature, behaviors that developed systems exhibit yet no
requirements exist documenting those behaviors. By their very existence, they add considerable hidden
costs to the project, confusion to your customers and an endless source of frustration to your test effort.
This author has examined this problem in detail and has proposed methods to deal with it (see 3 and 4).
In general, implicit requirements come about as a by-product of incomplete requirements. The methods
to prevent the introduction are

• To provide complete requirements specifications prior to coding

• To recognize that requirements are incomplete and to provide processes and tools to incorporate
implicit requirements as explicit ones

This author has argued strongly for the latter solution since the belief that one can ever provide
comprehensive requirements prior to coding is unrealistic. All of the material presented in this paper
addresses the problem of treating requirements as living organisms. ReqTrack is all about evolving
requirements.

5 Common Pitfalls of Requirement Management
There are many potential pitfalls on the path to requirement management. At the risk of sounding
repetitive, a number of the more important issues are listed below.

5.1 No Requirements Discussions
Discussions between customers, developers, management, etc., all are critical parts to the success of the
requirements process. To not capture, record and preserve this rich data content is a crime. Future
developers will need this data when making future decisions.

5.2 Can't Agree upon Requirements Language
So many times, requirements languish because agreement cannot be reached upon the actual wording or
the essence of the requirements themselves. This is a very costly mistake. In the end, if you are to build
a product, you will make decisions concerning what the requirements are either formally or informally.

4 Document it as simply as possible. The more there is to read, the more people will not read it.
5 Implicit requirements are defined as requirements of the system that have never been documented.

Aztek Engineering Requirement Mangement - Simple Tools ... Simple Processes

13

By allowing this to take place informally you are facilitating the creation of implicit requirements and
greatly increasing the odds of a failed project.

5.3 Requirements Storage Exclusively Using Paper Documents
Historically, requirement storage was exclusively the domain of paper documents. In today's world, in
just doesn't make sense to do so. The benefits from storing requirements in databases far outweigh any
inconvenience. The power of the database is tremendous and greatly enhances the probabilities of a
successful product.

5.4 No Accountability
Most developers want to do what's right, they just need the tools and support to do it. By associating
requirements with components and associating components with developers, it is easy for developers to
understand the requirements of the components they are developing. It is easy for them to add
requirements when they are missing, modify existing ones that are no longer correct and remove
outdated ones.

5.5 Not Associating Requirements with Tests
Quality assurance focuses upon verification and validation. When testing a product, if you don't have
requirements, how can you adequately test the product? If you don't have a mapping between
requirements and test cases, then how can you know that you have completed your testing? Not
associating requirements with test results in shipping a product with no real understanding of its quality.

5.6 Depth versus Breadth
One of the most common pitfalls of requirements is that the deeper you dig, the more you find. Every
project must decide a priori, how detailed they want their requirements to be. The tradeoff between too
much detail versus too little is a classic dilemma. Management and the development community must
decide how much detail is enough, develop some guidelines on how to make these decisions and then
stick with them. Like all process decisions, if circumstances require it, the process can be modified.

5.7 Defining all Terms
In every industry, there are special meanings given to certain words. Similarly, there is an
overabundance of acronyms that must be defined. Empowering all project participants to add and
retrieve from a common terminology pool is another essential element to a successful requirement
management process.

5.8 Minimizing The Expectation Gap - Setting the Right
Expectations

A big part of the requirement management problem is underestimating the job. Setting the correct
expectations is the best way to avoid disappointment. Creating and managing requirements is a big job
and one not to be underestimated. Requirement work typically requires a good 20% of overall recorded
product effort. This doesn't include unrecorded product effort where requirement issues are the real
source of problems and the time used, although the effort is recorded to other activities such as design or
coding.

Lastly, do not expect everything to be perfect. The requirement management system is simply a tool to
increase the likelihood that your project will meet with success, not a guarantee of success.

Aztek Engineering Requirement Mangement - Simple Tools ... Simple Processes

14

6 Conclusions
Requirement management is an essential piece of verification and validation. It involves two key
components ... process and tools. The process does not have to be complicated, in fact, this author
argues that you should keep it as simple as possible in the beginning and slowly add more complexity as
is needed. Similar to the process argument of simplicity, the tool should also be just that, simple. Given
the cost of commercial tools, this author has presented a viable alternative that is free. The tool
implements the essential pieces of a requirement management system and is quite simple to use. It is the
author's hope that you, and many others like you, provide the process that fits with your organizations
strengths and weaknesses and utilize ReqTrack to implement the process.

7 Acknowledgments
It is always with my children in mind that I continue to dedicate my time and efforts. Sharing my ideas
and efforts with others in this field of endeavor provides the broadest opportunity for success in all of
our efforts and thus provides a better world for all of our children.

8 Trademarks
All brand names and product names used in this document are trademarks, registered trademarks, or
trade names of their respective holders.

9 Appendix 1
The following is a list of currently available requirement management tools that the author is aware of.
These tools continue to evolve as new ones enter the market. The author has only peripheral knowledge
of most of these tools and their listing here should not be construed as a recommendation to purchase
and use them. If anything, this author argues that you are better off to either use ReqTrack, that is free,
reasonably robust and mostly defect free, or to develop your own ReqTrack lookalike.

Aztek Engineering Requirement Mangement - Simple Tools ... Simple Processes

15

Product Name Major Features Average
Cost Per
User

Core™, Vitech Corp,
(www.vtcorp.com)

A desktop CASE solution for engineering, analyzing
and documenting systems and processes. CORE's
automated system engineering capabilities include:
requirement analysis; traceability management; system
modeling; design verification; and document
generation. Uses RDT as notation language. Performs
the complete life-cycle function.

$27,000 for
first user
license,
server and
database the
$10,000 per
user license.

Cradle™, Structured Software
Systems,
(www.3sl.co.uk/sssl)

Requirement document management. Traces
requirements directly onto system models and other
information types. Provides full lifecycle traceability.

$4500 per
user.

DOORS™, Quality Systems
& Software,
(www.qssinc.com)

Creation of single documents, document trees, linking
requirements from unstructured information, etc.
Integrated with Aonix StP toolkit.

$14,000 per
user.

RequisitePro™, Rational
Software Corp.,
(www.rational.com)

Integrated with Rational Rose, ClearCase, MS
SourceSafe, Intersolve PVCS. Traceability to test
plans.

$1559 per
user.

RDD-100™, Ascent Logic
Corporation,
(www.alc.com/products.html)

Full text editing, report execution, and configuration
management using the multi-user Merge feature.
Graphical display is limited to Functional Flow Block
Diagrams, N-squared Charts, and Hierarchy Views.

RDT™, GEC-Marconi
Systems Pty Ltd,
(www.world.net/gecm)

Allows the formulation of requirements; traceability
and management of requirements throughout the
development cycle of a contract; test procedure
definition and allocation to requirements throughout the
development cycle of a contract and office management
of documentation and drawings associated with a
contract.

$4550 for
first 5 users.

SLATE™, TD Technologies,
(www.tdtech.com)

Symbolic references, Automated Trace Tables, Process
enforcement.

$5000 per
floating
license.

VITAL LINK™, Compliance
Automation Inc.,
(tlmworks.com/cai)

Multi-user requirement management software designed
to support the documentation of requirements. Imports
and parses existing documents while retaining
formatting, figures, and graphics. On-line access to
documents for creation and update, and provides you
with the attributes needed to maintain requirements
over the life cycle.

$1750 per
user.

Xtie-RT™, Teledyne Brown
Engineering,
(www.tbe.com/products/xtie)

Systems and project management. Formal training not
required. Requirement & functional & risk analysis.
Also supports testing.

Server
$1000

Clients $400
per user.

Aztek Engineering Requirement Mangement - Simple Tools ... Simple Processes

16

10 References

1 David A. Jones, Pradip C. Kar, James R. van Gaasbeek, Frank Hollenbach, Marty Bell, and Dr. Robert
S. Ellinger, Interfacing Requirements Management Tools In The Requirements Management Process - A
First Look, Submitted for Volume 2 of Proceedings of 7th Annual International Symposium of the
INCOSE, August 1997.
2 Moores, T. T. and Champion, R. E. M., Software Quality Through the Traceability of Requirements
Specifications, Software Testing, Reliability and Quality Assurance, International Conference on Software
Testing and Reliability and Quality Assurance, December 1994 (New Delhi).
3 Leslie Allen Little, Taking a Peek Inside the Black Box, 1997 (STAR, 1997) Proceedings of the Sixth
International Conference on Software Testing, Analysis & Review.
4 Leslie Allen Little, Making Implicit Requirements Explicit, An Application of the Peeking Methodology, Fifteenth
Annual Pacific Northwest Software Quality Conference, October 28 - 29, 1997, (Portland, Oregon).

Slide 1

Year 2000: Catalyst for Better Ongoing Testing

Nathan H. Petschenik
Principal Consultant
Bellcore
(732) 699-8249
nhp@superlink.net

Copyright © 1998 Bellcore. All Rights Reserved.

Slide 2

2
Copyright © 1998 Bellcore. All Rights Reserved.

Outline

• Year 2000 Testing Challenge

• Solution Approach: Repeatable, Date Dimensional
Tests

• An Example

• Value Beyond Year 2000

• Summary and Conclusions

Slide 3

3
Copyright © 1998 Bellcore. All Rights Reserved.

Effort Breakdown of a Y2K Solution

20%

30%

50%

Inventory and
Analysis

Remediation

Testing

Slide 4

4
Copyright © 1998 Bellcore. All Rights Reserved.

Year 2000 Testing

Test Environments • Additional facilities
required for date sensitive
testing

Date Simulation • Tools available
• But not for all platforms

Setting the System
Clock

• Licenses, passwords,
embedded dates, …

Slide 5

5
Copyright © 1998 Bellcore. All Rights Reserved.

Year 2000 Testing
Magnitude of Test
Cases

• Test Cases that exercise
the mission critical
capabilities of your
systems

• Typical dates
• Century Transition dates
• Leap Year dates
• Windowing boundaries
• Holidays
• Time Zones
• Rollover situations
• User inputs, Data Bases,

Electronic Interfaces, …

Slide 6

6
Copyright © 1998 Bellcore. All Rights Reserved.

Year 2000 Testing
Tests need to be
Repeated

• To ensure that Y2K changes do
not break existing capabilities

• For high risk settings of the system
clock

• As problems are found and fixed
• When source code with Year

2000 changes is merged with
source code for other new
features

• In a final “dress rehearsal” for the
Century Change

• As future changes are made to
the system

Slide 7

7
Copyright © 1998 Bellcore. All Rights Reserved.

Y2K Testing Challenge

• Impact pervades virtually all system features

• Existing tests don’t emphasize date sensitivities

• Large number of Y2K date related test situations

• Tests have to be repeated multiple times

“too much to do in too little time”

Slide 8

8
Copyright © 1998 Bellcore. All Rights Reserved.

Solution Approach

 Supplement your existing tests with additional

tests that emphasize the date sensitivities of

important business processes in a manner

that they can be easily repeated for a variety

of risky date situations

Slide 9

9
Copyright © 1998 Bellcore. All Rights Reserved.

Repeatable, Date Dimensional Tests

• Tests that focus on the date sensitivities of business
processes

• Tests that have been designed so that key dates can be
easily shifted in time

• High quality, well-documented tests in which
– key expected results have been identified
– actual results can be easily compared against expected results
– repeatability problems have been solved

• Automation optional but highly recommended

Slide 10

10
Copyright © 1998 Bellcore. All Rights Reserved.

Example: Order, Receipt, Payment Process

Step 1 - Requisition

Step 2 - Order Placement

Step 3 - Receipt of Goods

Step 4 - Payment

 On-line screen used to record
receipt of goods (and
automatically compute when
payment should be made)

 A batch run initiates payments
as they are due.

 On-line screen used to request
equipment, materials, supplies

 A batch run turns requisitions
into vendor orders

Slide 11

11
Copyright © 1998 Bellcore. All Rights Reserved.

Identifying Riskiest Date Situations

Requisition Order Receipt Pay Bill

3 days 10 days
. . .

30 days

 If century
change
occurs
here:

you may
not be
able to
place
order

you may
not be
able to
receive
order

you may
not be
able to
pay bill

Slide 12

12
Copyright © 1998 Bellcore. All Rights Reserved.

Creating and Using Repeatable, Date
Dimensional Automated Tests for Y2K Testing

 Design a high quality, repeatable test of an important
business process that emphasizes date relationships

 Apply Capture/Replay Tool to turn test into
high quality, repeatable automated test

Use Script Editing Tool Kit to change “hard-coded date
script” into date dimensional test and select risky dates

 Replay date dimensional test with risky dates and analyze results

Slide 13

13
Copyright © 1998 Bellcore. All Rights Reserved.

Developing High Quality, Date-Sensitive Test
of Order, Receipt, Payment Process

 On-line screen used to record
receipt of goods (and
automatically compute when
payment should be made)

 A batch run initiates payments
as they are due.

 On-line screen used to request
equipment, materials, supplies

 A batch run turns requisitions
into vendor orders

• Create a “test story” that defines a
typical flow with typical data

• Plan approach for emphasizing date
relationships

• Figure out what results are to be
observed and compared with what
is expected on each execution

• Solve repeatability problems
• Develop comments/documentation

that need to become part of script
to ease maintainability

Slide 14

14
Copyright © 1998 Bellcore. All Rights Reserved.

Req, Order, Receipt, Payment Test
• Prepare test data base
• Bring up Req entry screen
• Enter Req

• Hit PF Key 1
• Check for success
• Place order 3 days later
• Check for Success
• Bring up Req query screen
• Check for Success

 .
.

.

Capture/Replay Tool

System under test

 Automated
Script with
hardcoded
dates

 (e.g. “PLACE
ORDER ON
11 Nov 98”)

Turning a High Quality, Repeatable Test into
an Automated Script

Slide 15

15
Copyright © 1998 Bellcore. All Rights Reserved.

Turning Script with Hard Coded Dates into
Data -Driven Script for Y2K Testing

 INITIATE REQ ON
09 Nov 98

 PLACE ORDER ON
11 Nov 98

Script Editing Tool Kit

<req-date>= 29 Dec 99
<order-date>= 02 Jan 00

...

...

 INITIATE REQ ON
<req-date>

 PLACE ORDER ON
<order-date>

...

...

...

...

 Script with
hardcoded
dates

Data-Driven Script Sets of date parameters

Slide 16

16
Copyright © 1998 Bellcore. All Rights Reserved.

Executing Data Driven Scripts with Riskiest
Date Situations

Capture/Replay Tool

<req-date>= 29 Dec 99
<order-date>= 02 Jan 00

 INITIATE REQ ON
<req-date>

 PLACE ORDER ON
<order-date>

...

...

...

...

 Test results for
High Risk Dates

(exceptions only)

Data-Driven Test Sets of Date Parameters

Slide 17

17
Copyright © 1998 Bellcore. All Rights Reserved.

Using Date Dimensional Test to Test Riskiest
Date Situations

 Enter
Receipt Pay Bill

3 days 10 days
. . .

30 days

 <req-date> <order-date> <receipt-date> <pay-date>

21 Dec 99 24 Dec 99 03 Jan 00 02 Feb 00

17 Jan 00 20 Jan 00 30 Jan 00 29 Feb 00.
.
.

 Create
Req

 Execute Batch
run to initiate
Order

01 Dec 99 04 Dec 99 14 Dec 99 14 Jan 00

 01 Nov 98 04 Nov 98 14 Nov 98 14 Dec 98 Capture

 Replay for
riskiest
date
situations

 Make Test
“Data-Driven”

 Design
repeatable,
date sensitive
test

Slide 18

18
Copyright © 1998 Bellcore. All Rights Reserved.

Developing and using Multi- Dimensional
Tests

 Enter
Receipt Pay Bill

3 days 10 days
. . .

30 days

 <part-type> <supplier> <terms>

supplies
Outside EU

20 days
services COD

.

.

.

 Create
Req

 Execute Batch
run to initiate
Order

raw materials
Within EU

30 days

 widget ACME 2%net 10 Capture

 Replay for
important
variations

 Make Test
“Data-Driven”

 Design
repeatable
test

Slide 19

19
Copyright © 1998 Bellcore. All Rights Reserved.

Value Beyond Year 2000

1. Business flow-through testing being performed

2. High quality, repeatable tests of business flows

3. High quality, repeatable, automated tests of business flows

4. High quality, repeatable, automated, multi-dimensional tests of
business flows

1

2

3

 4

Value

Expanded Test Environments

Slide 20

20
Copyright © 1998 Bellcore. All Rights Reserved.

Summary and Conclusions

• The Y2K Testing Challenge is “too much to do in too little
time”

• An effective solution approach is to reuse repeatable,
date dimensional tests across the highest priority risk
situations

• The Y2K environments, tests, and test development
framework can produce lasting value in your ongoing
testing program

 Year 2000 can be an investment
in better testing and higher quality
systems

Slide 1

ABB Y2K Organization Juan S. Jaliff, November ‘98

Making Industrial plants Y2K-
ready:
Concept and Experience at ABB
Juan S. Jaliff (ABB Corporate Research, Sweden)
Wolfgang Eixelsberger (ABB Corporate Research,
Norway)
Arne Iversen (ABB Industri AS, Norway)
Roland Revesjö (ABB Industrial Products, Sweden)
International Software Quality Week Europe 1998
© 1998 ABB

Slide 2

ABB Y2K Organization Juan S. Jaliff, November ‘98

Outline
n Introduction
n Background
n Y2K upside in process control
n Y2K downside in process control
n Y2K problem in two dimensions
n Advant in-house testing
n Advant software and Y2K
n Plant readiness process
n Field testing
n Y2K concept at ABB
n ABB experience to date
n Tips from the experience
n Lessons beyond 2000

Slide 3

ABB Y2K Organization Juan S. Jaliff, November ‘98

Introduction
n Industrial plants throughout the world are heavily

dependant on continuous production
n The production process is controlled by

computers
n ABB is a major supplier of Process Control

equipment and plant systems

n Many plants have critical missions
• safety of operators
• functioning of society
• critical supply to customers

Slide 4

ABB Y2K Organization Juan S. Jaliff, November ‘98

Background
n Advant® family of products distributes functions

throughout a network:

• Controller nodes
• Operator stations
• Information management stations

Plant Network

Control Network

Advant Controller
410

Advant Controller
450
or

Advant Controller
460

MES or ERP
Server

Advant Controller
55

RCOM

Fieldbus
Advant Controller

110

AdvaSoft for
Windows
AdvaCommand
AdvaBuild
AdvaInform

Advant Station
515
OS, IMS, ES
AdvaCommand
AdvaBuild
AdvaInform

Advant Station
510
OS
AdvaCommand
AdvaBuild

Advant Station
520i
OS, IMS, ES
AdvaCommand
AdvaBuild
AdvaInform

Advant Station
530
IMS
AdvaInform
AdvaBuild

Advant Controller
70S800 I/O

Advant Station 100 ES
AdvaBuild for Windows

Personal
Computer

X-terminal

Slide 5

ABB Y2K Organization Juan S. Jaliff, November ‘98

Y2K upside in process control

n Potential Y2K error mechanism is simple:
• year stored without century

n Process control is rarely affected:
• control loops do not rely on year

Slide 6

ABB Y2K Organization Juan S. Jaliff, November ‘98

Y2K downside in process control
n Complex interaction among many network nodes

n Systems from different vendors often involved

n Misinformation could lead to wrong operator
intervention due to, e. g. :
• missing alarms
• alarms sorted in wrong sequence
• missing events (valve open/close, etc.)
• event chain in wrong sequence

Slide 7

ABB Y2K Organization Juan S. Jaliff, November ‘98

Y2K problem in two dimensions

real-time clock

BIOS(PCs)

operating system

standard applic.

custom applic.

few
nodes

many
nodes

many
 systems

many
 networks

many
 vendors

Hierarchical depth/node

Interaction complexity

Slide 8

ABB Y2K Organization Juan S. Jaliff, November ‘98

Advant in-house testing
n At ABB labs along the two dimensions, from

component testing to large configurations
O S * 1.7/1 IMS * 2.0

N 15

N1/127

N42
O S * 1.6/3

N 43 MB300
11
12

TCP/IP

N21 N 24
AC 450AC 450

N 26 N 27 N28
AC 410

Control network 1

N2/127

T CP/IP

N 51 N 52
AC 450

N5 3
AC 410

N 55

Control network 2 N 62
ACfWNT
N63 MB300

21
22

*1
*2
*3

*2
*3

ACfWNT
N 46

O S * 1.7/1
N 45

X
H P

X
H PN14

IMS * 1.3
N 18

OS * 1.8 O S * 1.8
N 13N 19

N44
IMS * 2.0O S * 1.8

X
HP

X
H P

X
PC

X
H P

OS * 1.8X
PC

X
PC

ACfWNT
N 65

ACfWNT
N 66

ES720/50
N 16

AC 450
N 58

1.7B

MP*4.0/13 MP*4.0/13 MP*4.0/10
N 22 N23

MP*4.0/10

DI switch 1
 D I signal

N25 2.1B
AC 450

2.0/1 1.3/3 1.3/4

DI signal

M P *4.0/13 MP*4.0/10
1.1/2

AC 450
N 54 1.1/2 1.3/1 1.3/1

MG*4.2/9

MG*4.2/9

MP*4.0/10MP*4.0/10
N 56

AC 450
N 57 1.3/1

MV* 5.0
N 41

1.7B1.7B1.7B

Slide 9

ABB Y2K Organization Juan S. Jaliff, November ‘98

Advant software and Y2K
n DCS (distributed control system) with open

architecture
n Controller nodes have pre-defined function blocks

(supplied with AMPL, the ABB Master
Programming Language):
• standard usage is Y2K-compliant
• large address space (for dates, etc.)
• date usage in only five blocks
• ABB tools for Y2K code checks

n High-level languages at some plants
• ABB has evaluated third-party tools for Y2K

code checks

Slide 10

ABB Y2K Organization Juan S. Jaliff, November ‘98

Plant readiness process
n Produce inventory of Y2K-sensitive equipment

and systems
n Obtain vendor statements of Y2K-compliance
n Decide upon upgrade paths to compliant versions
n Procure/install the compliant versions
n Update application software accordingly
n Identify internal/external data links

n Carry out on-site tests

Slide 11

ABB Y2K Organization Juan S. Jaliff, November ‘98

Field testing
n Scope of on-site tests defined by plant operator,

taking into account:
• safety relevance per (sub)system
• production relevance
• cost of production losses
• documented Y2K workarounds

n Extent of on-site tests defined taking into
account:
• number of data connections among different

systems
• Y2K in-house test scope per vendor

Slide 12

ABB Y2K Organization Juan S. Jaliff, November ‘98

Y2K concept at ABB
n Success factors for Y2K plant-readiness:

• plan early
• involve high-level management
• involve operation/maintenance engineers

n Four pillars at ABB:

P
ro

du
ct

in
ve

st
ig

at
io

n

P
la

nt
in

ve
nt

or
y

P
ilo

t
pr

oj
ec

ts
 (5

0)

Tr
ai

ni
ng

Slide 13

ABB Y2K Organization Juan S. Jaliff, November ‘98

ABB experience to date

early pilot projects
(mission-critical off-shore platforms,
multivendor Y2K-readiness
responsibility) general

methodology

specific methodology
(pulp&paper, steel

mills, off-shore, . . .)

feedback

•positive
customer
feedback

•few findings
on site

site experience

Slide 14

ABB Y2K Organization Juan S. Jaliff, November ‘98

Tips from the experience

n ASAP: inventory & vendor Y2K statements

n Identify time windows for upgrades/tests

n Analyze the full impact of upgrades

n Analyze vendor in-house tests

n Plan for some workarounds

n Plan standby system support for 2000

Slide 15

ABB Y2K Organization Juan S. Jaliff, November ‘98

Lessons beyond 2000

Better Config.
Management
•live
documentation
•few program
variants
•less custom code

Less System
interdependency
•open
architectures
•generic data
communications

robustness

transparent
maintenance

Slide 16

ABB Y2K Organization Juan S. Jaliff, November ‘98

Lessons beyond 2000

operators requirem
ents

vendors

platform
s

Making Industrial plants Y2K-ready:
Concept and Experience at ABB

Juan S. Jaliff (ABB Corporate Research, Sweden)
Wolfgang Eixelsberger (ABB Corporate Research,
Norway)
Arne Iversen (ABB Industri AS, Norway)
Roland Revesjö (ABB Industrial Products, Sweden)
e-mail:
juan.jaliff@secrc.abb.se
wolfgang.eixelsberger@nocrc.abb.no
arne.iversen@noina.abb.no
roland.revesjo@seipr.mail.abb.com

Prepared for
INTERNATIONAL SOFTWARE
Quality Week Europe 1998

Copyright 1998 ABB
Permission to use, copy and distribute this document is hereby granted on the condition that each
copy contains this copyright notice in its entirety and that no part of the documentation is used for
commercial purposes but restricted to use for information purposes within an organization.

Introduction

Every day of the week, industrial plants throughout the world produce
quality goods at a fast pace. Their operation through the turn of the
millenium is critical to their income streams. In cases like commodity
producers, it is also important to prevent production losses for customers
further up the value-added chain. Utilities must ensure continuous
operation in order to preclude risks to the functioning of society at large.

At the heart of these plants, a process control system is in charge. A
multitude of processors, firmware and application software cooperate in a
network of networks to control the production equipment and inform
operators and managers about the status of the plant. ABB produces
such process control systems and has installed them at a large number of
customer sites around the world, along with other related plant systems
(e.g. fire & gas and emergency shutdown systems for the oil & gas
industry). The interesting question is now: how can we make sure that
these complex process control systems will work properly into the year
2000?

Technical Background

The ABB family of products for industrial process control is Advant OCS
(Open Control System). It is a DCS (Distributed Control System) capable
of handling large amounts of input/output signals through a network of
nodes, with the following main functions:

• Controller nodes acquire process signals and send outputs based on
local process control blocks and/or operator action

• Operator Stations present process information from controller nodes in
a graphical manner and enable operator actions on the process

• Information Management Stations store historical process information
in a database system for later retrieval and analysis, either locally or as
servers for external client systems

Communication among these nodes is carried by a process bus designed
for real-time applications. Systems consisting of many nodes are usually
divided into sub-networks, often reflecting the number of production lines
and/or sections in the plant. Some plants have interfaces to non-ABB
process control equipment, for example Programmable Logic Controllers

(PLCs) or application-specific high-level control systems (e.g. setpoints
from production planning systems).

Y2K Problem dimensions

In each and every node, Y2K-related modes of failure are actually not
different from those already identified for other types of information
systems. The elementary error mechanism is failure to represent and/or
store a year in more than 2 digits. Fortunately, year information is very
rarely used to control the process, so misrepresentation of the year will
most often not lead to errors in process control itself.

Nevertheless, problems can arise at the turn of the century as nodes
running on hardware, operating systems or firmware that fails come to a
halt and/or refuse to restart. Such nodes could theoretically bring the
network to a halt, given certain conditions. A more subtle but nonetheless
dangerous failure mode can arise from erroneous sorting of alarm and
event logs. Operators could fail to react to alarms or do so based on the
wrong process information.

In order to identify potential modes of failure for the whole system, it is
useful to map the technical problem domain along two dimensions. The
first one is a “vertical” dimension representing the hierarchical levels of a
single control system node. Some of these are:

• customized application software
• standard application software
• operating system
• BIOS (as in PCs)
• real-time clock
•
At each and every one of these levels, date functions may be Y2K-
compliant or not. In general, several versions of software, firmware or
hardware exist for each level, and each combination must be analyzed
independently regarding Y2K.

The second dimension is an interaction dimension, referring to the
dynamic communication among the multitude of nodes in a network.
Problems related to exchange of time-tagged data and synchronization of
real-time processes could potentially arise as a result of Y2K.

This second dimension can become quite complex in the case of sites
where the DCS interacts with other vendors’ systems. Some examples of
such systems in various industries are:

• fire alarm systems
• emergency shutdown systems
• PLC-based systems
• manufacturing execution systems

In-house Testing at ABB

The two aforementioned dimensions are basically independent from each
other, and two types of Y2K testing can be done:

a) Component testing (one node at a time)
b) Communication and interaction testing (two or more nodes at a time)

ABB started early with Y2K testing at component-level, and made fast
progress due to the fact that the Advant OCS product release policy had
aimed at reducing the number of hierarchical version combinations at
nodes in the field. Fast test progress in itself meant that tests (b) were
carried out by and large on nodes which had passed (a). It was thus
possible to do (b) as BCT (Big Configuration Tests) with large number of
nodes, giving two side benefits:

• combinatorial reduction of the number of tests needed
• real-scale representation of the systems at customer sites

A typical BCT setup at ABB labs is shown on Fig. 1. Such a large
configuration test represents quite well the conditions in the field,
providing customers a good reference in their own Y2K analysis.

Field Testing

Decisions as to the scope of on-site testing required are up to each
individual plant operator. It is not possible to establish general rules, but
at least the following factors must be taken into account:

• safety relevance of the various systems
• production relevance of ditto
• cost of production losses
• access to technical staff for workarounds on site

Once these factors have been assessed, it is possible to identify which
systems are critical for Y2K tests. The extent of on-site testing which is
adequate must then be defined. Two factors affecting this are:

• number of data connections among different systems
• scope of Y2K in-house testing carried out by system vendors

ABB provides customers, at no cost, access to the results from its BCT’s.
The large configurations tested have shown Y2K compliance, once the
intervening components have been updated to Y2K-compliant levels
(most of the latter-year releases fulfill this). By comparing their own
installations to those tested in-house, it is possible to reduce the extent of
on-site testing.

Plant Readiness

The process of making a plant ready for the millenium shift is complex
and involves organizational as well as technical issues. To start out, it is
often difficult to find the as-is status of the plant documented with enough
information as to enable Y2K analysis.

As-built documents must be revised with information from later projects
where extensions, modifications and retrofitting of the plant have taken
place. The external suppliers involved have not produced uniform
documents. These will at any rate not readily be found in a central
archive. More likely they will be spread throughout the organization,
among project, purchasing, operation and other departments. At any rate,
an exhaustive inventory of each plant must be performed, identifying:

• all date-sensitive systems
• all date-sensitive components
• versions of all software, firmware and hardware
• all data communication links (both internal and external)

ABB has already accumulated substantial experience in Y2K plant
walkthroughs. Important early references include oil platforms in the North
Sea (Shell, Amoco). In some complex plant cases, customers have
contracted for the whole process of Y2K-readiness, even for non-ABB
equipment. Whether subcontracting parts or all of the project, a plant
operator will have to address the following activities:

• produce inventory of Y2K-sensitive equipment and systems

• obtain vendor statements of Y2K-compliance

• decide upon upgrade paths to compliant versions

• procure/install the compliant versions

• update application software accordingly

• identify internal/external data links

• carry out on-site tests

Software-specific Issues

The application software installed at an industrial plant will typically
comprise a large number of source-code statements. Different
programming languages will often be used for the various hierarchical
levels already mentioned. In the case of the Advant OCS, controller
nodes are programmed in a homogeneous proprietary language called
AMPL.

The AMPL language is function-block-oriented. Function blocks, called
PC-elements (for Process Control), are completely standardized and do
not change from plant to plant. Applications for each plant are achieved
by selection and parameter-setting of the appropriate elements. This
turns out to be a great advantage for Y2K source code control, since date
processing is limited to just five elements.

Standard usage of these elements involves dates with complete year and
century information, and is strictly observed by ABB programmers.
However, new applications can be made at the plant freely, and complete
year information cannot be guaranteed a priori. Therefore, ABB has now
developed automated software tools to scan AMPL code, identify usage
of date-sensitive elements and document it. Manual analysis at these
points is then used. Hardly any Y2K-non-compliant usage has been found
so far.

Higher-level applications vary a lot from industry to industry. Some do not
have any at all. In other cases, languages like C++, C, Pascal or Fortran
are used. ABB has made an evaluation of different software tools
available on the market to assist Y2K control of source code in such
languages.

A very important conclusion from these controls is that use of
standardized software at a plant reduces significantly the costs and time
needed for Y2K controls. Plants which have implemented many ad hoc
solutions might have substantial difficulties in finding a proper software
upgrade path conducive to Y2K-compliant versions. This is yet another
instance where large variance in version management impacts negatively
upon software life cycle costs.

Y2K Concept at ABB

The main thrust behind ABB’s approach to the Y2K problem has been to
turn it into a win-win game, not a zero-sum one. In order to achieve this,
ABB considers it essential to develop a partnership with the customer1.
Both vendor and customer have a lot to earn from a systematic
walkthrough of a plant documenting the interdependencies among
subsystems and their impact upon production. Some of the important
factors for a successful Y2K project at a plant are:

• early planning between customer and vendor
• high-level management involvement
• active participation of plant operation/maintenance engineers

Plant engineers feel ownership for the various systems, know their as-is
status and can identify the most appropriate time slot during or outside
planned maintenance outages for the performance of tests on site. They
are also in the best position to judge whether some workarounds might be
more cost-effective. For example, a shutdown-and-reboot alternative
could minimize production losses if carefully planned.

ABB has therefore developed a Y2K concept based on the four pillars
below, to support its customers. It is worth mentioning that all of the work
that is not plant-specific has been carried out at own expense. All
customers have access to the results at no cost. Should they choose to

1 Ragaller, K., “Adopting a Partnership with your Process Control Vendor,” IQPC
Conference, Amsterdam, July 14th, 1998

contract Y2K services for their plant from ABB, the regular engineering
rates are applicable.

Pillar 1: Product Investigation

The first pillar is a thorough investigation of all ABB products. In some
cases this involves the aforementioned component testing and BCT.
Using the widely accepted BSI compliance definition2, products are rated:

• compliant (have been tested and results documented)
• non-compliant (nature of non-compliance documented, as well as

plans and time schedule to achieve compliance)
• not applicable (lack of date functions documented)

The results are documented on a large database available online to all
ABB staff. The database also includes test procedures, contact persons,
Y2K-responsibles, external links, etc. A global Y2K team has been
appointed, reporting directly to ABB’s executive management. They have
designed the database and initiated actions worldwide at the product-
responsible companies in the group. Part of the information is also made
available to customers online through the World Wide Web.

Pillar 2: Plant Inventory

The second pillar is the establishment of an inventory of ABB products
installed at all plants. This information is requested from operators on as-
available basis. Its main purpose is scheduling of service engineering
staff, training courses and production planning for product upgrades
(computer boards, PROM’s, distribution kits, etc.).

Customers returning detailed version and release information will be
automatically provided with product status (see above). Others will be
offered help to find the relevant information.

Pillar 3: Pilot Projects

Some 50-odd customers were asked to participate in pilot projects, trying
to cover all major plant types and world areas. The amount of site testing
is discussed with them on a case-by-case basis, identifying how mission-
critical each subsystem is and when it can be put offline. Results to date
are very encouraging. The systematic approach, which includes external
communication interfaces, can also be applied to other vendors’

2 http://www.bsi.org.uk/disc/year2000/2000.html

equipment. Some customers have requested ABB to take overall
responsibility for multivendor system examination and testing.

Pillar 4: Training

It is most important to train both customer and ABB engineers. The
experience from the pilot projects is being rolled out to other plants
through training seminars and workshops. Hands-on training is also very
important. One way to achieve this is by letting ABB staff from other world
regions participate as observers in the ongoing pilot projects.

Cost and Manpower Aspects

Time and cost estimation is an essential activity in the planning of a Y2K
plant readiness project. Specific and widely accepted methods for
estimation of time and costs for Y2K audits are currently not available.
Historical data, which is in most cases the base for cost estimation, is
often not available. Empirical estimation models can therefore not be
used.

The Gartner Group3 estimates the costs for making applications Y2K
compliant, as $1.10 per executable line of code (LOC). Such information
is however too general to be of help for specific applications. It is
necessary to have a closer look at the different factors influencing the
costs to formalize the cost and labor estimation process.

Y2K audits are relatively complex activities with many factors that must be
taken into consideration. Some of these are:

• Direct/Indirect costs – Direct costs are costs that can be assigned to a
specific product or installation. Indirect costs are costs that can be
assigned to a set of products or family of systems (ABB does not pass
these on to customers).

• Inventory list – Especially for installations made a number of years
ago, the inventory may be incomplete or not up-to-date. Producing
complete and correct inventory lists can be a time-consuming and
costly process. Missing information is typically the release/version
number.

3 Cassell, J., Schick, K., Hall, B., Phelps, J. "Management Edge: Year 2000 - Top View."
The Gartner Group, Stamford, CT, 1997

• Maturity of method – Y2K test methods contain a set of procedures
and checklists and provide information on how to use these tools for
performing a Y2K audit. A mature testing method along with
experienced testers from pilot projects helps ABB significantly reduce
the effort for testing systems.

• Access to installation – On-site Y2K tests must be performed since
installations simulating the system under consideration are often not
available. The system must be in a safe state allowing the testers to
perform Y2K-relevant actions as e.g. changing the system date.

• Third-party equipment – real-time and embedded systems are
permanently exchanging data with the environment and other
systems. Interfaces to other systems must be checked for existence of
date-related information and the influence on the system under
consideration. In most cases, it is also necessary to ask vendors of
third party systems for Y2K compliance certification documentation.

• Certification process – effort depends on the test method and
available tools. Manual code inspection may be very time-consuming.
On-site costs depend on how many dates will be tested and if time
changes are automatically propagated or not.

• Compliance effort – Specific actions must be carried out to make
systems Y2K compliant. Such actions may be change of hardware or
upgrade of software to compliant releases. System tests and
additional certification processes may be necessary to make the
system Y2K compliant.

These factors cannot be seen as independent but depend on and
influence each other. ABB has accumulated enough experience from pilot
projects to make reliable estimates of total costs to the customer. The
pricing policy adopted is such that customers do not find it constraining in
any way. The bottlenecks are actually access to test engineers and to
plant systems at the right time.

Conclusions from Experience

We will try to capture here some of the lessons learned from the Y2K
process at ABB and the pilot projects so far, in the hope that operators of
industrial plants might benefit.

 (Way) Before the Year 2000

Some friendly advice, in a nutshell:

• make an inventory of your plant and ask your vendors for Y2K
statements ASAP

• identify when your system can be down for tests/upgrades (probably
just a couple of times before 2000)

• analyze carefully the consequences of upgrades (e. g. new operating
system versions might be required; how does this impact the rest of
the system?)

• order your upgrades right away (typical delivery times are 5-7 weeks
for firmware/hardware; might get longer close to 2000)

• analyze your vendor’s in-house tests (so you can shorten your site
tests)

• plan for some workarounds (can save time and money)

• establish standby system support for New Millenium evening (for
example, ABB will have staff on call)

Beyond 2000

Y2K projects all over the world will certainly teach many lessons
regarding how to develop software systems that are more robust and
transparent to maintain. Both vendors and operators should learn. Some
conclusions can already be drawn from experience to date:

Configuration management:
• up-to-date documentation of installed system status must be kept
• the number of software variants on site should be reduced
• applications unique to a site should be exceptions, not the rule
• operators will select vendors who can meet their requirements with

mainstream software versions
• operators will work with vendors who put their specific future needs in

today’s development plans
System interdependency:
• the number of independent software architectures on site should be

reduced
• ad hoc data communication links should not be used

• industry-standard data communication models should be promoted

Remarks

The authors hope to have shed light on some practical aspects of making
the software systems at industrial plants ready for the year 2000. The
information was intended to be non-partisan. Readers are welcome to
contact them at the e-mail addresses provided.

Grateful acknowledgement is made of the material made available by
Messrs. Klaus Ragaller, Håkan Bergman and Gunnar Liveborn, all with
the ABB global Y2K organization.

ALL INFORMATION IN THIS DOCUMENT IS PROVIDED AS IS WITHOUT ANY REPRESENTATION OR
WARRANTY OF ANY KIND EITHER EXPRESS OR IMPLIED INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES FOR MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT. ANY ABB DOCUMENTATION MAY INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS. CHANGES AND ADDITIONS MAY BE MADE BY ABB FROM TIME TO TIME TO
ANY INFORMATION CONTAINED HEREIN.

Document number Sheet

11

3B
S

E
00

12
70

D
00

02
/G

ABB Automation and Drives
Lang.

en -
Rev. ind.

3BSE015370

Figure 1 Test phase 1 & 3: The configuration used continues on next page

Standard communication TCP/IP

OS * 1.7/1 IMS * 2.0
N15

N1/127

N42
OS* 1.6/3

N43
MB300
11
12

TCP/IP

N21 N24
AC 450AC 450

N26 N27 N28
AC 410

Control network 1

N2/127

TCP/IP

N51 N52
AC 450

N53
AC 410

N55

Control network 2 N62
ACfWNT
N63 MB300

21
22

N3/127

OS * 1.8
N82

31
32

TCP/IP

N71 N72
AC 450

N73
AC 410AC 450

N74 N75

Control network 3 MB300

N31 N32
AC 450
N33

AC 450
N34

AC 410
N35

OS * 1.7/1
N84

MB300E
33
34

TCP/IP

*1
*2
*3

*2
*3

*2
*3

A

B

Plant
network

*1=GCOM Nw 110

*2=MB300 Nw127
*3=MB300 Nw 126

ACfWNT
N46

OS * 1.7/1
N45

X
HP

X
HPN14

IMS * 1.3
N18

OS * 1.8 OS * 1.8
N13N19

N44
IMS * 2.0OS * 1.8

X
HP

X
HP

X
PC

X
HP

OS * 1.8X
PC

X
PC

X
HP

ACfWNT

ACfWNT
N65

ACfWNT
N66

N81

ES720/50
N16

IMS* 1.3
N85

ACfWNT
N86

AC 450
N58

1.7B

MP*4.0/13 MP*4.0/13 MP*4.0/10
N22 N23

MP*4.0/10

DI switch 1
 DI signal

N25 2.1B
AC 450

2.0/1 1.3/3 1.3/4

DI signal

MP*4.0/10 MP*4.0/10
1.1/2

AC 450
N 54 1.1/2 1.3/1 1.3/1

MG*4.2/9

MG*4.2/9

MG*4.2/9

MP*4.0/13 MP*4.0/10

DI signal

MP*4.0/10 MP*4.0/13

2.1B 2.1B 1.3/4

2.0/1 1.3/21.3/3

MP*4.0/10MP*4.0/10
N56

AC 450
N572.1B

1.7B

DI signal, created when setting/resetting
switch 1 on MP 200/1 node 21.
Continues to figure 2.

MV* 5.0
N 41

1.7B1.7B1.7B

1.7B

Document number Sheet

12

3B
S

E
00

12
70

D
00

02
/G

ABB Automation and Drives
Lang.

en -
Rev. ind.

3BSE015370

A B
*1=GCOM Nw 110
*2=MB300 Nw127

*3=MB300 Nw 126

Control network 6

Control network 5

N6/127

N69

TCP/IP

Control network 7

N7/127

N79

TCP/IPMB300

AC 410

*3

Control network 8

N8/127

N89

TCP/IPMB300
N88

AC 410

Control network 9

N9/127

N99 1.1/2

TCP/IPMB300

AC 410

MB300

MB300

AC 410
N68

N5/127 N58
AC 410
N59

*3

*3

*3

O

OS *1.8

N78

OS*1.7/1

*3

OS*1.7/1
N98

Figure 1 Test phase1 & 3: Configuration used during Y2K verification.

MG*4.2/9

MG*4.2/9

MG*4.2/9

MG*4.2/9

MG*4.2/9

S * 1.8

OS*1.8

1.1/2

1.1/2

1.1/2

1.1/2

MG*4.2/9
N4/127

MB 300

Control network 4

Control network 4 is a big complex network which not is used during this test.

Slide 1

Risk Based Testing

1

Risk Based Testing

Risk Analysis Fundamentals for software testing,
Test Process Improvement: Plan and Manage,

Save Time and Money

By Ståle Amland
Avenir (UK) Ltd., Reading, Great Britain

2nd International Software Quality Week Europe ‘98
9-13 November 1998 in Brussels, Belgium

Slide 2

Risk Based Testing

2

Presentation Outline

u The Challenge - Time and Money

u The Strategy - Risk Based Approach

u The Risk Analysis - practise and theory

u The Process - planning, tracking and
Estimating to Complete

u Automated Testing - recommendations

Slide 3

Risk Based Testing

3

The Challenge - Time and Money

u Time Constraints
u Resource Constraints
u Risk factors:

l New technology
l New environment
l “Green Beans”
l Large project

Slide 4

Risk Based Testing

4

The Challenge - New Strategy

1. Strategy:
Define a new
risk based
test approach

2. Perform a risk analysis

3. Improve the system test
process and develop the
organisation

4. Implement automated
testing (optional)

What to do?

Slide 5

Risk Based Testing

5

The Strategy

u Risk Based Approach to testing:
l Performing a Risk Analysis to identify areas

of high risk
l All functionality should be tested to a

“minimum level”
l “Extra testing” performed in identified high

risk areas

 1.
Strategy

2. Risk anal.

3. Process improv.

4. Auto. testing

Slide 6

Risk Based Testing

6

Risk Analysis and Testing

Risk
Identification

Risk
Strategy

Risk
Assessment

Risk
Mitigation

Risk
Reporting

Risk
Prediction

Testing,
Inspection etc.

Test Plan

Matrix: Cost
and Probability

Test Item Tree

Test Metrics

 1.
Strategy

2. Risk anal.

3. Process improv.

4. Auto. testing

Slide 7

Risk Based Testing

7

The Risk Analysis - Theory

u The Formula

l R(f) - Calculated risk of function f
l P(f) - Probability of a fault in function f
l C(c) - Customer’s cost related to a fault in function f
l C(v) - Vendor’s cost related to a fault in func. f

()R f P f C c C v() () * () ()= +∑

 1.
Strategy

2. Risk anal.

3. Process improv.

4. Auto. testing

Slide 8

Risk Based Testing

8

Risk Analysis - practise

“Top-20”
Test Execution identifies

“bad” transactions

Extra Testing:
- Additional testing by product specialist
- Automated regression testing

Prior to test execution:
identify critical transactions

1

2

3

 1.
Strategy

2. Risk anal.

3. Process improv.

4. Auto. testing

Slide 9

Risk Based Testing

9The Risk Analysis -
analytical

u Ranking the functions based on
l The Cost of an Error
l The Probability of an Error

u Example:

Cost Probability

Func. C(m) C(c) Norm.
C

New
Func.

5

Design
Quality

5

Size

1

Compl.

3

Weight
Avrg.

Proba-
bility
P(f)

Risk
of

funct.
R(f)

Close
Accnt.

1 3 0,67 2 2 2 3 7,75 0,74 0,50

R f P f
C c C m

() ()*
() ()

=
+
2

 1.
Strategy

2. Risk anal.

3. Process improv.

4. Auto. testing

Avr.

2

Slide 10

Risk Based Testing

10

Risk Reporting

Consequence

P
ro

ba
bi

lit
y

Low

Low

High

High

1

2

3
4

 1.
Strategy

2. Risk anal.

3. Process improv.

4. Auto. testing

Slide 11

Risk Based Testing

11

The Process

u Limited time and resources require well defined:
l Interfaces to design, construction and unit test stages
l Deliverables with defined quality standards
l Test preparation and execution procedures stating

entry and exit criteria for each phase
l Control procedures to handle scope and issues
l Organisation and responsibility
l Progress Planning and Tracking with ETC indicators

 1.
Strategy

2. Risk anal.

3. Process Impr.

4. Auto. testing

Slide 12

Risk Based Testing

12
 1.
Strategy

2. Risk anal.

3. Process Impr.

4. Auto. testing

Application based
groups

v222
Test log Test

procedure

TEST EXECUTION

Change
request

 2Test
design

Test
data

Function based
groups

DYNAMIC
TEST PLANNING

STATIC
TEST PLANNING

Test
plan

Test item
 tree

Test item spec. Test case
 spec.

Test
summary
report

LOG KEEPING
Event
log

Error /
change
log

Objectives,
policy and
strategy
for the
test project

 specific.

Slide 13

Risk Based Testing

13The Process -
Planning and Progress Tracking

On-line Test Cases Completed

Date

N
um

be
r

of
 T

es
t

C
as

es

Planned

Executed

QAed

 1.
Strategy

2. Risk anal.

3. Process Impr.

4. Auto. testing

Slide 14

Risk Based Testing

14The Process -
Progress Indicators

u Process Indicators
l “To be tested/fixed”

vs. “Actual tested/
fixed”

u Hours Indicators
l Number of hours

for finding one fault
and for fixing one

To Be Fixed and Actually Fixed

Date

N
um

be
r

of
 F

au
lts To be fixed

Actually fixed

Hours per Fault for Test and Fix

Date

H
ou

rs
 p

er

Fa
ul

t

Test

Fix

 1.
Strategy

2. Risk anal.

3. Process Impr.

4. Auto. testing

Slide 15

Risk Based Testing

15

Test Process Work Flow

LD PD

Test Exec

PTDs
Raised

Fix

CR

Fix Procedure

Problem Mngmnt.
Procedure

Test Exec.
Procedure

Case Build
Procedure

Case Quality
Standards

Change Mngmnt.
Procedure

Re-
test

Good/
Bad

Test
Completed

Regression
Test

Good

Bad

ProAte

QC / QA
Basic Test
Data

Test Case

Risk
Identification

Risk
Assessment

Risk
Mitigation

Risk
Reporting

Risk
Prediction

Slide 16

Risk Based Testing

16

Test Automation

u Identify “minimum level of testing”
l Priority 1: everything must be tested
l Priority 2: test automation

u Do not automate “everything”!
l Identify most critical area / function
l Identify “Top-20” for automatic testing first

u Start with “simple” tests - e.g. user interface
u Identify “simple” automated tests you will

benefit from, i.e. save time and money!
u Performance testing useful to Automate in AT

 1.
Strategy

2. Risk anal.

3. Process Impr.

4. Auto. testing

Slide 17

Risk Based Testing

17

Summary

u New Strategy: Risk Based Approach
l Focused Testing

l Reduced Resources
l Improved Quality

u Process and Organisation must support the
new strategy

u Test Automation
l Most critical areas
l Performance testing

 1.
Strategy

2. Risk anal.

3. Process Impr.

4. Auto. testing

Slide 18

Risk Based Testing

18

Contact Details

Ståle Amland
Avenir (UK) Ltd.

Beacontree Plaza, Gillette Way,
Reading, RG2 0BS, Great Britain

Phone: +44 118 9757286 FAX: +44 118 9866161
E-mail: sa@avenir.co.uk

Page 1 of 20

2nd International Software Quality Week Europe ‘98
, 9-13 November 1998 in Brussels, Belgium

Risk Based Testing

Risk Analysis Fundamentals for software testing
including a Financial Application case study

Ståle Amland
Avenir (UK) Ltd.

Beacontree Plaza, Gillette Way,
Reading, RG2 0BS, Great Britain

Phone: +44 118 9757286 FAX: +44 118 9866161
E-mail: sa@avenir.co.uk

Abstract

This paper provides an overview of risk analysis fundamentals, focusing on software testing with the key
objectives of reducing the cost of the project test phase and reducing future potential production costs by
optimising the test process. The phases of Risk Identification, Risk Strategy, Risk Assessment, Risk
Mitigation (Reduction) and Risk Prediction are discussed. Of particular interest is the use of indicators to
identify the probability and the consequences of individual risks (errors) if they occur.

The body of this paper contains a case study of the system test stage of a project to develop a very flexible
retail banking application with complex test requirements. The project required a methodology that would
identify functions in their system where the consequence of a fault would be most costly (either to the
vendor’s customers or to the vendor) and also a technique to identify those functions with the highest
probability of faults.

A risk analysis was performed and the functions with the highest risk, in terms of probability and cost, were
identified. A risk based approach to testing was introduced, i.e. during testing resources would be focused in
those areas representing the highest risk. To support this approach, a well defined but flexible, test
organisation was developed.

The test process was strengthened and well defined control procedures were implemented. The level of test
documentation produced prior to test execution was kept to a minimum and as a result, more responsibility
was passed to the individual tester. To support this approach, good progress tracking was essential to show
the actual progress made and to calculate the resources required to complete the test activities.

© Ståle Amland, Avenir (UK) Ltd. QWE ’98 - Risk Based Testing Page 2 of 20

1. Introduction
The risk based approach to testing is explained in five sections:

1. Risk Analysis Fundamentals: Chapter 2 contains a brief introduction to risk analysis in general with
particular focus on using risk analysis to improve the software test process.

2. The Case: Chapter 3 is the first chapter of the case study. It explains the background of how the
methodology was implemented in one particular project

3. The Challenge: Chapters 4 and 5 further summarise what had to be done in the case project, why it
should be done and how it should be done.

4. The Risk Analysis: Chapter 6 explains how the probability of a fault and the cost of a fault was
identified and how the risk of a given function was calculated to identify the most important functions as
an input into the test process.

5. The Process and Organisation: Chapter 7 goes through the test process and discusses improvements
made to the process and to the organisation to support the risk based approach to testing in the case
project.

In addition, chapter 8 briefly discusses the importance of automated testing as part of a risk based approach.
Some areas for further research and of general interest are listed in chapter 9.

2. Risk Analysis fundamentals in software testing
This chapter provides a high level overview of risk analysis fundamentals and is only intended to be a basic
introduction to the topic. Each of the activities described in this chapter are expanded upon as part of the
included case study.

According to Webster’s New World Dictionary, risk is “the chance of injury, damage of loss; dangerous

The objective of Risk Analysis is to identify potential problems that could affect the cost or outcome of the
project.

The objective of risk assessment is to take control over the potential problems before the problems control
you, and remember: “prevention is always better than the cure”.

The following figure shows the activities involved in risk analysis. Each activity will be further discussed
below.

Risk
Identification

Risk
Strategy

Risk
Assessment

Risk
Mitigation

Risk
Reporting

Risk
Prediction

Testing,
Inspection etc.

Test Plan

Matrix: Cost
and Probability

Test Item Tree

Test Metrics

Figure 1: Risk analysis activity model. This model is taken from Karolak’s book “Software Engineering Risk
Management” [6] with some additions made (the oval boxes) to show how this activity model fits in with the
test process.

© Ståle Amland, Avenir (UK) Ltd. QWE ’98 - Risk Based Testing Page 3 of 20

2.1 Risk Identification
The activity of identifying risk answers these questions:

• Is there risk to this function?
• How can it be classified?

 Risk identification involves collecting information about the development project and classifying it to
determine the amount of potential risk in the test phase and in production (in the future).

 The risk could be related to system complexity (i.e. embedded systems or distributed systems), new
technology or methodology involved that could cause problems, limited business knowledge or poor design
and code quality.

 2.2 Risk Strategy
 Risk based strategizing and planning involves the identification and assessment of risks and the
development of contingency plans for possible alternative project activity or the mitigation of all risks.
These plans are then used to direct the management of risks during the software testing activities. It is
therefore possible to define an appropriate level of testing per function based on the risk assessment of the
function. This approach also allows for additional testing to be defined for functions that are critical or are
identified as high risk as a result of testing (due to poor design, quality, documentation, etc.).

 2.3 Risk Assessment
 Assessing risks means determining the effects (including costs) of potential risks. Risk assessments involves
asking questions such as: Is this a risk or not? How serious is the risk? What are the consequences? What is
the likelihood of this risk happening? Decisions are made based on the risk being assessed. The decision(s)
may be to mitigate, manage or ignore.

 The important things to identify (and quantify) are:

• What indicators can be used to predict the probability of a failure?

The important thing is to identify what is important to the quality of this function. That could be design
quality (e.g. how many change requests had to be raised), program size, complexity, programmers skills
etc.

• What are the consequences if this particular function fails?
Very often is it impossible to quantify this accurate, but using low-medium-high (1-2-3) might be good
enough to rank the individual functions.

By combining the consequence and the probability (from risk identification above) it should now be possible
to rank the individual functions of a system. The ranking could be done based on “experience” or by empirical
calculations. Examples of both are shown in the case study later in this paper.

2.4 Risk Mitigation
The activity of mitigating and avoiding risks is based on information gained from the previous activities of
identifying, planning, and assessing risks. Risk mitigation/avoidance activities avoid risks or minimise their
impact.

The idea is to use inspection and/or focus testing on the critical functions to minimise the impact a failure in
this function will have in production.

© Ståle Amland, Avenir (UK) Ltd. QWE ’98 - Risk Based Testing Page 4 of 20

2.5 Risk Reporting
Risk reporting is based on information obtained from the previous topics (those of identifying, planning,
assessing, and mitigating risks).

Risk reporting is very often done in a standard graph like the following:

Consequence

P
ro

ba
bi

lit
y

Low

Low

High

High

1

2

3
4

Figure 2: Standard risk reporting - concentrate on those in the upper right corner!

In the test phase it is important to monitor the number of errors found, number of errors per function,
classification of errors, number of hours testing per error, number of hours in fixing per errors etc. The test
metrics are discussed in detail in the case study later in this paper.

2.6 Risk Prediction
Risk prediction is derived form the previous activities of identifying, planning, assessing, mitigating, and
reporting risks. Risk prediction involves forecasting risks using the history and knowledge of previously
identified risks.

During test execution it is important to monitor the quality of each individual function (number of errors
found), and to add additional testing or even reject the function and send it back to development if the
quality is unacceptable. This is an ongoing activity throughout the test phase.

© Ståle Amland, Avenir (UK) Ltd. QWE ’98 - Risk Based Testing Page 5 of 20

3. The Case
The rest of this paper will discuss a case study using the risk based approach to software testing, relating the
different activities to the activity model discussed in the previous chapter.

3.1 The Application
This paper is based on the system test stage of a project developing a retail banking application. The project
included an upgrade of a Customer Information System being used by clients as a central customer, account
and product database, and a complete reengineering of a Deposit Management System. The project scope
included reengineering of the data model, technology change from IMS/DL1 to CICS/DB2, rewrite from JSP
COBOL to COBOL-2 and a completely new physical design. During this rewrite large investments were
done in productivity tools, design, quality assurance and testing.

The project started in June 1994 and was delivered in October 1995. The project total was approximately 40
man years over 17 months. This paper documents experiences from the system test stage, which consumed
approximately 22% of the total project resources.

The applications consist of approximately 300 on-line transactions and 300 batch programs, a total of
730.000 SLOC1 and 187 dB2 tables. This is the server part only, no client-GUI was tested in this project.

3.2 The Scope
The system test stage included:

1. Technical System Test. I.e. what is usually referred to as environment test and integration test. Due to
differences between the development environment and the production environment, the system test stage
had to test all programs in the production environment. During system test the test team had to do the
integration test of the on-line system by testing and documenting all on-line interfaces (called modules).
The team also had to do the integration test of the batch system by testing and documenting that all
modules had been called and also testing the complete batch flow.

2. Functional System Test. I.e. black box testing of all programs and modules to detect any discrepancies
between the behaviour of the system and its specifications. The integration test verified that all modules
had been called, and that the functional system test was designed based on application functionality.

3. Non-functional System Test. The system test also tested the non-functional requirements, i.e. security,
performance (volume- and stress-test), configuration (application consistency), backup and recovery
procedures and documentation (system, operation and installation documentation).

As for all projects, the time and resources were limited. At the beginning of construction (programming), the
system test strategy was still not agreed upon. Since the development project was a very large project to the
vendor and therefore consumed nearly all available resources, the number of people with experience
available for test planning was limited.

The final system test strategy for the system test was agreed approximately one month before end of
construction, and the time for planning was extremely short. A traditional approach to system test planning
based on test preparation done in parallel with design and construction, could therefore not be used.

The following project stages were executed before the system test2:

• Project Initiation - PI (organising the project, staffing and development environment)
• Requirement Analysis - RA (documents the functional requirements to the application)
• Logical Design - LD (data model and process model)

1 SLOC = Source Line of Code, excluding comments
2 The methodology was based on LBMS’ Systems Engineering, see ref. Systems Engineering.

© Ståle Amland, Avenir (UK) Ltd. QWE ’98 - Risk Based Testing Page 6 of 20

• Physical Design - PD (program design - executed as part of construction)
• Construction and Unit Test - CUT (programming and testing, including a 100% code coverage test)

 4. The Challenge
 Why did the vendor need a Risk Based Approach to the System Test?

 Because:
• The Available Calendar Time was limited. The development project had a very short time frame. The

construction and unit test stage was also delayed, so the system test had to become even shorter! The
applications are very flexible, and therefore very complicated to test. The calendar time did not allow for
a thorough testing of all functions. Focus had to be put on those areas representing the largest risk if a
fault occurred. The vendor needed a methodology to identify the most critical areas to test.

• There were limited available resources before the end of construction! Midway through construction
a limited number of senior analysts were available for system test preparation, one for on-line and one for
batch in addition to management. The estimates to build all identified test scripts were 8 - 10 people in
each of the teams (on-line and batch) until system test start! A test methodology had to be developed
based on limited resources during test preparation and using most resources during test execution.

• There were several risk factors. Due to strict quality control of the unit test (including 100% code
coverage requirements), the modules were expected to be of good quality when entering system test.
However, a lot of other factors indicated trouble:
• The project utilised a new development environment for programming, debugging and unit test based

on Microfocus COBOL Workbench on PC, running CICS with OS/2. The exact effect of the learning
curve on the programmer’s productivity by starting with a tool all new to the organisation, was
unknown.

• The development environment for on-line proved to be fairly good. However, the JCL-support for
large batch streams was poor. Therefore, batch integration tests between units were not extensive and
represented a risk to the integration test part of the system test.

• The system test was exclusively executed on the IBM mainframe after the source code was
transferred. A test bench was developed on the IBM mainframe, executing transactions as a “dumb-
terminal” client. This represented a risk since The vendor did not have any experience of the
difference between the PC development environment and the mainframe environment. Differences in
SQL-implementation were discovered during the project.

• Because of the vendor’s expansion, a lot of the programmers were new to the company and though
well educated, most of them were new to the application area and to the technology being used.

• The number of people involved was high (approximately 50 at peak) and the development time was
short (planned to 17 months), this was one of the largest projects done by the vendor ever. Even
though the vendor has been conducting large projects in the past, available experience from projects
with this size in a compressed time frame, was limited.

 What did the vendor do?

• The System Test Strategy document had to be rewritten. The customer did receive the preliminary

version of the strategy explaining a “traditional well documented test” with everything documented prior to
test execution. We had to convince the customer that this new approach was “as good as the original one,
except that the new one was feasible, given the calendar time and resources available”. The System Test
Strategy would define the “minimum level of testing” including level of documentation for all functions
and identify how a Risk Analysis would be used to identify functions to be focused on during test
execution.

• We had to perform a Risk Analysis to identify the most critical areas both to the customer and to the
vendor. A methodology had to be identified and implemented.

• The System Test Process and Organisation had to be improved, or even “optimised”. This included
defining the test process by preparing procedures, planning the test, controlling the process, progress
tracking, and defining roles and responsibilities. The vendor had to convince the customer about the

© Ståle Amland, Avenir (UK) Ltd. QWE ’98 - Risk Based Testing Page 7 of 20

feasibility of the new strategy and prove the quality of the process and the product to be delivered. To
document the test progress and to communicate this to the customer, became a key issue.

• Automated Testing was part of the contract. Initially we intended to use automated testing for all on-
line functions. As the resources and time became very limited, automated testing became part of the risk
based strategy, i.e. it was used to handle those on-line transactions with most faults.

The rest of this paper will document the implementation of the risk based strategy by the vendor, showing
required changes to the system test process and the organisation.

5. The Strategy
The project started with a Traditional Approach to testing, i.e. the test should be prepared with input and
output as part of the design and construction stages, prior to system test start. However, it was obvious as
time passed by and only limited resources were available to prepare the System Test, that this strategy was
impossible to fulfil.

The original system test strategy document (based on a traditional test approach), identified the following
test structure for both on-line and batch testing:

1. System Test Plan, documenting the test scope, environment and deliverables, test control procedures,
test tools to be used, test schedule and phases, and listing start and stop criteria related to each phase.

2. Test Specification, i.e. a detailed break down of the application into testable units.
3. Test Cases, i.e. documentation of what to test, basically listing all requirements enabling a tester to

easily read them.
4. Test Scripts, i.e. documentation of how to test “step by step”, including test data to be used by the tester.

Implementing a structure like the one above is very time consuming, especially step 4 - documenting test
scripts.

Midway through construction it became obvious that it was impossible to document everything before end of
construction. Either the project would be delayed, or the test planning process had to be improved.

The main problem at this stage was the preliminary system test strategy document delivered to the customer.
How do you have the customer accept that you will not be able to document all tests prior to test execution as
thoroughly as you originally intended to? By convincing him that the new process will improve the product
quality!

The key words became “Risk Based Approach” to testing. We agreed with the customer (reference to the
risk activity model in chapter 2 is given in italic):

1. The vendor will test all functionality in the application to “a minimum level” (in addition to all interfaces,
and all non-functional tests). This will not be documented prior to the test, but logging of details for all
tests (i.e. input, expected output and actual output), will after test execution, prove this “minimum level of

Risk Strategy).
2. All test cases (“what to test”) will be documented prior to test start and will be available for the customer to

review (Risk Strategy).
3. Only highly qualified testers, i.e. system analysts experienced in the application area, will be utilised for

testing, and the testers will be responsible for planning all “test shots”, including providing test data and
documenting the executed tests. (Tools were available to the tester for documenting the tests) (Risk
Strategy).

4. The vendor will do a risk analysis together with the customer to identify those areas of highest risk,
either to the customer or to the vendor (Risk Identification and Risk Assessment).

5. Based on the Risk Analysis, the vendor will focus “extra testing” in those areas of highest risk (Risk
Mitigation).

© Ståle Amland, Avenir (UK) Ltd. QWE ’98 - Risk Based Testing Page 8 of 20

6. “Extra testing” will be planned and performed by a specialists in the application area, that are not involved
Risk Mitigation and Risk Reporting).

The 6 bullet points above cover all activities from Risk Identification through Risk Reporting. How risk
reporting was used as input to risk prediction is explained later.

The customer approved the idea, and the vendor was ready to start. The project was now in a hurry and had
to do the following:

1. Complete the documentation of all test cases (what to test) for on-line and batch
2. Perform the Risk Analysis for on-line and batch and plan any “extra testing”.
3. Document the new risk based test process, including procedures, check lists, training the testers and

preparing the test organisation.

6. The Risk Analysis
(Risk Identification, Risk Strategy and Risk Assessment)
The risk analysis was performed prior to system test start, but was continuously updated during test
execution. Separate analysis was performed for on-line and batch.

The vendor developed a model for calculating the risk based on:

• the probability of an error (in the on-line transaction or batch program), and
• the cost (consequence) of an error in the corresponding function, both to the vendor and the customer (in

production).

Similar methodologies have been documented by others, see Øvstedal and Stålhane [1992]. However, this
paper explains a practical implementation of the methodology.

There are three main sources to the Risk Analysis:

1. Quality of the function (area) to be tested, i.e. quality of a program or a module. This was used as an
indication of the probability of a fault - P(f)3. The assumption is that a function suffering from poor
design, inexperienced programmer, complex functionality etc. is more exposed to faults than functions
based on better design quality, more experienced programmer etc.

2. The consequences of a fault in the function as seen by the customer in a production situation, i.e.
probability of a legal threat, loosing market place, not fulfilling government regulations etc. because of
faults. This consequence represents a cost to the customer - C(c).

3. The consequences of a fault in the function as seen by the vendor, i.e. probability of negative
publicity, high software maintenance cost etc. because of a function with faults. This consequence
represents a cost to the vendor - C(v).

The assumption was that the cost to the customer is equally important in the risk analysis to the cost of the
vendor, and the calculated Risk of a function R(f) would then be:

R f P f
C c C v

() () *
() ()

=
+
2

An example of areas with different risk profiles is area of interest calculation and area of printing
internal reports. A fault in interest calculation could easily end up with a legal threat for the bank using the
software, while a fault in the printing of internal reports not had to be known by the public at all.

3 According to B. Beizer: fault - incorrect program or data object; a bug, error - incorrect behavior resulting
from a fault; a symptom. See Beizer [1990].

© Ståle Amland, Avenir (UK) Ltd. QWE ’98 - Risk Based Testing Page 9 of 20

6.1 Risk Analysis - On-line

At the time the on-line risk analysis was performed very little information was still available from the
construction teams. The process was very simple, however not compromising the software quality and
satisfying to the customer.

On-line Risk Analysis steps:

1. Prior to System Test: The vendor asked the customer to set up a “Top-20” list of on-line transactions
which they viewed as the most critical transactions. All transactions on that list would go through extra
testing.

2. Throughout System Test: The vendor would add to the list of critical transactions based on the number
of faults found, those transactions were also subjects for extra testing. The number of faults could vary
due to specification and design quality, programmers lack of knowledge in the application area, lack of
knowledge about the development / production environment etc.

Extra Testing consisted of two elements:

1. Additional testing by product specialist. A separate checklist was developed, and the exit criteria for
the transaction to pass were at least one hour of continuos testing without any errors detected. All
transactions on the customer’s Top-20 list and all transactions with totally more than 10 faults (“the bad
ones”) found in the system test by the vendor, would go into this process. The total of 10 faults could
include faults detected because of environment problems, configuration problems in the build process,
functional faults and errors in the documentation.

2. Regression Testing Executed in an Automated Test Tool. All transactions with more than 4 functional
errors would go through full regression testing after last bug-fix was proved to be correct. The regression
test would replay all tests executed by the tester during the test execution process, using the test tool
AutoTester, see reference AutoTester.

6.2 Risk Analysis - Batch
The risk analysis of the batch areas was done when construction was midway through. The project had now
gained substantial information about the application area and the test and production environment. The
quality in the design stages had also been proved by implementation.

The application’s batch areas were split into sub-areas (or functions) as part of the logical design stage. Those
functions were now used in the risk analysis.

A sample list of batch functions is
• Interest Calculation
• Penalty Calculation
• Profitability Analysis
• Delete of Data
• Reporting
• Capitalisation

According to the formula:

R f P f
C c C v

() () *
() ()

=
+
2

© Ståle Amland, Avenir (UK) Ltd. QWE ’98 - Risk Based Testing Page 10 of 20

the challenge was to identify the cost of a fault and to identify indicators of quality, i.e. what is the
probability of a fault in this function?

We used a very simple, though satisfying method to develop these two elements, i.e. cost of a fault and
probability of a fault, for all batch functions. The vendor invited the project management, product
specialists, designers, programmers, people working with application maintenance and test management into
a meeting. This team had to agree on the cost of a fault and the probability of a fault for each function.

1. The cost of a fault was indicated by a number from 1 to 3 where 1 represented minimum cost in case of
a fault in this function. Elements to be considered were:
• Maintenance resource to allocate if a fault occurred during customer’s production (given the vendor

would provide 24-hours service).
• Legal consequences by not fulfilling government requirements.
• Consequences of a “bad reputation”.

2. The Probability of a fault was indicated by giving 4 indicators a number varying from 1 to 3, where 1
was “good”, i.e. the probability of a fault was low. The indicators were:
• Changed or New Functionality. The project was a reengineering of an existing application and the

change of functionality varied from function to function. The programs had to be rewritten anyway,
but if the functionality was not changed, at least there was an exact specification of the function.

• Design Quality would vary, depending on the function (some functions were all new), and by design
and application experience of the designer. This was measured by counting number of Change
Requests to the design (for further explanation of the project process, see section “The Process”).

• Size. We assumed that the number of sub-functions within a function would affect the number of
faults introduced by the programmer.

• Complexity (logical). The programmer’s ability to understand the function he was programming will
usually effect the number of faults.

For the cost related to each batch function we used the average of the Customer’s Cost C(c), and the Vendor’s
Cost C(v).

The indicators used to calculate the Probability of a fault for a particular function P(f), were weighted, i.e.
the weight would vary from 1 to 5, rating 5 as the most important indicator of a function with poor quality.

The weights used by The vendor were:

1. Changed or New Functionality - 5
2. Design Quality - 5
3. Size - 1
4. Complexity - 3

An example of calculated risk for the batch function “Close Account” is shown in the figure below. The Risk
R(f) was calculated for all batch functions and the list was sorted to identify those areas to be focused during
testing. The Probability P(f) is calculated as the Weighted Average of a particular function divided by the
highest Weighted Average of all functions, giving the probability in the range [0,1].

© Ståle Amland, Avenir (UK) Ltd. QWE ’98 - Risk Based Testing Page 11 of 20

Cost Probability

Func. C(v) C(c) Avrg.
C

New
Func.

5

Design
Quality

5

Size

1

Compl.

3

Weight
Avrg.

Proba-
bility
P(f)

Risk of
funct.
R(f)

Close
Accnt.

1 3 2 2 2 2 3 7,75 0,74 1,48

Figure 3: Example of calculated Risk for the batch function "Close Account". The vendor’s cost of a
fault is low (1), but the customer’s cost is supposed to be high (3). The average cost is then 2 (Avrg. C). The
probability is calculated by calculating the weighted average (Weight Avrg.) divided by the highest
Weighted Average for all functions (which in this example was 7,00), giving a probability in the range [0,1].
The Risk R(f) is the multiplication if the Average Cost and the Probability.

7. The Process
(Risk Strategy, Risk Mitigation, Risk Reporting and Risk Prediction)
The limited time and resources available made it very important to have a well defined test process. This
includes:

• Interfaces to design, construction and unit test stages
• Deliverables with defined quality standards
• Test preparation and execution procedures stating entry and exit criteria for each test phase
• Control procedures to handle scope changes and issues
• Well defined organisation and responsibility including training of the testers
• Progress Tracking

7.1 Interface to Design and Construction and Unit Test
The overall test process was based on Logical Design (LD) and Physical Design (PD) giving the base for the
build of the Test cases. Those test cases had to adhere to defined quality standards. The test cases were
given to the tester together with the Test Execution Procedure. The tester would prepare test data and report
any problems during test execution. The problems would be documented in a Problem Tracking Document
and would be passed on to the test team leader for verification before going to the fix team leader.

We called it a “problem” document because it could be any kind of problem, including program faults, but also
environmental problems, test data problems, change requests etc.

After the problem was fixed the problem tracking document was passed back to the test team for re-test. If
the test passed, the function would be evaluated as “Good” or “Bad”, based on number of errors discovered in
this function. If this function did include a high number of faults, then extra testing would be applied, either
by building a complete set of regression test scripts for the test tool AutoTester4 or by additional manual
testing. Finally, the quality of the function would be evaluated as “good”, and the test result would go through
extensive quality control (QC), i.e. checking completeness and accuracy and finally verifying all formalities
in a quality assurance process (QA).

A Fix might also include a Change Request (CR) to either the Logical or Physical Design. The test team
leader would typically originate the CR for Logical Design whilst the fix team leader would typically
originate the CR for Physical Design.

4 The program AutoTester from AutoTester Inc., see reference AutoTester.

© Ståle Amland, Avenir (UK) Ltd. QWE ’98 - Risk Based Testing Page 12 of 20

LD PD

Test Exec

PTDs
Raised

Fix

CR

Fix Procedure

Problem Mngmnt.
Procedure

Test Exec.
Procedure

Case Build
Procedure

Case Quality
Standards

Change Mngmnt.
Procedure

Re-
test

Good/
Bad

Test
Completed

Regression
Test

Good

Bad

ProAte

QC / QA
Basic Test
Data

Test Case

Figure 4: This figure shows the work flow of the System Test Process, from design documents to test
case, from test case to test execution and then a problem might occur. When the problem is fixed and re-
tested it might be accepted by the QC/QA procedures. After the testing is completed, the function might go
through regression testing, depending on number of faults detected. For on-line the regression testing is
performed in ProAte, i.e. The vendor AutoTester Environment (see footnote 4).

The risk based approach was based on the assumption that the tester himself prepared the test script
including test data and that he documented the test result. This activity was important to the success of the
risk based approach since the approach puts more responsibility on the tester than a traditional approach.

7.2 Documentation Structure and Deliverables
Prior to test execution the following documents were prepared:

1. The System Test Plan, including scope, roles and responsibilities, deliverables with level of detail,
procedures overview and test schedule.

2. The System Test Specification, giving a system break down for testing, i.e. identifying all functions
being tested.

3. The System Test Cases, for each function in the test specification the test case would identify what
functionality to test by listing each validation rule to verify, all combinations of input data to verify etc.
The test case would typically state “Test a future date in the Posting Date field”, not including the actual
date to be used in the test.

During the on-line tests the tester executed test shots and documented them in test scripts with input data
used, expected result, and test result. A test tool provided the tester with logging capability to document the
input data being used, logging the expected result and logging the actual result. The tools forced the tester to
log the expected result prior to logging input data and actual result. This made the testers prepare their test
shots carefully. Again, this methodology of testing and documenting and the tool were important for the risk
based approach success, i.e. the methodology forced the tester to be prepared and the tool supported in the
documentation process.

© Ståle Amland, Avenir (UK) Ltd. QWE ’98 - Risk Based Testing Page 13 of 20

The idea was to use the same structure for batch testing, in which we did not succeed. Due to the fact that a
batch run takes more time to execute and therefore the number of “retries” is limited, the batch test scripts
including test data and expected result, had to be completed before the processing of a batch cycle.

The test structure is visualised in the figure below.

System Test Plan

Test Specification

Test Cases

Test Shots/Test Scripts

System Test Plan Batch Cycle

Test Specification Test Run (Period)

Test Script

Test Case

On-line Test
Structure Batch Test Structure

P
ri

or
 t

o
E

xe
c.

Exec.

Figure 5: System Test Documentation Structure, on-line and batch, as implemented according to the
risk based approach. The plan, specification and test cases were developed prior to test execution but the
test scripts / shots were developed and documented during test execution. In the batch test the test scripts
were more complete prior to test execution than in on-line. Batch preparation included also design of test
runs (single processing days) and batch cycles (a series of test tuns, e.g. daily run, month end and year end).

This test structure allowed for a “delayed” resources profile by utilising highly qualified testers during test
execution and a limited number of qualified persons in test preparation. This was absolutely necessary since
there were only limited resources available until end of construction.

7.3 The Organisation and the Test Planning
The resource profiles below show accumulated resource profiles for:

1. Estimated resource requirements for a traditional approach (Original Estimate)
2. Estimated resource requirements for a risk based approach (Risk Based Estimate)
3. Actual resource usage, based on the selected Risk Based Approach (Actual)

© Ståle Amland, Avenir (UK) Ltd. QWE ’98 - Risk Based Testing Page 14 of 20

Original Estimate Risk Based Estimate

Actual

Week

A
cc

um
ul

at
ed

 H
ou

rs
 p

er
 W

ee
k

Week

A
cc

um
ul

at
ed

 H
ou

rs
 p

er
 W

ee
k

Week

A
cc

um
ul

at
ed

 H
ou

rs
 p

er
 W

ee
k

Figure 6: Resource profiles for Original Estimate (i.e. Traditional Approach), Risk Based Estimate
(Risk Based Approach) and Actual (i.e. actual accumulated number of hours spent).

The graphs show that the risk based approach consumed less resources relative to the original estimate based
on a traditional test approach.

The risk based test approach is highly dependent on using qualified testers, i.e. testers with experience
within the application area and preferable with experience within the test environment. The reason is that
the tester himself will build the actual test scripts during test execution, including test data. It is obvious that
inexperienced testers will need a lot of training to be productive with this approach. However, training must
be executed to make even the qualified testers familiar with the new test approach. The vendor executed
several pilot projects, both in the on-line and the batch area to verify the test methodology, the accuracy of
procedures and to train the testers. This was done through the short test planning phase.

Another criteria for success for the risk based approach was an efficient, dynamic and flexible test
organisation. Over time, it proved to be essential that “the testers (i.e. test team leader) do prioritise”.
Whenever there were discussions about which faults to correct first, the decision had to be based on the risk
analysis and what functions needed to be tested most, not which fault was most convenient for the
programmers to fix.

© Ståle Amland, Avenir (UK) Ltd. QWE ’98 - Risk Based Testing Page 15 of 20

The organisation shown below proved to be efficient at supporting the Risk Based Approach.

Procedures/Office System Builder

Regression Testing

Integration Test On-line Fix Team Leader

On-line Team Leader

On-line Test Leader Non-Func. ST

Batch Fix Team Leader Integration Test

Batch Team 1 Leader Batch Team 2 Leader

Batch Team 3 Leader Batch Team 4 Leader

Batch Test Leader

System Test Manager

Figure 7: The Risk Based Approach to testing requires a flexible organisation, focused on fixing bugs
related to critical functions.

What made this organisation efficient was the combination of a fixed high level structure combined with
flexibility on the “detailed” level.

The fixed high level structure is represented by:
• Centralised services. The follow-up on procedures and production of test documentation was taken care

of by the project office (“Procedures / Office” in the chart). Similar, the configuration control was taken
care of by one role - the System Builder, and the automated regression testing was executed by one
“Regression Testing” team.

• Centralised Progress tracking. Progress tracking was only done by the system test manager, although
all individuals recorded their own progress every day.

• Separate teams for on-line, batch and non-functional testing. The documentation requirements and
the test execution procedures were quite different for all three teams, and the organisation had benefits
from not training the testers in more than one area.

• Well defined responsibility. The team leaders were responsible for the preparation of all test cases prior
to test execution and also for reviewing the result after the test. In addition there was a quality control
function to assure completeness and accuracy, and finally a quality assurance of the formalities.

 The flexibility on the detailed level is represented by:
• Shared resource pool for testers and fixers. This is not represented in the graph above, but was very

flexible. E.g. instead of the test team waiting for fixes to be implemented, they would participate in the
fix process, and vice versa. This would also improve the testers knowledge about the system, and finally
improve the testing quality.

• Shared team management, i.e. the on-line team leader would be the same person as the on-line test
leader, and the batch team leader would be the same as the batch test team leader. This is done to assure
that the focus is on testing (not on fixing), and the prioritisation of which modules to fix is done based on
the risk analysis and not on which modules are “easiest to fix”.

7.4 The Control Procedures
The project implemented separate procedures for control issues (i.e. changes to scope, process or schedule
not related to system design) and change requests (i.e. changes related to system design and
implementation). All projects will be affected by issues and change requests, but the risk based approach
made this project even more vulnerable to changes. The reason is that the planning process had been limited
and the detail test scripts were not prepared until test execution. Usually several faults are identified during
the test planning phase, but by the risk based approach to testing, the planning phase is part of the test
execution.

© Ståle Amland, Avenir (UK) Ltd. QWE ’98 - Risk Based Testing Page 16 of 20

All change requests had to be accepted by the product manager outside the system test team.

7.5 Progress Tracking and Progress Indicators
(Risk Reporting and Risk Prediction)
The introduction of the risk based approach made it very important to document the test progress to the
customer as well as the quality of the test. The quality of the test was documented as part of the output
documentation from the test execution, including the complete listing of the test log from the test tool.

The progress tracking was critical to have the customer believe in the product and to believe in the end date.
The reporting included basically two elements:

1. The number of tests started and completed according to plan.
2. Indicators to show the load of faults found and corrected.

7.5.1 On-line Progress Tracking
The following graphs show the on-line tests started and completed. Because of the limited material prepared
prior to test execution, the quality control of the test documentation prior to execution was very limited.
This made the quality control (QC) and quality assurance (QA) processes during test execution even more
critical. Therefore, the curve most interesting to the customer was “tests actually completed from QA” in the
graph On-line Test Cases Completed.

On-line Test Cases Started

Date

N
um

be
r

of
 T

es
t C

as
es

On-line Test Cases Completed

Date

N
um

be
r

of
 T

es
t C

as
esPlanned

Actual

Planned

Executed

QAed

Figure 8: Progress Tracking. To the left is a graph showing planned and actual of test cases started. The
graph to the right visualises test cases completed, showing planned complete, actually completed by tester
(executed) and actually completed from QA.

7.5.2 Batch Progress Tracking
The batch process of ProDeposits is very complex. Approximately 300 batch programs constitute a daily
batch run. A traditional approach to batch testing for The vendor would have been to set up one batch
system and process day by day, fixing problems as they occurred.

The approach was to run as many test runs as possible as early as possible to identify problem areas (i.e.
areas of high risk) and to focus the test in those areas.

The consequence was that 3 sub-systems were set up, each with a batch cycle consisting of 12-15 batch runs,
i.e. processing 12-15 periods. A period (point of time) is a single day, a week end, a month end, a year end
etc. Each batch cycle would be processed at least 3 times for all three systems during the system test period.

If possible, the complete batch cycle was completed, not waiting for fixes of faults identified in one batch run
before continuing. The result was an early detection of problem areas and the possibility of focusing the test.

© Ståle Amland, Avenir (UK) Ltd. QWE ’98 - Risk Based Testing Page 17 of 20

Because of the planned strategy to run all batch cycles three times per system, the “number of tests started” did
not make any sense in batch testing as it did in on-line. The result was that the plan for batch testing was
calculated as the total number of batch tests (i.e. number of verifies5 to be executed), evenly spread over the
total number of days for batch testing. As a result of this, the progress did not look good in the beginning
when a lot of outstanding integration tests were executed. However, after a while the progress improved,
and during the last few weeks the graphs showed a steady slope.

Number of Batch Tests Verified

Date

N
um

be
r

of
 T

es
t V

er
ifi

ed

Planned

QAed

Executed

Figure 9: Progress Tracking Batch. The plan was calculated based on number of verifies to be executed
and number of days of testing. The graph also shows number of verifies actually executed and number of
tests QAed by date.

The graph above gave the customer a snap shot of the current situation. In addition we needed some
indicators that provided the customer with good visibility of, and therefore confidence in, the test process.

7.5.3 Progress Indicators
We used two indicators, one related to the test process and one related to the fix process. The first one
showed number of faults reported to the fix team and number of faults fixed (i.e. reported back to the test
team). The second indicator showed number of faults reported back to the test team for re-test from the
fixers and number of faults re-tested. The second indicator also included a graph showing number of fixes
from the fix team being rejected by the testers as part of the re-test.

5 A verify document is a document with the expected result of a particular batch test. The document will list
all results to look for after a test run. The number of expected results can vary depending of type of test. To
“execute a verify” is to compare the actual result with the expected result after a test run.

© Ståle Amland, Avenir (UK) Ltd. QWE ’98 - Risk Based Testing Page 18 of 20

On-line Faults to be Re-tested, Actually Re-tested and Rejected

Date

N
um

be
r

of
 F

au
lts

On-line Faults To Be Fixed and Actually Fixed

Date

N
um

be
r

of
 F

au
lts To be fixed

Actually fixed

To be retested Act. retested

Rejected

Figure 10: Progress Indicators. The left graph shows the number of faults delivered to the fix team and
number of faults fixed. The graph at the right shows the number of reported faults that have been fixed and
returned to re-test (to be re-tested) and the number of faults actually re-tested. The lower curve is the number
of fixes being rejected in re-test.

Similar graphs to the above were developed for batch faults.

7.5.4 Estimated To Complete (ETC)
To calculation of ETC for test projects is always complex, and even more complicated when the preparation
work is as limited as in this project. Again, the need for indicators to predict the number of resources needed
to meet the end date, was essential to the test approach chosen.

We closely monitored the number of hours spent in testing and in fixing related to the number of faults
identified and fixed. The following graphs were used for both, on-line and batch.

Batch: Hours per Fault for Test and Fix

Date

H
ou

rs
 p

er
 F

au
lt

On-line: Hours per Fault for Test and Fix

Date

H
ou

rs
 p

er
 F

au
lt

Test

Fix
Test

Fix

Figure 11: Estimated to Complete. The number of hours testing per fault found and number of hours
analysis / programming per fault fixed were used as indicators to calculate ETC.

In addition to the number of hours per fault the following numbers were used for calculating the ETC for on-
line:

1. Number of faults found per on-line transaction (i.e. per on-line test case)
2. Number of fixes being rejected (i.e. generating a new fault to be sent to fixing and re-test)
3. Number of remaining on-line test cases

© Ståle Amland, Avenir (UK) Ltd. QWE ’98 - Risk Based Testing Page 19 of 20

By combining 1, 2 and 3 above, the remaining number of faults could be estimated, and by using the
numbers from figure above, the total resource requirements could be estimated.
For batch the calculation method was somewhat different. In addition to the number of hours per fault
found, the numbers used were:

1. Number of faults found per Verify document.
2. Number of fixes being rejected (i.e. generating a new fault to be sent to fixing and re-test)
3. Number of verify documents being accepted out of total number of Verify documents reviewed
4. Number of verify documents still to be verified.

The result graphs for on-line and batch are shown in the following figure. The rising curve is the
accumulated hours spent and the falling is the calculated ETC over time. It took some weeks before the
ETC-calculations were reliable, but they proved to be very accurate during the last few weeks. If more
historical data could have gone in to the ETC calculation, a reliable result could have been provided at an
earlier stage.

On-line: Calculated Hours ETC and Actual Hours

Date

H
ou

rs
 E

TC

Batch: Calculated Hours ETC and Actual Hours

Date

N
um

be
r

of
 H

ou
rs

ETC
ActualETC

Actual

Figure 12: Calculated ETC and Actual hours spent for on-line and batch.

8. Automated Testing
(Risk Strategy and Risk Mitigation)
The project was committed to use automated regression testing by utilising the tool AutoTester from
AutoTester Inc. This proved to be a commitment very hard to fulfill. Also, originally the intention was to
develop all AutoTester test scripts prior to test execution.

Due to the changed test approach, the information required to develop AutoTester scripts was not available,
i.e. the test data and the scripts would be provided by the tester during test execution.

The Risk Based approach was based on each tester using AutoTester to log all test shots and to record test
scripts for automated regression testing. This proved to be very complicated because:

1. The tester had to think of regression testing all through test execution. This included to plan the test
data, the sequence of transactions etc.

2. All testers shared the same database. They could easily damage each others test data if not paying
attention.

The project used 25% of the total test resources for on-line, in automated regression testing. The regression
test team managed to regression test 15% of all on-line transactions, and found 2.5% of all faults.

© Ståle Amland, Avenir (UK) Ltd. QWE ’98 - Risk Based Testing Page 20 of 20

The recommendation to the next project will be:

1. Let the manual testers focus on doing manual tests, using a tool for documentation / recording without
thinking automation. The result should be readable, not re-playable. The tester should be able to set up
his own test data within his limits.

2. Set up a separate database for automated regression testing.
3. Select the “worst” transactions for automated regression testing.
4. Identify a separate test team to focus on automated testing.
5. Do not start recording for automated regression testing until the function is stable, i.e. most faults have

been identified and fixed.
6. Over time develop a “lifetime” test script for all transactions, i.e. an automated test script to be used as an

9. Further Research
As a “test” the McCabe complexity, see McCabe [1976], was checked for a random list of the 15 on-line
transactions with the highest number of faults identified and 15 on-line transactions with the lowest number
of faults identified. The result showed that the McCabe complexity in average is 100% higher for those with
a high number of faults than for those with a low number of faults.

This material however, needs more investigation. Particularly interesting is the analysis of the function’s
logical design to be able to identify functions with a potential of a large number of faults, at an early stage.

A process improvement project has been started by the vendor to continue some of the ideas discussed in this
paper.

10. References
No Reference

1 AutoTester, AutoTester Inc., Software Recording Corporation of America, 8150 North Central
Expressway, Suite 1300, Dallas, Texas 75206, Tel: + 1 800 328 1196

2 Boris Beizer, “Software Testing Techniques” Second Edition, Van Nostrand Reinhold, 1990.

3 McCabe, Initial paper on cyclomatic complexity definition, McCabe, T.J. 1976, A Complexity
Measure, IEEE Trans. On SW Eng., Vol2, No. 4, Dec. 1976

4 Systems Engineering, LBMS Europe, Evelyn House, 62 Oxford Street, London WIN 9LF, Tel:
+ 0171 636 4213

5 Øvstedal, E. Ø. and Stålhane, Tor “A goal oriented approach to software testing”, Reliability
Engineering and System Safety.  1992 Elsevier Science Publishers Ltd., England

6 Dale Walter Karolak, “Software Engineering Risk Management”, IEEE Computer Society Press,
1996.

Slide 1

The IT implications of Y2k
and the Euro
The IT implications of Y2k
and the Euro

A presentation to QWE’98A presentation to QWE’98

Graham Titterington

9 - 13 November 1998

Graham Titterington

9 - 13 November 1998

E-mailE-mail •• gct@ovum.com gct@ovum.com Tel Tel •• +44 171 255 2670 +44 171 255 2670
WebWeb •• http://www.ovum.com http://www.ovum.com Fax Fax • • +44 171 255 1995 +44 171 255 1995

Slide 2

The IT implications of Y2k and the EuroThe IT implications of Y2k and the Euro

EMU timetableEMU timetable

• 1 January 1999 – the Euro is introduced;
national currencies are locked to a fixed
exchange rate; used by wholesale financial
markets

• by 1 January 2002 – Euro notes and coins
introduced; dual currency arrangements
introduced for retail trade

• by 30 June 2002 – national currencies
withdrawn.

Slide 3

The IT implications of Y2k and the EuroThe IT implications of Y2k and the Euro

TriangulationTriangulation

EMU Currency Euro

External Currency

FF, DM

£, $

Slide 4

The IT implications of Y2k and the EuroThe IT implications of Y2k and the Euro

Differences: Issue (1)Differences: Issue (1)

•• Euro is a business issue with ITEuro is a business issue with IT
implicationsimplications

•• Y2k is an IT issue requiring a lot ofY2k is an IT issue requiring a lot of
business supportbusiness support

EMU offers scope for building your business, butEMU offers scope for building your business, but
also brings risks of losing business if youralso brings risks of losing business if your
competitors use it more effectively than you docompetitors use it more effectively than you do..

Slide 5

The IT implications of Y2k and the EuroThe IT implications of Y2k and the Euro

Differences: Issue (2)Differences: Issue (2)

•• The Euro project is about achievingThe Euro project is about achieving
business benefitbusiness benefit

•• Any business benefit from the Y2k projectAny business benefit from the Y2k project
is accidentalis accidental

Although Y2k projects should seek ways ofAlthough Y2k projects should seek ways of
benefiting the business, this is not the reason forbenefiting the business, this is not the reason for
doing themdoing them

Slide 6

The IT implications of Y2k and the EuroThe IT implications of Y2k and the Euro

Differences: Issue (3)Differences: Issue (3)

•• Many Euro related changes will merge intoMany Euro related changes will merge into
business related developmentbusiness related development

•• Y2k work is clearly distinct, although itY2k work is clearly distinct, although it
blurs with development where systems areblurs with development where systems are
replaced to avoid remediation, or handledreplaced to avoid remediation, or handled
by routine maintenanceby routine maintenance

IT costs for the Euro will be largely obscuredIT costs for the Euro will be largely obscured

Slide 7

The IT implications of Y2k and the EuroThe IT implications of Y2k and the Euro

Differences: Issue (4)Differences: Issue (4)

•• EMU requirements are uncertain, forEMU requirements are uncertain, for
example dual accounting and accountingexample dual accounting and accounting
harmonisationharmonisation

•• Y2k requirements known for centuriesY2k requirements known for centuries

The uncertain features are mainly extensions toThe uncertain features are mainly extensions to
existing applications, and require more workexisting applications, and require more work
than the mechanical conversion aspects.than the mechanical conversion aspects.

Slide 8

The IT implications of Y2k and the EuroThe IT implications of Y2k and the Euro

Differences: Issue (5)Differences: Issue (5)

•• You need to concurrently process new andYou need to concurrently process new and
old currencies, and store historic dataold currencies, and store historic data

•• There is no need to store 2 digit dates,There is no need to store 2 digit dates,
once these have been widened to 4 digitsonce these have been widened to 4 digits

Y2k projects which adopt a date windowingY2k projects which adopt a date windowing
solution are permanently restricting their abilitysolution are permanently restricting their ability
to store historic datato store historic data

Slide 9

The IT implications of Y2k and the EuroThe IT implications of Y2k and the Euro

Differences: Issue (6)Differences: Issue (6)

•• EMU is being introduced in 3 phasesEMU is being introduced in 3 phases

•• Year 2000 comes in instantaneouslyYear 2000 comes in instantaneously

An alternative view is that the need for year 2000An alternative view is that the need for year 2000
processing is emerging continuously asprocessing is emerging continuously as
applications process their first post 2000 plan orapplications process their first post 2000 plan or
orderorder

Slide 10

The IT implications of Y2k and the EuroThe IT implications of Y2k and the Euro

Differences: IT applications (7)Differences: IT applications (7)

•• Most Euro related changes are extensionsMost Euro related changes are extensions
to applicationsto applications

•• Y2k projects do not extend theY2k projects do not extend the
functionality of applicationsfunctionality of applications

The mechanical changes are limited to exchangeThe mechanical changes are limited to exchange
calculations, and modifying field sizes.calculations, and modifying field sizes.

Slide 11

The IT implications of Y2k and the EuroThe IT implications of Y2k and the Euro

Differences: IT applications (8)Differences: IT applications (8)

•• Many new applications will need to beMany new applications will need to be
writtenwritten

•• Only new tools are needed for Y2kOnly new tools are needed for Y2k

Exploiting the benefits of the Euro will requireExploiting the benefits of the Euro will require
completely new applicationscompletely new applications

Slide 12

The IT implications of Y2k and the EuroThe IT implications of Y2k and the Euro

Differences: IT applications (9)Differences: IT applications (9)

•• Euro changes are limited to the applicationEuro changes are limited to the application
layerlayer

•• Y2K changes permeate all layers of anY2K changes permeate all layers of an
applicationapplication

However Euro-related changes to databases areHowever Euro-related changes to databases are
more substantialmore substantial

Slide 13

The IT implications of Y2k and the EuroThe IT implications of Y2k and the Euro

Differences: IT applications (10)Differences: IT applications (10)

•• Euro changes are logically moreEuro changes are logically more
complicated than Y2k changescomplicated than Y2k changes

•• Y2k changes are more numerous affectingY2k changes are more numerous affecting
more programs, e.g. real-time andmore programs, e.g. real-time and
embedded applicationsembedded applications

Time is a fundamental part of the working ofTime is a fundamental part of the working of
computers.computers.

Slide 14

The IT implications of Y2k and the EuroThe IT implications of Y2k and the Euro

Similarities (1)Similarities (1)

•• Happening in the same time frameHappening in the same time frame

•• False temptation to do both changesFalse temptation to do both changes

simultaneouslysimultaneously

•• Would issues be linked if Euro had beenWould issues be linked if Euro had been

introduced ten years ago?introduced ten years ago?

Slide 15

The IT implications of Y2k and the EuroThe IT implications of Y2k and the Euro

Similarities (2)Similarities (2)

•• Require changes to large numbers of programs,Require changes to large numbers of programs,
databases and screensdatabases and screens

•• Some elements of repetitive change, suitable forSome elements of repetitive change, suitable for
automation of search and code modificationautomation of search and code modification

Slide 16

The IT implications of Y2k and the EuroThe IT implications of Y2k and the Euro

Similarities (3)Similarities (3)

•• Require a similar project management processRequire a similar project management process
and environmentand environment

•• Can re-use inventory, configurationCan re-use inventory, configuration

management and testing tools and skillsmanagement and testing tools and skills

•• Happen in parallel with routine businessHappen in parallel with routine business
development changesdevelopment changes

Slide 17

The IT implications of Y2k and the EuroThe IT implications of Y2k and the Euro

TestingTesting

•• Year 2000 testing has many uniqueYear 2000 testing has many unique
requirementsrequirements

•• Euro projects split into extensions andEuro projects split into extensions and
conversion aspectsconversion aspects

•• Euro conversion aspects are amenable toEuro conversion aspects are amenable to
testing using extensions to capture/replay toolstesting using extensions to capture/replay tools

Slide 18

The IT implications of Y2k and the EuroThe IT implications of Y2k and the Euro

Opportunities for ITOpportunities for IT

•• Tool vendors can leverage their R&DTool vendors can leverage their R&D

•• IT departments can use both projects as aIT departments can use both projects as a
vehicle for improved tools and processesvehicle for improved tools and processes

•• Companies can use both projects to bring inCompanies can use both projects to bring in
new applications to improve overall efficiencynew applications to improve overall efficiency

Slide 19

The IT implications of Y2k and the EuroThe IT implications of Y2k and the Euro

The risk of interactionThe risk of interaction

Y2K Project Euro Project

EMUNational Economies

Slide 20

The IT implications of Y2k and the EuroThe IT implications of Y2k and the Euro

ConclusionConclusion

•• The similarity of these projects is largelyThe similarity of these projects is largely

coincidentalcoincidental

•• Nevertheless both require a similar approachNevertheless both require a similar approach

•• Most Euro related changes won’t be recognisedMost Euro related changes won’t be recognised

as mechanical conversionas mechanical conversion

•• The Euro project is more flexibleThe Euro project is more flexible

A comparison of the IT implications of the Y2k and the Euro issues

© Ovum Ltd 1998 Page 1 of 9

A comparison of the IT implications of the Y2k and
the Euro issues

Presentation to the 2nd International Quality Week (QWE’98)

Brussels, 9 – 13 November 1998

Graham Titterington

Ovum Ltd

1 Mortimer Street

London

W1N 7RH

England

Tel: +44 171 255 2670

Fax: +44 171 255 1995

e-mail gct@ovum.com

Abstract
The IT implications of these two issues are significantly different. The year
2000 issue requires us to convert our applications which use a representation
of dates which has become obsolete, to one which will meet our needs for
several years to come. The Euro issue is mainly about developing and
extending applications to meet a new business environment. Nevertheless the
coincidental timing of the two projects, together with the fact that both require
audits of existing applications and modifications to large numbers of them, has
focussed attention on what they have in common. It has even caused confusion
about their nature, particularly with regard to the Euro project.

A comparison of the IT implications of the Y2k and the Euro issues

© Ovum Ltd 1998 Page 2 of 9

Change is imminent
In just 2 months time Europe will see the introduction of European Monetary
Union (EMU) and a single currency called the Euro. Although it will be
another 3 years before it becomes a full currency, with notes and coins in
circulation on the streets, it will have an immediate impact on business that
will extend to the IT operations of most organisations. From the IT point of
view it is unfortunate that this is happening at the same time that the year
2000 problem reaches its climax, since these two issues are competing for the
same limited resources. Many commentators are linking the two issues closely
but Ovum believes that there are more differences than similarities between
them.

In this paper I look at the introduction of the Euro from an IT perspective, and
compare it with the year 2000 remediation project.

The repercussions of European Monetary Union will be felt by all
organisations that trade in, or with, any country that enters into the EMU.
Thus, organisations will not escape the need to change their financial systems,
even if they base their operations outside the European Union (EU) or in an
EU country not participating in the EMU.

Timetable

The outline programme is:

• 1 January 1999 – the Euro will be introduced; participating national
currencies will be locked to a specific exchange rate with it; and wholesale
financial markets will start to trade using it

• by 1 January 2002 – Euro notes and coins will be introduced; dual
currency arrangements will be introduced for retail trade in each
participating state

• by 30 June 2002 – national currencies will be withdrawn.

It is worth noting that the latter two dates can be brought forward, but cannot
be delayed without renegotiation of the governing treaty. Since January 1st is
not an auspicious time to introduce new currency, with most businesses closed
down and January sales in a state of hectic excitement, it is likely that a date
in the autumn of 2001 will eventually be chosen. Also many people in the
retail sector estimate that 50% of the cost of changing over to the Euro will be
specifically incurred during the 6 month period of dual currencies scheduled
for 2002, and would like to see this period substantially reduced. Ideally they
would like to see it replaced by a period when old currencies will be accepted
by banks but will not re-issued, so that the old currencies will disappear from
circulation very rapidly. This would be similar to the process which is used
when a country replaces some or all of its notes or coins by a new design, or
when Britain introduced decimal currency in 1971. If this strategy is chosen
the entire process could be completed before the end of 2001, and businesses
will have to complete their preparations more quickly. However for the
purposes of this paper I will assume that the timetable above will be adhered
to.

IT resources

As far as IT departments are concerned, the Euro and year 2000 projects are
competing for the same resources of people, development infrastructure and
testing facilities. In addition to year 2000 and the Euro, businesses have other
urgent needs to develop new systems to provide new services or adapt to the
changing requirements in their industries. Leaving a business to stagnate for
four years is almost as suicidal as failing to cope with these two global issues.

A comparison of the IT implications of the Y2k and the Euro issues

© Ovum Ltd 1998 Page 3 of 9

However we strongly recommend that the activities should be separated as far
as possible, and against modifying the same programs for different reasons
concurrently.

To minimise conflicts, we recommend postponing as much Euro related IT
work as possible until the year 2000 renovation is complete. An absolute
requirement for trading in post-EMU Europe is to survive the millennium.

Fortunately some of the work needed in connection with year 2000 provides a
head start in preparing for the Euro. This includes:

• producing an inventory of IT systems and programs

• providing a heavy duty project management and configuration control
system

• setting up a test and development environment

• sharing many of the test cases.

Characteristics of the projects

The Euro

The introduction of the Euro is primarily a business issue. Beyond a relatively
basic requirement to enable financial transactions to occur, the purpose of a
Euro project is to deliver business benefit. The role of IT is to support business
needs.

However, it is likely that about half the total business costs associated with
adopting the Euro will be spent in the IT departments. IT changes for the
Euro can be categorised into four groups:

• changes needed to enable businesses to trade using Euro

• extensions needed to maintain historical records in old currencies

• extensions to enable systems to handle both Euro and national currencies
during the transitional period

• new systems and extensions needed to support new business methods.

From the IT perspective, the “temporary” features needed in the third group
dwarf the “permanent” changes in the first two groups.

Changes needed to enable businesses to trade using Euro

These comprise changes to:

• enlarge the size of fields holding monetary values

• add a decimal point in countries where there is no sub-unit of currency in
common current use, because the main unit of currency is of relatively low
value (for example Italy, Belgium, Portugal, Spain)

• add a currency symbol to avoid ambiguity where this is not already present

• redesign forms and schemas to accommodate these changes, if necessary

• modify the ranges of values that are allowed in currency fields and
variables.

Many financial processes are triggered by financial values (for example credit
checks) and so clearly these trigger levels will need to be re-calculated for the
Euro. However we would hope that these values are not hard-coded in an
application!

Note that there are no permanent changes affecting foreign exchange
calculations. Once the transitional period is complete the Euro will be a

A comparison of the IT implications of the Y2k and the Euro issues

© Ovum Ltd 1998 Page 4 of 9

normal international currency with a very large multi-national economy
behind it.

Changes needed to maintain historical records in old currencies

There will be a need to store data about transactions which were conducted in
old currencies, and to make calculations using this data. This need is partially
derived from legal requirements to keep accounts and partially for planning
purposes. This extension to the functionality of applications will not be
accomplished by mechanical means.

Extensions to enable systems to handle both Euro and national currencies
during the transitional period

The greatest challenge of the Euro for IT departments is in coping with the
transitional arrangements over the next four years. It is not yet clear how
much parallel reporting will be necessary to present financial data in both
Euro and national currencies. Retail outlets will have to accept two currencies
for up to six months – this will clearly have substantial implications for point-
of-sale terminals. Probably the simplest solution will be to have two such
terminals at each point of sale, but even this solution will require substantial
modifications to the central processors supporting them, and the suppliers of
such equipment will have a difficult task in meeting these demands.

If it is decided that invoices and receipts have to give prices in both currencies,
substantial redesign of their formats will be needed.

For the transitional period, participating national currencies will only be
convertible into and out of Euro, and using six significant digits for calculating
the conversion to avoid guaranteed gains for currency dealers in the fixed rate
environment. (Traditionally only four significant digits are used in foreign
exchange calculations.) The exchange rate between the Euro and other
currencies will fluctuate according to the world financial markets. There will
no longer be a quoted direct exchange rate between participating currencies
and external currencies (for example, between Francs and US Dollars). These
conversions will have to be calculated as a two-stage calculation that
determines the value in Euro as its intermediate step. This procedure is
governed by a treaty regulation (Article 235) and has the status of a European
law. Inverse calculations must either divide by this same, six significant digit
conversion factor, or use a procedure that gives exactly the same result. The
allowable limits for rounding the results are also specified.

Article 235 only applies to the conversion of European currencies. It does not
affect other transactions, such as interest calculations.

These requirement means that the Euro cannot be treated as just another
foreign currency during the transitional period, although the rules do allow
flexibility in deciding how to implement the calculations.

There will be a need to report in both Euro and national currency during the
transitional period. The extent of this is not yet clear – within the first three
years of the transition, organisations within participating countries can choose
their own date on which to convert their internal systems. However from the
beginning of this period, a business will have to be able to accept invoices in
Euro. Those organisations with operations in several participating countries
will gain more benefits from adopting the Euro at an early date. In practice
pressure from commercial partners will dictate the conversion schedule for
many businesses. Despite these pressures to move to the Euro, no organisation
can change over all of its systems to the Euro before 2002, because its
employees and pensioners will want to be paid in a currency that they can
spend and it also has to be able to pay invoices in old currencies.

A comparison of the IT implications of the Y2k and the Euro issues

© Ovum Ltd 1998 Page 5 of 9

Small enterprises that do not already have experience of multi-currency
trading will have the greatest problems in setting up dual currency
arrangements.

New systems and extensions needed to support new business methods.

The need for these changes are not clear yet, and will emerge over the
transition period, and beyond. We can expect to see new financial services, and
more international trade requiring expansion of supporting services.

There may be harmonisation of accounting practices across Europe to facilitate
international commerce. However these are not part of the existing treaty
commitments and are certainly not going to happen in 1999. This area may
eventually become the most significant work area in terms of updating IT
systems to operate in the post-EMU Europe. For example, it has been
suggested that interest calculations will have to be based on the change of day
principle. These changes may also apply in EU countries that do not
participate in the EMU. However, this is an area where the requirements are
still unclear.

Year 2000

The year 2000 project on the other hand is a very large mechanical conversion
task. The purpose of the project is to enable the organisation to continue to
operate, ideally as well as it does at present. Although we do gain some
benefits from year 2000 projects, such as improved IT methods and practices
and a better organised portfolio of applications, any benefits are incidental.
The project is justified by necessity! Some extension may be necessary to
correct programming bugs in the original application, such as to recognise
year 2000 as a leap year. The objectives of the year 2000 project are well
understood and limited. However because of the scale of the task and the
totally rigid timescale we are likely to have to prioritise tasks within the
project in a way which has no parallel on the Euro project. We can live with
minor date problems, such as the incorrect century appearing on printed
reports, while we can not accept financial statements in the wrong currency.

It is a simplification to regard all the year 2000 remediation activity as a
homogeneous task. The problem is so pervasive that we need to adopt
significantly different approaches to remediating different types of application
and different types of modules.

Political uncertainty
The Euro is man-made and is subject to political will. Many details are still
undecided and we have to be ready to make changes at short notice. For
example, the timetable is not yet firm; at the moment it is more likely to be
brought forward than to slip backwards, as this would require a treaty
modification.

Other uncertainties include:

• which countries will join later, and when such an opportunity will arise

• whether there will be a requirement to publish statutory reports in Euro,
or in both Euro and national currencies, during the transitional period

• how financial markets will function on days which are public holidays in
one of the participating countries

• some details about how EMU will operate.

A concern is that the political masters may not understand the timescale
needed to implement the IT changes. Since IT systems will have to conform to

A comparison of the IT implications of the Y2k and the Euro issues

© Ovum Ltd 1998 Page 6 of 9

legal and political dictates, this uncertainty is an added burden for Euro
projects.

Conversely, year 2000 is a natural certainty that will happen on a specific day.

Scope of the software problem

The number of programs affected by the EMU is much smaller than the
number affected by year 2000.

The Euro is concerned with money; year 2000 is concerned with time. While
very many programs are concerned with manipulating money, calculating
costs and recording and reporting financial events, the good news is that
money is not as pervasive as time in the computing world. For example, in the
Euro project we will not need to worry about:

• how to simulate or manipulate the hardware clock

• software licences that expire when the clock is reset

• back-up data that is deleted when the clock is changed

• hardware, BIOS or operating systems that are not Euro-compliant

• the word processor

• embedded systems that drive vital life-support systems and which stop
when the date ticks to zero

• the lift ceasing to operate (provided that we have managed to pay for our
electricity!).

Outside the financial services industry, and until the time when the Euro
currency comes into circulation (1st January 2002), the repercussions of the
Euro will be limited to data processing applications. From this time onwards it
will be necessary to update all cash handling equipment, including electronic
point-of-sale terminals.

Although the scope of the problem is more limited, where changes to programs
are necessary, they are more logically complex than the typical date related
changes. The date problem is mainly about data representation, whereas the
Euro changes involve altering the logic of applications and developing some
substantial new applications.

Similarities between the Euro and year 2000 projects

The Euro project can be divided into:

• semi-mechanical modifications in currency conversion calculations and
presentation of financial data

• functional extensions and enhancements.

The first of these two groups has some similarities with the year 2000 project:

• start by creating an inventory of systems, identifying which have
dependencies on currency, and determining priorities

• planning, management and configuration control are the keys to a
successful project

• search the code to locate the parts that are dependent on currency, and
then determine the impact of any changes

• co-ordinate with software suppliers to determine whether, and when,
Euro-compatible versions of their products will be available

A comparison of the IT implications of the Y2k and the Euro issues

© Ovum Ltd 1998 Page 7 of 9

• thorough testing is needed to ensure both that the changes are accurate,
and that the unchanged functions are unaffected.

Project structure
The overall project structure for the early stages of the Euro project is very
similar to the one needed on year 2000 projects and needs to include the
following stages:

• business/IT strategic plan

• feasibility study

• external/internal design

• programming

• testing

• implementation and roll-out of the new systems.

In order to provide the major extensions and new functionality to support the
Euro, an IT project needs to follow the same procedure as any other new
development. Year 2000 does not have a parallel for this type of development.

Testing systems
These two projects share a need for good test management capability to
manage the scale of the testing activity and maintain the test results along
with configuration information about the application under test.

The Euro

Euro-related development comprises new (or radically altered) systems, and
updated systems.

New systems

New Euro systems should be tested as comprehensively as any other new
system. Since many of these systems will provide on-line services, their
performance and load-handling properties are particularly important.

Modified systems

As usual in code maintenance projects, the modules that have been altered
must be thoroughly tested. After this, regression testing focusing on the
functionality of the application is the main concern. Automated capture/replay
tools can be used to check the unchanged aspects of applications. The currency
fields can be masked and checked manually. However, a better solution is for
automated tools to provide rules for checking whether these fields have been
updated correctly. Tool suppliers are starting to take up this challenge, for
example by providing bolt on modules to capture/replay tools.

An important aspect of the regression testing is to check that the interfaces
between system components, including interfaces where data is transferred
through a database, are totally consistent and that the whole system continues
to function as a whole.

Performance and load testing are not major concerns for those aspects of the
Euro-updated systems which are susceptible to mechanical conversion,
because the nature of the Euro-related changes will not significantly alter
either the processing requirement or the volume of data moving around the
system. However, one aspect that should be checked is the amount of extra
storage needed to retain dual accounting records. And of course any new or

A comparison of the IT implications of the Y2k and the Euro issues

© Ovum Ltd 1998 Page 8 of 9

extended applications may be criticality impacted by performance
considerations.

Test data generation for updated systems

For the mechanical conversion aspects of the Euro project, test data can be
derived from the existing systems. It can come either from capturing the
output of the applications, or their existing test data can be used if this is
available. In both cases, however, financial data will need to be scaled to
provide values in Euro. Where a test is designed to explore the limits in the
range of values that a program can handle, the new limits will need to be
substituted. In a country where the national currency does not include a sub-
unit field, or is of a different order of magnitude from the Euro, it is essential
to modify all money values in the tests.

Year 2000

Year 2000 projects have significant and complex special needs for testing. It is
efficient to unit test changes areas of code, as well as to test remediated
systems. Typical year 2000 projects need to spend about 60% of their resources
on testing.

A system clock simulation tool is virtually essential for these projects as many
year 2000 projects work with mainframe-based applications and there are
several reasons which make it difficult to change the system clock for a test
run, such as triggering the expiry of software licences and impacting other
applications running on the computer at the same time.

Test data generation at the system level normally proceeds by capturing
actual input and output from the existing version of the application. Test data
for the next century can be constructed from this by a technique known as
date-ageing which advances all dates in the test scripts and test data by a
specified period. Many tools are available to do this and they exhibit a range of
sophistication. Many applications require dates to observe business rules, for
example that transactions do not fall on a Sunday. Simply advancing all dates
will violate these rules. However tools which adjust the new dates to satisfy
the rules can create problems where the application calculates the interval
between two dates, such as for an interest calculation. These complications
contribute to the scale of the year 2000 problem!

A comprehensive set of test cases for the remediated code is needed. It should
cover all feasible combinations of 20th and 21st century dates as well as
exercising any special functionality associated with particular dates, such as
leap years or the end of the financial year. Tests should also include cases
where each of these dates enters the application through its interfaces,
through its database or filestore, and through its system clock. Special tools
are needed to age data within a test database as it has to take account of the
structure and syntax of the database tables.

Bridging tools are sometimes needed to transfer data between a remediated
application and a data store which has not yet been converted, or vice-versa.

Roll-out of
We need to co-ordinate the roll-out of Euro-compliant systems to accommodate
their needs to communicate with each other, as with the year 2000 project.
This communication can be direct, or through shared databases and files. The
problems can be minimised by selecting groups of programs, so that
communication between updated and non-updated systems are minimised.
The remaining communication problems can be resolved by using bridging
programs to support data transfer, or by producing intermediate versions of
programs that use a mixture of old and new interface formats.

A comparison of the IT implications of the Y2k and the Euro issues

© Ovum Ltd 1998 Page 9 of 9

Databases will have to be updated and reformatted along with programs.
Tools, may help with this task.

Opportunities
Both projects provide business opportunities for tool vendors to meet the needs
of customers who have both an urgent requirements and budgets! The year
2000 project provides the bigger opportunity because of:

• its size throughout the world

• the need for several different kinds of support.

By comparison, the needs of the Euro project largely overlap with standard
application development. There is the danger of vendors using the Euro as a
repository for solutions looking for a problem to solve! However vendors should
gain benefit indirectly by gaining permanent customers from organisations
which have used their products on year 2000 projects.

IT departments have the opportunity to use both projects as vehicles for
improving their methods and processes.

Organisations have the opportunity to acquire new and improved applications.
In a few cases these projects have allowed them to replace applications which
would otherwise have remained unchanged for many years.

Conclusions
The similarity between the year 2000 project and the Euro project are largely
coincidental. A similar approach and a similar remediation environment are
required for the mechanical aspects of both projects. It follows that the same
staff and skills are going to find employment in both projects. We strongly
recommend that the two projects should run sequentially rather than in
parallel.

However most of the changes that will eventually be required for the Euro
project aren’t mechanical in nature and require a more creative approach.
These will be driven by business needs. The timetable for the Euro allows
organisations flexibility, even if the length of the transitional periods is going
to be reduced. Indeed many of the new business needs will not necessarily
become apparent before the full introduction of the Euro. The Euro project is
complicated by remaining uncertainties in its requirements. In particular the
curtailment of the second transitional period, when both new and old currency
are planned to circulate alongside each other, will simplify the project
significantly. Also changes to accounting procedures will not adhere to the
same timetable as the introduction of the Euro itself.

Slide 1

Cost of uality
The Real Bottom Line

presented by
L.Daniel Crowley, CCP, CSTE
QA Manager, IDX Seattle, USA

Nov 12, 1998Quality Week Europe
 1998

Slide 2

Cost of uality
 Schedule

l Introduction

l Principles of CQI (TQA) and Cost of Quality

l Strategy for COQ

l COQ Categories

l Implementation of COQ

Slide 3

Total Quality Assurance
Scope of Influence on Product Quality

LDC, 9/86

Touch
Labor

Non-Touch Labor

Supervisor &
Managers

CEO, VP, & Directors

Owners & Public

Slide 4

TOTAL QUALITY ASSURANCE
Elements for Success

LDC 10/88

Quality planning

Cost of Quality

Problem Solving

Process Quality
Control

Slide 5

Cost ofCost of uality uality

Running a company by profit alone
is like driving a car by looking in
the rearview mirror.

It tells you where you’ve been, not
where you are going!

Dr. E. Deming

Slide 6

l The goal of a Cost of Quality system
 is to:

Facilitate Quality Improvements that leads

to operating cost reduction Opportunities.

ASQC, "Principles of Quality Costs", 1986

Cost of uality
Goal

Slide 7

l The cost difference between present operation and

the possible operation of a business with all

systems and employees at 100% performance.

 or

l The difference between actual revenues and what

revenues could be if all customers were always

satisfied, that is , No Unhappy Customers.

LDC 10/88

Cost of uality
 Definition

Slide 8

Cost of Quality is Not:

 An Exact Cost.

 A Performance Measurement.

Cost of uality

Slide 9

Financial Data

Factory Data

Defect Reports
Labor Hours
Recode/Redesign
Customer Complaints

Sales
Operation Costs
Material Costs
Overhead Costs
Gen. & Admin. Costs

Cost of uality
 Measurement of a Company’s Health

50

40

30

20

10

 5

%

Percentage of
Sales Dollar

Slide 10

Similar to a Tachometer

MPHMPH

50

1000

2000
3000

4000

5000

35

75

0

50

75

35

5000

4000

30002000

1000

0

RPMRPM

3

O

1

2 4

5

R

O 1

2 4

5

R

3

FUEL
E F

.

FUEL
E F

.

Cost of uality

Slide 11

Similar to a Tachometer

COQ LDC 11/88

SalesSales

$100K

5%

10% 15%

20%

25%

$50K

$150K

0

$100K

$150K

$50K

25%

20%

15%10%

5%

0

COQCOQ

3

O

1

2 4

5

R

O 1

2 4

5

R

3

RESORCES
E F

.

RESORCES
E F

.

Cost of uality

Slide 12

IcebergIceberg

12/88 LDC

Bugs

Recode
Qual. Dept.

Warranty
Costs

Quotation Errors

Product Liability

Missed Deadlines
Configuration Errors

Complaint Handling

Bad Market Reviews

Process Slowdown
Field Service

Lost Market Share
Software Patches

Returned Goods

Interface
Errors

Help Desk

Poor Documentation

Training

Cost of uality

Slide 13

Element Decision Flow
Is Cost related to
Prevention of Non-
Conformance ?

Is Cost related to
Evaluating the
Conformance ?

Is Cost related to
Non-conformance ?

Is Non-Conformance
found prior to
Shipment ?YES

NO

PREVENTION

APPRAISAL

INTERNAL FAILURE

EXTERNAL FAILURE

Not a Quality Cost

YES

YES

NO

NO
YES

NO

Cost of uality

Slide 14

Examples of Elements

4 PREVENTION
Design Quality Progress Reviews
Requirements Documentation
SQA Training
Cleanroom Software Engineering

üINTERNAL FAILURE
Recode/Repair Labor
Defect Tracking & Reports
Requirement Changes
Down Hardware

üAPPRAISAL
 Unit Testing
 Regression Testing
 Automated Test Tools
 User Interface Reviews

üEXTERNAL FAILURE
 Returned Goods
 Liability Costs
 Help Desk
 Lost Sales/Market Share

Cost of uality

Slide 15

l Corrective Action is paid for Once,

l Whereas Failure to take corrective action may
be paid for over and over again.

Corrective Action vs Failure
Cost of uality

Slide 16

Strategy Premise

The Strategy is based on the premise that:

l For each failure there is a root cause.

l Causes are preventable.

l Prevention is always cheaper.

ACQC, Principles of Quality Costs, 1986

Cost of uality

Slide 17

Strategy for using Quality Costs
l Take direct attack on FAILURE costs,

try to drive to zero $.

l Invest in the "right" PREVENTION activities to bring
about improvements.

l Reduce APPRAISAL costs according to results achieved.

l Continuously evaluate and redirect PREVENTION efforts
to gain further improvement.

ASQC, Principles of Quality Costs, 1986

Cost of uality

Slide 18

Cost of uality

$0.00

$5,000.00

$10,000.00

$15,000.00

R
eq

ui
rm

en
ts

A
na

ly
si

s

D
es

ig
n

C
od

e

T
es

ti
ng

In
st

al
l

E
nd

 U
se

Est. Cost to Fix a Bug at Various Stages

$100 $200 $300 $500 $2000 $8000 $15000

Slide 19

$0 $500 $1000 $1500 $2000 $2500

X 1000 $

COST OF QUALITY

Cost of uality - PARETO
Accumulated Cost per Item Type

1
2
3
4
5
6
7
8
9
10
11
12

Slide 20

Recipe for Success

1. Educate & Develop: Management & Employee Support

2. Collect, Analysis and Report Cost of Quality Data

3. Involve & Support Corrective Action Teams (CAT)

4. Implement Changes recommended by CAT

5. Go to Step #2 (expand data items collected)

1. 2. 3.

5.

4.

Cost of uality

Slide 21

Cost of
Quality%

NORMAL DISTRIBUTION

TOTAL SALES

Appraisal

Prevention

Internal
Failures

External
Failures

C O Q $$$

Cost of uality

Slide 22

Cost of uality
Example based on 14% COQ

1/20/89 LDC

Sales = $127 Million

COQ @ 14%

$17.8 Mil.

33%

45%

20%

2%

$3.6 Mil

$.04 Mil

$8.0 Mil

$5.9 Mil

Appraisal

Prevention

Internal
Failures

External
Failures

Slide 23

OPTIMUM DISTRIBUTION

TOTAL SALES

Cost of uality

Appraisal

Prevention

Internal
Failures

External
Failures

Cost of
Quality%

C O Q $$$

Slide 24

Cost of Quality History
COQ as a Percentage of Total Sales

Prevention

0

5

10

15

20

25

-2 6 18 30 42 60
Months Using COQ

%
O
f

S
a
l
e

s

Start COQStart COQ

COSTS

0

Slide 25

Cost of Quality History
COQ as a Percentage of Total Sales

Prevention

Appraisal

0

5

10

15

20

25

-2 6 18 30 42 60
Months Using COQ

%
O
f

S
a
l
e

s

Start COQStart COQ

COSTS

0

Slide 26

Cost of Quality History
COQ as a Percentage of Total Sales

Prevention

Appraisal

Int. Failure

0

5

10

15

20

25

-2 6 18 30 42 60
Months Using COQ

%
O
f

S
a
l
e

s

Start COQStart COQ

COSTS

0

Slide 27

Cost of Quality History
COQ as a Percentage of Total Sales

Prevention

Appraisal

Int. Failure

Ext. Failure

0

5

10

15

20

25

-2 6 18 30 42 60
Months Using COQ

%
O
f

S
a
l
e

s

Start COQStart COQ

COSTS

0

Slide 28

Cost of Quality History
COQ as a Percentage of Total Sales

Prevention

Appraisal

Int. Failure

Ext. Failure

Total

0

5

10

15

20

25

-2 6 18 30 42 60
Months Using COQ

%
O
f

S
a
l
e

s

Start COQStart COQ

COSTS

0

Slide 29

Cost of Quality History
COQ as a Percentage of Total Sales

Prevention

Appraisal

Int. Failure

Ext. Failure

Total

0

5

10

15

20

25

-2 6 18 30 42 60
Months Using COQ

%
O
f

S
a
l
e

s

Start COQStart COQ

Sales

COSTS

0

Slide 30

Cost of Quality History
COQ as a Percentage of Total Sales

Prevention

Appraisal

Int. Failure

Ext. Failure

Total

0

5

10

15

20

25

-2 6 18 30 42 60
Months Using COQ

%
O
f

S
a
l
e

s

Start COQStart COQ

Sales

Productivity COSTS

0

Slide 31

Benefits of Improved Quality

Increases
Revenue
Sales
Capacity
Employee Satisfaction
Customer Satisfaction
Market Share
Competitive Edge
Personal Time Away

Decreases
Defects
Overall Costs
Returned Goods
Employee Turnover
Customer Complaints
Owner & Mgmt. Stress

Slide 32

Evolutionary Phases
 Implementation (Selling) Phase

 Project (Pilot) Phase

 Expand & Ongoing Phase

LDC 10/88

C
O
Q

Cost of uality

Slide 33

Average Industry Cost Of Quality %Average Industry Cost Of Quality %

•• Based on Industry Standards - Based on Industry Standards -

Cost of Quality % of Total Sales $$$Cost of Quality % of Total Sales $$$

•• Software Companies Software Companies 30-60 % COQ30-60 % COQ

•• Information / ServiceInformation / Service 20-35 % COQ20-35 % COQ

•• ManufacturingManufacturing 15-25 % COQ15-25 % COQ

Slide 34

QUALITY is KEY
CHAIN of ELEMENTS

12/88 LDC

Q
Culture

Mgmt. Commitment

Quality Improvement
Teams

Quality Concept
Training

Cost of
Quality

Awareness/
communication

Define
Requirements

Measurement

Corrective
Action
Teams

Recognition

Skills
Training

Slide 35

Total Quality Assurance
Required Attitudes for Success

LDC, 12/89

Touch Labor

Non-Touch Labor

Supervisor &
Managers

CEO, VP & Directors

Owners & Public

The Customer is

Plan & Design in Quality

Demand & Buy Only Quality

Make Quality Decisions

Select Quality Before
Schedule & Profits

the Next Operation ONE WAY

Slide 36

Thank You for ListeningThank You for Listening

References:References:
•• Principles of Quality Costs (ASQ)Principles of Quality Costs (ASQ)
•• Guide for Reducing Quality CostsGuide for Reducing Quality Costs

(ASQ)(ASQ)
•• Quality without Tears,Quality without Tears, Crosby Crosby
•• Quality Cost Analysis: Benefits &Quality Cost Analysis: Benefits &

Risks,Risks, Kaner Kaner
•• Quality Control Handbook,Quality Control Handbook, Juran Juran

To Contact DanielTo Contact Daniel Crowley Crowley
•• 206-689-1352206-689-1352
•• EmailEmail Daniel_ Daniel_CrowleyCrowley@IDX.@IDX.comcom

Slide 1

1

Questionnaire based usability testingQuestionnaire based usability testing

European Software Quality Week ‘98European Software Quality Week ‘98

Erik van VeenendaalErik van Veenendaal
(eve@tm.tue.nl)

Slide 2

TopicsTopics

ll A closer look atA closer look at
usabilityusability

ll QuestionnaireQuestionnaire
based testingbased testing
(SUMI)(SUMI)

ll Practical examplesPractical examples
ll Cost / BenefitsCost / Benefits

Slide 3

Usability in action....Usability in action....

ll ATM ATM “…only usable on an overcast day..”“…only usable on an overcast day..”

ll Video recorderVideo recorder
ll Microsoft office: tool barsMicrosoft office: tool bars

–– Microsoft has 17 usability labsMicrosoft has 17 usability labs

ll Not Not justjust examples: 25% of IT project fail examples: 25% of IT project fail
–– usability is a critical success factorusability is a critical success factor

ll traditional communication (attitude) problemtraditional communication (attitude) problem
ll more often part of testing strategymore often part of testing strategy
ll “…usability is subjective and vague….”“…usability is subjective and vague….”

Slide 4

4

Usability definitionsUsability definitions

ll the the effectivenesseffectiveness, , efficiencyefficiency and and satisfactionsatisfaction with with
which specified which specified usersusers can achieve specified can achieve specified goalsgoals in in
particular particular environments environments (ISO 9241)(ISO 9241)

ll the capability of the software the capability of the software to be to be understoodunderstood,,
learnedlearned, , usedused and and likedliked by the user, when used by the user, when used
under specified conditions (ISO 9126)under specified conditions (ISO 9126)

ll not just the property of the user-interface, but anot just the property of the user-interface, but a
multiple componentmultiple component issue associated with the issue associated with the
attributes of attributes of learnabilitylearnability, , efficiencyefficiency, , memorabilitymemorability,,
errorserrors and and satisfactionsatisfaction (Nielsen, 1994) (Nielsen, 1994)

Slide 5

5

FocusFocus

Broad view OR narrow focusBroad view OR narrow focus How do I
leave the
 help ?

“Can users carry out their tasks ?”

Slide 6

TechniquesTechniques

ll Expert review, cognitive walkthrough,Expert review, cognitive walkthrough,
checklist, metrics, process cycle test, usechecklist, metrics, process cycle test, use
cases, laboratory testcases, laboratory test

ll ProblemsProblems
–– time, expertise, limited view, user involvement time, expertise, limited view, user involvement

ll Hard to get startedHard to get started
–– is there a problem ?is there a problem ?
–– selling usability (testing)selling usability (testing)

Slide 7

A possible solutionA possible solution

ll Questionnaire based testingQuestionnaire based testing
–– good cost / benefit ratiogood cost / benefit ratio
–– easy to start with !!easy to start with !!

ll SSoftware oftware UUsability sability MMeasurement easurement IInventorynventory
(SUMI)(SUMI)

Slide 8

SUMISUMI

ll Broad focus: user satisfactionBroad focus: user satisfaction
ll Well founded Well founded questionnaire: based onquestionnaire: based on

practical research (MUSiC)practical research (MUSiC)
ll Referred to in ISO 9126 and ISO 9241Referred to in ISO 9126 and ISO 9241
ll The user scores are standardised by using aThe user scores are standardised by using a

reference databasereference database
ll Quantitative, Quantitative, objective objective information of users’information of users’

subjective attitudesubjective attitude to six usability aspects to six usability aspects

Slide 9

9

SUMI - metricsSUMI - metrics

ll AffectAffect - - user’s feeling about interacting with the productuser’s feeling about interacting with the product

ll EfficiencyEfficiency - - user’s perception of efficiency of taskuser’s perception of efficiency of task
performanceperformance

ll HelpfulnessHelpfulness - view of how communicative the product is- view of how communicative the product is
(e.g. help, error messages, warnings)(e.g. help, error messages, warnings)

ll ControlControl - user’s feeling about how the product responds in- user’s feeling about how the product responds in
a normal and consistent mannera normal and consistent manner

ll LearnabilityLearnability - how quickly does the user become familiar- how quickly does the user become familiar
with the product and the quality of the documentationwith the product and the quality of the documentation

Slide 10

SUMI - 2SUMI - 2

ll Intended for use by usersIntended for use by users
–– with little or no experience of computerswith little or no experience of computers
–– doing representative tasksdoing representative tasks
–– minimum sample of 10 !!minimum sample of 10 !!

ll Running version of software requiredRunning version of software required
–– prototype, test release, operational versionprototype, test release, operational version

ll Supported by an analysis toolSupported by an analysis tool
ll Specialised version for MultiMedia andSpecialised version for MultiMedia and

Internet type applicationsInternet type applications

Slide 11

50 questions50 questions

I sometimes don’t know what to do next with this softwareI sometimes don’t know what to do next with this software qq qq qq

It is easy to make the software exactly do what you wantIt is easy to make the software exactly do what you want qq qq qq

It takes too long to learn the software commandsIt takes too long to learn the software commands qq qq qq

The software has a very attractive presentation The software has a very attractive presentation qq qq qq

The questionnaireThe questionnaire

ag
re

e
ag

re
e

ag
re

e
un

de
ci

de
d

un
de

ci
de

d
di

sa
gr

ee
di

sa
gr

ee

Available in English, German, French, Dutch, Available in English, German, French, Dutch,
Spanish, Italian, Greek and SwedishSpanish, Italian, Greek and Swedish

Slide 12

Context analysis: User groupsContext analysis: User groups

ll The usability of a product is affected notThe usability of a product is affected not
only by the features of the product itself butonly by the features of the product itself but
also by its “Context of Use”also by its “Context of Use”

ll Context is characterized by :Context is characterized by :
–– the users of the productthe users of the product
–– the task they carry outthe task they carry out
–– the working environmentthe working environment
–– ……
–– tool : CoU checklist MUSiCtool : CoU checklist MUSiC

Slide 13

SUMI Score graphSUMI Score graph

Slide 14

OutputOutput

ll Small sample: consider the Small sample: consider the entireentire
distributiondistribution and not just the mean value and not just the mean value

ll OutliersOutliers are identified are identified
–– user leveluser level
–– question levelquestion level
–– context analysis !!context analysis !!

ll Score tablesScore tables
–– per users, per questionper users, per question
–– for analysis purposesfor analysis purposes

Slide 15

Project 1 : PDM systemProject 1 : PDM system

ll PDM: Product Data ManagementPDM: Product Data Management
ll Implementation company wideImplementation company wide
ll Limited resources, attitude problemLimited resources, attitude problem

–– usability discussionsusability discussions

ll Customer trail projectCustomer trail project
–– various user groupsvarious user groups

ll SUMI to compare releasesSUMI to compare releases
ll Result: (very) low scoreResult: (very) low score

–– global : 36 !!global : 36 !!

Slide 16

Project 1 continuedProject 1 continued

ll AnalysisAnalysis
–– task efficiency (too many and too difficult steps)task efficiency (too many and too difficult steps)
–– messages and help-feature unclearmessages and help-feature unclear

ll Follow-upFollow-up
–– detailed analysis with users detailed analysis with users (time available)(time available)

»» specialised user-interface toolspecialised user-interface tool
–– increase priority outstanding CR’sincrease priority outstanding CR’s
–– improved information service improved information service (Affect)(Affect)

–– re-evaluation plannedre-evaluation planned
–– usability is a steering committee issue now !!usability is a steering committee issue now !!

Slide 17

Project 2 : Intranet siteProject 2 : Intranet site

ll Intranet site Test services departmentIntranet site Test services department
ll Large Dutch bankLarge Dutch bank
ll Usability lab available, experience on SUMIUsability lab available, experience on SUMI

–– MUMMS applicability test, open questions addedMUMMS applicability test, open questions added

ll UsersUsers
–– varying in age and backgroundvarying in age and background
–– users with / without internet experienceusers with / without internet experience

ll Results: moderately high all roundResults: moderately high all round
–– lot of divergence in users opinionlot of divergence in users opinion

Slide 18

Project 2 continuedProject 2 continued

ll AnalysisAnalysis
–– not many MM features (attractiveness)not many MM features (attractiveness)
–– efficiency showed difficulty in the structure for someefficiency showed difficulty in the structure for some

usersusers

ll Follow-upFollow-up
–– change structure of set (more user oriented)change structure of set (more user oriented)
–– add MM featuresadd MM features
–– control issues such as menu bar showing where you arecontrol issues such as menu bar showing where you are
–– re-evaluation plannedre-evaluation planned
–– MUMMS evaluation now part of their servicesMUMMS evaluation now part of their services

Slide 19

Cost/benefits processCost/benefits process

ll Easy-to-use, knowledge:Easy-to-use, knowledge:
–– instructions and constraints for using SUMIinstructions and constraints for using SUMI
–– statistical conceptsstatistical concepts

ll Objective indicatorObjective indicator
–– testing tends to focus on defectstesting tends to focus on defects

ll Low costs (3 days)Low costs (3 days)
–– small initial investment neededsmall initial investment needed

ll Late in life cycleLate in life cycle
ll Minimum of 10 user doing the “same” tasksMinimum of 10 user doing the “same” tasks

Slide 20

Cost/benefits resultsCost/benefits results

ll Fast well-founded results !!Fast well-founded results !!

ll (limited) detailed analysis possible(limited) detailed analysis possible
–– SUMI metrics, improvement directions, further testingSUMI metrics, improvement directions, further testing

ll Score alone does not tell Score alone does not tell what causeswhat causes the the
usability problems, add open questionsusability problems, add open questions

ll Comparison of products Comparison of products (different versions)(different versions)

ll A great way to start and moreA great way to start and more
–– beware any method can be usedbeware any method can be used

 both well and badlyboth well and badly

1

Questionnaire based usability testing

Drs. Erik P.W.M. van Veenendaal CISA
(eve@tm.tue.nl)

Usability is an important aspect of software products. However, in practice not much
attention is given to this issue during testing. Testers often do not have the knowledge,
instruments and/or time available to handle usability. This paper introduces the Software
Usability Measurement Inventory (SUMI) testing technique as a possible solution to these
problems. SUMI is a rigorously tested and validated method to measure software quality
from a user perspective. Using SUMI the usability of a software product or prototype can be
evaluated in a consistent and objective manner. The technique is supported by an extensive
reference database and embedded in an effective analysis and reporting tool.

SUMI has been applied in practice in a great number of projects. This paper also deals with
some practical applications. The results, usability improvements, cost and benefits are
described. Conclusions are drawn regarding the applicability and the limitations of SUMI
for usability testing.

A closer look at usability

Several investigations have shown that in addition to functionality and reliability, usability is a
very important success factor (Moolenaar and Van Veenendaal,1997). Sometimes it is possible
to test the software extensively in a usability lab environment. However, in most other
situations a usability test has to be carried out with minimum resources.

The usability of a product can be tested from different perspectives. Quite often the scope is
limited to "ease-of-use". The "ease-of-use" is mainly determined by characteristics of the
software product itself, such as the user-interface. Within this type of scope usability is part of
product quality characteristics. The usability definition of ISO 9126 is an example of this type
of perspective:

Usability
the capability of the software to be understood, learned, used and liked by the user, when used
under specified condition (ISO 9126-1,1998)

Two techniques that can be carried out at reasonable costs evaluating the usability product
quality, are expert reviews and checklists. However, these techniques have the disadvantage
that the real stakeholder, e.g. the user, isn’t involved.

In a broader scope usability is being determined by using the product in its (operational)
environment. The type of users, the tasks to be carried out, physical and social aspects that can
be related to the usage of the software products are taken into account. Usability is being
defined as “quality-in-use”. The usability definition of ISO 9241 is an example of this type of
perspective:

Usability
the extent to which a product can be used by specified users to achieve goals with effectiveness,
efficiency and satisfaction in a specified context of use (ISO 9241-11,1996)

2

Clearly these two perspective of usability are not independent. Achieving “quality-in-use” is
dependent on meeting criteria for product quality. The interrelationship is shown in figure 1.

product
quality

quality
in use

depends on

influences

Figure 1 : Relationship between different types of usability

Establishing test scenarios, for instance based on use cases (Jacobson,1992), can be applied to
test usability in accordance with ISO 9241. However, usability testing with specified test cases
/ scenarios is a big step for most organization and often not even necessary. From a situation
where usability is not tested at all one wants a technique that involves users, is reliable but still
requires limited resources.

Within the European ESPRIT project MUSiC [ESPRIT 5429] a method has been developed
that serves to determine the quality of a software product from a user’ perspective. Software
Usability Measurement Inventory (SUMI) is a questionnaire based method that can been
designed for cost effective usage.

What is SUMI?

Software Usability Measurement Inventory (SUMI) is a solution to the recurring problem of
measuring users' perception of the usability of software. It provides a valid and reliable method
for the comparison of (competing) products and differing versions of the same product, as well
as providing diagnostic information for future developments. It consists of a 50-item
questionnaire devised in accordance with psychometric practice. Each of the questions is
answered with "agree", "undecided" or "disagree". The following sample shows the kind of
questions that are asked:

• This software responds too slowly to inputs
• I would recommend this software to my colleagues
• The instructions and prompts are helpful
• I sometimes wonder if I am using the right command
• Working with this software is satisfactory
• The way that system information is presented is clear and understandable
• I think this software is consistent.

The SUMI questionnaire is available in English (UK and US), French, German, Dutch,
Spanish, Italian, Greek and Swedish.

SUMI is intended to be administered to a sample of users who have had some experience of
using the software to be evaluated. In order to use SUMI effectively a minimum of ten users is
recommended. Based on the answers given and statistical concepts the usability scores are
being calculated. Of course SUMI needs a working version of the software before SUMI can
be measured. This working version can also be a prototype or a test release.

One of the most important aspects of SUMI has been the development of the standardization
database, which now consists of usability profiles of over 2000 different kinds of applications.

3

Basically any kind of application can be evaluated using SUMI as long as it has user input
through keyboard or pointing device, display on screen, and some input and output between
secondary memory and peripheral devices. When evaluating a product or series of products
using SUMI, one may either do a product-against-product comparison, or compare each
product against the standardization database, to see how the product that is being rated
compares against an average state-of-the-market profile.

SUMI gives a global usability figure and then readings on five subscales:
• Affect: how much the product captures the user's emotional responses
• Control: degree to which the user feels he, and not the product, is setting the pace
• Efficiency: degree to which the user can achieve the goals of his interaction with the

product
• Helpfulness: extent to which the product seems to assist the user
• Learnability: ease with which a user can get started and learn new features of the product.

Figure 2: a sample profile showing SUMI scales

Figure 2 shows an example of SUMI output; it shows the scores of a test and the spreading of
these scores (measured by the standard deviation) against the average score of the reference
database, reflected by the value 50. Consequently the usability scores shown in the sample
profile are positive, e.g. more than state-of-the-art, with a reasonable level of spreading.

SUMI is the only available questionnaire for the assessment of usability of software, which has
been developed, validated and standardized on a European wide basis. The SUMI subscales are
being referenced in international ISO standards on usability (ISO 9241-10,1994) and software
product quality (ISO 9126-2,1997). Product evaluation with SUMI provides a clear and
objective measurement of users' view of the suitability of software for their tasks.

Recently a specialized version of SUMI to be used for multimedia products has been
developed: MUMMS (Measuring Usability of Multi Media Systems).

Any SUMI test must be carried out by asking people that perform realistic, representative
tasks. Employing a method such as usability context analysis (NPL,1995) helps identify and
specify in a systematic way the characteristics of the users, the tasks they will carry out, and
the circumstances of use. Based on the results the various user groups can be described and

4

used to define how these user groups can be represented in the test.

Practical Applications

Project 1: Project Management Package

Approach
Subject to the usability evaluation by means of SUMI was a software package offering project
administration and control functionality. The software package is positioned as a multi-project
system for controlling the project time, e.g. in terms of scheduling and tracking, and managing
the productivity of projects, e.g. in terms of effort and deliverables. The package has developed
by a Dutch software house that specializes in the development of standard software packages.

The SUMI test was part of an acceptance test carried out on behalf of a potential customer.
Due to the very high number of users, a number of different user groups, their inexperience
with project management software and the great variety of information needs, usability was an
important characteristic. It was even looked upon as the critical success factor during
implementation. Two main user group were distinguished. One user group was mainly involved
in input processing of effort and time spent. For this user group especially operability and
efficiency is of great importance. Another user group was characterized as output users.
Especially receiving the right management information is important for the output users. Per
user group a SUMI test has been carried out.

Regarding the usage of the SUMI technique for the usability evaluation a specific acceptance
criteria was applied. SUMI provides quantitative values relating to a number of characteristics
that lead to a better understanding of usability. As part of the acceptance test, the SUMI scale
was used that provides an overall judgement of usability, the so-called “global scale”. Based on
the data in the SUMI database, it can be stated that the global score has an average value of 50
in a normal distribution. This means that by definition for a value exceeding 50 the user
satisfaction is higher than average. In the test of the project management package the
acceptance criteria applied that for each user group the global scale and the lower limit of the
95% confidence interval must both exceed the value of 50.

Results
The "global scale" regarding both user groups was below the desired 50. For the input user
group the score was even a mere 33. The output user group showed a slightly better score. Not
only the “global scale” but also most other subscales were scoring below 50.

Because the results did not meet the acceptance criteria that were set a number of usability
improvement measures needed to taken. Examples of measures that were taken based on the
results of the SUMI test are:
• extension and adaptation of the user training
• optimization of efficiency for important input functions
• implementation of specific report generation tools for the output user with a clear and

understandable user-interface.

Project 2: Intranet site

Approach
By means of MUMMS, the specialized multimedia version of SUMI, the usability of an
intranet site prototype of a large bank was evaluated. The intranet site was set up by the test
services department to get well-known and to present themselves to potential customers. The

5

fact that during the test only a prototype version of the intranet site was available meant that
some pages were not yet accessible. For MUMMS a special subscale has been introduced, with
the objective to measure the users' multimedia “feeling”:
• Excitement: extent to which end-users feel that they are “drawn into” the world of the

multimedia application.

In total ten users (testers) were involved in the MUMMS evaluation. The set of users can be
characterized by:
• not having been involved during the development of the intranet site
• potential customers
• four users with internet experience
• six users without internet experience
• varying by age and background (job title).

Results
The table below shows the overall scores for the various MUMMS subscales:

 Affect Control Efficiency Helpfulness Learnability Excitement
 average
score

 69 74 62 67 67 68

 median

 71 77 67 69 67 72

 standard
deviation

 9 12 11 8 6 12

Table 1: Overall MUMMS score table

The various scores were moderately high all round. However, there seems to be a divergence of
opinion on the control and excitement scales. Some low scores are pulling down the control and
efficiency scales (see next table). Two users from the sample were giving exceptionally low
average scores. They were analyzed in detail but no explanation was found.

 A C E H L E Average
 User 1 71 81 67 71 74 77 73
 User 2 74 74 74 71 67 71 72
 User 3 81 84 67 67 74 74 74
 User 4 54 51 54 57 64 44 54
 User 5 71 74 43 58 55 76 63
 User 6 64 84 67 81 67 69 72
 User 7 51 81 74 54 74 64 66
 User 8 71 81 64 74 71 81 73
 User 9 77 81 76 84 77 74 78
 User 10 64 47 51 57 57 44 53

Table 2: MUMMS scores per user

Results
As stated the usability of the Intranet site was rated moderately high from the users’
perspective, although there seemed to be a lot of divergence in the various user opinions. Some
more detailed conclusion were:
• Attractiveness
 The attractiveness score is high (almost 70%). However some users (4, 7 and 10) have a

6

relatively low score. Especially the questions “this MM system is entertaining and fun to
use” and “using this MM system is exiting” are answered in different ways. It seems some
additional MM features should be added to further improve the attractiveness for all users.

• Control
 A very high score for control in general. Again two users can be identified as outlayers (4

and 10) scoring only around 50%, the other scores are around 80%. Problems, if any, in
this area could be traced back to the structure of the site.

• Efficiency
 The average score on efficiency is the lowest, although still above average. Users need a

more time than expected to carry out their task, e.g. find the right information.

On the basis of the MUMMS evaluation it was decided to improve the structure of the internet
site and to add a number of features before releasing the site to the users. Currently the update
of the intranet site is being carried out. A MUMMS re-evaluation has been planned to quantify
the impact of the improvement regarding usability.

Applicability of SUMI

On the basis of the test carried out in practice, a number of conclusions have been drawn
regarding the applicability of SUMI and MUMMS:
• it is easy to use; not many costs are involved. This applies both to the evaluator and the

customer. On average a SUMI test can be carried in approximately 2 to 3 days; this
includes the time necessary for the mini context analysis and reporting;

• during testing the emphasis is on finding defects, this often results in a negative quality
indications. SUMI however, provides an objective opinion;

• the usability score is split into various aspects, making a thorough more detailed evaluation
possible (using the various output data);

• MUMMS provides, after detailed analysis and discussion, directions for improvement and
directions for further investigation. SUMI can also be used to determine whether a more
detailed usability test, e.g. laboratory test, is necessary.

However, also some disadvantages can be distinguished:
• a running version of the system needs to be available; this implies SUMI can only be

carried at a relatively late stage of the project;
• the high (minimum of ten) number of users with the same background, that need to fill out

the questionnaire. Quite often the implementation or test doesn’t involve ten or more users
belonging to the same user group;

• the accuracy and level of detail of the findings is limited (this can partly be solved by
adding a number of open question to the SUMI questionnaire);

Conclusions

It has been said that a system’s end users are the experts in using the system to achieve goals
and that their voices should be listened to when that system is being evaluated. SUMI does
precisely that: it allows quantification of the end users’ experience with the software and it
encourages the tester to focus in on issues that the end users have difficulty with. Evaluation by
experts is also important, but it inevitably considers the system as a collection of software
entities.

A questionnaire such as SUMI represents the end result of a lot of effort. The tester get the
result of this effort instantly when SUMI is used: the high validity and reliability rates reported
for SUMI are due to a large measure to the rigorous and systematic approach adopted in

7

constructing the questionnaire and to the emphasis on industry-based testing during
development. However, as with all tools, it is possible to use SUMI both well and badly. Care
taken over establishing the context of use, characterizing the end user population, and
understanding the tasks for which the system will be used supports sensitive testing and yields
valid and useful results in the end.

Literature

Bevan, N. (1997), Quality and usability: a new framework, in: E. van Veenendaal and J.
McMullan (eds.), Achieving Software Product Quality, Tutein Nolthenius, ‘s
Hertogenbosch, The Netherlands

Bos, R. and E.P.W.M. van Veenendaal (1998), For quality of Multimedia systems: The
MultiSpace approach (in Dutch), in: Information Management, May 1998

ISO/IEC FCD 9126-1 (1998), Information technology - Software product quality - Part 1 :
Quality model, International Organization of Standardization

ISO/IEC PDTR 9126-2 (1997), Information technology - Software quality characteristics
and metrics - Part 2 : External metrics, International Organization of Standardization

ISO 9421-10 (1994), Ergonomic Requirements for office work with visual display terminals
(VDT's) - Part 10 : Dialogue principles, International Organization of Standardization

ISO 9241-11 (1995), Ergonomic Requirements for office work with visual display terminals
(VDT's) - Part 11 : Guidance on usability, International Organization of Standardization

Jacobson, I. (1992), Object Oriented Software Engineering; A Use Case Driven Approach,
Addison Wesley, ISBN 0-201-54435-0

Kirakowski, J., The Software Usability Measurement Inventory: Background and Usage, in:
Usability Evaluation in Industry, Taylor and Francis

Kirakowski, J. and M. Corbett (1993), SUMI: the Software Usability Measurement Inventory,
in: British Journal of Educational Technology, Vol. 24 No. 3 1993

Moolenaar, K.S. and E.P.W.M. van Veenendaal (1997), Report on demand oriented survey,
MultiSpace project [ESPRIT 23066]

National Physical Labotory (NPL) (1995), Usability Context Analysis: A Practical Guide,
version 4.0, NPL Usability Services, UK

Preece, J. et al, Human-Computer Interaction, Addison-Wesley Publishing company

Tienekens, J.J.M. and E.P.W.M. van Veenendaal (1997), Software Quality from a Business
Perspective, Kluwer Bedrijfsinformatie, Deventer, The Netherlands

The Author
Drs. Erik P.W.M. van Veenendaal CISA has been working as a practitioner and manager
within the area of software quality for a great number of years. Within this area he specializes
in testing and is the author of several books, e.g. "Testing according to TMap" (in Dutch) and
“Software Quality from a Business Perspective”. He is a regular speaker both at national and
international testing conferences and a leading international trainer in the field of software
testing. Erik van Veenendaal is the founder and managing director of Improve Quality Services.
Improve Quality Services provides services in the area of quality management, usability and
testing.
At the Eindhoven University of Technology, Faculty of Technology Management, he is part-
time involved in lecturing and research on information management, software quality and test
management. He is on the Dutch standards institute committee for software quality.

Slide 1

© ESI 1998QWE-98

B I G
Business-driven Improvement Guide

STAGED MODEL FOR SPICE:
HOW TO REDUCE TIME TO MARKET

Slide 2

© ESI 1998QWE-98

Objectives of the Paper
• Present a new guide, BIG-TTM, as a part of ESI’s

BIG series.

• Explain the development of BIG-TTM based on
BIG series development method.

• Describe the most relevant factors for reducing
Time to Market of software products from ESI’s
point of view.

• Introduce IMPACT, general improvement cycle
used as a framework of the BIG guides

Slide 3

© ESI 1998QWE-98

SPI and Business Goals

ISO 9001
Certificate

TTM

ISO 9001
Certification

Inicial
Re p e tib le

CMM Level2

Process

Software Process
Improvement

Business Goals

Slide 4

© ESI 1998QWE-98

BIG Series
Common features of BIG products:

• Derive an improvement plan to achieve an explicit Business Goal.

• Software Process Improvement plan based on the SPICE model.

ESI’s BIG Series Business Goal

• BIG-ISO9001 ISO 9001 certification

• BIG-TTM Reduce Time to Market

• BIG-CMM Achieve CMM Level 2

Slide 5

© ESI 1998QWE-98

BIG Series Development Method

Interdependency Analysis

Mapping
Business Goal-SPICE

SPICE Processes
Selection

Target profile for the
selected SPICE processes

Slide 6

© ESI 1998QWE-98

SPICE Model - Objectives
• To define, at a high level, fundamental processes

that are essential to good software engineering

• To organise these processes to help software
personnel understand them and use them for
continuous improvement of the management of
software processes

• To define a standard scheme for rating the
capability of the software processes in an
organisation

Slide 7

© ESI 1998QWE-98

SPICE Model - Architecture
Model

Architecture

Life cycle
processes

Process
Category

Base Practices

Process

Management
Practice

Process
Attributes

Capability
Determination

The Process Management
Dimension

The Process Dimension

Slide 8

© ESI 1998QWE-98

SPICE Model - Process Dimension

S
U
P
P
O
R
T

CUSTOMER-SUPPLIER

ENGINEERING

MANAGEMENT

ORGANISATION

Interrelationship of process categories

TTM - Definition
Time elapsed between the decision to start a project (contract

award) and the installation of the products at the client premises

First contact with the customer Contract sign
and project start

Installation of the
products

TTM
Start to apply Requirements

elicitation

SPICE Model - Capability Dimension

5

4

3

2

1

0

Optimisi ng

Pred ictab le

Established

Managed

Performed

Incomplete

5.1 Process Change

5.2 Continuous Improvement

Attributes

1.1 Process Performance

2.1 Performance Management

2.2 Work Prod uct Management

3.1 Process Definition

3.2 Process Resou rce

4.1 Proc ess Measurem ent

4.2 Process Control

Slide 11

© ESI 1998QWE-98

TTM-Factors

Inspection Risk management

Preventive actions

Problem resolution
management

Requirements non-
volatility

Project management&
track

Software
configuration
management

Slide 12

© ESI 1998QWE-98

Mapping TTM-SPICE

 Processes Fi
x

TT
M

Pr
ev

en
tiv

e
ac

tio
ns

Pr
ob

le
m

re
so

lu
tio

n
M

an
ag

e.

R
eq

ui
re

.
no

n-
vo

la
til

ity

MAN.2 Project management process X
MAN.4 Risk management process X X
SUP.2 Configuration Management process X X X
CUS.3 Requirements elicitation process X X
SUP.8 Problem resolution process X
SUP.6 Joint review process X X
ENG.1.1 System requirements analysis and design

process
X

ENG1.2 Software requirements analysis process X
SUP.4 Verification process X
ORG.3 Human resources management process X X X X
SUP.3 Quality assurance process X X

Interdependency Analysis

Mapping
Business Goal-SPICE

SPICE Processes
Selection

Target profile for the
selected SPICE processes

Slide 13

© ESI 1998QWE-98

Target Profile of SPICE Processes

MAN.2
MAN.4
SUP.2
CUS.3
SUP.8
SUP.6

ENG.1.1
ENG.1.2

SUP.4
ORG.3
SUP.3

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 LEVEL 5

Partially achievedNot achieved Largely achieved Fully achieved

Interdependency Analysis

Mapping
Business Goal-SPICE

SPICE Processes
Selection

Target profile for the
selected SPICE processes

Slide 14

© ESI 1998QWE-98

Phases of the Staged model

Phase 1
Fix TTM

Phase 2
Time reducing

Phase 3
Institutionalisation

Slide 15

© ESI 1998QWE-98

Phase 1 Fix TTM

Phase 1
Fix TTM

Phase 1
Fix TTM

Step 3 MAN.2/SUP.2/CUS.3

Step 2 MAN.4/ORG.3/SUP.3

Step 4 MAN.4/ORG.3/SUP.3

Step 1 MAN.2/SUP.2/CUS.3
LEVEL1

LEVEL2

Slide 16

© ESI 1998QWE-98

Phase 2 Time Reducing

Phase 2
Time ReducingStep 7 ENG1.1/ENG1.2/SUP.6

Step 5 SUP.8/SUP.6/SUP.4 LEVEL1

LEVEL2

SUP.8/SUP.4

LEVEL1

LEVEL2
Step 6

ENG1.1/ENG1.2

Slide 17

© ESI 1998QWE-98

Phase 3 Institutionalisation

Step 10 ENG1.1/ENG1.2

Step 8 MAN.2/MAN.4/CUS.3

Step 9 SUP.8/SUP.6/SUP.4 LEVEL3

Phase 3
Institutionalisation

Slide 18

© ESI 1998QWE-98

Framework of the Guide

Plan

Transfer Confirm

ActInitiate

Measure

Business goal
Reduce TTM

•Assessment of the selected
processes
•Metrics Improvement plan derived

from the guide BIG-TTM

Implementation of
the improvement
plan

Use of the metricsDevelopment of a Case Study

Slide 19

© ESI 1998QWE-98

Summary

• BIG-TTM guide as a product of ESI’s BIG
series

• TTM as explicit business goal for the BIG-
TTM improvement plan and, factors
relevant to TTM

• IMPACT as BIG-TTM plan framework

6WDJHG�0RGHO�IRU�63,&(��KRZ�WR�UHGXFH�7LPH�WR�0DUNHW��770�

Gorka Benguria (gorka@esi.es), Mª Luisa Escalante (marisa@esi.es),

Mª Elisa Gallo (melisa@esi.es), Elixabete Ostolaza (elixabete@esi.es),

Mikel Vergara (mikel@esi.es), Ana Andrés

European Software Institute

Parque Tecnológico, Edificio 204

E-48170 Zamudio - Bizkaia SPAIN

Tel.: ++34-94 420 95 19; Fax: ++34-94 420 94 20

6WD\LQJ� FRPSHWLWLYH� E\� VKRUWHQLQJ� WKH� GHYHORSPHQW� OLIH� F\FOH� RI� VRIWZDUH� SURGXFWV
ZKLOH� VWLOO� JXDUDQWHHLQJ� SURGXFW� TXDOLW\� LV� RQH� RI� WKH� PDLQ� FRQFHUQV� RI� VRIWZDUH
RUJDQLVDWLRQ�XQLWV�

,Q� UHFHQW� PRQWKV�� WKH� (XURSHDQ� 6RIWZDUH� ,QVWLWXWH� �(6,�� KDV� EHHQ� ZRUNLQJ� RQ� D
VHULHV� RI� %XVLQHVV� ,PSURYHPHQW� *XLGHV� �%,*�� SURGXFWV�� WKDW� FOHDUO\� H[SUHVV� WKH
UHODWLRQVKLS�EHWZHHQ�VRIWZDUH�SURFHVV�LPSURYHPHQW�DQG�WKH�DFKLHYHPHQW�RI�VSHFLILF
EXVLQHVV�JRDOV�

7KLV� SDSHU� GHVFULEHV� WKH� GHYHORSPHQW� RI� RQH� RI� WKHVH� LPSURYHPHQW� JXLGHV� �%,*�
770��� EDVHG� RQ� WKH� EXVLQHVV� JRDO� µWLPH�WR�PDUNHW� �770�¶� DQG�� DQ� LPSURYHPHQW
F\FOH�ZKHUH�WKH�LPSURYHPHQW�SODQ�GHGXFHG�IURP�WKH�JXLGH�ZLOO�EH�HPEHGGHG�

.H\ZRUGV� time to market, software process improvement, SPICE, staged
model, business goal

,QWURGXFWLRQ

The relationship between software process improvement and the achievement of
business goals is not always obvious. When defining an improvement plan for a
software organisation based on an improvement model such as SPICE, ESI’s
experience shows the need to focus attention on certain assumptions before deciding
what activities to include in the plan and the sequence of those activities. To address
this issue, ESI is developing a series of Business Improvement Guides (BIG-
products).

The BIG products aim to facilitate the definition of improvement plans focused on
the fulfilment of specific business goals. They are based on staged models and are
mainly addressed to small to medium sized enterprises (SMEs). The improvement
plans derived from the BIG guides are based on the SPICE standard process
improvement model.

SPICE (ISO/IEC TR 15504) is a continuous model for process improvement that
can be used as a basis for laying down simple, clear and sequential steps for an
improvement plan. An added advantage is that SPICE is an ISO technical report,
published as a fully operative standard in September 1998.

2

The first guide of the series was the BIG-ISO 9001 guide, focused on the
achievement of ISO 9001 certification. The development method followed by the
BIG guides is described in ILJXUH��.

)LJXUH���'HYHORSPHQW�PHWKRG

63,&(�PRGHO

SPICE is a wide framework containing best practices for software engineering. It
can be adapted and tailored to almost any shape. Its malleability makes it an
excellent choice for SMEs. SPICE is a practical model that deals with technical,
managerial and organisational issues in software industry.

Model
Architecture

Life cycle
processes

Process
Category

Base Practices

Process

Management
Practice

Process
Attributes

Capability
Determination

The Process Management
Dimension

The Process Dimension

Figure 2 SPICE model architecture

Interdependency analysis

Mapping
business goal-SPICE

SPICE processes
selection

Target profile for the
selected SPICE processes

3

6WUXFWXUH�RI�WKH�63,&(�PRGHO

The SPICE model architecture is made up of two dimensions: process and process
capability.

7KH�SURFHVV�GLPHQVLRQ�

The SPICE model groups the processes of this dimension into three life cycle
process groupings, containing five process categories, according to the type of
activity they address. The SULPDU\� OLIH� F\FOH� SURFHVVHV consist of the FXVWRPHU�
VXSSOLHU� DQG� WKH� HQJLQHHULQJ� FDWHJRU\�� The customer-supplier category includes
processes that have a direct impact on� the customer, covering development and
transition of the software to the customer, and supporting the correct operation and
use of the software product and/or service. The HQJLQHHULQJ�FDWHJRU\�is made up of
processes that directly specify, implement or maintain the software product, its
relation to the system and its customer documentation. The VXSSRUWLQJ� OLIH� F\FOH
SURFHVVHV consist of VXSSRUW�FDWHJRU\�processes, which may be employed by any of
the other processes (including other supporting processes) at various points in the
software life cycle. The� RUJDQLVDWLRQDO� OLIH� F\FOH� SURFHVVHV consist of the
PDQDJHPHQW� DQG� RUJDQLVDWLRQ� FDWHJRULHV�� The management category� LQYROYHV
processes which contain practices of a generic nature that may be used by anyone
who manages any type of project or process within a software life cycle. The
organisation category�covers the processes that establish the business goals of the
organisation and that develop process, product and resource assets to meet these
goals.

3URFHVV�FDSDELOLW\�GLPHQVLRQ�

Evolving process capability is expressed in terms of process attributes grouped into
capability levels. Process attributes are features of a process that can be evaluated
on a scale of achievement, providing a measure of the capability of the process.
They are applicable to all processes. Each process attribute describes a facet of the
overall capability of managing and improving the effectiveness of a process in
achieving its purpose and contributing to the business goals of the organisation.

A capability level is characterised by a set of attribute(s) that work together to
provide a major enhancement in the capability to perform a process. There are six
capability levels in the SPICE model ranging from 0 to 5, to indicate the level of the
maturity of the processes according to their compliance with the attributes
associated with levels. Each level adds a formality and rigour in the way activities
are performed until level 5 is reached, when there is a continuos improvement of the
processes.

7LPH�WR�0DUNHW�DV�D�EXVLQHVV�JRDO

The business goal of BIG-TTM, new step in the series of BIG-products, is time-to-
market (TTM). The definition of TTM in the context of this guide is the time
elapsed between the decision to start the project (usually contract award) and the
installation of the product at the client premises. Nevertheless, to be accepted a
contract usually needs to attach a project schedule based on high level requirements.
In order to avoid significant deviations between the contract offer and the first
consistent schedule once a detailed requirements version is available, appropriate
requirements elicitation techniques and methods must be used. This is why, the

4

processes involved in the improvement plan deduced from the BIG-TTM guide only
affect projects once they have officially started, with the elicitation process as the
only exception to the rule.

This specific business goal, TTM, has been chosen due to its criticality in the
software industry since timely deliveries are the basis for customer satisfaction
which affects financial results. The ability to deliver what was planned, when it was
planned, is one of the challenges faced by software development companies.
Reducing the time to delivery while maintaining the quality of software products, is
a step forward which allow companies to be more competitive.

7LPH�WR�0DUNHW�PRVW�UHOHYDQW�IDFWRUV

As with any complex problem, optimising TTM does not have a clean cut, one-size-
fits-all solution. There are many reasons why software is late and many are
interrelated. Over-optimistic planning, underestimation of project complexity or
poor management are some of the reasons claimed. Studies [1] show that more than
technology, what mainly affects time to delivery is organisational, managerial or
human factors. Therefore it is important to shift the focus from technology oriented
improvements to management and process improvement. This is what the BIG-
TTM model provides, along with a guide for its implementation.

In the BIG-TTM guide, ESI has selected a set of the TTM most relevant factors
based on:

1. The Insead survey [1]. Analysis by INSEAD, a leading European
management school in Fontainebleau (France) of the results of a survey
around 100 large European software intensive organisations. The survey
asked respondents questions about management practices used in
successfully completed software projects.

2. ESI Repository of Experience. Search of VASIE repository on experiences
specifically related to TTM. This repository contains the results of Process
Improvement Experiences conducted by European industry under the
European Commission; funded ESSI program.

3. Results of MEPROS. MEPROS is an ESI project that defines a guide
containing a set of indicators for measuring the level of achievement of
business objectives based on Scorecard methodology. For the business goal
TTM, the indicators identified by MEPROS measure the most relevant
factors as outlined below.

0RVW�UHOHYDQW�770��IDFWRUV

• Requirements non-volatility. The requirement analysis phase of the systems
development life cycle is very time consuming. The objective of a software
intensive organisation must be to reduce this time without sacrificing quality. By
requirements non-volatility, we mean capturing good quality requirements as soon
as possible in the development cycle in order to minimise changes later on.
Techniques such as JAD (Joint Application Development) can help to achieve this
issue and has been considered in the guide.

5

• Preventive actions. By preventive actions we refer to risk management and
inspection issues. Inspections reduce the impact of problems. Inspections of work
products allow problems to be detected as soon as possible in the development
cycle. Early detection allows filtering the relevant problems, including those that
impact on time, to solve them quicker, reducing the impact on other activities or
development phases. Risk management is a way of anticipating possible problems
and defining corrective actions in advance. This approach avoids or reduces the
time spent solving a problem.

• Problem resolution management. When problems are detected, the management
of its resolution, together with the user, is also a key issue to TTM. Not all the
problems may need to be solved before the work product delivery. The decision
on which problems to solve for the first delivery and which ones to postpone for
following deliveries is critical for achieving the TTM business goal.

• Software configuration management – SCM. Requirements non-volatility and
problem resolution management ask for a strong SCM. Project managers can keep
the project under control by identifying configuration items to be baselined,
maintaining the baseline description knowing the status of each item and
managing change request.

• Project management & track (Fix TTM). Any company that needs to improve
the factors that most affect TTM must, firstly, put the planning and the tracking of
the projects under control. This is the reason why the other essential bases for
improving TTM is PM & Track.

The interdependencies among these factors are shown in)LJXUH���

Figure 3 TTM Factors1

1 Dashed arrows show that SCM and PM&Track are an essential support for the other factors.

Double arrow indicates strong interaction (e.g. requirements changes can add a risk to the project, an
inspection can derive new requirements needs).

Simple arrows show that problem resolution management inputs can come from preventive actions
(inspections) or requirements non-volatility.

3UHYHQWLYH�DFWLRQV:
•Risk Management

•Inspection

5HTXLHPHQWV�1RQ�

9RODWLOLW\

3UREOHP�5HVROXWLRQ

0DQDJHPHQW

6RIWZDUH

&RQILJXUDWLRQ

0DQDJHPHQW��6&0�

Suppoted by

3URMHFW�0DQDJHPHQW

	�7UDFN ��30	7�

Su
pp

ot
ed

 by

6

63,&(�SURFHVVHV�VHOHFWHG�IRU�770

The framework described above has to be translated into a set of concrete actions
and these actions have to be prioritised to define the most appropriate improvement
path. To achieve this, once the main factors affecting TTM are identified, a mapping
to SPICE processes is carried out.

From the mapping, a set of processes emerge as the group that fulfils the
requirements defined for optimising TTM, guaranteeing consistency of purpose and
no undesirable side effects. This group comprises the basic processes assuring
repetition of project results (fix TTM) and, the fundamental issues that have to be
tackled in order to optimise TTM in an organisation.

 3URFHVVHV Fi
x

T
T

M

Pr
ev

en
tiv

e
ac

tio
ns

Pr
ob

le
m

re
so

lu
tio

n
M

an
ag

em
en

t

R
eq

ui
re

.
no

n-
vo

la
til

it y

MAN.2 Project management process X
MAN.4 Risk management process X X
SUP.2 Configuration management process X X X
CUS.3 Requirements elicitation process X X
SUP.8 Problem resolution process X
SUP.6 Joint review process X X
ENG.1.1 System requirements analysis and design

process
X

ENG1.2 Software requirements analysis process X
SUP.4 Verification process X
ORG.3 Human resources management process X X X X
SUP.3 Quality assurance process X X

)LJXUH���0DSSLQJ�770PRVW�UHOHYDQW�IDFWRUV�DQG�63,&(

'HILQLWLRQ�RI�WDUJHW�SURILOHV

Following the method of ILJXUH��, the next step toward the improvement plan is the
definition of the target profile. This profile is the graphical expression of the
expected level of maturity of the processes.�Given the factors relevant to TTM, it is
necessary not only that the processes exist but also that they be performed with a
degree of formality and efficiency. This is achieved by defining which capability
SPICE level is appropriate for each of the processes. Levels are characterised by a
bar diagram that shows the level that each process should achieve.

7

Figure 5 Target Profile

,PSURYHPHQW�SODQ

The model provided by the set of chosen processes and their level of maturity forms
the basis on which to build the improvement plan, as described in the guide
development method of ILJXUH��.

This improvement plan contains all the best practices that the SPICE model assigns
to the chosen processes and management practices that are associated with the
attributes of levels 2 and 3. This gives an idea of the complexity and extent of this
improvement plan, outlined in)LJXUH�6. The figure shows the division of the plan
into three phases and 10 steps:

1. Fix TTM phase.

The main objective of this phase is to fix the delivery time of projects. This phase
covers the necessary steps to assure a certain capability level of processes. The
level is set such that, when applying the processes to projects similar to those
developed in the past, the organisation should be able to predict time and cost
with accuracy while still providing the required quality. The processes affected
are: project management process, risk management process, configuration
management process, human resources management process, quality assurance
process and requirements elicitation process.

2. Time reducing phase.

The objective of the time reducing phase is to� RSWLPLVH the software delivery
WLPH while maintaining the quality of the work products. The effectiveness of the
plan can be measured with a set of metrics provided by the BIG-TTM guide.

The main processes that contribute to time reduction are: verification process,
joint review process, problem resolution process, customer elicitation process,
risk management process, system analysis and design process and software
requirements analysis process.

MAN.2

MAN.4

SUP.2

CUS.3

SUP.8

SUP.6

ENG.1.1

ENG.1.2

SUP.4

ORG.3

SUP.3

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 LEVEL 5

Partially achievedNot achieved Largely achieved Fully achieved

8

3. Institutionalisation phase.

The aim of the institutionalisation phase is to define processes common and
standard across the organisation that can be applied and tailored to each and
every software project of the organisation, if necessary. Without this phase,
repetition of successful behaviours can not be guaranteed in the organisation.

Figure 6 Improvement plan phases

)UDPHZRUN�RI�WKH�%,*�770�JXLGH

The final task of BIG-TTM is to provide an improvement plan which when
implemented will lead organisations to achieve the time to market business goal.

For its series of BIG products, ESI works with a framework called IMPACT -
,nitiate 0easure� 3lan� $ct� &onfirm� 7ransfer -. The IMPACT improvement life
cycle –see)LJXUH�7- provides a common base for implementing an improvement
plan derived from a BIG guide. The general improvement life cycle will be tailored
according to the peculiarities of each guide.

There are a number of criteria that must be fulfilled before initiating an
improvement life cycle:

• An organisation starting an improvement program should be aware of the
extra cost and effort initially involved to implement it.

• The commitment of all parties across the organisation is not only necessary;
it is vital to success. A software process improvement (SPI) plan requires an

MAN.2

MAN.4

SUP.2

CUS.3

SUP.8

SUP.6

ENG 1.1

ENG1.2

SUP.4

ORG.3

SUP.3

Level 1 Level 3Level 2

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 10Step 9

3KDVH����
�)L[�770

3KDVH����
7LPH�UHGXFLQJ

3KDVH����
,QVWLWXWLRQDOLVDWLRQ

9

overall change of behaviour in the organisation that is not possible without
everybody’s involvement.

• The importance of commitment from senior management must be
emphasised. Without it no program will succeed. Companies that have been
successful in creating a culture of quality have done it under the direction of
senior management with knowledgeable assistance.

Some requirement before implementing the BIG-TTM plan:

• Someone with significant responsibility in the organisation should sponsor
the improvement plan. It can be the manager of the software organisation unit or
someone of higher authority.

• A separate improvement team should be set up. The priority for developers
is to produce systems, and therefore process improvement activities might not
receive as much attention as they deserve or need.

Instantiation of IMPACT improvement life cycle for BIG-TTM:

Figure 7 IMPACT Improvement life cycle

,QLWLDWH�

7KH�LQLWLDWH�VWHS�RI�,03$&7�HQDEOHV�RUJDQLVDWLRQV�WR�LGHQWLI\�WKHLU�NH\�UHTXLUHPHQWV
IRU�SURFHVV�LPSURYHPHQW�DQG�WDLORU�WKH�VXEVHTXHQW�VWHSV�RI�,03$&7�HIIHFWLYHO\�

BIG-TTM considers that the organisation has as key requirement to improve its
processes in order to reduce the development life cycle of its projects. The goal of
the improvement plan derived from the guide, reduces time to market, is therefore
fix from the beginning.

0HDVXUH�WKH�FXUUHQW�VLWXDWLRQ

7KH�PHDVXUH�VWHS�RI�,03$&7�HQDEOHV�RUJDQLVDWLRQV�WR�XVH�DQ�DSSURDFK�WKDW�LV�ULJKW
IRU�WKHLU�RUJDQLVDWLRQ�GHSHQGLQJ�RQ�IDFWRUV�VXFK�DV�RUJDQLVDWLRQ�VL]H��FXUUHQW�VWDWXV
RI�WKHLU�SURFHVV�LPSURYHPHQW�SURMHFW��DQG�IXQGLQJ�DYDLODEOH�

The BIG-TTM guide measures the initial baseline of an organisation through:

3ODQ

7UDQVIHU &RQILUP

$FW,QLWLDWH

0HDVXUH

10

• A SPICE assessment of the selected SPICE processes.

• A set of time metrics that measures progress against business goal.

3ODQ

7KH� SODQ� VWHS� RI� ,03$&7� HQDEOHV� RUJDQLVDWLRQV� WR� VHOHFW� PRGHOV� DSSURSULDWH� WR
WKHLU�QHHGV��SUHSDUH�VWDII�IRU�LQWURGXFLQJ�DQG�PDNLQJ�FKDQJHV��DQG�EXLOG�DZDUHQHVV
DERXW�VRIWZDUH�SURFHVV�LPSURYHPHQW�

From the baseline resulting from the measure stage, the BIG-TTM guide outlines
the steps to follow to achieve a clear and well-defined improvement plan. This will
cover the sequence of activities to achieve the time to market business goal and will
be specifically tailored to the assessed software organisation unit. The plan also
covers the organisational issues and aspects of behaviour change necessary for any
organisation to undertake an improvement activity.

$FW

7KH�DFW�VWHS�RI�,03$&7�SURYLGHV�DSSURSULDWH�DQG�XVHIXO�LQIRUPDWLRQ�IRU�DQ�HIIHFWLYH
LPSOHPHQWDWLRQ�RI�WKH�LPSURYHPHQW�SODQ�

All BIG-products provide information about how to implement each of the activities
of the derived plan. In the case of BIG-TTM, these guidelines have been customised
with techniques and methods appropriate to the relevant TTM factors. For instance,
the customer elicitation process best practices have been enriched based on the JAD
method.

&RQILUP

7KH� FRQILUP� VWHS� RI� ,03$&7� SURYLGHV� WKH� EDVLV� IRU� YHULI\LQJ� DQG� VXVWDLQLQJ
LQFUHDVHG�SHUIRUPDQFH�

A common way to confirm a successful implementation of the guides derived from
the BIG series is a SPICE assessment. In the BIG-TTM guide the confirmation step
is reinforced with metrics focused on measuring the ability to deliver products on
time.

7UDQVIHU

7R� FRPSOHWH� WKH� LPSURYHPHQW� OLIHF\FOH� LW� LV� LPSRUWDQW� WR� GRFXPHQW� WKH� EHQHILWV
REWDLQHG�� WKH� H[SHULHQFHV� JDLQHG�� DQG� WKH� OHVVRQV� IRU� WKH� IXWXUH�� � 7KURXJK� WKLV
DSSURDFK� LW� LV� SRVVLEOH� WR� HVWDEOLVK� DQG� PDLQWDLQ� WKH� RUJDQLVDWLRQDO� NQRZOHGJH�
FXOWXUH�� DQG� DVVHWV�� � 7KHVH� DUH� WKH� NH\� HOHPHQWV� WR� ORQJ� WHUP� VXFFHVVIXO� SURFHVV
LPSURYHPHQW���7KH�WUDQVIHU�VWHS�RI�,03$&7�HQDEOHV�WKHVH�JRDOV�WR�EH�DFKLHYHG�QRW
RQO\� LQ�DQ� LQGLYLGXDO�RUJDQLVDWLRQDO� FRQWH[W�EXW�DOVR� LQ� D� FROODERUDWLYH�(XURSHDQ
VHWWLQJ� IRFXVHG�RQ�VKDULQJ� H[SHULHQFHV� IRU� WKH�EHQHILW� RI� DOO��(6,�KDV�GHYHORSHG�D
5HSRVLWRU\�RI�([SHULHQFH�IRU�WKLV�SXUSRVH�

Under the framework of the BIG-TTM project, ESI is executing a number of trials.
The experience gained will be added to the Repository of Experience.

11

6XPPDU\

This work represents ESI’s work contributing to SPI for SMEs through its BIG-
product series and, in particular, with the BIG-TTM guide. Starting in 1997, ESI
has been developing a series of BIG-products of which BIG-ISO 9001 was the first.
Based on the development method deduced from that experience and the new time
to market business goal, we have shown how it is possible to derive the BIG-TTM
guide.

BIG-TTM is made to support software organisation to become more competitive. In
order to test the validity of this approach, a number of trials will be executed. The
set of metrics provided with the guide measure the time gained in developing a
project similar to one developed previously in the organisation. This will allow us to
establish the successful of this approach.

Finally, ESI is defining an improvement cycle framework for its BIG products that
will be completed in 1999 and that has been briefly explained in the context of BIG-
TTM.

%LEOLRJUDSK\

[1] Improvement Speed and Productivity of Software development: A Global
Survey of Software Developers. Joseph D. Blackburn, Gary D. Scudder and Luk N.
Van Wassenhove.

[2] ISO9000 Certification as a business driver: the SPICE road. Ana Andrés, Pablo
Ferrer, Pedro Gutiérrez and Giuseppe Satriani.

[3] ISO15504, SPICE 98 set of documents.

[4] Why is Software Late? An Empirical Study of Reasons For Delay in Software
Development. Michiel van Genuchten.

[5] Management Impact on Software Cost and Schedule. Dr. Randall W. Jensen.

[6] Soft factors and their impact on time to market. Claes Wohlin and Magnus
Ahlgren.

[7] Driving Process Improvement with TTM. ESI 1998.

$SSHQGL[��

(XURSHDQ�6RIWZDUH�,QVWLWXWH��(6,����KWWS���ZZZ�HVL�HV
(Tel. ++34-4-4209519Fax ++34-4-4209420 e-mail:info@esi.es)

ESI is a major industrial initiative focusing on the improvement, dissemination and
usage of processes critical for software intensive systems development, procurement,
quality and maintenance to make these processes predictable in terms of cost and time
to market

ESI is a non profit, industry led, membership-based organisation. It has support from
public institutions, independent of commercial interests. ESI co-operates with key
R&D institutes in this filed and relies on regional partnerships for the exploitation of
results and products for all proximity services that cannot be efficiently brought to the
market by electronic means.

At the same time ESI has established institutional links with applied research
organisations such as the Software Engineering Institute (SEI), the Applied Software
Engineering Centre (ASEC), the European Software Process Improvement
Foundation (ESPI), the Fraunhoffer Institute for Experimental Software Engineering
(IESE).

ESI best serves the European industry by pooling its own resources with those of its
members and collaborative partners. Due to its neutrality and independence as well as
to its European nature, ESI is also eligible to access the results of the European
Commission programs in line with confidentiality rules, in order to enhance their use
and make them widely available.

$SSHQGL[��
(OL[DEHWH�2VWROD]D¶V��&9
(6,�3DUTXH�7HFQRORJLFR�GH�=DPXGLR�(G�����
(�������%LOEDR��6SDLQ�
7HO���������������)D[��������������
H�PDLO��(OL[DEHWH�2VWROD]D#HVL�HV

Elixabete Ostolaza is Project Leader at the European Software Institute since March
1998. She is currently leader of two projects related with SPICE and EFQM models.

Elixabete Ostolaza was previously granted by the Basque Government and the
European Social Fund taking part in several ESPRIT projects related with Artificial
Intelligence, afterwards she was Project Manager in the Information System for
Alliances and Subsidiaries Department of Telefónica, S.A. , afterwards she has been
Manager of Development and Maintenance of Information Systems in Directorate
General XVI of the European Commission.

 Elixabete Ostolaza received her BS degree in computer science from the University
of the Basque Country and her Master degree in AI from the University of Aberdeen.

Slide 1

 Copyright MetriQs S.r.l., OSRA SISTEMI, DTC 1998Presentation at Quality Week Europe, Brussels, November 9-13, 1998
Managing customer’s requirements in a SME: a process improvement initiative using an IT-based methodology and tool - 1 di 10

Managing customer’s requirements in a SME:
a process improvement initiative

using an IT-based methodology and tool

 by Antonio Cicu (MetriQs Srl)
 Fabio Valle (Visiting Fellowship, Brighton University)

 Fabrizio Conicella (Consorzio per il Distretto Tecnologico del Canavese).
(Consultant team)

 Domenico Tappero Merlo, Francesco Bonelli and Sandro Francesconi (OSRA SISTEMI Srl)
(Representatives of the SME)

Slide 2

 Copyright MetriQs S.r.l., OSRA SISTEMI, DTC 1998Presentation at Quality Week Europe, Brussels, November 9-13, 1998
Managing customer’s requirements in a SME: a process improvement initiative using an IT-based methodology and tool - 2 di 10

The SME (OSRA SISTEMI Srl), and the project
• A medium (85 people) software development company based in Ivrea

(Piemonte, Italy), belonging to a group of 170 people

• Turnover: 14000 US K$, with 150 distributors/resellers

• The product: modular multi-user applications (named SISPAC) for
yearly income tax returns, accounting and bookkeeping, salary
management, budget management; operating in MS-DOS, WINDOWS,
NOVELL and UNIX environment; coded in Microfocus COBOL and C.

• Market: individual consultants for accounting and income tax returns,
medium and large business consulting offices (80.000 units, of which 8%
served by OSRA)

• The project: the migration of SISPAC server from UNIX to Windows
NT, but also including the support of new functional customer needs

• Constraints: 1) Fixed rigidly dates dictated yearly by fiscal schedules;
2) strict dependency from outside organizations like Finance, Industry,
and Work National Govern Departments

Slide 3

 Copyright MetriQs S.r.l., OSRA SISTEMI, DTC 1998Presentation at Quality Week Europe, Brussels, November 9-13, 1998
Managing customer’s requirements in a SME: a process improvement initiative using an IT-based methodology and tool - 3 di 10

The set of customer management processes
(from SPICE Customer-Supplier process category)

• acquire software
• manage customer’s needs
• supply software
• operate software
• provide customer service

• obtain customer requirements and
requests

• agree on requirements
• establish requirements baseline
• manage requirements changes
• understand customer expectations
• keep customer informed

• obtain customer requirements and
requests

• agree on requirements
• establish requirements baseline
• manage requirements changes
• understand customer expectations
• keep customer informed

the addressed
 process

the base
practices

This schema corresponds also
basically to the

Requirement Management KPA
of CMM

(See also paper, Fig. 1)

Slide 4

 Copyright MetriQs S.r.l., OSRA SISTEMI, DTC 1998Presentation at Quality Week Europe, Brussels, November 9-13, 1998
Managing customer’s requirements in a SME: a process improvement initiative using an IT-based methodology and tool - 4 di 10

Requirement Management innovation (1)
Four elements addressed:

People, Organization, Methodology and Technology.

People
Training
• process
• requirement analysis methodology;

product/process measures
• technology

Management commitment
The two above factors provided:
• cultural awareness
• people commitment
• responsibilities clarification

Organization
Definition of the process:
• based on ISO/IEC 12207, CMM and SPICE

(see paper, Figure 2)

• in the framework of a ISO/IEC 12207 and
IEEE compliant project life cycle (Fig.3)

Definition of User Requirements
based on the analysis of clients’
business process (See paper, Fig. 4)

Participation of all the three
interested departments of OSRA
(Product Development, Product Planning,
Customer Support)

Slide 5

 Copyright MetriQs S.r.l., OSRA SISTEMI, DTC 1998Presentation at Quality Week Europe, Brussels, November 9-13, 1998
Managing customer’s requirements in a SME: a process improvement initiative using an IT-based methodology and tool - 5 di 10

Requirement Management innovation (2)

Methodology
Guidance for the User Requirements document preparation:
• the IEEE Guide for “Concept of Operations Document”

The approach sustained by the mentioned Guide stimulates the
production of a process-based view of the user needs (See paper,Fig. 5)

The definition of measurements of process effectiveness and
efficiency was based on:

• ami (See paper, Fig. 6)

• GQM (See paper, Tables 1 and 2)

Slide 6

 Copyright MetriQs S.r.l., OSRA SISTEMI, DTC 1998Presentation at Quality Week Europe, Brussels, November 9-13, 1998
Managing customer’s requirements in a SME: a process improvement initiative using an IT-based methodology and tool - 6 di 10

Requirement Management innovation (3)
Technology
A specialized and user friendly tool was adopted to facilitate the

writing of documents. The tool (ProDoc, by SPC, Vancouver;
Canada) is usable with the most diffused word-processors, and
provides:

• a set of templates

• an on-line guide

Successful example of adoption of a cheap and relatively low-tech
tool: low-tech tools can be an abundant source for organizational
and technical improvements in the software industry

Slide 7

 Copyright MetriQs S.r.l., OSRA SISTEMI, DTC 1998Presentation at Quality Week Europe, Brussels, November 9-13, 1998
Managing customer’s requirements in a SME: a process improvement initiative using an IT-based methodology and tool - 7 di 10

Results (1)

Costs

1) The training: cost required anyway within the ongoing Quality
System effort

2) No specific additional costs, due to the innovation (except the
acquisition of the tool), were sustained in the writing of the
documents.

3) Costs of measurements. Less than 0,2 % of additional cost, for
counting the requirements; time/effort and defect data collection
was already an established practice

Slide 8

 Copyright MetriQs S.r.l., OSRA SISTEMI, DTC 1998Presentation at Quality Week Europe, Brussels, November 9-13, 1998
Managing customer’s requirements in a SME: a process improvement initiative using an IT-based methodology and tool - 8 di 10

Results (2)

Benefits

1) increased involvement and cooperation of external and internal customers

2) clearer understanding of the current customer’s process and of their future
process, and correspondingly of the current and of the new SISPAC systems;

3) the user process is now a reference used for evaluating the completeness,
consistency and adequacy of the requirements of the new system;

4) a much more professional image toward the external customers;

5) greater opportunity of handling conflicts of requirements, because customer’s
needs are clearer;

6) A good premise for reducing future post-sale problems.

Slide 9

 Copyright MetriQs S.r.l., OSRA SISTEMI, DTC 1998Presentation at Quality Week Europe, Brussels, November 9-13, 1998
Managing customer’s requirements in a SME: a process improvement initiative using an IT-based methodology and tool - 9 di 10

Lessons learned

The main lesson learned regards the better control over product and
process quality that can be obtained through three main means:

a) the use of process model and related document template for getting guidance in
the work

b) the use of a shared and controlled database as repository where to keep the
baseline versions of the results, which makes easier to the participants the access
to the updated information, with the guarantee of working on the correct and
controlled version.

c) the collection of requirements, defect and time/cost data for producing
effectiveness and efficiency indicators.

Slide 10

 Copyright MetriQs S.r.l., OSRA SISTEMI, DTC 1998Presentation at Quality Week Europe, Brussels, November 9-13, 1998
Managing customer’s requirements in a SME: a process improvement initiative using an IT-based methodology and tool - 10 di 10

Future developments

Data
Base

Dept. 1

Dept. 5

Dept. 6

Dept. 4

Dept. 2
Dept. 3

Organisation

LAN

SME SME

SME

SME

SME
SME

Client needsTroubleshooting

for improving communication between the actors

OSRA CASE: INTERNET/INTRANET

1

Managing customer’s requirements in a SME:

 a process improvement initiative

using an IT-based methodology and tool.

by Antonio Cicu (MetriQs Srl)1, Fabio Valle (Visiting Fellowship, Brighton University)2,
Domenico Tappero Merlo, Francesco Bonelli and Sandro Francesconi (OSRA SISTEMI Srl)3,

Fabrizio Conicella (Consorzio per il Distretto Tecnologico del Canavese)4

Abstract
The focus of this paper is the application of IT solutions together with methods of process improvements to
manage the customer's requirements. According to the terminology of the ISO 9001 and ISO/IEC 12207
Software process standard, the area covered by the initiative of process improvement is the User
Requirements Definition.
The paper is based on a real process improvement initiative conducted by MetriQs for six months in a small
Italian software company producing accounting and income tax returns packages.
The results were presented also as a case study to the European ESPRIT Project 21461 TBPTIME, having as
objective to collect and diffuse for training purposes a set of significant case studies of process improvements
for SMEs in different process areas.
During this improvement initiative the following methodologies and standards have been used: ISO/IEC
12207 [1], ISO/IEC PDTR 15504-1/9[2], J-STD-016-1995 EIA/IEEE [3], ami [4], GQM [5]. The application of
the mentioned guidelines and standards was facilitated embedding the guiding tips in a template (for MS
WORD), produced with the ProDoc [10] tool.

1. General presentation of the company and of the sector

1.1 Business Nature.

The company. The described case deals with OSRA SISTEMI (located in Ivrea, Torino, Italy), a company that
operates in the market of solutions for accounting, tax, salary and budget management for consultants,
business consulting offices, companies, business category and professional associations.
OSRA SISTEMI is part of OSRA Group, founded in the middle 70’s and composed of 4 companies: OSRA
SISTEMI, OSRA PAGHE, OSRA TELECOM, SISPAC. The OSRA Group employs 170 people (85 of which in
OSRA SISTEMI) with a global turnover of 25 Billions Italian Lire, and 150 distributors/resellers throughout
Italy.

Environment: market, competitors, customers, technologies, constraints, regulations.
Market and customers: the Italian vertical market of the company is represented by individual consultants
for accounting and income tax returns, medium and large business consulting offices, business category and
professional associations which support their associates in their accounting and fiscal needs.

Market dimension: about 80000 units [from small (individual consultants) to large multi-user business
offices].

1 MetriQs Srl, Via don Gnocchi, 33 -20148 Milano (Italy) -Tel/Fax (+39) - 2- 4870 8691; e-mail: acicu@metriqs.com
2 University of Brighton, Village Way Falmer - Brighton BN1 9PH – UK – e-mail: Fabio_Valle@compuserve.com.
3 OSRA SISTEMI Srl- Via Ribes, 5 - 10010 Colleretto Giacosa (Torino) -Italy- Tel. (+39) - 125 - 561511- Fax (+39) - 125 -
561510; e-mail: tapdom@osra.it
4 Consorzio per il Distretto Tecnologico del Canavese - P.O.Box 192 - 10015 Ivrea (TO) - Italy - Ph. (+39)-125 - 2331201 -
Fax (+39) - 125 - 2331224 - email: f.conicella@eponet.it

2

Competitors: there are about 300 from small to medium software houses operating with specialized
products in this sector in Italy. The majority of them serves about 60% of the market with small, specialized
single user solutions.
The 4-5 leaders (among which OSRA SISTEMI) serve about 40% of the market. Each of them has a share
from 8% to 10% of the market, including the totality of large business consulting offices, and provides them
complete Information Systems which modularly integrate different applications needed by large users.

Used technology : OSRA uses Microfocus COBOL and C languages as development languages, on Index-
sequential Databases. In this way they avoid the use of relational DB that is not affordable for users. Up to
now OSRA has developed and delivered on UNIX environment.

Constraints: 1) Fixed rigidly dates dictated yearly by fiscal schedules; 2) strict dependency from outside
organizations like Finance, Industry, and Work National Govern Departments; 3) Current market not open
to invest in new technologies: users want good functionalities at a low price, otherwise they provide their
services manually.

Regulations: yearly evolving rules dictated by the above mentioned Finance, Industry, and Work National
Government Departments.

Business history and future developments
Middle ‘70s: strong cooperation with Olivetti on proprietary Hardware and Software systems
Middle ‘80s: migration to UNIX and MS-DOS, always on Olivetti hardware
Late ‘80s: migrate on other Hardware vendors, continuing to use UNIX, DOS, and extending the platform to
Network products, making the developed products more and more independent from the platforms
Current development: Client server architecture, where the servers are, in addition to UNIX, first Windows
NT, and then AS/400. Client Windows 3.1 and Windows 95, and next move also toward Internet and
Intranet with a client named OSRANET.

1.2 Product/market portfolio

The product of the company is a modular information system (named SISPAC) operating in MS-DOS,
WINDOWS, NOVELL and UNIX environment. The main modules of the product are represented by
applications supporting the yearly income tax returns 730, 740, 750, 760, 770, accounting and bookkeeping,
salary management, budget management.
On the basis of a common architecture the company has created a family of products that support single
applications among the above mentioned ones, or full integrated Information Systems that integrate all the
applications or part of them according to custom needs.

1.3 Product/market selection

The experimentation of the process innovation has been done on the SISPAC product, and specifically on the
project which will implement the migration of SISPAC server from UNIX to Windows NT, but also
including the incorporation of new functional customer needs.

2. Organizational and technological improvement initiatives
The product has an intense evolution life during the first six months of every year, its updates have to be
delivered yearly and quickly to all the users (many thousands). First of all it must support the evolving
work organization of the user. Moreover the product must be constantly and fully aligned to the evolving
legislation and administration rules and must have a very high level of functionality and reliability. Within
such a scenario, with the objective of controlling better the schedules and quality, two years ago OSRA
SISTEMI has begun a series of changes defining more clearly the responsibilities and roles in the software
development process for all the people, and creating and tuning an efficient HelpDesk and Maintenance
service.

The current improvement step is based on two lines of improvement:

3

1) consolidation, with maximum priority, of the Requirement Management process, as the main foundation
on which to base an accurate and efficient management of customers and of their needs.

2) preparation and application of Quality System and the related Quality Manual, using the ISOplus product
[12].

The first initiative is described in this paper.
Requirement Management has been innovated considering the four elements: People, Organization,
Methodology and Technology. This global approach to the process improvement initiative, combined with
the corporate management commitment (necessary for every organizational change [6]), has prevented from
cultural, organizational and technical difficulties. The details of the approach are provided in this paper in
section 3 (People), section 4 (Organization), section 5 (Methodology), section 6 (Technology). The methods
and tools were identified and evaluated with the consulting help of the same specialized company which
provided the training.

3. People
On the People side an external consultant provided detailed and practical training of all people involved

in the Requirements Management. The training gave visibility of the methodology described later (Section 5)
in the paper, made people more aware of the needs of the internal and external customers, bought
commitment and avoided cultural obstacles to the initiative.

4. Organization
On the organizational side the new customer management global process was represented (in conformity

to international standards [1], [2]) as a set of processes and practices that involve the supplier in its support
to the customer across the life cycle. Particular attention, among the mentioned customer management
processes and practices, was posed in the management of customer’s needs because this process produces a
document, the “User Requirements Specifications”, that becomes the reference for any other project activity
and that affects the best mapping of Software Requirements to the business needs.

4.1 View of the customer management global process

The customer management global process is constituted by a set of processes and practices that involve the
supplier in its support to the customer across the life cycle. These processes and practices are performed in
order to solicitate the active participation of the customer from the beginning of the project and to maintain
the best level of customer satisfaction.

The set of customer management processes (PRO) and practices (PRA) is the following:
- manage customer’s needs (PRO)
- contract preparation, agreement and monitoring (PRA)
- joint reviews (PRO)
- product delivery, installation and acceptance(PRA)
- operate software (PRO)
- provide customer service (PRO).

In document [1] (see in [1] the description of the acquisition process), and in document [2] (see document [2]
in Part 2 for the Customer-Supplier process category, and in Part 5 for the details of Base Practices for the
Customer-Supplier processes) a detailed description is given of a standard model of processes and practices
where supplier and software buyer interact with each other and cooperate toward project goals.

4

Figure 1 provides a graphical representation of processes and base practices. According to the model of
document [2], these processes and base practices should be performed by the supplier to manage the
customer issues, and to cooperate with and support the customer in such a way that the customer can best
perform tasks that typically go under its responsibility.

Across the software product life cycle ...

Customer
management

processes

acquire
software

manage
customer’s needs

joint reviews provide
customer service

operate
software

Global view of customer management processes and practices,
across the software product life cycle

Customer
management

practices

Among others:
• contract preparation,

agreement and
monitoring

• obtain customer requirements and
requests

• agree on requirements
• establish requirements baseline
• manage requirements changes
• understand customer expectations
• keep customer informed

Among others:
• prepare for customer

reviews
• conduct joint

management reviews
• conduct joint

technical reviews

• train customer
• establish product support
• monitor performance
• determine customer satisfaction level
• compare with competitors
• communicate customer satisfaction

• identify operational risks
• perform operational testing
• operate the software
• resolve operational problems
• handle user requests
• document temporary

work-arounds
• monitor system capacity

and service

The most important,
on which to base the rest

 of the project

• product delivery, installation,
and acceptance

LEGENDA:

Fig.1 Global view of customer management

Among the mentioned customer management processes and practices, the management of customer’s needs
is by far the most important, because this process produces a document (the “User Requirements
Specifications” or “Application Requirements Specifications”) that, provided that it contains a complete
definition of consistent, adequate and stable user requirements, becomes the reference for any other project
activity (software requirements definition, development and quality plans, testing, product acceptance, and
an important part of customer training).

5

4.2 The Customer’s Needs Management process

Manage customer needs process is to manage the gathering, processing, and tracking of
ongoing customer needs and requirements throughout the operational life of the software; to establish a
software requirements baseline which serves as the basis for the project’s software work products, and
activities; and to manage changes to this baseline.” (from document [2] part 5).

The Customer’s Needs Management process

Customer’s
Needs

Management

Clear and ongoing
communication
with the customer

Customer’s requirements:
• documented
• agreed with customer
• with managed changes
• baseline for project use

Customer’s complaints

Customer’s requirements
 change history

Information on:
• customer’s new business objectives
• customer’s process
• customer’s application environment
• risk analysis results

Customer’s requests
• related to improvement needs for their products or processes

(functional/performance extensions, defects removal, changes in
regulations)

Mechanisms for:

• ongoing monitoring
of customer’s needs

• ensuring that customers
are easily able to
determine the status and
disposition of their
requests

Fig. 2 Customer’s Needs Management

Inputs and outputs of the above process are described in Figure 2.

6

4.3 Description of the innovation experimented for improving the Customer’s Needs Management
process

4.3.1 The adopted software life cycle. Which part of the life cycle is addressed by the improvement.
Before describing the specific process addressed by the experiment, it is necessary to describe the adopted
life cycle framework, represented in Figure 3.

AS=Architecture Specifications
AT=Acceptance Tests
C=Contract
DD=Detailed Design
DP=Development Plan
GL= Guidelines
IT=Integration Tests
OR=Operation Report
QP=Quality Plan

RT=Request for Tender
ST=System Tests
SWR=Software Requirements
SYSR=System Requirements
T=Tender
UM=User Manual
UR=User Requirements
UT=Unit Tests

LEGENDA:

Joint Project Reviews,
Joint Progress Control Meetings

Life cycle schema of a Software project (ISO 9001)

UR

DD ITAS
SYSR

UT

ATST

Installed
System

Integrated
System

Tested
 System

Units
Code

final
UM

Development and Integration TestingUser
Requirements
Definition

System and Software
Requirements, Plans,
Contract

GL

Maintenance
and Support

OR

This is the phase
covered by the innovation experiment

RT SWR

DP

QP

T

C

Figure 3

Figure 3 provides a software life cycle schema compliant to ISO 9001 standard, showing the various software
work products produced in the different phases, where squares are documents, circles are executable code,
and octagons are test cases.

The legend in the Figure 3 clarifies the nature of each specific software work product.

The experiment has covered the first phase of the figure, where the UR (User Requirements) document is the
result of the Customer’s Needs Management process, illustrated in section 4.2.

7

4.3.2 Process view of the supplier-customer cooperation to produce a good quality “User Requirements”
document. Actors involved.

The scenario of Figure 4 shows the Customer’s Business process (let’s call it the CB process) of the direct
Customers of OSRA SISTEMI which, making the best use of the SISPAC product, provide a specialized
service to their customers (the end-users of the global process). This CB business process is affected (and
forced to evolve) every year by two categories of factors: some external ones such as the periodic changes in
accounting and income tax returns laws and regulations, and some internal ones like the interest of the
business consulting offices to perform their services with higher levels of integration, effectiveness and
efficiency.

 System
Requirements

OSRA SISTEMI’s Case Scenario

SW

THE PROCESS NETWORK OF OSRA SISTEMI
(THE SUPPLIER)

Software
Requirements

 Business Objectives
of Clients of OSRA

GOALS

THE FINAL
CLIENT:

citizen,
single company,

group of
homogeneous

 companies

SISPAC
product Provided

service

Income Tax
returns,

salary and
budgets

management

CB Process, OSRA Customer’s Business process

User
Requirements

The CLIENT of
OSRA SISTEMI:

Business
Consulting

Office,
Category

AssociationProduct Deve-
lopment(PD)

The involved departments

Product
Planning (PP)

Customer
Support(CS)

(PD,PP,CS)
(PD,PP)

(PD,PP)

Process
to be

innovated:

“Manage
Customer’s

needs”

Internal influencing
factors:

new needs of
work organization

External influencing factors:
new laws and rules

Figure 4

The better is the support provided by the new versions of the SISPAC software to the evolving business
needs, the higher will be the success of OSRA Customers in their business, and the higher will be their
satisfaction.

So the problem is to guarantee the best mapping of SISPAC Software Requirements to the business needs. In
order to achieve this result, OSRA management has decided to take great care of the production of the initial
document of the life cycle of each new SISPAC version, the “User Requirements” document. OSRA has kept
innovating the approach and the content of the document, in such a way to mirror the evolving CB process
and stimulate the best understanding of the customer’s process by the interested OSRA people.

All the three interested departments of OSRA (Product Development, Product Planning, Customer Support)
have participated actively to the preparation of the document, each with its specific competence and
responsibility. In particular, Product Planning plays also the role of representative and sponsor of all the
SISPAC customers (both current and future), and carries their voice into the specification process.

In order to provide the best guide to the preparation of the document, a specialized guideline has been

8

adopted, which is described in the next subsection.
The application of this new guideline together with a outstanding cooperation of the mentioned three OSRA
departments, properly trained, constitutes the core of the innovative experiment, that has allowed to
perform in a new way the “Customer’s Needs Management” process (Fig. 4).

5. Methodology

5.1 The specialized guideline

On the methodological side the guidance for the preparation of the User Requirements document was
provided by the IEEE “Guide for Concept of Operations Document”, which is the initial component of the
guidelines belonging to the body of guides available in document [3].

 Figure 5 provides the first level Outline of the guiding Table of Contents adopted for the documents which
specify the user needs of the next version of SISPAC software, consisting of:
 - migration of SISPAC software to Windows/NT
 - functional extensions, and new printers handling
 - new user interface, including a desktop integrating all SISPAC applications

The approach sustained by the mentioned Guide stimulates a process-based view of the user needs
(consistent with the improvements on the organizational side). The main contents of User Requirements
document are described in Fig. 5 and in the explanatory text provided in this subsection.

The guideline supports both a first case where user needs refer to a scenario in which the software is
required to be embedded into a product in order to improve the product, and a second case where the
software is required to automate a part of a process in order to improve the process. In both cases the
authors are required to describe needs using a language and a terminology specific to the applicational
problems and context of the user, avoiding as much as possible the use of IT jargon and avoiding to
anticipate at this time the IT based solution to the needs.

9

User Requirements document
Table of Contents

1. Scope
2. Referenced documents

3. The current system or
situation

4. Justification for and
nature of changes

5. Concepts for the
proposed system

6. Operational scenarios

7. Summary of Impacts

8. Analysis of the proposed
system

Appendices
Glossary

9. Notes

The heart of

the document

Key supportive

 information

Figure 5

With reference to Figure 5, section 1 and 2 are introductory. Sections 3, 4, 5 are the heart of the document.
Section 3 (The current system or situation) describes the current product or process with their static and
dynamic characteristics, including also the following information:
 - background and objectives, in relation with specified business objectives of the user
 - operational policies and constraints
 - modes of operation
 - involved user classes
 - support policy and environment.

Section 4 (Justification for and nature of changes) first specifies which are the new business objectives (or the
old ones, if any, which are not well supported by the current product or process). In front of the new
objectives this section specifies which are the limitations (still present defects, weak points or missing
capabilities of the current system) being an obstacle toward the achievement of the new objectives. This list
of limitations is the reference for justifying the changes (and related priorities) to be made to the current
system (product or process) to make it able to support the achievement, by the user, of the new business
goals. The guideline suggests also to specify, if any, the changes considered but not included (and the reason
for the “don’t include” decision) in support to consideration for future extensions, in order to capitalize also
the decisions taken.
Section 5 (Concepts for the proposed system) describes the new system, conceived as answer to the
limitations described in Section 4. The template for this description is the same used for Section 3 for the
current system. At this point it is possible to understand that the description of the new system can be easily
derived from the one provided in Section 3, specifying easily the qualifying distinguishing requirements of
the new system that are the answer to the needs specified in section 4.

Assuming that the language and terminology used in Sections 3, 4, 5 is the application oriented one normally
used by the customer when dealing with its problems, and that the systems (current and new) are described
in terms of flow of real work products between processes (with related entry/exit criteria and rules), we can
understand that such document becomes really the reference, understood and easily agreeable by the
customer, on which the parties can compare every technical progress and achievement.

10

Section 6 has the purpose of describing selected operational scenarios. A scenario is a step-wise description
of how a system should operate, under selected representative circumstances, and communicate with other
external systems, and the end-users. The scenarios should allow the readers to walk through the new system
and understand how the various parts work together, to provide operational capabilities, and also to
understand better user’s roles, and how the features are provided to them. A scenario provides a key help
for evaluating the completeness of the requirements of the new system versus the needs.

Section 7 has the purpose of supporting analysis and documentation of impacts of the new system from the
operational and organizational point of view, as well as the impacts foreseen during development.

Section 8 has the purpose of documenting in organized way the balance of known costs and benefits
associated to the new system. Such analysis again stimulates the analysts to go in depth in understanding
pros and cons associated to the new characteristics, including the advantages that the new system can
produce on the costs of process workflow.

5.2 Measurements of the process and of the results of the first experience

The adopted methodological approach addresses also the measurements of effectiveness and efficiency of
the process to be improved (process effectiveness is defined as the capability of the process to produce, in
schedule and within budget, results of good quality; process efficiency is defined as the capability of the
process to produce the results in the fastest and cheapest possible ways). On this side ami [4] and GQM
(Goal, Question, Metric) [5] were the adopted methods: ami helped in defining the goals/subgoals tree (Fig.
6), and GQM helped in defining the proper questions and metrics to be used for quantitative evaluation of
the achievements (Tables 1 and 2).

The process model used to assess the current process before introducing the innovation was constituted by
the mentioned guidelines of the IEEE standard for User Requirements [3], enriched by the model elements
given by the ISO Software Process Assessment Standard available from the SPICE project [2]. Considering
the main business goals (improve quality of the product, reduce time to market, reduce costs, increase
productivity, see Figure 6) there was not a single business goal selected, with priority on the others. The
rational behind this consideration is that an improvement in Customer’s Needs Management can generate
balanced benefits on all the above business goals, assuming that the process improvement would consist in
improvements both of process effectiveness and process efficiency.

11

Goals tree

Process
Improvement

goals

Improve
Quality of the

Product

Business
goals

Reduce Time
to Market

Decrease
Costs of the

Product

Increase
Productivity

Improve
Process

Effectiveness

Improve
Process

Efficiency

How much well and
how much in schedule and

within budget the results
 were produced?

How much fast and
how much cheap the results

were produced?

Process
Improvement

subgoals

Reduce elapsed
time, for a given

quality level

Reduce elapsed time
for rework, for a

given quality level

Reduce effort spent
for rework, for a

given quality level

Reduce effort spent,
for a given quality

level

Define and apply a
Customer’s Needs

Management
process model

Reduce the number
of delivered defects

Reduce slippage of
actual spent effort

and schedule versus
estimated

Increase
User Requirements
completeness and

stability

Figure 6
An existing Customer’s Needs Management process model defined for the organization, and a previous
schema of related process measurements being both not available, we selected as process improvement
objectives both the process effectiveness and efficiency. In this way we created a basis of data from this first
innovation experience to be used as reference for the comparative evaluation of future further improvement
steps. Table 1 provides the GQM schema of subgoals selected in support of improvement of process
effectiveness: the subgoals, the related questions, the metrics with definitions, and the results. (Remark: in
Table 1, at Subgoal 1.3, customers were represented by Product Planning department of OSRA SISTEMI)

12

Table 1. Goal 1: Improve Customer’s Needs Management process effectiveness
Question: How much well and how much in schedule and within budget were the results produced?

 (LEGENDA: Q=Quality; NQ=Non-Quality)
Subgoal Question Metric Measured

value
1.1 Define and
apply a
Customer’s Needs
Management
process model

How much is the adopted
OSRA standard model
compliant to the
international standard
model of the process?

Completeness of the standard OSRA process model, versus the
international standard model =
= Percentage of international std template items which were
adopted in OSRA std defined model , over the total of
international std template items
[Q metric, the higher the better]

100%

How faithfully was the
adopted OSRA defined
process standard applied
in this experience?

Completeness of the model used in this experience, versus the
OSRA standard model =
= Percentage of OSRA adopted template items really applied in
this project, over the total of adopted OSRA template items.
(This metric is calculated at the end of a phase when the process faults
have been corrected)
[Q metric, the higher the better]

90%

How much the process
and document model was
violated, before
consolidating the results?

Percentage of detected process faults, over the total of process
template application instances.
[NQ metric, the lower the better]

10%

1.2 Increase User
Requirements
completeness and
stability

How completely the Input
Information was taken
into account to specify
User Requirements?

Customer’s Needs Management Coverage (%) =
=Percentage of Input Information Items taken into account in
the actual specifications of User Requirements, versus total
number of Input Information Items
[Q metric, the higher the better]

100%

How much complete and
stable were the
requirements, through the
successive Requirements
Baselines?

Averages, over all available baseline versions, of percentages of
(versus the total of requirements of previous baseline version):

- requirements changed
- requirements added
- requirements deleted

[NQ metrics: for each, the lower the better]

2,8%
0,9%
0,5%

1.3 Reduce the
number of
delivered defects

How many remained
defects were detected by
customers, per 100
Requirements?

Detected (by customers) Remained Defects Density (%) =
= (Total No. of detected (by customers) remained
defects/Tot.No. of Reqs)*100
[NQ metric, the lower the better]

4,2%

How many defects were
removed versus the total
detected?

Percentage of removed over total detected defects
[Q metric, the higher the better] 100%

How many defects
remained undetected or
unremoved going into the
next phase, per 100
Requirements?

Remained Defects Density (%) = (Total No. of defects remained
after this phase/Tot.No. of Reqs)*100
[NQ metric, the lower the better]

0%

How much time a defect
remains into the product
before being detected and
removed?

Defect Average Life (DAL)=
 =Σeach defect(Ordinal number of Detection phase - Ordinal number
of Injection phase)/(To.no. of detected defects)
(Reference is made to phases of the adopted life cycle)
[NQ metric, the lower the better]

0

1.4 Reduce
slippage of actual
spent effort and
schedule versus
estimated

How much the actual
spent effort did match the
estimated one?

Spent_effort_matching (in %)=
=[1-abs_value_of(actual_eff - est_eff)/est_eff)]*100(%)

[Q metric, the higher the better]

89%

How much the actual
schedule did match the
estimated one?

Schedule_matching=
=[1-abs_value_of(actual_sched - est_sched)/est_sched)]*100(%)
[Q metric, the higher the better]

92%

13

Table 2 provides the GQM schema of subgoals selected in support of improvement of process efficiency: the
subgoals, the related questions, the metrics with definitions, and the results.

Table 2. Goal 2: Improve Customer’s Needs Management process efficiency
Question: How much fast and how much cheap were the results produced?

Subgoal Question Metric Measured
value

2.1 Decrease
elapsed time from
process start to
process end, for
given product
quality levels and
given effort spent
levels

How much fast is the User
Requirement Specification
process?

Process quickness = Customer’s Needs Management Process
Elapsed Time efficiency=
=Amount of User Requirements specified per elapsed time
unit=
=(Total number of Requirements specified in the last
baseline)/(total elapsed time)

[Time efficiency metric, the higher the better]

29
Requirements

specified

per elapsed
calendar day

2.2 Decrease effort
spent from
process start to
process end, for
given product
quality levels and
given elapsed
time levels

How much cheap is the
User Requirement
Specification process?

Process cheapness = Customer’s Needs Management Process
Effort Spent efficiency= =Amount of User Requirements
specified per effort spent unit=
=(Total number of Requirements specified in the last
baseline)/(total effort spent)

[Effort efficiency metric, the higher the better]

18
Requirements

specified

per man-day

2.3 Decrease
elapsed time,
from process start
to process end, for
Reworking on
defective
requirements, for
given product
quality levels and
given effort spent
levels

How much fast is the User
Requirement Specification
Rework process?

Process quickness for rework = Customer’s Needs Management
Process Elapsed Time efficiency, for Rework=
=Amount of User Requirements reworked per elapsed (in
rework) time unit=
=(Total number of Requirements reworked in the last
baseline)/(total elapsed time for rework)

[Time efficiency metric, the higher the better]

10
Requirements

reworked

per elapsed
calendar day

2.4 Decrease effort
spent, from
process start to
process end, for
Reworking on
defective
requirements, for
given product
quality levels and
given elapsed
time levels

How much cheap is the
User Requirement
Specification Rework
process?

Process cheapness for rework = Customer’s Needs Management
Process Effort Spent efficiency, for Rework=
=Amount of User Requirements reworked per effort spent (in
rework) unit=
=(Total number of Requirements reworked in the last
baseline)/(total effort spent in rework)

[Effort efficiency metric, the higher the better]

7,5
Requirements

reworked

per man-day

The experience was important as first step to tune the OSRA SISTEMI Requirements Management
methodology, and to establish a measurement schema and approach to be applied also to the next
Requirement Specification steps, which are foreseen in the other life cycle phases described in Figure 3.

14

6. Technology

A specialized and user friendly tool was adopted to facilitate the writing of documents. The tool ([11], see
Appendix A) is constituted by a set of templates, usable with the most diffused word-processors, which has two
main characteristics:

1) It provides the users a set of templates for the most important documents of a software project. The templates
guide the authors to define the characteristics of a software product according to a content compatible with
IEEE standards for software documentation and ISO 9001 compliant. The templates are easily adaptable to the
specific needs of a given project. In the case of OSRA SISTEMI the templates were enriched with the specific
template described in section 5.1.

2) The tool provides an on-line guide to explain what type of information is required for each section: the on-line
guide is designed to be used "as is" by software engineers when writing technical documents. An ease-of-use
aspect of the on-line guide is also that for each type of information required the author (depending on her/his
skill level) can consult additional instructions that give additional explanations to understand topics in a given
section. To help clarify the guidelines, examples are provided to indicate the specific types of information
required. Such additional explanations and examples are located in boxes which can be activated or
deactivated using the “See Instructions” or “Hide Instructions” commands of the “Visualize” pull-down Menu
of the used word-processor. After completion of the document, the user with a simple mouse click can hide
both the guidelines and examples to create the final document. Examples of how the guidelines are presented
to the authors are given in Appendix A.
From the formal point of view, the sections for each document are already formatted using the standard fonts
and features of your documentation, that were chosen as standard for the whole organization. The user can
simply enter the appropriate information required for each section without worrying about fonts, formatting
etc.. This guarantees a uniform documentation style throughout the organization.

The tool is relatively cheap and the return of the investiment is very high because it can largely improve the
efficiency and effectiveness of the process. The tool can be considered relatively low-tech (requiring for this
reason a very limited amount of training) but provides a great support to the process of definition of customer’s
requirements. Once again low-tech tools can be an abundant source for organizational and technical
improvements in the software industry [8,10,12,13].

7. Results of the improvement initiative

7.1 The production of specifications of the new product

The focus of the initiative has been the process through which the direct customers of SISPAC provide their
services to the end-users. This initiative gave evidence that the main needs were on one side to use the SISPAC
applications in the emerging Windows/NT operating environment, on the other side to exploit of Graphic User
Interface facilities enhancing the ease of use of the single application, and to provide easy access to each SISPAC
application from one unified desktop.

The adopted structure of User Requirements document has allowed to produce effective descriptions of the
current and of the new wanted solutions, and to understand easily differences, advantages and impacts of the
envisaged solutions.
The following OSRA Departments have participated actively to the writing and review of the documents:
- Software Development Department
- Product Planning Department
- Customer Support Department

The Product Planning Department has played the role of representative and carrier of the needs of all the

15

customers, collecting and coordinating requests and needs directly and through the Customer Support
Department.

Three documents were produced applying the innovative approach: the User Requirements regarding the Single
SISPAC Application Module User Interface, the Printers Control User Interface, and the SISPAC/NT Desktop
User Interface.(See Section 5.2 for measurements regarding the results).

7.2 Organizational, cultural, and technical difficulties. How were these difficulties overcome?

No specific organizational difficulties were encountered, because corporate management did sponsor the effort.

Cultural difficulties were approached. We provided to people a specific two-days training on the contents and
motivations of the documents through the life cycle, with special emphasis on the User Requirements document.
This training has given to the actors of the process a full understanding of the role of the different kinds of
requirements in the different phases of the project and on the corresponding process oriented culture.

Technical difficulties (in this case the risk of having a not uniform approach by different people in the
preparation of the different contributions for requirements) were solved adopting the common document
template described above.

The above mentioned training accompanied by the use of the interactive supporting tool allowed people to be
quickly operational in writing complete, understandable, controllable user requirements.

7.3 Costs and benefits

Costs:
1) The training: this cost was required anyway within the ongoing effort of establishing the OSRA Quality
System.
2) No specific additional costs, due to the innovation (except the acquisition of the tool, some hundreds US
dollars), were sustained in the writing of the documents.
3) Costs of measurements. Less than 0,2 % of additional cost, for counting the requirements: collection of

time/effort and defect data was already an established practice.

Benefits:
1) A greatly increased involvement and cooperation with both external and internal (Product Planning)
customers;
2) A clearer understanding of the current customer’s process and of their future process, and correspondingly of
the current and of the new SISPAC systems;
3) The new project seen in the context of user process, being the user process a reference to be used for
evaluating the completeness, consistency and adequacy of the requirements of the new system;
4) a much more professional image toward the external customers;
5) greater opportunity of handling conflicts of requirements, because customer’s needs are clearer;
6) A good premise for reducing future post-sale problems.

7.4 Learned Lessons

The main lesson learned regards the better control over product and process quality that can be obtained
through three main means:
a) the use of process model and related document template for getting guidance in the work
b) the use of a shared and controlled database as repository where to keep the baseline versions of the results,
which makes easier to the participants the access to the updated information, with the guarantee of working on
the correct and controlled version.
c) the collection of requirements, defects and time/cost data for producing effectiveness and efficiency
indicators

16

Using low-tech tools and process improvement methods to collect and distribute information is highly effective,
particularly for the small companies (a huge population of the software industry) because it minimizes the risks
of adoption, the cost of using high tech tools, and the need of training [10].

As future development the usage of Internet/Intranet is foreseen as the mean to make available the above
communication channel also directly to the customers, enhancing so their involvement.

8. OSRA SISTEMI Case: notes and comments
Results of this experience were presented also as a case study to the European ESPRIT Project 21461 TBPTIME,
having as objective to collect and diffuse for training purposes a set of significant case studies of process
improvements for SMEs in different process areas.

The significant aspects pointed out in the case study are the following:
- CASE GOALS:
• to show how a SME is facing to the marketing problem of client needs identification and analysis
• to show how the employment of IT, also not so much sophisticated, could improve the Customer’s needs

management process part of the Customer management process
• to show how a SME could utilize IT to collect information about clients
• to show how a SME could utilize IT to share information in the organization
• to show the importance of the process quality management

 - PROCESSES CONCERNED
• Customer management Process
• Production process
• Information management process
• Quality management Process

 - IT CONCERNED
• SW (word processor) + pc
• LAN, DB
• Workgroup
• Internet (future)
• e-mail (future)
• Intranet (future)

- THE OSRA MODEL
The OSRA case represents and shows a model that could be exported in other contexts, both service and product
oriented. The lesson learned could be summarized in the following picture (Figure 7):

17

Market

Enterprise

Product/Services

Needs

- Needs collection
- Needs analysis

Client needs documentation
Template - WP

Data
Base

Feed-back

OSRA CASE: A GENERAL OVERVIEW

I.T.

Figure 7

SMEs should manage the Client needs using the techniques available. The IT could support the SMEs efforts
providing Data-Bases and the tools to manage data. The data collection with IT based tools could help the SMEs
in the diffusion of information into the organization. The introduction of this innovation must be strongly
supported by the corporate management with a top-down approach: without this involvement there are huge
difficulties to modify a process, or part of a process [6]. The Marketing aspect of the innovation consists in the
collection and organization of data about client needs and in the possibility to check the market and the
customers through the development of the client documentation Data Base. The use of a common template
assures the same standard in the data collection and avoids misleading interpretation to be inserted into the D.B.
But the Client Needs documentation is also the starting point of the production process. So it is necessary that all
the information are diffused in the SMEs. The common way to do that is the production of a paper (e.g. a
marketing plan). In this case the Information System allows certain number of departments, the departments
involved in the innovation, an inter-functional team, to access the Data Base and to share the knowledge about
client needs.

18

OSRA CASE: THE INTERNAL ORGANISATION
AND THE ACTUAL SITUATION

Data
Base

Dept. 1

Dept. 5

Dept. 6

Dept. 4

Dept. 2
Dept. 3

MARKET - CUSTOMERS

Organisation

LAN/
WORKGROUP

Figure 8

In this way it is also possible to enrich the Client Documentation Data-Base with all the feed-backs that are
coming from the market and the customer. So the Data-Base is the real focal point not only of the development
of the actual product but also of the future releases and versions. With the implementation of LAN and Work-
Group techniques it is possible to do that (Figure 8)

The future development of this model is towards the implementation of a Internet/Intranet innovation. The
Data Base could contains not only the Client Needs but also other information, such as troubleshooting, product
test results, etc. A certain number of customers (a test panel for example) could be interested in the access to the
Data Base for the automation of the Client Needs Documentation activity (through e-mail) or for the
troubleshooting activity (through Internet/Intranet). (Figure 9).

Figure 9

19

Data
Base

Dept. 1

Dept. 5

Dept. 6

Dept. 4

Dept. 2
Dept. 3

Organisation

LAN

SME SME

SME

SME

SME

SME

Client needsTroubleshooting

INTERNET/INTRANET

OSRA CASE: THE FUTURE

Finally the Client Needs Documentation Activity is integral part of the Quality System of the SMEs and the IT
permits the measuring of performances of the process. This is really important not only for SMEs that make
products but also is fundamental for SMEs producing services. In the Software development area, as for the
OSRA case, it is now fundamental to assure high level of quality and the possibility to monitor the real
performances, both of the software and of the organization.

To explain the goal that OSRA SISTEMI has in the adoption of the IT innovation we have to think that in the
actual market condition the competition requires quality, efficiency and short time-to-market. The quality
aspects must consider two factors: the total quality of the product and the cost factor. The efficiency must be
considered in terms of cost of a particular project/product and the productivity of the organization. These two
factors could improve the time-to-market and could give the “first move advantage” to the SME. Advantages
derived from a short time-to-market are the possibility to have fast feed-back from customers that could be
structured in a data base for the future development of the product. In the OSRA CASE the customer’s
feedbacks were used for taking care of the aspect of “user-friendliness” of the product.

9. Conclusions
The literature of the Total Quality Management has always stressed the importance of collecting and using
needs and feedbacks from the (internal and external) customers [7]. We believe that this case study can be a
practical and successful example about the structured collection of the requirements for the new products. In the
software field, in particular, the complete, consistent and structured specification of user requirements is the
critical starting point to deploy products of the required quality [8], [9]. Moreover the technologies and the
methodologies used in this case study could be exported in other contexts, both service and product oriented, to
structure the development of technical requirements.

References
[1] ISO/IEC 12207, Information technology - Software life cycle processes, First edition, August 1, 1995
[2] ISO/IEC PDTR 15504-1/9: Information Technology - Software Process Assessment Parts 1 through 9, November 13, 1996
[3] J-STD-016-1995 EIA/IEEE Interim Standard for Information Technology - Software Life Cycle Process - Software
Development Acquirer-Supplier Agreement (Issued for Trial Use)
[4] ami (Application of Metrics in Industry), Metric Users’ Handbook - A quantitative approach to software management -

20

The ami consortium c/o The ami User Group, CSSE, South Bank University, 103 Borough Road, London SE1 0AA, UK
[5] Basili V.R., Rombach H.D., 1988, “The TAME project: towards improvement-oriented software environment”, IEEE
Transaction on Software Engineering, vol.14, n. 6, June, pp. 322-331.
[6] Thomas H. Davenport “Process Innovation. Reengineering Work through Information Technology, Harvard Business
School Press, Boston, Mass., U.S.A., 1993
[7] Crosby P., 1979, Quality is Free, McGraw-Hill, New York, USA.
[8] Humphrey W.S., 1989, Managing the software process, SEI series in software engineering, Addinson Wesley Publishing
Company, Reading, Massachussets, USA
[9] Paulk M.C., Curtis B., Chrissis M.B., Weber C.V., 1993, Capability Maturity Model for Software, Version 1.1, SEI Tecnical
Report CMU/SEI-93-TR-024, Software Engineering Institute, Carnergie Mellon University, Pittsburgh, Pennsylvania, USA.
[10] Agresti W.W., 1991, "Low tech tips for high quality software", IEEE Software, vol. 7, n. 6, November, pp. 86-88
[11] ProDoc, a software documentation support tool, produced by Software Productivity Centre (SPC) (Vancouver, Canada),
distributed in Italy by MetriQs - For information, contact SPC (to tools@spc.ca), or MetriQs (to support@metriqs.com)
 [12] ISOplus, a tool supporting the preparation of a ISO 9001 compliant Software Quality System, produced by Software
Productivity Centre (SPC) (Vancouver, Canada), distributed in Italy by MetriQs - For information, contact SPC (to
tools@spc.ca), or MetriQs (to support@metriqs.com)
[13]Fabio Valle, The software quality: a new paradigm in the software industry and the case study SPICE, Master
Engineering Degree Thesis, University of Padova, 1995-1996.

Attachment:

Appendix A - Some samples of what the support tool provides

Appendix A

21

 Managing customer’s requirements in a SME: a process
improvement initiative using an IT-based methodology and tool.

Some samples of what the support template and tool provide.

This Appendix provides:

 - a copy of a Word window showing a portion of a ProDoc [11] template. In the pulldown Visualize menu, the
commands “HideInstructions” and “SeeInstructions” (one of the characteristics of ProDoc) allow the user to
visualize or to hide the gray boxes of the template. The boxes contain explanations for helping the user in
understanding better the topics to be adressed in a given section of the template.

- a view of one sample page of one of the documents produced in the experience, where the help boxes are
visualized.

View of the Menu commands “SeeInstructions” and “HideInstructions” of the support tool ProDoc

Appendix A

22

What follows in this page is a view of one sample page of one of the documents produced in the experience, where the help
boxes are visualized.

1. Scopo

Questa sezione deve essere divisa nei seguenti paragrafi.

1.1 Identificazione

Questo paragrafo deve contenere una completa identificazione del sistema a cui si
riferisce questo documento, includendo se identificabile il numero d’identificazione,
titolo, abbreviazioni, versione e numero di release.

Questo documento descrive le esigenze e le possibilità della nuova interfaccia con sfondo grafico
da adottare nell’applicativo SISPAC relativamente alla gestione delle stampanti.

1.2 Visione d’insieme del sistema

Questo paragrafo deve enunciare brevemente lo scopo del sistema a cui si
riferisce questo documento. Deve descrivere la natura generale del sistema; deve
riassumere la storia dello sviluppo del sistema, funzionamento e manutenzione;
deve identificare lo sponsor del progetto, l’acquirente, l’utente, chi ne cura lo
sviluppo e le procedure di supporto; deve identificare i luoghi operativi attuali e
quelli pianificati; deve elencare altri documenti rilevanti.

Lo scopo del sistema è quello di proporre una più gradevole interfaccia di SISPAC proponendo
uno sfondo grafico alle attuali videate di gestione della stampante (e del documento).

1.3 Visione d’insieme del documento

Questo paragrafo deve riassumere lo scopo ed i contenuti di questo documento e
descrivere le considerazioni di sicurezza o privatezza associate al suo utilizzo

Questo documento descrive, in linguaggio utente, le problematiche relative al
processo di simulazione grafica di un’interfaccia a caratteri, nonché le
caratteristiche di efficienza ed efficacia rispetto alla attuale situazione.

2 Documentazione di riferimento

In questa sezione si devono elencare il numero, il titolo, la revisione e la data di tutti i
documenti a cui si fa riferimento in questo documento.

THE EURO CONVERSION

MYTH VERSUS REALITY!

A Special Panel Session

Quality Week Europe

Conference Day #2

12 November 1998 @ 1600

Chaired by Thomas Drake, Coastal Research & Technology, Inc.

Panelists

John Corden, Cyrano
Patrick O’Beirne, Systems Modelling Ltd., Consultant

Jens Pas, ps_testware
Graham Titterington, Ovum

The Euro Conversion – Myth vs. Reality!

This special panel session is designed to provide a forum for discussing the Euro conversion with a decided
focus on the technical, economic, cultural, and liability concerns posed by the Euro conversion. Questions
that will be presented and discussed include the following:

- What are the real-world challenges and experiences of those currently working the Euro problem?

- Who and what will be impacted by the Euro conversion?

- What are the facts about the Euro conversion versus what is myth?

- Is the Euro conversion the ultimate millennium challenge for Europe?

- Are the business and technical challenges posed by the Euro conversion more difficult to resolve from
those surrounding the Year 2000 problem and what difference, if any, can quality make?

The Euro conversion would appear to pose not only economic challenges but also a number of technical
and business obstacles and issues, and perhaps most importantly a degree of risk involving historic
proportions. The core period for the Euro conversion is marked by transition over a three-year period
beginning on 1 January 1999 and the numerous technical and managerial challenges posed by the Euro
conversion appear very similar to the Year 2000 problem.

There are a number of common issues relating to applications and package software, source code, service
vendors, testing, program management, information technology resource support, domain expertise, and
time! But what is unique about the Euro conversion? Perhaps the most critical aspect of the conversion lies
in the area of requirements management.

Every business process appears related to the Euro issue and involves far more than just a technical
upgrade and modification of existing business and enterprise systems. More importantly are the strategic
decisions that effect how businesses conduct their enterprises each and every day. The Euro poses perhaps
the greatest challenge in these areas and perhaps the greatest impact of the Euro conversion will occur at
the retail level in the buying and selling of goods and services each and every day.

There are also technical risks and obstacles associated with the Euro conversion. Consider the problem of
possible data pollution and corruption, conversion errors, and display problems. The data migration paths
posed by the Euro conversion encompass a whole host of challenges for testing, quality assurance, and
configuration management including database conversions, numeric translations, and modified pricing
structures.

And what is the definition of Euro conversion compliance and how does one test for it? Some are even
saying that the Euro conversion is actually more complex and has greater impact than even the Year 2000
problem. Why? It will implicitly shift and even perhaps radically alter the day to day lives of the people
affected and have a major and lasting impact on all the business and institutions who invest and trade and
engage in daily economic transactions within Europe and from without Europe vis-à-vis Europe.

The primary intent of this panel session is having a facilitated discussion among the panel members and the
audience on the impact, change, and reality posed by the Euro conversion and explore the question of what
does it all mean from a technical, managerial, and information technology perspective.

Slide 1

GiTek Software n.v. (QWE '98) 1

Introducing structured testing
into a dynamic, low-mature

organisation
Track Presentation at Quality Week Europe ‘98

Mark Buenen, GiTek Software n.v.

Slide 2

GiTek Software n.v. (QWE '98) 2

Structure

F Current situation
F Plan for introducing structured testing
F Execution of improvement actions
F Evaluation
F Conclusions

Introducing structured testing into a dynamic, low-mature organisation Structure

Slide 3

GiTek Software n.v. (QWE '98) 3

The organisation

Board of directors

Marketing Customer CareIT

Server
 Software

Development
Security

Client
 Software

Development

Quality Review
and

Test team

Introducing structured testing into a dynamic, low-mature organisation Current situation

Copyright © 1998 GiTek Software n.v

Slide 4

GiTek Software n.v. (QWE '98) 4

Assessment of current test
practices

Assessment

Major risks

Targets and scope

Imperfections Achievements

Improvement actions

Why ?

What ?

How ?

Change programme

Copyright © 1998 GiTek Software n.v

Introducing structured testing into a dynamic, low-mature organisation Current situation

Slide 5

GiTek Software n.v. (QWE '98) 5

Major risks

F Focus only on on-time delivery
F Quality level of the product is lacking
F Immature development process

Introducing structured testing into a dynamic, low-mature organisation Assessment

Copyright © 1998 GiTek Software n.v

Slide 6

GiTek Software n.v. (QWE '98) 6

Imperfections

F Formal specifications are lacking
F Lacking insight in white box tests
F Too many successive releases
F Poor preparation of black box tests

Introducing structured testing into a dynamic, low-mature organisation Assessment

Copyright © 1998 GiTek Software n.v

Slide 7

GiTek Software n.v. (QWE '98) 7

Positive trends

F Management commitment
F Separation of white box and black box tests
F Presence of a dedicated test team
F Presence of a quality team
F Use of test tools

Introducing structured testing into a dynamic, low-mature organisation Assessment

Copyright © 1998 GiTek Software n.v

Slide 8

GiTek Software n.v. (QWE '98) 8

Improving the test process

F Implement a test management approach
F Create a risk based test strategy
F Formalise test methods, techniques and

tools
F Formalise test procedures
F Improve white box test
F Arrange training and coaching

Introducing structured testing into a dynamic, low-mature organisation Assessment

Copyright © 1998 GiTek Software n.v

Slide 9

GiTek Software n.v. (QWE '98) 9

Horizon
Requirements/Specifications

PrM

TM

PM White box
 tests

Release
 tests

Integration
 tests

Introducing structured testing into a dynamic, low-mature organisation Assessment

Copyright © 1998 GiTek Software n.v

Slide 10

GiTek Software n.v. (QWE '98) 10

Proposal

F Phase 1:
– Test methodology
– Test organisation
– Test infrastructure
– Training and Coaching
– Pilot projects

F Phase 2:
– Test automation

F 80 man days

Introducing structured testing into a dynamic, low-mature organisation Proposal

Copyright © 1998 GiTek Software n.v

Slide 11

GiTek Software n.v. (QWE '98) 11

Suggestions

F Get key-players involved
F Recognize roles
F Do not overlook positive trends
F Await the go/nogo decision

Introducing structured testing into a dynamic, low-mature organisation Proposal

Copyright © 1998 GiTek Software n.v

Slide 12

GiTek Software n.v. (QWE '98) 12

Implementation plan

F Testing methodology
F Testing organisation
F Testing infrastructure
F Training and coaching
F Pilot projects

Introducing structured testing into a dynamic, low-mature organisation Plan

Copyright © 1998 GiTek Software n.v

Slide 13

GiTek Software n.v. (QWE '98) 13

Suggestions

F Get others involved
F Keep IT-management informed
F Communicate the plan to all parties

Introducing structured testing into a dynamic, low-mature organisation Plan

Copyright © 1998 GiTek Software n.v

Slide 14

GiTek Software n.v. (QWE '98) 14

Execution

F Describing the workflow
F Challenges
F Suggestions

Introducing structured testing into a dynamic, low-mature organisation Execution

Copyright © 1998 GiTek Software n.v

Slide 15

GiTek Software n.v. (QWE '98) 15

WorkflowRelease
Plan

Project
Plan

Functional
Design

Technical
Design

Software

System
Test

Acceptance
Test

Release
Test

System
Release

Execution Introducing structured testing into a dynamic, low-mature organisation

Copyright © 1998 GiTek Software n.v

Slide 16

GiTek Software n.v. (QWE '98) 16

Challenges

F Coverage tool
F Defect tracking tool
F Test environment
F Developers lack time to participate

Introducing structured testing into a dynamic, low-mature organisation Execution

Copyright © 1998 GiTek Software n.v

Slide 17

GiTek Software n.v. (QWE '98) 17

Suggestions

F Acknowledge resistance
F Be flexible but firm
F Use sponsors
F Check roles of the players
F Look for quick wins
F Communicate the progress

Introducing structured testing into a dynamic, low-mature organisation Execution

Copyright © 1998 GiTek Software n.v

Slide 18

GiTek Software n.v. (QWE '98) 18

Evaluation, results achieved

F Test efficiency improved
F Co-operation with developers
F Re-usable and flexible test scripts
F Improved testing quality

Introducing structured testing into a dynamic, low-mature organisation Evaluation

Copyright © 1998 GiTek Software n.v

Slide 19

GiTek Software n.v. (QWE '98) 19

Evaluation, to be resolved

F Changing the rest of the organisation
F Formal cooperation with developers
F Improving designs
F Spread the achievements

Introducing structured testing into a dynamic, low-mature organisation Evaluation

Copyright © 1998 GiTek Software n.v

Slide 20

GiTek Software n.v. (QWE '98) 20

Continuation

F Reduce speed of further improvements
F Introduce a phase of preservation and

communication
F Pick up the improvements later on

Introducing structured testing into a dynamic, low-mature organisation Evaluation

Copyright © 1998 GiTek Software n.v

Slide 21

GiTek Software n.v. (QWE '98) 21

Conclusions, the phases
Assessment

Proposal

Plan

ImprovementEvaluation

Introducing structured testing into a dynamic, low-mature organisation Conclusions

Copyright © 1998 GiTek Software n.v

Slide 22

GiTek Software n.v. (QWE '98) 22

Conclusions, lessons learned

F Recgonize role of communication
F Improvement phases 6-12 months
F Quick wins
F Simplicity over thoroughness
F Flexibility and firmness
F Endurance

Introducing structured testing into a dynamic, low-mature organisation Conclusions

Copyright © 1998 GiTek Software n.v

Introducing structured testing into a dynamic, low-mature organisation IQWE '98

Copyright © 1998 GiTek Software n.v., Antwerpen, Belgium p. 1

Introducing structured testing
into a dynamic, low-mature organisation

Track Presentation at Quality Week Europe '98.

 Mark Buenen (GiTek Software n.v.)
 18-09-1998

1 Introduction

This presentation is an account of the practical experience obtained in a Belgian organisation during the
execution of a program for structuring the testing approach. In this young and very dynamic organisation the
on-going business demanded major attention of all employees. This puts a lot of restrictions on the feasibility of
any change program. This presentation will show how this dilemma was recognised and was dealt with in
practice. The presentation offers attendees an example of a successful implementation of structured testing.
This provides attendees with a reference for their own change programs, and the benefit of getting acquainted
with major pitfalls and lessons learned in practice.

The presentation has the following structure:
• The reasons for introducing structured testing in this organisation;
• Planning the improvement actions;
• The implementation of the improvement actions in the first phases;
• The results achieved during the first phase;
• The planning of the next phases;
• Conclusions and lessons learned.

The testing methodology Test Management Approach (TMap®), was used as a reference for this test
structuring program.

Introducing structured testing into a dynamic, low-mature organisation IQWE '98

Copyright © 1998 GiTek Software n.v., Antwerpen, Belgium p. 2

2 The current situation

2.1 Description of the organisation

The organisation in case is a young company, that has been building a package for the Belgium financial world.
The major banks of Belgium provide this organisation with assignments. End users are the business clients of
the banks. The package has to work together with the information systems of the banks. The organisation also
provides access to a Wide Area network, with couplings to the Internet.

The organisational structure is typical for a package developer. It is depicted by the following diagram:

Board of directors

Marketing Customer CareIT

Server
 Software

Development
Security

Client
 Software

Development

Quality Review
and

Test team

The first challenge was to meet the date agreed for releasing the first version, with an acceptable level of
quality. Since that first release there has been a continuous demand for additional features. Together with the
resolution of some technical problems this has resulted in a continuous flow of releases of new versions, and a
growing time-to-market challenge. General management recognised the threat of the insufficient quality level
of both the product and the development process, and decided to introduce a quality department. The quality
manager department felt the necessity to introduce structured testing for final acceptance tests. The first action
was constituted by a quick 1 day assessment in order to determine the scope of the improvement program.

2.2 Scope of the test structuring program

The assessment consisted of interviewing the key-players, and studying relevant documents such as testing and
development guidelines. In general we recognise the following key-players: IT-management, project
management, quality management, end-users, developers. In this case the following key-players participated:

• The IT-manager
The IT-manager is the one who commissioned to introduce structured testing. This person decides on
releasing budget for projects. The main areas of attention are:
What goals does this person hope to achieve by introducing structured testing;

Introducing structured testing into a dynamic, low-mature organisation IQWE '98

Copyright © 1998 GiTek Software n.v., Antwerpen, Belgium p. 3

Based on what results does this person consider the program to be a success;
Who else have to be involved in this assessment ?

• Project managers software development
Project managers are responsible for software development. They provided valuable insight in the current
state of the software development process and of the testing process.

• Quality Manager
The quality manager is responsible for introducing and maintaining quality control in the development
program. In many small organisation this is not a full-time job. Sometimes this role is fulfilled by the IT-
manager. The quality manager was asked for his opinion on the current state of quality assurance measures
within the organisation (specification reviews, development standards etc.).

• Developers and testers
The developers provided valuable insight in the actual application of development and testing
methodologies in practice. It is very revealing when you are able to observe test-execution in practice.

The product
The product of this first phase is a report describing the current situation. Key-elements of this report are:
• Major risks in terms of business targets. Recognition of these risks in an early stage has two advantages;

1. It helps you to focus your improvement actions on the really important issues.
2. When you encounter resistance it enables you to convince people of the importance and necessity of the
changes. Identifying the major risks creates the awareness for the necessity of a program of change.

• Imperfections of the development and testing process. This identifies the elements that need to be improved.
• Positive trends and achievements. These are the cornerstones of the improvement actions. Keeping these

items and building on them will help to minimise resistance. What must be kept ?
• Goals and scope of the program of change: Describe the basics of the change actions. What imperfections

will be addressed by improving the testing activity. Which achievements will be used as a starting point ?
• Improvement actions. This is a high level description of the action. It gives management insight in the

direction of the improvement actions.
The objectives of this product are depicted in the following figure:

Assessment

Major risks

Targets and scope

Imperfections Achievements

Improvement actions

Why ?

What ?

How ?

Change programme

2.3 Results of the assessment

The key reasons for introducing structured testing in this organisations were:

Introducing structured testing into a dynamic, low-mature organisation IQWE '98

Copyright © 1998 GiTek Software n.v., Antwerpen, Belgium p. 4

• The core business of this organisation is delivering a software package and providing access to their server.
The mere existence of this organisation depends on an appropriate level of quality of the delivered software
and infrastructure;

• The current software development and testing process is unpredictable and time consuming. It provides too
little insight in the quality level of the products;

• Too many errors in the software after installation on end users work stations;

The major risks identified were:
• The constant time pressure to deliver software, whether it is new or altered;
• The informal process of obtaining the requirements and specifications. The input is not only given by banks,

but also by testers, user help desk, installers, standards, legislation, technical requirements etc. By lack of
Product Management resources, IT staff mostly takes the responsibility for the specification process;

• An unpredictable and time consuming testing process, caused by the lack of scheduling, metrics, estimation,
test organisation and test management.

Some of the imperfections were:
• The white-box tests are performed very informally and the process offers no insight;
• There are too many successive software releases;
• The problem reporting and change procedures are not formalised. The Test Team is not informed on a

structural basis of the problem reports;

The positive trends were:
• Within the IT-department and at management level there is already an awareness that the test process

needs to be improved. The implementation of a test methodology is part of a company wide quality
improvement process;

• The test environment is set up in such a way that there is a separation of development test, functional tests,
beta tests and production;

• The IT Department is contemplating about future ideas, such as the reusability of the testware and test
packages;

• The Management agreed to create a test laboratory for functional tests.

Based on these findings a step by step improvement of the test process was proposed. Therefore the
improvement actions were defined and grouped in short term, medium long term and long term:

Short term:
1. Give the Test Team the necessary responsibilities in both preventive and detective matters, fitting with the

total process flow;
2. Implement a test organisation and establish the accompanying test functions;
3. Recruit the necessary test personnel and take care of adequate training and coaching;
4. Implement a generic, proven test management approach. Mind not to reinvent the wheel again.
5. Formalise the applied test methods, techniques and tools.
6. Formalise the test procedures for all tests. These procedures ought to work as a protocol for all disciplines

involved;
7. Agree on quality level before the modules are presented to the Test Team for functional tests;
8. Create a risk based test strategy early in the development life cycle to avoid uncontrollable parallel test

execution processes and to reduce the large number of beta tests;
9. Install a communication platform where test planning, test specifications, defects and change control can be

discussed;
10. Improve the white box tests and arrange training and coaching;
11. Implement tools for management and defect registration;

Medium long term
1. Organise the specification process by adequate change control procedures and the installation of product

management;
2. Arrange the actual execution of the white box tests to be reviewed by the Test Team;
3. Define and install testware management and make testware reusable;
4. Define, collect, analyse and provide test metrics on a regular basis;

Introducing structured testing into a dynamic, low-mature organisation IQWE '98

Copyright © 1998 GiTek Software n.v., Antwerpen, Belgium p. 5

5. Use tools to automate the integral test process (management, execution and analysis);
6. Use the achieved test experience and methods company wide;

Long term
Integrate the applied test methods, procedures, testware and experience to a professional test process executed
in a test laboratory, that enables the organisation to execute any test effectively, quickly and at low costs. In the
future such a laboratory could be exploited as a profitable unit.

In that situation the requirements will be collected and fixed by Product Management of course supported by
Information Analysts and Functional Designers of IT as well as by Business Experts. Based on the
specifications Project Management will run the project to design, realise, (development) test and implement
the system, and Test Management will take care of the organisation, preparation, specification and execution of
the integration and system level tests. This process will be suitable for both new developments and for
maintenance.

2.4 Hints
• The assessment is required to help the sponsor in deciding to commission the change program;
• Do not overlook the positive trends and achievements of the current approach;
• Get all important people involved in this early stage. The first step is interviewing them during the

assessment. The second step is discussing this report as a separate product of the change program;
• Recognise the roles of influential people: who are supportive, who are change agents, who are blocking

factors. This helps you to determine a strategy for the actual program of change;
• Be sure that this phase is concluded by a formal go/nogo decision by your sponsor.

2.5 The proposal

After acceptance of the assessment report a proposal was drawn up, in which the required budget and the
important conditions were discussed.

Based on the discussion the assessment report it was decided to tackle the following issues:

1. The testing process must supply insight in the quality level of the product as early as possible in the life-
cycle;

2. Planning and scheduling of the duration and resources required for the test process must be improved;
3. The number of releases must be reduced and control must be improved;
4. White box tests must be improved and must provide more insight;
5. The application of the test automation tool must be improved;
6. Defect registration and change control procedures must be formalised;
7. Communication between disciplines must be improved.

The improvement actions were separated in two distinct phases:
First phase: December 1997 - March 1998
Second Phase: April 1998 - June 1999

It was decided to deal with the prerequisites for a structured test process in the first phase:
1. Test methodology;
2. Test organisation;
3. Test infrastructure;
4. Training and coaching of involved employees;

Introducing structured testing into a dynamic, low-mature organisation IQWE '98

Copyright © 1998 GiTek Software n.v., Antwerpen, Belgium p. 6

5. Application of the new methods techniques, infrastructure and utilities in pilot projects.

During the second phase the focus would be on optimising the achievements of the first phase.

A global estimation of the total required effort of the first phase of the improvement project is 80 man days.

3 The plan for introducing structured testing

3.1 Introduction

The plan is a means for communicating the intended change program to people directly involved in the
improvement process. And it is an aid for monitoring the change program by the change manager. The plan
has the features of any project plan. Standard items within this plan are:
• Introduction;
• Horizon;
• Improvement Actions;
• Activity planning;

3.2 The horizon
The objective of the test structuring program was to achieve a test laboratory, where tests are performed in a
structured way. The main features of the structured testing process are:
• There is a co-ordination of the scope and depth of the various tests (unit test, integration test, system test,

acceptance test, beta-tests etc.). This is achieved by creating a master test plan. The master test plan is based
on a validation and verification strategy, that is based on a risk taxation of the application and its quality
criteria;

• The presence of a formal quality review of functional analysis documents that are used as test basis;
• Verification of the quality of delivered software to the test team, by providing insight in the contents and

results of the white-box tests;
• Separation of the functional tests by the test team in phases : planning, preparation, specification, execution

and consolidation;
• Scheduling the tests to be performed on the basis of release-plans that cover a period of 6 months;
• A supplementary test strategy for maintenance.

3.3 Improvement actions

In the plan the improvement areas, mentioned in the proposal, are detailed in further actions:

Testing methodology.
A structured test process requires well-defined guidelines describing the testing activities, supplemented with
templates for testing products such as test plans, test specifications, test scenarios, test reports, defect tracking
form, standard checklists and a clear description of various procedures, especially those which require the
involvement of other disciplines: defect tracking procedure, version control procedure, change control
procedure, specification review. The proposed actions are:
• Drawing up a master test plan;
• Drawing up testing guidelines and procedures;
• Implementation of a defect control procedure;
• Implementation of a change control procedure;
• Implementation of a configuration control procedure;

Introducing structured testing into a dynamic, low-mature organisation IQWE '98

Copyright © 1998 GiTek Software n.v., Antwerpen, Belgium p. 7

• Implementation of quality assurance of functional specifications;

The proposed actions for improving white-box tests were:
• Selection of white-box testing techniques;
• Creating a reference card for white-box testing
• Introducing statement coverage analysis;
• Introducing branch coverage analysis;
• Introducing quality assurance on white box tests.

Probing the test methodology
Within this improvement the following actions were mentioned:
• Drawing up a functional test plan;
• Executing the functional test plan for the pilot project;
• Evaluating of the functional tests;
• Building regression test ware;
• Collecting metrics

Testing organisation.
The objective of this activity is to create a professional testing organisation, with clear responsibilities and
authorities.
• Describing the roles and functions of the Test Team;
• Assigning tasks to persons;
• Installing the decision forum;
• Defining standard report procedures;
• Describing agreements with other disciplines (developers, marketing, banks) in formal agreements;
• Installing the control of test ware, testing guidelines and metrics;
• Installing internal testing quality assurance measures;

Testing infrastructure.
More than once the creation of adequate testing environment has proven to be a major challenge. This often
takes more time than expected. Acquiring and installing extra hardware and tools requires the effort and
approval of many departments and disciplines. Building a new environment is a painstaking business,
especially because it requires the realisation of couplings with other information systems, and creating and
filling test databases and setting parameters. Therefore careful planning of the activities for this area is
important. Also the selection and installation of various tools (defect tracking, coverage analysis, test
automation, version control) requires much effort. The detailed actions are:
• Defining requirements for the test environment;
• Creating the test environment;
• Selecting and implementing of a defect tracking tool;
• Selecting and implementing of a coverage analysis tool;
• Designing and building the base structure of the automated test suite;
• Applying the test automation tool in pilot projects;
• Selecting and implementing of a configuration management tool;
• Selecting and implementing of a project management tool;

Training and coaching.
During the process more and more people will have to be trained in applying new techniques and procedures.
This area needs various sub-steps: creating awareness (workshop to introduce the concept of structured testing),
training programs: explanation and exercises to get acquainted with the new working methods, coaching:
training on the job is a very important success factor for introducing structured testing. The detail actions are:

Introducing structured testing into a dynamic, low-mature organisation IQWE '98

Copyright © 1998 GiTek Software n.v., Antwerpen, Belgium p. 8

• Workshop structured testing;
• Training white box testing techniques;
• Training black box testing techniques;
• Coaching during pilot projects;
• Creating and maintaining organisation specific training courses;

For each action the following items are described in the plan;
• Objective: what do we expect to achieve with this action;
• Deliverable: the tangible result of the action: a plan, a template, a procedure-description etc.;
• Who need to be involved in this action;
• Indication of the importance of the action;
• Dependence of the realisation of other improvement actions.

3.4 Activity planning
The improvement actions are distributed among the two proposed phases of the improvement process. This is
shown in the next table:

Improvement Area Phase 1 Dec. 97 - March 98 Effort Phase 2: April 98 - June 99
Testing methodology Master test plan

Testing guidelines and procedures
Defect control procedure
Selecting WB testing techniques
Reference card WB test
Coverage Analysis

8
9
1
4
2
4

Configuration control procedure
Change control procedure
Quality Assurance specifications
Quality Assurance WB tests

Probing Methodology Drawing up functional test plan
Executing the functional test plan
Evaluating the functional test

5
PM
3

Building regression test ware
Collecting metrics

Test Organisation Describing of roles and functions
Assigning tasks to persons
Installing the decision forum
Defining report procedures

4
4
4
3

Agreements with other
disciplines
Installing test control
Installing test quality assurance

Test Infrastructure Defining test environment
Creating test environment
Implement defect tracking tool
Implement coverage analysis tool

2
6
3
3

Design and build base structure
of automated testsuite
Apply test automation in pilot
Implement version control tool
Implement project management
tools

Training and coaching Workshop structured testing
Training white box testing
Training black box testing
Coaching during pilot

5
5
5
PM

Coaching during phase 2
Maintenance training

Total 80 man days

3.5 Hints
• A realistic and useful plan, defines realistic feasible phases of the improvement process. Theses phases

should cover a maximum time period of 6 - 12 months.
• Get other departments (development, users) involved e.g. by introducing a review committee.
• Keep IT-management informed of the progress.
• Communicate the plan to all levels (strategic, tactical and operational).

Introducing structured testing into a dynamic, low-mature organisation IQWE '98

Copyright © 1998 GiTek Software n.v., Antwerpen, Belgium p. 9

 4 Execution of the first phase

Improvement actions are executed according to plan. In this paper only a selection of the improvement actions
will be discussed. First we will focus on the major preliminary actions, and subsequently on some of the
standard test improvement actions and on some actions that proved to be very difficult to realise in practice.

4.1 Describing the workflow

In this organisation many of the problems with testing were caused by the lack of control in the development
process: releases were not clearly defined, release plans were missing and developers tended to start working on
software without making any specifications.
In this case it is necessary to start with to define the workflow of structured development and testing. The heart
of this workflow is represented by the following figure:

Release
Plan

Project
Plan

Functional
Design

Technical
Design

Software

System
Test

Acceptance
Test

Release
Test

System
Release

Project managers participated in setting up this document. Each step was described, by mentioning the
departments involved, and the conditions for starting each step. After reviewing this document, the IT-
management approve this product, and called a work meeting where this workflow was explained to all project
managers, developers and testers. This did not change the world overnight. But it was a first and very
important step in laying a foundation for a structured testing process. The workflow described the following
elementary conditions for a structured test process:
• Producing a release plan, by a release-committee that would cover a period of 6-12 months.
• Producing functional and technical designs: required for both structured development and structured testing.

A workgroup of experienced developers was commissioned to start working on guidelines for these designs,
and a few projects were selected as pilot projects for producing these designs.

Introducing structured testing into a dynamic, low-mature organisation IQWE '98

Copyright © 1998 GiTek Software n.v., Antwerpen, Belgium p. 10

4.2 Improvement actions for black box testing

Master test plan

In the mean time the test team started to work on the master test plan. The heart of the test plan is the test
strategy depicting the aspects to be tested and the relevant importance of these aspects.

In this organisation we defined the following major test strategy:

Quality aspect Focus of the release test
Functionality 1. Does the application work together with the chain of applications at the banks. This is

tested by using a few regular cases. There is a distinction between correct and incorrect
input. The correct input is mostly derived from the regular cases used in the integration
test. The incorrect input is identified based on the specified validity controls in the
application chain of the banks, and based on experience and knowledge of the testing
team.
If possible the tests will be performed on the production chain.

2. Are the correct files, directories and databases created after set up, and after upgrade.

Efficiency 1. Is the response time for handling large amounts of data acceptable. If applicable the
efficiency test will be performed for the three recommended platforms Win 3.x, Win 95
and Win NT, using configurations with 80486 and pentium processors.

Platform
compliancy

1. Is set up possible for the three platforms Win 3.x, Win 95 and Win NT.

Compatibility 1. Is upgrade by CD from version 1.5, 2.0 and 2.1 possible for the three platforms Win 3.x,
Win95 and Win NT.

2. Is automatic upgrade by Upgrade Server from version 2.0 and 2.1 possible for the three
platforms Win 3.x, Win95 and Win NT.

MultiLanguage 1. Are messages, field names and help information displayed in the correct language. This
is tested for the selected screens only. It is tested for a number of randomly forced
messages.
Note that the correctness of the contents of the messages and help files is NOT tested.

In the test plans the test strategy is described in more detail. For a given release the application is divided in
test units and for each unit the tests are described, as can be seen in the next example

The following tests will be performed for all test units:
• Check if the expected Multiselect options are available ;
• Test whether the Multiselect options can be used for registration, modification, deleting, printing, sending,

retrieving or any other option as logically expected;
• Check if all lay-out adaptations of main screen are available;
• Check if lay-out of main screen is as to be expected for a Win95 application;
• Check every functions of the module: does activating the function lead to the expected screens;

For test units of high importance the following tests will be performed:
• Test whether the main functions of the module operate correctly by using regular data only;

If there is still time available some general tests of the application will be performed using the error guessing
technique. The focus will be on memory and file release.

Introducing structured testing into a dynamic, low-mature organisation IQWE '98

Copyright © 1998 GiTek Software n.v., Antwerpen, Belgium p. 11

Introducing testing techniques

In this organisation the following testing approach was used: After the developer had created the software and
had convinced himself that his program worked well, he would hand over the application to a tester. The tester
would install a copy of the program in the test environment, would try to run the application, and would start
testing by trial and error. Tests were not specified prior to execution, tests were not documented and tests could
not be reproduced. This approach is very common of many young organisations.
In such a situation it is important to get testers to derive test cases in a structured way, and to document test
cases in a structured way. This is achieved by creating a work instruction for testers. This instruction must be
based on a actual example of testing an application within this organisation.

Standard test documents.

During the pilot project the following templates for testing documents were conceived:
• test scripts;
• test plans;
• test reports.

Checklist of do's and don'ts

In this organisation we introduced the following checklist of do's and don'ts. The aim of this checklist was to
adjust the attitude of the testers. The items in this checklist were collected during the pilot project, in which
some of the testers started to derive test cases in a structured way for the first time:

1. Never assume anything
In the test specification phase your only reference for inferring test cases is the test base (i.c. the functional
designs + logical data model + screen designs). If this test base contains any inconsistencies, imperfections
errors or ambiguities the tester will report a problem.

2. Traceability of test actions
For each test in a test set, one must be able to determine why this particular test is present. What is the
purpose of this specific test. This is achieved by documenting the test actions in a test script, and relating
these test actions to logical test cases, which are derived from test objectives. Test objectives and logical test
cases are documented in test specifications.

3. Independence of test actions
When specifying the test actions to be executed in a test script, be aware of the independence of the test
actions. Maximum independency means that each action can be executed or (re-executed) independent of
any other specified test-action. This gives the highest degree of flexibility during execution. On the other
hand this approach generally leads to a high number of test-records in the initial test set. This implies a lot
of effort needed to specify, build and maintain the initial test set. As a tester you have to assure yourself that
you have created the maximum independency that is reasonably attainable.

4. Creating test scripts
The last step in completing the test specification is estimating the importance of the logical test cases. The
importance is derived from the risk involved (i.e. probability of occurrence and estimated cost to repair).
The importance is ranked in categories high (I0), medium (I1) and low (I2). For each category a separate
test script is produced. Within a script the test cases are arranged in order of execution.

5. Order of test scripts
When creating the test scenario the test scripts are arranged in order of importance (as much as possible).

6. Pre-test
After the required test scripts are created, specify the pre-test. A pre-test describes the test actions that are to
be performed prior to the execution of the structured tests. The purpose of the pre-test is to ensure the
minimal

Introducing structured testing into a dynamic, low-mature organisation IQWE '98

Copyright © 1998 GiTek Software n.v., Antwerpen, Belgium p. 12

4.3 Problematic improvement actions

During the first phase some improvement actions appeared to be irrelevant or even impossible.
Examples are:

• Creating a test environment:
A separate testing environment appeared to be unnecessary: The first test of the application could be
performed on the testers' stand alone work stations. It was decided that couplings with bank applications
were to be tested in co-operation with the IT-department of banks, where test environments were already
sufficient. The actual coupling with banks systems were to be tested using test accounts. This ensured the
use of production systems within the banks. The probability that this approach would jeopardise the
production systems at the banks were minimal.

• Introducing statement coverage analysis.
There appeared to be no tool available for the development platform that was used by this organisation.

• Introducing white-box testing techniques.
It appeared that the developers did not have any time in participating in selecting structured testing
techniques and drawing up testing standards. In this situation it is not useful to define a technique and force
the developers to use it. In order to tackle this problem the objective had to be adjusted. Instead of a
structured testing technique we provided a simple checklist with elementary items the developers had to use
during module testing. Developers were asked to start working according to this checklist, and improve it
during usage. The aim of this checklist was creating test awareness, rather than introducing structured
testing for developers.

4.5 Cope with resistance

In this phase the resistance to change was recognised. Some people were reluctant to participate. They argued
that the first actions mainly addressed a conceptual level and were of little practical use to them. At a later
stage some of the same people argued that they recognised the importance of the program, but that the current
release required all of their attention. In order to cope with this attitude the order of some of the activities was
changed, and some quick wins were realised earlier than planned.

4.6 Hints
• The projects for probing the improved test approach must be good examples and must be carefully selected.
• During a change program it is impossible to satisfy all persons concerned. But it is important to remember

that this is a sign that there really is a change going on. Get the influential majority of persons in the
organisation tuned to accepting the changes.

• Keep checking the role of all players (are change angels still supportive, are blocking factors still negative).
• Use the supportive change angels and management commitment to overcome the resistance.
• Look for the quick wins (e.g. a reference card with areas of attention for testing by developers, a tool for

tracking problems).
• Keep communicating the plans and intermediate results of the program of change. Keep IT-management

informed of the progress of the program of change.
• Use the review committee to discuss the bottlenecks and find solutions TOGETHER.
• The change manager must be firm (stick to the plan) and, at the same time, must be flexible (change order

of actions, drop actions that appear not to be feasible).

Introducing structured testing into a dynamic, low-mature organisation IQWE '98

Copyright © 1998 GiTek Software n.v., Antwerpen, Belgium p. 13

5 Evaluation

5.1 Results achieved

The first phase of improvement actions was concluded with a formal evaluation. All those involved were asked
what has been achieved. The achieved results were compared with the original plan.

The following results were experienced by the testers:
• Efficiency: By applying the test specification techniques the number of required test cases can be limited,

while achieving the appropriate depth of testing. The execution of tests requires less time than expected, due
to the thorough preparation of the tests.

• Flexibility: By assigning a relative importance to test scripts, the test team is able to select between tests to
be executed and tests to be dropped, if the amount of testing time is diminished.

• Co-operation with developers: By documenting test cases in an early stage of the development process, it
is possible to discuss the test cases with the Development Team. This feedback improves the quality of the
tests.

• Reusability: Test cases and test sets are documented in a standard way. This makes them reusable for
future releases.

• Effectiveness: Important problems are encountered earlier in the testing cycle. By applying the test strategy
and the specification techniques the added value of the functional tests is increased: these tests are
supplementary to the tests performed by the development team.

• Control: The structured testing approach provides the test team with more insight in the completeness of
the tests. The test specification techniques aid in understanding the functional designs and translating the
specifications into test cases. The checklist for reviewing the test base aids in determining the testability of
the functional designs in an early stage.

5.2 To be resolved
The evaluation revealed the following items that were still to be resolved:

Organisation
• The workflow for both developing and testing the application is properly described, but in practice not yet

fully implemented. Support from IT-management is required to achieve this;
• A Product Manager must be made responsible for release plans and the delivery of software to banks;
• The agreements and decisions concerning encountered problems must be met in a structured way involving

test team, development team and the Product Manager.
• A quality review team must be involved in an earlier stage of the functional designs;
• Applying the new approach is not yet a common habit of all employees of the test team. Coaching by an

external testing consultant is still required.
• Deliveries of DLL's, builds and set ups to the test team must be accompanied by unambiguous, standard

description of the delivery;

6 Continuation

6.1 Adjustment of the plan
It was decided to split the subsequent improvement phase into two separate phases. This was based on the
recognition that the pace of the change activities must be in accordance with the available resource capacity of
the organisation.

Introducing structured testing into a dynamic, low-mature organisation IQWE '98

Copyright © 1998 GiTek Software n.v., Antwerpen, Belgium p. 14

1. Phase 2: Preserving achievements phase 1;
In this phase the speed of introducing improvement steps is reduced and the focus is on preserving the
achieved results;

2. Phase 3: Next term improvement actions:
 In this phase a second group of improvement actions will be carried out;

The activities and planning of the second phase is described in more detail by the following table:

Period: 1 June 1998 - 30 September 1998

Nr Action Result Effort
2.1 Coaching and support in structured

testing
Structured testing approach preserved 7

2.2 Implementation of the decision forums for
integration test and release test'

Operational decision forum for accepting test
plans and test reports

2

2.3 Realisation of minimum work flow tests Pre-test for quickly assessing the correctness
and stability of the builds

5

2.4 Implementing defect tracking tool Tool in use for centrally registering and
tracking defects.

5

2.5 Presentation workflow and structured
testing to development team

Synchronisation of development team and test
team

2

2.6 Presentation workflow and structured
testing to other banks

Awareness of the testing approach of TT at all
banks

4

2.7 Drawing up the plan for optimising the use
of WinRunner

Plan for realisation of the automated testsuite 7

2.8 Presentation of the plan for optimising the
use of WinRunner to IT-management

Commitment and approval of the plan for
realisation of the testsuite

1

Total phase 2 33 mandays

6.2 Hints
• If required, take a short break, and focus first on consolidation of the results achieved thus far.
• Provide a coach to help more people to get acquainted with the new working methods.
• Find a way of communicating the results to more people in the organisation.
• Do not go on full speed with the next heap of proposed improvement actions, when you recognise too much

weariness within the organisation.

7 Conclusions

The first phase of introducing structured testing into this organisation was successful. Already the organisation
experienced the results of the first improvement actions. Commitment and involvement was obtained by
defining and implementing the improvement actions and all phases together with people involved in the change
process (managers and employees). Communicating the stage and the progress of the improvement program
to all levels, both formal and informal, was recognised to be of paramount importance. At present the
organisation is going through the second phase of introducing structured testing.

Introducing structured testing into a dynamic, low-mature organisation IQWE '98

Copyright © 1998 GiTek Software n.v., Antwerpen, Belgium p. 15

7.1 The phases of introducing structured testing

Introducing structured testing in an organisation constitutes a change program. It means adaptations of existing
working procedures, introducing new working procedures, introducing new standards for documentation and
reporting. It must be realised that testing is not a solitary activity of a confined group of employees. Inevitably
other disciplines are also involved: customers or sponsors have to approve test plans, sponsors have to decide
on software release based on test reports, program managers have to get a grip of the development process by
planning releases, designers have to produce design specifications that are fit for deriving test cases in a
structured way, developers have to be able to provide insight into the scope and results of their tests. A
successful program of change requires a approach that is based on discrete phases. Based on the account,
described in this paper, the following phases are suggested:

1. Assessment of the current situation;
2. Proposal for a change program;
3. Plan for the change program;
4. Execution of improvement actions;
5. Evaluation and planning next improvement actions

A s s e s s m e n t

P r o p o s a l

P l a n

I m p r o v e m e n tE v a l u a t i o n

7.2 Major lessons learned

The major lessons learned during this program are:
• Communication is a separate area of attention in a test improvement process;

A factor that is often overlooked or not given enough attention is the aspect area communication. We have
to realise that in the beginning only a limited amount of people are directly involved in the process of
change. The majority will still follow the current practice of development and testing. It is important to have
everybody experience the existence of the improvement program. IT-management and project-management
are informed via formal progress reports. It is important that others experience small benefits from the
program of change as quickly as possible.
The best support for continuing a program of change will be the fact that someone, not directly
involved, tells management how he/she has already benefited from the improvements.

Introducing structured testing into a dynamic, low-mature organisation IQWE '98

Copyright © 1998 GiTek Software n.v., Antwerpen, Belgium p. 16

• Keep goals feasible and attainable;
Divide the improvement process in phases of maximum 6 - 12 months. Only make a detailed planning of
the first subsequent phase. Make sure that all improvement areas are dealt with in a phase. Give only a
global planning of the next phases. Each phase is concluded by an evaluation and a detailed planning of the
next phase.

• Look for quick wins;
An example of a quick win is a defect tracking procedure. A standard defect registration sheet is easily
defined and easily explained. A simple tracking tool can be built e.g. using MS-ACCESS or MS-EXCEL.
This result is quickly produced, and will very quickly be embraced by many people. The pitfall is to want to
build and implement the ultimate tool. Build a basic tool. Give it a surplus by building simple reports.
Number of defects registered in a given period, for the four severity-classes. Report these figures in
graphical way.

• Introducing elaborate structured testing techniques for developers will not work;
They either lack the time or the discipline to keep it up. However a very useful and simple aid is setting up a
checklist containing:
- the standard aspects to be checked by a program before delivery of the software;
- a top ten list of the most common programming errors;
Present the list to all developers in a meeting in the form of a reference-card, a reminder-poster or any form
that will enhance its usability. Do not specify the obvious elements (these need to be documented in a
programmers training course), but specify the elements that are often overlooked, and lead to errors in later
test phases.

• Endurance is required ;
Do not demand that the improvement effort will pay off immediately. Creating awareness, and laying the
foundation takes time. But be aware of every success, and do not forget to communicate it. Be supportive to
the development team. Collect metrics as a prove of the effectiveness of the change program.

Slide 1

1 © ESI 1998QWE-98

SOFTWARE CMM LEVEL 2:

THE HIDDEN STRUCTURE

Slide 2

2 © ESI 1998QWE-98

Objectives of the paper

• Present the Self Standing Tool for process
improvement developed by BIG-CMM project.

• Explain the SW-CMM framework for Small and
Medium Enterprises.

• Describe the architectural elements of the
BIG-CMM improvement guide.

• Derivation mechanism of the improvement
plan

Slide 3

3 © ESI 1998QWE-98

Organisation’s software process

technical
practices

software outcomes

managerial
practices

Organisation’s software process

Quality
Productivity

Time to market

Process
Improvement

4 © ESI 1998QWE-98

SPI: ISO 15504 SPICE

P1 P2 P3 Pn

CL5
CL4
CL3
CL2
CL1
CL0

CUSTOMER-SUPPLIER

ENGINEERING

MANAGEMENT

ORGANISATION

S
U
P
P
O
R
T

PROCESS DIMENSION

5
4
3
2
1
0

CAPABILITY DIMENSION

•Method for assessin g the
maturit y of an
organisation

•Flexibilit y

• Guide for continuous
process improvement

Examine
organisation's

needs

Initiate process
improvement

Perform
process

assessment

Derive
action
plan

Implement
Improvement

Confirm the
improvement

Sustain
improvement

gainMonitor
performance

SPICE
 improvement plan

Slide 5

5 © ESI 1998QWE-98

Continuously
improving
process

Initial
(1)

Repeatable
(2)

Defined
(3)

Managed
(4)

Optimizing
(5)

Disciplined
process

Standard,
consistent
process

Predictable
process

•Large Enterprises

•Method for assessing
the maturity of an
organisation

•Help an organisation
prioritise its
improvement efforts

•¿SMEs?

SPI: Software Capability Maturity Model

SME??

IDEAL

Slide 6

6 © ESI 1998QWE-98

SPI: ESI’s BIG guides

•Derive an improvement plan to achieve
an explicit Business Goal.

•Continuous Process Improvement

•SMEs SME

Mapping
Business Goal-SPICE

Reference Model

Improvement Guide

Plan

Transfer Confirm

Act
Initiate

Measure

M

I

T

A

P

C

Slide 7

7 © ESI 1998QWE-98

BIG-CMM
Level 2 of SW-CMM (hidden structure)

• establish effective management
practices

• increase management visibility

• success repeteability

SMEs

Self - standing

Tailoring the optimal software process

SME

Inicia l
Re p e tib le

Slide 8

8 © ESI 1998QWE-98

Reference
Model

General SW
Process

Staged
model

Imp. Plan
structure

Self
Assessment
tool

Gap
Analysis
tool

Current SW
Process der.
tool

Imp. Actions
list derivation
tool

Imp. Plan
design

Asses.
results

Evolution
graphics

Current
SW
process

Imp.
Actions
list

Improv.
plan

ARCHITECTURAL DESCRIPTION OF THE GUIDE

Slide 9

9 © ESI 1998QWE-98

The BIG-CMM reference model
The ISO-15504 (SPICE) like model that represents CMM Level
2 features
that are thought relevant for SMEs.
Elements that not add significant value for SMEs have been
expurgated.

Process Dimension

Capability Dimension

Process... Process ProcessProcess

 Process Category

 C
ap

ab
ili

ty
Le

ve
l 1

 C

ap
ab

ili
ty

Le
ve

l 2

Process
Attribute

 1.1

Process
Attribute

 2.2

Process
Attribute

 2.1

Slide 10

10 © ESI 1998QWE-98

•

Process Dimension

SW-CMM L2 Repeatable

Software configuration management
Software quality assurance
Software subcontract management
Software project tracking oversight
Software project planning
Requirements management

• MAPPING between SPICE2.0 and SW-CMM v.1

S
U
P
P
O
R
T

CUSTOMER-SUPPLIER

ENGINEERING

MANAGEMENT

ORGANISATION

SPICE processes

• Certain processes where enhanced to treat aspects
considered keys for success of development.

•The model was reviewed against the new SPICE 98
version.

Process Dimension

Capability Dimension

 BIG-CMM Processes

PPM PRM SQACRM SCM SSM

11 © ESI 1998QWE-98

Capability Dimension

•Features offered by CMM at institutional level were
added to the model at the capability dimension.
The second capability level incorporated things like
policies , training ,and so on.

SW-CMM L2 Repeatable

Software configuration management
Software quality assurance
Software subcontract management
Software project tracking oversight
Software project planning
Requirements management

• MAPPING between SPICE2.0 and SW-CMM v.1

1
2
3
4
5

0

Process Dimension

Capability Dimension

 C
ap

ab
ili

ty
Le

ve
l 1

 C

ap
ab

ili
ty

Le
ve

l 2

Process
Attribute

 1.1

Process
Attribute

 2.1

Process
Attribute

 2.2

12 © ESI 1998QWE-98

BIG CMM Processes

CRM Customer Requirements Mana gement

PPM Pro ject Plannin g Management

PRM Pro ject Risk Mana gement

Slide 13

13 © ESI 1998QWE-98

BIG CMM Processes

SQA Software Quality Assurance

SCM Software Configuration Management

SSM Software Subcontract Management

Slide 14

14 © ESI 1998QWE-98

Reference
Model

Self
Assessment
tool

Asses.
results

Evolution
graphics

Gap
Analysis
tool

Self assessment tool
Self standing tool based on questionnaires to
implement the improvement action list.

Knowing what you want to find out, it is
possible by formulating the proper question.

Slide 15

15 © ESI 1998QWE-98

Self assessment tool
Weakness and strength questionnaires
Interviewers give their opinion on:
• what is enough,
• what can be improved and
• what is not relevant.

Detailed questionnaires
They cover all the aspects of the BIG-CMM model.

Categories of respondents :
• Managers
• Project leaders
• Engineers

Slide 16

16 © ESI 1998QWE-98

General SW
Process

Asses.
results

Current SW
Process der.
tool

Current
SW
process

Imp. Actions
list
derivation
tool

Imp.
Actions
list

Current software process derivation tool
The General Software Process (GSP) is a group
of ideal management actions that should be
performed in an ideal company

The Company’s Current Software Process (CSP)
are the good practices out of the GSP that have
been identified in a company as result of an
assessment.

The current software process derivation tool
is based on the answers to opinion and detailed
questionnaires.

Slide 17

17 © ESI 1998QWE-98

Organisational
Current
software
Process

Analyse
Organisational

Status and
Needs

Analyse
Organisational

Status and
Needs

Strength/
Weakness

Questionnaire

estoestoSummary
Questionnaire
(by Category)

Improvement
Action List

Improvement actions list derivation tool
As result of the questionnaire analysis are determined:

• The improvement actions

• The activities that form part of the good practice asset of the company.

Slide 18

18 © ESI 1998QWE-98

Staged
model

Imp. Plan
structure

Imp. Plan
design

Improv.
plan

The improvement plan
The improvement should be treated as a project itself.
Responsibilities are defined, resources are allocated,
tasks specified and schedule is calculated.

Improvement plan derivation and implementation

Derive
actions list

Obtain
tasks

Schedule
according
sequence

Implement
as a project Institutiona

lise and
maintain

Slide 19

19 © ESI 1998QWE-98

The improvement plan

Communication

Design

Test

Diffusion

Institutionalisation

Slide 20

20 © ESI 1998QWE-98

Summary
• BIG-CMM is an aim for SMEs

• Help achieve the repeatability of success

• Must be validated

• Self - standing approach

• Questionnaires based

SW CMM Level2: The hidden structure

© ESI ESI-1998-BIG-CMMART1.01 1 of 10

SW CMM Level2: The hidden structure

M.Elisa Gallo (melisa@esi.es), Pablo Ferrer (pablo@esi.es),

Mikel Vergara (mikel@esi.es), Chema Sanz (sanz@esi.es)

European Software Institute

Parque Tecnológico Edificio 204

E48170 Zamudio Bizkaia SPAIN

Phone: ++34 94 420 95 19 Fax: ++34 94 420 94 20

This article explains the work performed in constructing a tool that helps small and medium sized enterprises
(SME) to achieve SW CMM level 2’s objective: repeatability of success in software development. It interprets SW
CMM framework for SMEs and explains principles and architecture of the self standing tool: BIG-CMM. This paper
is written for people involved in software process improvement (SPI) in organisations with no big budget and
infrastructure. It proposes a practical improvement path for these entities with the idea that information hiding is
a valid approach for improving in SMEs world.

 Keywords: Software Process Improvement, CMM

Introduction

This section introduces the concepts needed to fully understand the work presented in the
paper.

The set of technical and managerial practices used by an organisation to produce software
make up the organisation’s software process. The fact is that, organised or chaotic, this
process always exists inside the organisation. However, the key for successful initiatives is to
establish some discipline that permits co-operative work.

The need to work as a team, the survival of the products and competitiveness are just some
of the reasons that lead companies to improve their software process hoping that efficiency
and quality will flood through their structures and products. With this idea in mind, many
official, non-official, altruistic or profit-driven organisations have investigated the way of
conducting what is known as software process improvement (SPI).

SW-CMM is a framework for this type of improvement initiative. It is mainly designed for
large companies with significant budgets for improvement. In fact, SW-CMM was initially a
tool for American Department of Defence (DoD) to assure that its subcontractors were
working in benefit of its interests. SW-CMM constitutes an elaborated model that represents
capability features together with general activities. The different stages form steps to defined
maturity levels up to a state of continuous improvement.

SW CMM Level2: The hidden structure

2 of 10 ESI-1998-BIG-CMMART1.01 © ESI

ISO 15504 (SPICE) has a different objective to SW-CMM. It is an improvement framework
with two interesting features: its process orientation in addition to the capability level and
the use of base practices. SPICE makes it easier to focus on individual management issues
and yields practical elements that can be translated into concrete improvement actions.

The European Software Institute (ESI) is a recognised and independent authority on SPI. Our
particular focus is on helping businesses to achieve real commercial goals such as reduced
costs and increased product quality. As part of this work, we have developed a set of tools to
support companies in meeting specific business improvement objectives: the Business
Improvement Guides (BIGs). These guides cover different goals and different types of
company, but their common objective is to help an organisation evaluate its status and
develop and implement an improvement plan.

Several representatives of this BIG series can be found:

q BIG-ISO9000, focused on ISO9000 certification achievement.

q BIG-TTM, focused on reducing time to market

q BIG-CMM, which helps a company to achieve repeatability of success in projects.

All of them have a common ground: they use SPICE characteristics - process orientation,
detail level, modularity - to construct an improvement model that fulfils specific objectives.

BIG-CMM

SW-CMM establishes five maturity levels that represent the historical phases, which an
organisation usually goes through in software process improvement. The second level, also
named Repeatable Level, represents a state where organisation has achieved a stable and
disciplined software process based on project control. There is no need to have the same
process for each of the projects, but policies and documented procedures help to establish
effective management practices, which ultimately, increase management visibility and allow
successful results to be repeated.

BIG-CMM is a tool that helps SMEs involved in software development to reach software
CMM Level 2’s objective: repeatability of success by institutionalisation of effective
management practices. By SME we refer in this instance to those companies which usually
have no sizeable budget to invest in initiatives that are not directly profitable and with
comparatively small organisational infrastructure. An additional characteristic of SMEs is the
size of the projects, which are small in terms of people and time.

To improve one organisation’s software process means to evaluate company’s status,
establish a list of improvement actions, produce the necessary plan to implement them and
carry this plan out. Doing this through the SW-CMM, requires considerable experience,
knowledge and time, even when getting a certification is not the ultimate goal. For the SME,
the solution can be based on information hiding: main steps of the improvement process are
present, but the underlying structure is hidden.

SW CMM Level2: The hidden structure

© ESI ESI-1998-BIG-CMMART1.01 3 of 10

Finally, as with projects, which may vary in complexity, size and duration, even similar
organisations will have different requirements regarding the desired level of improvement.
BIG-CMM permits an organisation to tailor the optimal software process and adapts it to
their needs, thus stepping off the improvement process when it has met their requirements.

ESI’s improvement cycle: IMPACT

Based on the idea of continuous improvement, IMPACT covers all the major improvement
phases, since the need arises until the solution is assumed by the organisation’s culture.
IMPACT stands for Initiate, Measure, Plan, Act, Confirm and Transfer:

q Initiate process improvement. Raise organisation’s awareness of the need for
improvement identifying requirements and goals

q Measure the current situation. Establish the organisation’s position versus an evaluation
model

q Plan the improvement. Select strategies, obtain commitments and resources, identify
tasks

q Act. Perform the necessary actions for the improvement.

q Confirm and sustain the improvement. Measure or assess the specific processes.

q Transfer successful technology to the rest of organisation.

This is a continuous loop that may be followed in a cyclical manner:

Figure 1 - IMPACT improvement cycle

IMPACT forms the framework in which all ESI products and services are developed.

BIG-CMM addresses the Measure, Plan and Act steps of the cycle and also giving guidance
on the Confirm and Transfer steps.

SW CMM Level2: The hidden structure

4 of 10 ESI-1998-BIG-CMMART1.01 © ESI

Architectural description of BIG-CMM

The guide can be seen as a set of static elements or model, and a set of procedures or
mechanisms that use the static parts to yield a group of products used for process
improvement.

Figure 1 - Architecture of BIG-CMM

Reference
Model

General SW
Process

Staged
model

Self
Assessment
tool

Imp. Plan
structure

STATIC ELEMENTS TOOLS PRODUCTS

Asses.
results

Evolution
graphics

Gap Analysis
tool

Current SW
Process der.
tool

Current
SW
process

Imp. Actions
list derivation
tool

Imp.
Actions
list

Imp. Plan
design

Improv.
plan

SW CMM Level2: The hidden structure

© ESI ESI-1998-BIG-CMMART1.01 5 of 10

Where:

Model components

Reference model Also called Development model, is the SPICE like model that
represents SW-CMM features that are thought relevant for
SMEs.

General SW process A set of actions deducted from the Reference Model and ordered
by a project sequence criterion. By accomplishing all these
actions, a company would be performing the ideal set of actions
associated to repeatability.

Staged Model Establishes the sequence of steps in which improvement tasks
must be executed

Improvement Plan
structure

Responsibilities, activities and procedure necessary to implement
the improvement actions list

Tools components

Self assessment tool Self standing tool based on questionnaires to evaluate
company’s status against the reference model.

Gap Analysis tool Provides graphic representation of the assessment results

Current Software Process
derivation tool

Uses assessment results and General Software Process
description to derive the company’s Current Software Process

Improvement Actions list
derivation tool

Uses assessment results and General Software Process
description to derive the proposed Improvement Actions’ list

Improvement Plan Design
Procedure

Uses the Improvement Actions’ list and the Improvement Plan
structure to organise the Improvement Plan

Products

Current Software Process Represents the set of good practices currently performed in the
company related with their development management tasks.

Improvement Actions’ List List made up of improvement actions and orientations whose
implementation should lead to repeatability according to the
proposed model.

Improvement Plan Mechanism to implement the improvement action’s list.

Evolution graphics Show the current and desired status in a bars diagram.

SW CMM Level2: The hidden structure

6 of 10 ESI-1998-BIG-CMMART1.01 © ESI

The reference model

Following the BIG-series, BIG-CMM achieves its objective through the ISO15504 standard
(SPICE). For this reason, those elements of the SW-CMM Level2 that add complexity but no
significant value to SMEs are removed, trying to keep the objective of each key process aea
(KPA) and the general one. The adapted model is mapped to a set of SPICE processes that
cover all its features.

The mapping between SPICE 2.0 and SW-CMM v.1. resulting from the ESI’s UNIFRAME
project, was used to determine which SPICE processes fulfilled software CMM characteristics
at Level 2. This set of processes was used to produce a version of SW-CMM easily applicable
by SMEs. In addition, certain processes were enhanced to cover aspects that were considered
key to the success of development. The final refinement came from reviewing and updating
the model against the new SPICE 98 version.

The following table shows how the official SW-CMM’s KPAs are processed and covered by
the SPICE-like processes in the BIG-CMM reference model:

KPA BIG CMM Process Changes

RM

(Requirements
management)

CRM

(Customer requirements
management)

The process is seen from a managerial point of view instead of
the restricted SW-CMM's vision of the Software Engineering
Group (SEG). Management of the gathering, understanding and
agreeing of customer requirements is added

SPP & SPTO

(Software Project
Planning &
Software Project
tracking and
oversight)

PPM

(Project planning
management)

PRM

(Project risk
management)

Project planning and Project tracking and oversight are joined
in a unique process. Risk management is considered to be at an
upper maturity level and is served by an independent process

SQA

(Software quality
assurance)

SQA

(Software quality
assurance)

No change

SCM

(Software
configuration
management)

SCM

(Software configuration
management)

No change

SSM

(Software
subcontract
management)

SSM

(Software subcontract
management)

No change

SW CMM Level2: The hidden structure

© ESI ESI-1998-BIG-CMMART1.01 7 of 10

SW-CMM is a one dimension model that gathers activities, managerial, quality and
organisational aspects for each process area. BIG-CMM has two dimensions:

1. Process dimension, for definition of the activities and their associated work products

2. Capability dimension for managerial, quality and organisational aspects.

The above table shows the mapping of processes to activities. The rest of common features of
SW-CMM are mapped to the capability dimension.

The result is a SPICE-like assessment model against which a specific software process might
be evaluated. The next step is defining a capability degree of coverage for each resulting
process so, an optimum SPICE profile can be calculated. Approaching this profile is obviously
approaching SW-CMM level 2’s objective.

General Software process (GSP) and company’s current software process (CSP)

The software process is highly dependant on the company’s needs and context. The first step
in process improvement is determining the set of practices that form this software process,
analysing it and selecting what is useful in it.

BIG-CMM analyses its model’s characteristics extracting a set of subactivities which form
the General Software Process (GSP). This GSP is a group of ideal management actions that
should be performed in an ideal company to achieve repeatability of success. Identification of
a company’s needs and current good practices from this list produces the company’s Current
Software Process (CSP).

Self assessment tool

To help SME’s to substitute expensive assessments, BIG-CMM includes a questionnaire
system composed of two different sets of questionnaires:

q Weakness and strength / opinion questionnaires. Used to determine areas inside which
good practices could be extracted from and areas that could be subject to improvement.
The range of answers introduces the company’s context in an indirect way: interviewees
give their opinion on what is satisfactory, what can be improved or what is not relevant.

q Detailed questionnaires. They cover all aspects of the BIG-CMM model. They must be
fully completed except for areas covering non applicable issues (e.g.: subcontracting)

Questionnaires are addressed to three different categories of organisational representatives:
managers, project leaders and engineers. And questions are written to taken this into
account.

The actual questionnaire is based on a systematic analysis of model characteristics. Briefly

1. Base practices are divided in activities and subactivities.

2. Capability aspects are instantiated for each process and translated into activities and
subactivities

SW CMM Level2: The hidden structure

8 of 10 ESI-1998-BIG-CMMART1.01 © ESI

3. For each subactivity, mainlines and implications are condsidered. Each one will produce a
question that must be answered within a short range of values (yes, no, don’t know)

The underlying idea is that knowing what you want to find out, in essence, it is possible by
formulating the proper question in the proper style to get the right information. A benefit of
this approach is the establishment of a unique relationship between answers to the questions
and possible actions within the improvement plan. In addition, categorisation of questions in
mainlines and implications allows mandatory and optional improvement actions to be
established.

Current software process determination tool

The guide proposes a way to determine the adequate practices the company is performing
when developing software to establish them as the initial point for the improvement action.
The procedure takes answers to Strength and weakness and detailed questionnaires as a
basis. If a company feels that certain issues of the proposed software process are properly
performed, then it is very likely that these activities form part of the good practice asset of
the company.

 Improvement actions list derivation tool

The same principle than in current software determination tool is applied to establish the
desired final software process for the organisation and the resulting improvement actions
list. Answers to Strength and weakness questionnaires are compared with those from the
detailed questionnaires. If the company feels that something is subject for improvement,
then it can be added to the improvement actions list. This allows different levels of
achievement to be established, depending on the company’s needs.

Figure 3 - Current software process and Improvement actions list determination

Organisational
Current
software
Process

Analyse
Organisation
al Status and

Needs
Strength/

Weakness
Questionnaire

estoestoSummary
Questionnai

re (by
Category)

Improvement
Action List

SW CMM Level2: The hidden structure

© ESI ESI-1998-BIG-CMMART1.01 9 of 10

The improvement plan

The improvement plan as presented by BIG-CMM covers the Plan and Act phases of the
IMPACT cycle. It builds on a generally accepted principle: the improvement should be treated
as a project in itself. Thus, responsibilities are defined, resources are allocated, tasks are
specified and a schedule is calculated.

BIG-CMM considers the improvement plan as the result of combining improvement actions
with implementation mechanisms for these actions. This is done in a practical way:

1. By establishing a mechanism to derive improvement actions that lead to general
improvement in the Company’s Software process

2. By providing a criterion to gather single actions into action packages that can be treated
as separate improvement tasks

3. By defining an implementation sequence (staged model) that leads the company through
a natural improvement path

4. By identifying concrete activities for implementing action packages (improvement tasks
), i.e. communication, design, test, diffusion and institutionalisation

Figure 4 - Improvement plan derivation and implementation

The last phase can be considered separately to the project plan implementation itself, but it
is a similarly important action. Once the improvement is reached, it must be sustained by
establishing control methods.

The implementation sequence proposed by BIG-CMM is outlined in the table:

Figure 5 - BIG-CMM’s staged model

Phase Contents

1 1. Initial requirements for Software Quality Assurance and Software Configuration Management

2. Customer Requirements Management to performed level

3. Project Plan Management to performed level

4. Software Subcontract Management to performed level when necessary

Derive
actions list

Obtain
tasks

Schedule
according
sequence

Implement
as a project Institutiona

lise and
maintain

SW CMM Level2: The hidden structure

10 of 10 ESI-1998-BIG-CMMART1.01 © ESI

2 1. Software Configuration Management to performed level

3 1. Software Quality Assurance to performed level

4 1. Project Risk Management to performed level

5 1. Customer Requirements Management to managed level

2. Project Plan Management to managed level

3. Software Subcontract Management to managed level when necessary

6 1. Software Configuration Management to managed level

2. Software Quality Assurance to managed level

3. Project Risk Management to management level

Action packages that make up the tasks for the improvement plan should be implemented in
the order defined in this table.

Conclusions

BIG-CMM facilitates SME in achieving the objective of SW-CMM Level 2. The aim is to allow
small and medium size enterprises with less resources and small infrastructure to obtain
repeatability of success in software development. It should not be understood as a recipe to
achieve any kind of certification.

The work explained in this article is still far from being adopted even by the early majority of
the mentioned enterprises and must still be validated through trials, although some of its
mechanisms such as the self assessment tool and the evolution graphics have already proved
to be accurate.

The thesis of self-standing and information hiding is defended as a valid approach for
improving. It is possible to achieve the desired information by sensibly asking for it, without
expensive assessments that are inadequate for the needs of SMEs. It is possible to establish
the elements necessary for improvement in the same way.

1

Year 2000 and the euro:
Testing and Data Management

using Data Commander™

Charlie Crawford

Blackstone & Cullen, Inc.
2000 RiverEdge Pkwy Ste 750
Atlanta GA 30328-4600
www.datacommander.com

ccrawford@bac-atl.com
Phone: 770 612-1550
Fax: 770 612-1471
www.bac-atl.com

QWE ’98

11 November 1998

Year 2000 Compliance Testing

• 45-70% of compliance effort (Gartner Group)

• Essential element of risk management
– Costs

• Time
• People
• Equipment
• Facilities

– Implications
• Effectiveness
• Efficiency
• Liability

Blackstone & Cullen, Inc. www.bac-atl.com

How confident do you want to be? How much do you want to spend?

2

Testing Considerations
• System Components

– Hardware
– Software

• Programs - get most of the attention
• Data - cause many of the problems
• Output

– Interfaces

• Procedures
– Compliance Plan
– Test Plan

Blackstone & Cullen, Inc. www.bac-atl.com

Testing Characterizations

• Levels
– Unit, Integration, System, Interoperability

• Basic Types
– White Box v. Black Box

• Techniques
– Static v. Dynamic
– Manual v. Automated
– Structural v. Functional
– Destructive v. Non-destructive

Blackstone & Cullen, Inc. www.bac-atl.com

3

Testing Decisions

• Prioritization (“Triage”)
• Number and type of tests
• Definition of success
• Completion date
• Personnel

– In-house
– Contractor / Consultant

• Facilities & Equipment
• Tools

Blackstone & Cullen, Inc. www.bac-atl.com

Commitment of People

• Dedicate a few, but inform all
• Oversight Board
• Project Manager
• Systems Maintainers
• Users & Subject Matter Experts

Blackstone & Cullen, Inc. www.bac-atl.com

4

Current
Output

Current
Programs

Current
Data

 Converted
Data

 Converted
Programs

Warped
Data

Warped
Output

 Converted
Output

Compare
Output

Convert
Programs

Convert
Data

Warp
Data

Added dimension
for Year 2000
Compliance Testing

Uniqueness of Year 2000 Testing

Blackstone & Cullen, Inc. www.bac-atl.com

Compare
Output

Testing the Future

• Important dates
– 31/12/99, 01/01/00, 29/02/00, etc.

• “Warping” anomalies
– Leap years, month lengths, holidays,

day of the week, 28 year phenomenon

• Number of repetitions
– Associated costs

Blackstone & Cullen, Inc. www.bac-atl.com

5

Year 2000 Compliance Truths

• Takes longer and costs more than planned
• No one knows the whole system
• Will not heal a sick system
• A few programs cause most of the problems
• Reveals unanticipated information
• Not an independent event

– Hardware and software replacements and upgrades
– Greater changes (e.g., merger, advent of euro)
– Personnel turnover

• Testing requirements vary with situation

©1998 Blackstone & Cullen, Inc. www.bac-atl.com

Examples
• Fixed Asset System

– Information-oriented business
– Running well, documentation poor
– Wide range of date values
– Large number of reports, some very long

• Accounts Payable/Purchase Order System
– Manufacturer
– Running poorly, documentation good
– Narrow range of date values
– Large number of interactions

©1998 Blackstone & Cullen, Inc. www.bac-atl.com

6

Current
Output

Date Domain
Report

Date Domain
Report

Converted
Programs

Inventory
of Dates

Inventory
of Dates

Current
Programs

Current
Data

Converted
Data

Warped
Data

Warped
Data

Converted
Output

Warped
Output

Warped
Output

REGRESSION
TESTING

DATA
MANAGEMENT

Year 2000 Compliance Testing

Convert Programs

CONVERT
 dates

ANALYSIS of dates ANALYSIS of dates

COMPARE: Automated comparison of outputs

WARP
dates

WARP
dates

©1998 Blackstone & Cullen, Inc. www.bac-atl.com

Data Management

• Clean data before testing begins
• Prevent data corruption after conversion
• Interface with data from other systems
• Deal with new data requirements

©1998 Blackstone & Cullen, Inc. www.bac-atl.com

7

Future Data Management:
euro Conversions

National Currencies

All euros

Conversion
Both National

and euros

or

Data Commander

Data Commander

©1998 Blackstone & Cullen, Inc. www.bac-atl.com

Item Currency Amount

A £ nnn.nn

B DM nn.nn

C ¥ nnn.nn

D $ nn.nn

Item Amount

A xx.xx

B x.xx

C xx.xx

D x.xx

Item Amount Amount

A £ nnn.nn xx.xx

B DM nn.nn x.xx

C ¥ nnn.nn xx.xx

D $ nn.nn x.xx

$

Data Commander™
• Helps automate testing by:

– Discovering data problems
– Converting data
– Creating test data sets containing aged

(“warped”) date values
– Intelligently comparing output

• Is platform and language independent
– Mainframe (OS/390), mid-range (AS/400), etc.
– COBOL, PL/I, RPG, etc.

• Has continuing value
– Test any system change
– Manage data (e.g., convert currency)

©1998 Blackstone & Cullen, Inc. www.bac-atl.com

8

ANALYSIS

• Discover the range of date values in a data set
– Especially important for windowing decisions

• Discover any invalid dates in a data set
• Identify exceptional values

– Embedded business rules (such as 9999=unknown)

• Find data problems
– Date fields that are blank
– Date fields that contain all zeroes
– Values that are within or outside a specified range

©1998 Blackstone & Cullen, Inc. www.bac-atl.com

CONVERT

• Convert date formats
– Example: expand some or all dates from 2 to 4 digits

• Specify “windows” for certain dates
– Year values 00 to 29 are preceded by 20 (2000 to 2029)
– Year values 30 to 99 are preceded by 19 (1930 to 1999)

• Manipulate some or all date fields
• Exclude some values from conversion

– Such as embedded business rules

©1998 Blackstone & Cullen, Inc. www.bac-atl.com

9

WARP

• Best test data is real data
– Warp real data to test programs and systems

for future compliance

• Flexible warping
– All dates together or some separately
– Intervals by year, month, or day
– Preservation of embedded business rules
– Preservation of month and day-of-week
– Weekend and holiday options

©1998 Blackstone & Cullen, Inc. www.bac-atl.com

COMPARE

• Automate comparison of outputs
– Reports and files
– Analysis of dates and domain values

• Compare warped output to un-warped output
• Accept changes to date formats and values

– 971120 to 19971120 (changed format)
– 19971120 to 20011120 (warped date)

• Non-procedural
– No loops, no gotos, no programming

©1998 Blackstone & Cullen, Inc. www.bac-atl.com

Year 2000 Compliance Using Data Commander™

Warped
Current
Output

Current
Output

Warped
Current

Data

Current Programs

Current
Data

Inventory
of Dates

Warped
Data

(e.g., 1999)

Inventory
of Dates

Warped
Data

(e.g., 2000)

Converted
Data

Warped
Output
1999

Warped
Output
2000

Converted
Output

Converted Programs

Date Domain
Report

Date Domain
Report

Log
Errors

Log
Errors

Log
Errors

COMPARE COMPARE: Automated comparison of outputs

WARP CONVERT

ANALYSIS ANALYSIS

WARP WARP

10

9

8

7

6

4

3

1

2

Convert
Programs

etc.

= CURRENT SYSTEM

= CONVERTED SYSTEM

5

©1998 Blackstone & Cullen, Inc. www.datacommander.com

Currency Example

Directives
1 REMARK *** Eurodollar Sample *** Example of Eurodollar Conversion
2 OPTION LINESPERPAGE 42
3 FILE DCMFSample "Sample DataCommander EuroDollar Conversion" KEY (1 30)
4 RECORD Heading1 LENGTH(54 56) (COL(1) NOT ="I")
5 DATE RunDate FORMAT(YYMMDD (1), CCYYMMDD (1))
6 FIELD ReptID FORMAT(POS(7,13), POS(9,13))
7 FIELD ReptTitle FORMAT(POS(20,30), POS(22,30))
8 NUMBER Batch FORMAT(NUM_D5(50), NUM_D5V0(52))
9 RECORD InvoiceHdr_US LENGTH(56 72) (COL(1 2) ="IH" &
 AND COL(46,47) = " $")
10 FIELD IH_ID FORMAT(POS(1,2), POS(1,2))
11 DATE InvDate FORMAT(YYMMDD (3), CCYYMMDD (3))
12 FIELD CustName FORMAT(POS(9,31), POS(11,31))
13 DATE InvDueDate FORMAT(YYMMDD (40), CCYYMMDD (42))
14 FIELD Currency FORMAT(POS(46,2), POS(50,2))
15 NUMBER InvAmount FORMAT(NUM_D7V2(48), NUM_D7V2(52))
16 FIELD New_Currency FORMAT(NULL, POS(61,2)) &
 VALUE("E$")
17 NUMBER New_InvAmount FORMAT(NULL, NUM_D7V2(63)) &
 VALUE(1.12 * InvAmount)
18 RECORD InvoiceHdr_FF LENGTH(56 72) (COL(1 2) ="IH" &
 AND COL(46,47) = "FF")
19 FIELD IH_ID FORMAT(POS(1,2), POS(1,2))
20 DATE InvDate FORMAT(YYMMDD (3), CCYYMMDD (3))
21 FIELD CustName FORMAT(POS(9,31), POS(11,31))
22 DATE InvDueDate FORMAT(YYMMDD (40), CCYYMMDD (42))
23 FIELD Currency FORMAT(POS(46,2), POS(50,2))
24 NUMBER InvAmount FORMAT(NUM_D7V2(48), NUM_D7V2(52))
25 FIELD New_Currency FORMAT(NULL, POS(61,2)) &
 VALUE("E$")
26 NUMBER New_InvAmount FORMAT(NULL, NUM_D7V2(63)) &
 VALUE(5.35 * InvAmount)
27 RECORD ItemDetail LENGTH(55 57) (COL(1 2) ="ID")
28 FIELD ID_ID FORMAT(POS(1,2), POS(1,2))
29 NUMBER ItemQuantity FORMAT(NUM_D8(3), NUM_D8(3))
30 FIELD ItemID FORMAT(POS(11,4), POS(11,4))
31 FIELD ItemDesc FORMAT(POS(15,35), POS(15,35))
32 DATE ShipDate FORMAT(YYMMDD (50), CCYYMMDD (50))

33 EXECUTE CONVERT PREPOST ©1998 Blackstone & Cullen, Inc.

09/09/98

©1998 Blackstone & Cullen, Inc. 1 Year 2000 and the euro:
All rights reserved. Testing and Data Management

Year 2000 and the euro:
Testing and Data Management

using Data Commander™

Introduction

This paper addresses testing (specifically concerning Year 2000) and data management (specifically
concerning the advent of the euro currency) using the Blackstone & Cullen (BAC) Data Commander™
software tool. More information about the tool is on the product web site at www.datacommander.com.
Information about other BAC products and services is on the company web site at www.bac-atl.com.

Year 2000 Testing

The Year 2000 problem is different from most computer problems in two basic ways. First, the cause of
the problem is known. Normally, when a computer system performs incorrectly, the problem must be
diagnosed and isolated. In contrast, the Year 2000 problem is one in which the cause is invariably in the
capacity or processing of date fields. While it is helpful that the cause of the problem is known, the scope
of the problem is unprecedented and the deadline is immovable.

A second basic difference to the Year 2000 problem is the need to test future dates once a system is
converted. While testing for most computer conversions involves a before-and-after comparison, Year
2000 compliance testing requires a before-and-after-and-future comparison – i.e., you must test not only
whether the converted system works today but also whether it will work when future dates are processed.

Testing is a form of risk management. The amount, type, and intensity of testing should be directly
proportional to both the importance of the application being tested and the efficacy of the process used to
change the system. Confidence is highly desirable but very elusive when a computer system--essential to the
effectiveness if not the survival of the organization--has been changed. Testing provides confidence, but
testing also has costs—i.e., time, people, facilities, and materials. Reducing these costs is critical and
depends upon good management, efficient processes, skilled people, sufficient facilities, and quality tools.

Assessment & Planning: Are you vulnerable to Year 2000 problems? If so, what do you do?

The answers to some basic questions will reveal much about an organization’s vulnerability to the Year
2000 problem:

• How dependent are we on computers?
- How dependent are our suppliers?
- How dependent are our customers?

• Does our computer system process the year 2000 correctly?
- Can our programs handle dates after 1999?
- Are our data files able to accommodate dates after 1999?
- How many programs and data files do we have?

• What interfaces does our computer system have with other systems that may not
become compliant at the same time?

Assuming an organization decides that it will continue to depend upon computers to some degree, the
answer to the second major question can be found definitively by putting future dates into the system and
seeing if it performs correctly. The concept is simple, but the test requires a set of data comprehensive
enough to touch every program. We believe the best way to do this is to take your existing data and
advance all the year values forward by an amount sufficient to represent what will happen for some time

09/09/98

©1998 Blackstone & Cullen, Inc. 2 Year 2000 and the euro:
All rights reserved. Testing and Data Management

before and after January 1, 2000. This is the first way in which the Data Commander™ tool can help.
Data Commander’s “warping” capability, which allows you to advance some or all date values in a data
set by an amount of time (years, months, and days) you specify, can help you assess whether your
computer system is vulnerable to problems induced by the advent of the Year 2000.

If this initial assessment reveals problems in the operations of your computer system (and—in most
cases—there will be problems), you must decide on a strategy for coping with the problems. For many
companies, the immovable Year 2000 deadline is already too near to allow some approaches to succeed:
Not enough time remains to take all the actions necessary to enable the company’s computer systems to
correctly process dates subsequent to 1999. Consequently, you should rank systems, sub-systems,
applications, programs, and files to help you decide which problems will receive less priority as money,
time, and the supply of skilled technicians begin to run low.

Once the assessment questions have been answered and the constraints considered (a considerable task),
you must decide on the conversion method for the system’s “soft” components (as opposed to the
hardware). Basically, repairs can be of three types:

• Change programs (install new or convert/repair old).
• Change data (being careful to keep within programs’ capabilities).
• Change both programs and data.

You will naturally be tempted to choose the compliance method that takes the least time, uses the fewest
people, and affects the fewest components; but this may lead to a solution that is not lasting. As with most
decisions, each compliance method (expanding, windowing, compressing, etc.) has advantages and
disadvantages, including the method’s effect on the amount and type of testing required. Similarly,
thinking ahead to the testing requirements might affect the choice of compliance methods.

Year 2000 Testing Considerations

This paper is not a tutorial on general software testing, which is explained more fully elsewhere. (For
example, see William Perry, Effective Methods for Software Testing, John Wiley, 1995 and Ivar Jacobson,
Object-Oriented Software Engineering, Addison Wesley, 1994.) We concentrate here on Year 2000
testing.

Some of the growing number of Year 2000 consultants state or at least suggest that Year 2000 testing is so
different from other types of testing that many of the fundamental assumptions about testing are invalid.
BAC agrees that the need to test future dates adds a unique dimension to the Year 2000 compliance
process, but we disagree that the fundamentals of testing are somehow irrelevant. Every test should be
adapted to the particular circumstances, such as availability of time, technicians, facilities, and equipment;
importance of the function; specifications of the system being tested; etc. Still, the fundamental questions
to be answered by the testing process are:

§ What does the system look like before the change?
§ What does the system look like after the change (e.g., conversion)?
§ How do the two compare?

Answering these questions can involve considerable effort, but they remain the basic questions to ask
when designing any test.

09/09/98

©1998 Blackstone & Cullen, Inc. 3 Year 2000 and the euro:
All rights reserved. Testing and Data Management

The diagram below depicts the fundamental process of Year 2000 compliance testing. The left-most
column of boxes represents the system as it is:

§ What does the system look like before the change?
The middle column represents the system after changes:

§ What does the system look like after the change?
The top two boxes (output) in these columns should be compared as the baseline test:

§ How do the two compare?

The critical, added dimension to Year 2000 testing is the need to test future dates, represented by the
diagram’s right-most column (enclosed by the dotted lines) containing Warped Data and Warped Output.
To see if the converted system will handle dates in 1999, 2000, or beyond, you must process those dates
through the system. You could do this by constructing a set of test data from scratch, but a much more
thorough test would result from taking a subset of your existing data and “warping” the date values to
simulate future dates. For example, if a data set contained a range of values from 1989 to 1997, warping
all values in the set by six years would provide a range of values from 1995 to 2003, a good sample set for
testing. Running this Warped Data through the Converted Programs and comparing the Warped Output
to the Converted Output (or the Current Output) will be an essential part of Year 2000 compliance testing.

What is Data Warping?

Data “warping” is the process of advancing the date values in a file or data set by a specified number of
years, months, and days. For example, warping 14 August 1997 forward by 3 years, 2 months, and 24
days yields a date of 7 November 2000. Others may use the term “aging” to describe the same process.

Data Commander™ provides a comprehensive approach to warping data for Y2K testing. The range of
supported date formats, coupled with the ability to warp by years, months, and/or days, provides a great
deal of flexibility in implementing a testing strategy. Further, Data Commander has specialized logical
options (such as MONTHEND) which enhance the range of tests that can be set up and run. The end
result is faster, less expensive, and more complete testing of applications for Y2K compliance.

Fundamentals of Year 2000 Compliance Testing

Current
Output

Current
Programs

Current
Data

 Converted
Data

 Converted
Programs

Warped
Data

Warped
Output

 Converted
Output

Compare Output

Convert Programs

Convert Data

Compare Output

Warp Data

Added dimension
for Year 2000
Compliance Testing

09/09/98

©1998 Blackstone & Cullen, Inc. 4 Year 2000 and the euro:
All rights reserved. Testing and Data Management

Date Warp Problems

To make the testing effort as easy and as inexpensive as possible, you should try is to produce Warped
Output that allows as close to an apples-to-apples comparison as practicable. Unfortunately, most
calendars reflect the differences between the periods of the Earth’s rotation (a day) and revolution (a year)
as well as the Biblical recognition of seven days comprising a week and the Western European division of
a year into months of varying lengths. Some effects of this calendar are:

• Both leap and non-leap years contain more than 52.0 weeks.
• Each year begins on a day of the week different from the prior year.
• Consecutive months often have a different number of days (e.g., April has 30; May has 31).
• Around leap years, consecutive years will have a different number of days (365, 366, 365).
• Every century year other than those divisible by 400 is not a leap year.

For example, 2000 is a leap year, while 1900 and 2100 are not.

Consequently, adding (or subtracting) a fixed time period to a collection of data having date fields will
almost certainly introduce an error – either in the form of an internal data inconsistency (e.g., leap year
problems) or business context problems (e.g., month-end close-outs or day-of-the-week mismatches).

Data Commander accommodates many of these problems with MONTHEND and WEEKEND OPTIONS
and the DEFINE HOLIDAY statement. DEFINE HOLIDAY accommodates both specific date holidays
(such as New Year’s Day and Christmas, which occur on the same date every year) and holidays that may
depend on day of the week or the lunar calendar (such as Thanksgiving or Easter). Data Commander can
thus help you handle the following date warping problems:

Leap-year. Choosing a warp period different from an even multiple can cause several problems.
Warping dates from a non-leap year to a leap-year will result in the date value of 29 Feb in the leap year
(a legitimate date and important test value) not being present in the warped output date file. Possible
problems in handling leap year logic for the programs and systems under test might slip through
undetected. Similarly, warping data from a leap year into non-leap year poses the question of what to do
with any 29 Feb values. Do they become 28 Feb or perhaps 1 March? The latter choice can upset month-
end test runs, as now the February and March totals have both been altered. Finally, since leap years have
366 days while non-leap years have 365 days, computations based on per diem (daily) counts will be
different. For example, interest compounded daily with an annual interest rate of X% will be effectively
X/365 in non-leap years and X/366 in leap years.

Day-of-the-week. Many applications base computations on the day of the week. One example might be
credit collections that do not penalize payments whose due dates happen to fall on Sunday, when mail is
not delivered. In those situations, the choice of a date warping interval that does not preserve the day-of-
the-week will cause the calculations to be made differently – making the apples-to-apples comparison of
results difficult, if not impossible. The table below shows the day-of-the-week for 1 January for the next
28 years. Because 2000 is a leap year, this pattern works from 1901 through 2099.

Day-of-the-week for 1 January for the next 28 years

1997 Wednesday 2001 Monday 2005 Saturday 2009 Thursday 2013 Tuesday 2017 Sunday 2021 Friday
1998 Thursday 2002 Tuesday 2006 Sunday 2010 Friday 2014 Wednesday 2018 Monday 2022 Saturday
1999 Friday 2003 Wednesday 2007 Monday 2011 Saturday 2015 Thursday 2019 Tuesday 2023 Sunday
2000 Saturday 2004 Thursday 2008 Tuesday 2012 Sunday 2016 Friday 2020 Wednesday 2024 Monday

The pattern repeats with 1 January 2025 being a Wednesday. So, if the dates in the file to be tested are all
in 1997 and you want to warp to a date after the year 2000 and preserve day-of-the-week in a non-leap
year, candidate years are 2003 and 2014. To preserve day-of-the week in a leap year, a warp of 28 years is

09/09/98

©1998 Blackstone & Cullen, Inc. 5 Year 2000 and the euro:
All rights reserved. Testing and Data Management

necessary. If the file contains dates outside the current year, leap-year effects may come into play, and
then a warp of 28 years is also necessary.

Month-End. Regular production runs in many applications include monthly summary reports. The
problem of warping leap year data containing values for 29 February has been discussed above. Similar
effects occur when the chosen date warp interval is a multiple of months other than 12. For example, with
a 3-month warp interval, 31 August will warp to the end of November or beginning of December.
Warping 31 August to 30 November will upset the daily value counts for 30 November, as 30 August will
also warp there. Similarly, warping 31 August to December will upset the daily counts for 1 December
since the values for 1 September will also be mapped there. Finally, the month-end totals for November
(when compared to the unwarped month-end totals for August) will be changed with the movement of
items to December.

Year-End. The same kind of problems encountered with month-end can occur for year-end comparisons
when the date warping period is as fine as months or days. For example, warping by 2 months and 15
days can push all items after 16 October of a given year into the next year, possibly causing output
mismatches.

 The table below discusses techniques for avoiding some of the warp problems.

To avoid the Date
Warping problem of:

Select the Warp Interval as follows:

Leap Year Warp in 4-year multiples. Valid only for 1901 to 2099.
Month-End
or Year-End

Warp in even year multiples. When unwarped data contains both leap
year and non-leap year values, select a warp interval to be an even
multiple of 28 years.

Day-of-the-Week When unwarped data is all within a single, non-leap calendar year, use
the day-of-the-week table on the previous page to select a warp interval
which preserves the day.
When the unwarped data spans more than one year or contains leap-
year values, select a warp interval to be a multiple of 28 years.
Strictly speaking, any warp interval that is an even multiple of 7 days
will also preserve the Day-of-the-Week.

The table below lists the more common selections for warp intervals and discusses potential problems.

Warp Interval Possible Problems
1, 2 or 3 years When unwarped data contains leap year data or when the interval warps

date values into leap years, Leap Year problems will occur.
Month-End and Day-of-the-week problems will occur.

4 years Leap Year problems will not occur between 1901 and 2099.
Month-End problems will not occur.
Day-of-the-Week problems will occur.

28 years None.
Months and/or days Leap Year, Month-End, and Day-of-the-Week problems will occur.

It would seem from the above table that the optimum strategy would be to always select a warp interval as
a multiple of 28 years. However, this could easily warp all the dates for a field having a small (and
recent) range of values well into the 21st century. This would preclude some logical coverage
requirements caused by embedded business values (such as “99”) in the production data.

09/09/98

©1998 Blackstone & Cullen, Inc. 6 Year 2000 and the euro:
All rights reserved. Testing and Data Management

The table below lists four common date coverage objectives and the reasons to consider each.

Coverage Reasons to Consider
Current and all-1900s Provides a standard against which to compare warped output.

Ensures that application will run in the near-term.
1999 Perhaps there are date values in the year 1999 that represent embedded

rules (e.g., business conditions such as “No Expiration”), which can
cause program/system failure.

Straddle A date data sample that contains values from both the 1900s and the
2000s, so that sorts and collating sequences can be checked.

All-2000s Ensures that the application will operate properly well past 1999.

Analysis of the date ranges in the data and thorough understanding of the operational characteristics of the
application are essential to choosing the right warp intervals for testing. In fact, the correct approach is to
determine test objectives first – with coverage issues being a prime consideration – before settling on test
specifications (more specifically, warp intervals).

Year 2000 Output Testing

While data warping is an essential step in compliance testing, the first actual test is comparison of Pre-
Conversion to Post-Conversion outputs. This test is to verify that the converted programs produce the
same output after all the modifications have been made. On a report, these modifications usually involve
a change in date format to add a century (e.g., YYMMDD becomes CCYYMMDD) or the slight
movement or rearrangement of other fields on the report line to allow for date expansions.

Error
ReportDirectives

Data
Commander

Pre-Conversion
Report
Output

Post-Conversion
Report
Output

(Un-Warped)

09/09/98

©1998 Blackstone & Cullen, Inc. 7 Year 2000 and the euro:
All rights reserved. Testing and Data Management

Comparing Un-Warped Post-Conversion Output to Warped Post-conversion Output

The next crucial test—unique to Year 2000 testing—is to verify that the converted programs can correctly
handle dates and data in the future. This corresponds to validation of the programs using regression
testing on Post-Conversion data warped by some chosen time period.

On two reports being compared under these circumstances, all the dates and data should be in exactly the
same position on the output. The only difference is that the date values on the two reports are offset by the
amount of the date warp. For example, the date field on a given line of the report resulting from a run of
un-warped data might be 19921117. If the warped report results from a run of data warped by 28 years,
the same date field should indicate 20201117. Any other date value would be an error.

This test (being sure that the converted program can correctly handle data beyond the year 2000) is also
always necessary, though it is common for unit testing to exclude this test.

Without flexible and powerful tools, date warping unit tests are often considered too difficult or time-
consuming. Data Commander helps in two ways:
• Ability to warp input data makes it easy to generate warped output.
• Ability to compare warped output to un-warped output makes the test easy.

Error
ReportDirectives

Data
Commander

Post-Conversion
Report
Output

(Warped)

Post-Conversion
Report
Output

(Un-Warped)

09/09/98

©1998 Blackstone & Cullen, Inc. 8 Year 2000 and the euro:
All rights reserved. Testing and Data Management

Year 2000 Testing and Data Commander™

To this point, we’ve mentioned some of Data Commander’s capabilities without laying out the full
functionality of the tool. The following paragraphs review the range of features.

Refer again to the basic questions that must be answered during a Year 2000 compliance test (page 2).
Data Commander’s ANALYSIS function allows you to answer the “what does the system look like?”
question. The COMPARE function allows you to answer “how do the current and changed systems
compare?” question. The CONVERT function allows you to change date formats in your data, and the
associated WARP function allows you to change date values, so you can see how the system will function
in the future and thereby address the added dimension to compliance testing.

Specifically, Data Commander’s three basic commands allow the following functions:

ANALYSIS Allows you to examine your data (files and records) to find invalid dates (such as April
31, 1997), blank entries, all-zero entries, or any exceptional values (e.g., 9999=end of
file, xx=unknown). In this way, data can be cleaned up before it is processed. Note that
this capability is continuously valuable: It is not limited to Year 2000-related problems.

CONVERT Allows you to convert date values (in almost any date format) so that they are Year
2000-compliant. For example, you can expand 08/25/97 and change its format to
19970825 with one application of the tool.

WARP An adjunct function of the Convert command is the ability to age or WARP dates. For
example, warping August 25, 1997 forward by three years would yield August 25, 2000.
Data Commander permits the warping of some or all dates within a file by the number
of years, months, and days that you specify. This is critical for testing Year 2000
compliance in general and for testing the system’s ability to handle specific dates
(January 1, 2000; February 29, 2000; etc.) in particular.

A final feature of the Convert command is the ability to create test data sets. In most
cases, you will not want to run every data file through the system to test for Year 2000
compliance. Rather, you will choose a subset containing representative data. Data
Commander facilitates creation of such a test data set.

COMPARE Allows you to automate the comparison of entries in any specified field, not just date
fields. You can test whether dates in an output report were correctly expanded and/or
warped, or you can test whether depreciation values in the report were correctly
preserved. You can also test whether dates in a file were correctly converted before the
file is run through a program. Data Commander is flexible enough to permit
comparison of dates in different formats and dates that have been warped: All you must
do is specify the format and the amount of warping.

09/09/98

©1998 Blackstone & Cullen, Inc. 9 Year 2000 and the euro:
All rights reserved. Testing and Data Management

You not only want to conduct the necessary tests for Year 2000 compliance, you want to conduct them
quickly. This immediately suggests automating as much of the process as possible. Shown below is a
more detailed diagram of the testing process (building on the diagram on page 3) with elaboration on
those parts amenable to automated testing.

Step 1: Perhaps your current system is Year 2000 compliant. (You’re very fortunate.) Data
Commander can help you determine this by warping an existing data set or subset so that it
contains values around and after 1 January 2000.

Step 2: Run the warped data set through your current programs to obtain a warped current output. You
may see immediately that the warped current output is suffering Year 2000-related problems, or
you may need to compare the warped current output to the normal (un-warped) current output.
Data Commander can automate this comparison process.

Note: To run a warped data set through your current programs (especially on a mainframe computer), you
will very likely need to simulate a future system date using a software tool designed for this purpose (such
as HourGlass® or TicToc®).

Most likely, the result of steps 1 and 2 will confirm that your system is not Year 2000 compliant. You
now know that you must convert or replace the programs and data files that comprise your system. While
compliance plans rightly emphasize the importance of converting or replacing non-compliant programs,
many neglect the equal importance of insuring untainted data.

Year 2000 Compliance Using Data Commander™

Warped
Current
Output

Current
Output

Warped
Current

Data

Current Programs

Current
Data

Inventory
of Dates

Warped
Data

(e.g., 1999)

Inventory
of Dates

Warped
Data

(e.g., 2000)

Converted
Data

Warped
Output
1999

Warped
Output
2000

Converted
Output

Converted Programs

Date Domain
Report

Date Domain
Report

Log
Errors

Log
Errors

Log
Errors

COMPARE COMPARE: Automated comparison of outputs

WARP CONVERT

ANALYSIS ANALYSIS

WARP WARP

10

9

8

7

6

4

3

1

2

Convert
Programs

etc.

5

Regression Testing

Data Management

09/09/98

©1998 Blackstone & Cullen, Inc. 10 Year 2000 and the euro:
All rights reserved. Testing and Data Management

Any organization that has amassed data over a period of years is likely to have some invalid entries (such
as 31 April) in its data files. Also, many companies use special entries (such as 9999, 0000, blanks) to
represent “never,” “unknown,” etc. Consequently, you should examine data files for invalid dates or
special values (also known as embedded business rules) so that they can be corrected, eliminated, or
reconfirmed before the files are converted or run through converted programs. Otherwise, bad output
caused by data problems unrelated to the conversion will frustrate your Year 2000 compliance effort.

Step 3: Determine if any invalid dates (such as 29 Feb in a non-leap year) or embedded business rules
are within your files. Data Commander’s ANALYSIS function will provide a report of invalid
dates, exceptional values, blanks, and zeroes. From this report, you can repair or remove any
invalid dates before further action.

Depending on the compliance method you have chosen, your next step is to convert programs or data or
both. As the name implies, Data Commander operates on data. Many tool vendors specialize in program
conversions, but data is equally important and tends to get overlooked.

Step 4: Data Commander’s CONVERT function can change the format of any date field and the value
of any date field entry. Almost any date format is supported. Additionally, if your data
conversion is performed using another tool, Data Commander’s COMPARE function can
indicate whether the conversion was complete and correct.

Step 5: After converting programs and data, you should have a Year 2000 compliant system. The
object of testing is to confirm that assumption. An important step is ANALYSIS of the
converted data for invalid dates, exceptional values, etc. You should address any anomalies in
the converted data before running it through the converted programs.

Rather than running all your converted data through your converted programs, you can expedite the
testing process by selecting a representative subset of production data to serve as the test data set. Again,
Data Commander can help. A subsidiary function of the CONVERT command allows you to designate
certain dates or types of dates and include them in a newly created test data set, which is then run through
the converted programs to obtain a post-conversion output.

Step 6: Now you must COMPARE the post-conversion output to the output from your pre-conversion
system. Data Commander can do this not only for date-related fields but also for any fields you
specify, such as depreciation amounts. Once this comparison has shown that the converted
system functions as well as or better than the current system (probably after some more repairs
and re-runs), the added process of testing specifically for Year 2000 compliance begins.

Step 7: You may use the test data set or even a smaller slice of data for the WARP test. It is your
decision which dates or range of dates will be used to test whether the system is ready to process
future dates correctly. Regardless of your choice, Data Commander allows you to WARP (i.e.,
move forward by an amount you specify) a set of dates as a function of the CONVERT
command. Essentially, you CONVERT some or all dates in the test data set to create a warped
test data set containing future dates. You can insure that certain dates (991231, 000101,
000229, etc.) are included in the warped data set since Data Commander allows you to specify
the warp amount by the year, month, and day. More simply, if you’re satisfied that the range of
dates in your test data set is sufficiently comprehensive (which you can discern from the reports
resulting from the ANALYSIS function), you can specify that all date values in the test data set
be advanced by a certain number of years.

09/09/98

©1998 Blackstone & Cullen, Inc. 11 Year 2000 and the euro:
All rights reserved. Testing and Data Management

Step 8: Once you have obtained “warped” output (from a run of the warped data through the converted
programs), you can again use the COMPARE function to check if the warped output correctly
advances or preserves the report entries. Within the COMPARE function, you can specify that
all date values in the warped output are to be considered correct if they are a certain amount of
time (years, months, and days) ahead of (or behind) the corresponding entries in the baseline
converted output. Further, you can COMPARE other entries (such as depreciation amounts or
purchase prices) to see if they are correctly preserved. You can also compare leap year to non-
leap year values by specifying whether 29 Feb should be compared to 28 Feb or 1 Mar
(potentially important for reconciling monthly totals).

Steps 9 If the particular application or set of programs you are testing does not routinely handle data
sets
 & 10: of broad span, you can repeat the warp test, specifying a greater time advance, until your

confidence level is met.

In summary, the compliance diagram’s (page 11) top portion (delineated by a dotted line box and
including steps 2, 6, 8, and 10) represents Regression Testing – i.e., testing to see how the changed system
compares to the existing system. The bottom portion (enclosed by a dashed line) depicts Data
Management – i.e., identifying invalid or exceptional values and manipulating data for testing purposes.
To the extent that the processes of regression testing and data management can be automated, the process
of making your system Year 2000 compliant will take less time and use fewer technicians: This is exactly
what Data Commander helps you to do. Further, you can use these capabilities in situations other than
Year 2000 testing.

A Conjunction of Events

The Year 2000 represents the largest challenge most computer users will face. The problems’ scope,
uniqueness, and immovable deadline lead most consultants and advisers to recommend that Year 2000
compliance efforts not be combined with other changes, such as switching from one hardware or software
system to another. While this recommendation has obvious merit, most organizations’ ability to adhere to
it is limited. Over the next two years (as with any two year period), companies will buy new equipment,
get rid of old equipment, buy software with new capabilities, and upgrade existing software with improved
versions. Further, demographic, political, and economic factors beyond an organization’s control will
influence the compliance process: experienced employees will leave the organization and new ones will
arrive; governments will pass laws and revise tax codes, markets will expand and contract, etc.

Similarly, dates are not the only values affected by Year 2000 compliance efforts. Many output values
(interest amounts, depreciation, accrued taxes, etc.) are dependent on date calculations. Consequently,
testing of converted systems must verify not only that date formats and values have been changed
correctly, but also that date-related fields have been preserved correctly.

One event combining many of the aspects mentioned in the paragraphs above is the European Monetary
Union’s adoption of a common currency. On January 1, 1999, the euro becomes a financial instrument,
initially as the official exchange rate measurement for many European currencies. On January 1, 2002,
the euro will begin displacing bank notes and coins already in circulation in as many as 11 European
countries. Consequently, any organization dealing or planning to deal with European entities should
consider the currency transition along with the Year 2000 transition.

Year 2000 compliance and the advent of the euro thus represent an enormous dual challenge.
Fortunately, Data Commander’s data management capabilities used for data conversion and warping also
allow for currency conversion.

09/09/98

©1998 Blackstone & Cullen, Inc. 12 Year 2000 and the euro:
All rights reserved. Testing and Data Management

Currency Conversions and Data Commander™

Below is a simple depiction of the process that many organizations may want to perform as their business
becomes more international and the European currency conventions come into effect. The data file may
contain a list of items and prices in a particular currency or currencies. Data Commander will allow
conversion of all the currencies to a single currency, and it will allow retention of the original currencies
in display with the conversion standard. On the following pages is an example of how Data Commander
can perform such a conversion.

euro Conversions

National Currencies

All euros

conversion
Both National

and euros

or

Data Commander

Data Commander

Item Currency Amount

A £ nnn.nn

B DM nn.nn

C ¥ nnn.nn

D $ nn.nn

Item Amount

A xx.xx

B x.xx

C xx.xx

D x.xx

Item Amount Amount

A £ nnn.nn xx.xx

B DM nn.nn x.xx

C ¥ nnn.nn xx.xx

D $ nn.nn x.xx

09/09/98

©1998 Blackstone & Cullen, Inc. 13 Year 2000 and the euro:
All rights reserved. Testing and Data Management

Example of Date and Currency Conversion

This example uses a hypothetical clothing and accessories company, specializing in Cowboy and Western
wear. The subject outstanding invoice file contains four record types (header, company using U.S. dollars,
company using French francs, and item), several dates (in a six-character YYMMDD Gregorian format),
and several money amounts (some in dollars and some in francs). The file will be converted both for Year
2000 compliance (by expanding the date formats to CCYYMMDD) and for euro compatibility.

Here is the file, now labeled as the Input File. A column count has been added for readability.

Input File
Column Count

0 1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890

970910PRD11INV2 OUTSTANDING INVOICES BY DATE 00001
IH970512ACME MANUFACTURING CO., INC. 970612 $000199367
ID00000024A435BLUE SHIRTS SIZE L 970514
ID00000100B125BROWN LOGO BELTS 970514
ID00000024C665CORDUROY PANTS - BROWN 970524
IH970512WALLY'S WESTERN WEAR 970530 $000056025
ID00000012A445SHARP-TOED BOOTS 970515
IH970512SADDLE-UP SERVICES, INC. 970530 $000077550
ID00000040D445BUCKSKIN BRITCHES SIZE M 970514
ID00000006S112NAVAJO-STYLE BLANKETS 970521
IH970513PIERRE'S COTE D'AZUR 970525FF000255000
ID00000134D455SOFTSKIN VESTS 970513
IH970513RIVIERA RAINGEAR 970528FF001005000
ID00000010A657LONG TRENCHCOATS 970512

Only the most hardened of computer users will enjoy examining such files, but a brief review of this
example file will help you understand how Data Commander works.

 The file begins with a header record line. First is a run date (970910), then a report identification
number (PRD11INV2), a title (OUTSTANDING INVOICES BY DATE), and a batch number (00001).

The second line contains a vendor record. The record type is identified by the H in column 2. Next comes
a date (970512), the vendor name (ACME MANUFACTURING CO., INC.), another date (970612),
and a dollar amount ($000199367).

The third line holds an item record, identified by a D in column 2. Next comes a string of numbers and
letters. Without a key to the file format, you wouldn’t know whether this string contains one entry or
several. In this example, the first eight characters are the field that represents the quantity of the item
(00000024), while the last four characters are the item identifier (A435). The item description follows
(BLUE SHIRTS SIZE L), and then another date (970514).

Within the first three lines, you see three of the record types contained in this file. Four more vendor
records are apparent, but note that WALLY’S WESTERN WEAR and SADDLE-UP SERVICES contain
amounts in U.S. dollars, while PIERRE’S COTE D’AZUR and RIVIERA RAINGEAR have amounts in
French francs (FF). You can readily pick out the other item records (SHARP-TOED BOOTS, NAVAJO-
STYLE BLANKETS, etc.).

09/09/98

©1998 Blackstone & Cullen, Inc. 14 Year 2000 and the euro:
All rights reserved. Testing and Data Management

As mentioned, Data Commander is used in this example to both expand dates and list euro equivalent
(here represented by E$) values. First, let’s look at the Output file that results from the process.

Output File
Column count

0 1 2 3 4 5 6
7
123456789012345678901234567890123456789012345678901234567890123456789012345

19970910PRD11INV2 OUTSTANDING INVOICES BY DATE 00001
IH19970512ACME MANUFACTURING CO., INC. 19970612 $000199367E$000223291
ID00000024A435BLUE SHIRTS SIZE L 19970514
ID00000100B125BROWN LOGO BELTS 19970514
ID00000024C665CORDUROY PANTS - BROWN 19970524
IH19970512WALLY'S WESTERN WEAR 19970530 $000056025E$000062748
ID00000012A445SHARP-TOED BOOTS 19970515
IH19970512SADDLE-UP SERVICES, INC. 19970530 $000077550E$000086856
ID00000040D445BUCKSKIN BRITCHES SIZE M 19970514
ID00000006S112NAVAJO-STYLE BLANKETS 19970521
IH19970513PIERRE'S COTE D'AZUR 19970525FF000255000E$001364250
ID00000134D455SOFTSKIN VESTS 19970513
IH19970513RIVIERA RAINGEAR 19970528FF001005000E$005376750
ID00000010A657LONG TRENCHCOATS 19970512

A quick comparison with the Input file shows that each date has been expanded to include century digits:
The format has changed from YYMMDD to CCYYMMDD. Also readily apparent is the addition of a
euro (E$) equivalent after each amount.

How was this file converted? Data Commander is platform and language independent: You don’t need to
know a programming language to use the tool. What Data Commander does require is a set of Directives
that explain where the Input file is, what format it’s in, and what you want to do with it. The Directives
for this example are shown next.

09/09/98

©1998 Blackstone & Cullen, Inc. 15 Year 2000 and the euro:
All rights reserved. Testing and Data Management

Directives

A line count has been added down the left margin to facilitate the ensuing explanation of the Directives.

1 REMARK *** euro Sample *** Example of euro Conversion

2 OPTION LINESPERPAGE 42

3 FILE DCMFSample "Sample DataCommander euro Conversion" KEY (1 30)
4 RECORD Heading1 LENGTH(54 56) (COL(1) NOT ="I")
5 DATE RunDate FORMAT(YYMMDD (1), CCYYMMDD (1))
6 FIELD ReptID FORMAT(POS(7,13), POS(9,13))
7 FIELD ReptTitle FORMAT(POS(20,30), POS(22,30))
8 NUMBER Batch FORMAT(NUM_D5(50), NUM_D5V0(52))

9 RECORD InvoiceHdr_US LENGTH(56 72) (COL(1 2) ="IH" &
 AND COL(46,47) = " $")
10 FIELD IH_ID FORMAT(POS(1,2), POS(1,2))
11 DATE InvDate FORMAT(YYMMDD (3), CCYYMMDD (3))
12 FIELD CustName FORMAT(POS(9,31), POS(11,31))
13 DATE InvDueDate FORMAT(YYMMDD (40), CCYYMMDD (42))
14 FIELD Currency FORMAT(POS(46,2), POS(50,2))
15 NUMBER InvAmount FORMAT(NUM_D7V2(48), NUM_D7V2(52))
16 FIELD New_Currency FORMAT(NULL, POS(61,2)) &
 VALUE("E$")
17 NUMBER New_InvAmount FORMAT(NULL, NUM_D7V2(63)) &
 VALUE(1.12 * InvAmount)

18 RECORD InvoiceHdr_FF LENGTH(56 72) (COL(1 2) ="IH" &
 AND COL(46,47) = "FF")
19 FIELD IH_ID FORMAT(POS(1,2), POS(1,2))
20 DATE InvDate FORMAT(YYMMDD (3), CCYYMMDD (3))
21 FIELD CustName FORMAT(POS(9,31), POS(11,31))
22 DATE InvDueDate FORMAT(YYMMDD (40), CCYYMMDD (42))
23 FIELD Currency FORMAT(POS(46,2), POS(50,2))
24 NUMBER InvAmount FORMAT(NUM_D7V2(48), NUM_D7V2(52))
25 FIELD New_Currency FORMAT(NULL, POS(61,2)) &
 VALUE("E$")
26 NUMBER New_InvAmount FORMAT(NULL, NUM_D7V2(63)) &
 VALUE(5.35 * InvAmount)

27 RECORD ItemDetail LENGTH(55 57) (COL(1 2) ="ID")
28 FIELD ID_ID FORMAT(POS(1,2), POS(1,2))
29 NUMBER ItemQuantity FORMAT(NUM_D8(3), NUM_D8(3))
30 FIELD ItemID FORMAT(POS(11,4), POS(11,4))
31 FIELD ItemDesc FORMAT(POS(15,35), POS(15,35))
32 DATE ShipDate FORMAT(YYMMDD (50), CCYYMMDD (50))

33 EXECUTE CONVERT PREPOST

A review of this example Directives file shows how you can use Data Commander.

09/09/98

©1998 Blackstone & Cullen, Inc. 16 Year 2000 and the euro:
All rights reserved. Testing and Data Management

Line 1 of Directives

A REMARK statement is not processed by Data Commander. REMARK statements typically appear at the
beginning of the Directives (though their order is irrelevant) and are used to clarify or identify the file or
process for the user.

Line 2 (Blank lines are ignored by the parser, so they are not numbered in this example.)

The OPTION statement specifies any options in effect (in addition to the default options). In this case, the
user is specifying that only 42 lines should be printed on each page.

Data Commander prints a report with every use. (See pages 22-23.) The first element of each report is a
Directives listing, which is useful for confirming that Data Commander received the intended
instructions. At the end of the Directives Listing is a summary of the options in effect, including the
default options.

Line 3

The first statement for which the order, or hierarchy, is important, the FILE statement provides the type
of file, a name for the file (enclosed in quotation marks), and the file key, in this case beginning in
column 1 with 30 character length.

Line 4

The indentation of the RECORD line is solely for readability, but its order following the FILE statement is
critical. This RECORD statement uniquely identifies the first type of record in the Input file. (Refer to
both the Input File and the Directives throughout this explanation.) The type of record is Heading1. Its
length in the Input (or PRE) file is 54 columns, while its length in the Output (or POST) file is 56
columns. The change in length is required because this record heading contains a date that will be
expanded by two digits during the conversion process. This record is uniquely identified because, unlike
all the other records in the Input file, its first column does not contain the letter I.

Line 5

Again, the indentations are solely for readability. As a subordinate to the preceding RECORD statement,
this DATE statement identifies the first field—in this case, a date field—in the record. This date is
identified as the RunDate. Its PRE format and start position (YYMMDD (1)) and POST format and start
position (CCYYMMDD (1)) are identified within the FORMAT clause, indicating that this date will be
expanded to include century digits. In this case, 970910 will become 19970910.

Line 6

The FIELD statement allows the user to specify fields that may not undergo any change other than
position. In this example, the Report Identifier (ReptID) field (with entry PRD11INV2) must move two
columns in the Output file because the preceding date field was expanded by two characters. The
FORMAT clause for this FIELD statement reflects that the field will start in column 7 with length of 13
characters in the Input (PRE) file and will start in column 9 retaining its length of 13 characters in the
Output (POST) file: FORMAT(POS(7,13), POS(9,13)).

Line 7

Similar to the previous FIELD statement, the ReptTitle field will move two columns to the right
during the process.

09/09/98

©1998 Blackstone & Cullen, Inc. 17 Year 2000 and the euro:
All rights reserved. Testing and Data Management

Line 8

The NUMBER statement accommodates the Batch number field. This field must also move two columns
during the process, but note the other difference in the FORMAT clause: NUM_D5 indicates a five-digit
number in the PRE file, while NUM_D5V0 for the POST file again indicates a five-digit number, this time
with no characters after the implied decimal indicator. In this case, the additional specifications (V0) are
not to accommodate decimal digits but to prevent Data Commander from suppressing the leading zeroes
in the batch number (00001).

Line 9

The second RECORD statement relates to an invoice for a company paying in U.S. dollars. As before, the
record is identified by type (InvoiceHdr_US), and the PRE and POST length is specified (56 and 72,
respectively). Note that the POST length will increase not only due to date expansion but also because a
euro equivalent will be added during the CONVERT process. Finally, the record type is differentiated by
column 1 containing I and column 2 containing H and by column 46 being blank and column 47
containing $. The ampersand (&) at the end of the line allows the statement to be continued onto the next
line.

Reports of problems with the Data Commander tool have most often been traced to mistakes in the user’s
construction of logical conditions, such as those just mentioned for distinguishing record types.
Consequently, we urge particular care in the use of parentheses and the conjunctions “AND” “OR” and
“NOT”.

Line 10

The FIELD that begins this record type is named (IH_ID), and its position (beginning in column 1 with
a length of 2 characters) in both the Input (PRE) and Output (POST) files is specified in the FORMAT
clause.

Line 11

The first DATE field in this record type is named (InvDate) and its PRE and POST formats and starting
positions specified. Again, the date will be expanded to include century digits during the CONVERT
process. Also note that the formats for the date (YYMMDD and CCYYMMDD) dictate the date field length.
Consequently, only the starting position (3) needs to be specified in the FORMAT clause.

Line 12

The customer name FIELD is identified, and its PRE and POST starting positions and lengths are
specified in the FORMAT clause. Note that the starting position in the POST file must move because a
preceding date field was expanded by two characters.

Line 13

Another DATE field is identified and specified for expansion.

Line 14

The currency FIELD is identified. Its length (2 characters) is unchanged during the CONVERT, but its
starting position must move by four characters (from 46 to 50) because two preceding date fields have
expanded.

09/09/98

©1998 Blackstone & Cullen, Inc. 18 Year 2000 and the euro:
All rights reserved. Testing and Data Management

Line 15

The invoice amount NUMBER field is identified. Again, the starting position for this field must move four
columns from 48 to 52 during the CONVERT. Note that the format (NUM_D7V2) for the invoice amount
is specified within the FORMAT clause. In this case:

NUM_ amount is a number without a delimiter between thousands
D display (vice a signed or packed decimal) format
7 number of digits before the decimal indicator
V decimal indicator is implied rather than shown
2 number of digits after the decimal indicator

Referring to the Input File, note line 2 for ACME MANUFACTURING: The amount on the end of the line
is in U.S. dollars and has nine digits. The directives reflect that 7 of the 9 come before the decimal
indicator and 2 of the 9 come after. Most likely, the company that owns this file also has an application
that prints this amount as $1993.67.

Line 16

This FIELD statement specifies that a New_Currency field will be added during conversion. Since this
field is not present in the Input File, the PRE value in the FORMAT clause is NULL. In the Output File,
the New_Currency field will start in column 61 and have a length of two characters. Further, the
VALUE of the field will be E$ to indicate the amount is in euros.

You may specify any value that you choose. For example, you may want ED to represent euro, or DM for
Deutsch Marks, IL for Italian Lira, etc. While $ is a symbol recognized by most applications, some
symbols (such as the euro symbol not yet present on many keyboards or systems) may get scrambled
between applications.

Line 17

This NUMBER statement specifies the new invoice amount (New_InvAmount) field. Again, since this
field is not present in the Input File, the PRE format is NULL. The POST format is specified by
NUM_D7V2 (see the explanation under line 15) and the POST field starts in column 63. Finally, the
VALUE of the field entry is 1.12 times the invoice amount. The multiplier (1.12) can be adjusted to
reflect the exchange rate.

Lines 18-26

Directives for another RECORD type begin on line 18. Note the distinguishing feature for this record type
(compared to the one beginning on line 9) is the currency type in columns 46-47. In this case, the amount
will be in French Francs (FF). The subsequent directive lines for this record type are identical to those for
the similar record using U.S. dollars, with the exception of line 26, which understandably specifies a
different multiplier (or exchange rate of 5.35) for the invoice amount.

Line 27

The last RECORD type is ItemDetail, with each clothing or accessory item having its own record. The
length of this record type will change from 55 to 57, and it is distinguished by columns 1-2 containing ID.

Line 28

The first FIELD in records of this type is the Item Detail field, which starts in column 1 and has length of
2 characters in both the Input and Output files. (Note that POS(1,2) is equivalent to COL(1 2). The

09/09/98

©1998 Blackstone & Cullen, Inc. 19 Year 2000 and the euro:
All rights reserved. Testing and Data Management

User’s Manual section on RECORD statement condition clauses provides a fuller explanation of how to use
COL and POS to specify locations.)

09/09/98

©1998 Blackstone & Cullen, Inc. 20 Year 2000 and the euro:
All rights reserved. Testing and Data Management

Line 29

This NUMBER statement identifies the ItemQuantity field. The FORMAT clause specifies that both the
PRE and POST formats are NUM_D8: a number without thousand delimiters, in display format, and 8
digits long (and, by the absence of indicators, without decimal places). The field begins in column 3.
Note that the format specification (8 digit display) precludes the need to separately list the field length.

Lines 30-31

FIELD statements on these lines indicate the names, locations, and lengths of the Item ID and Item
Description fields. Since no dates precede these fields, their positions do not change during the CONVERT
process, nor do their lengths.

Line 32

The ShipDate field is identified. As with other dates, ShipDate entries will be expanded to include
century digits.

Line 33

The EXECUTE statement specifies the process and files: CONVERT from the PRE to the POST format.

At this point, you might want to compare the Input and Output files to see how the Directives worked.

Report File

In addition to producing the Output File during this CONVERT process, Data Commander always produces a
Report File (beginning on the next page) regardless of the process (ANALYSIS, CONVERT, or COMPARE).
The first element of the Report File allows you to confirm that Data Commander received the Directives the
user intended.

Following the listing of Directives statements is a summary of options currently in effect, including those
that are default settings (such as SCAN, ERRXREF, and NOMONTHEND). Note the last four options:

Option Meaning Example

DATEEDITCHAR / Date sub-fields will be separated by a slash. 97/09/10.
(DATE EDIT CHARacter)

NUMEDITCHAR , Numbers will separate thousands with commas. 19,387,061.
(NUMber EDIT CHARacter)

NUMDECCHAR . Numbers will separate decimals with a period. 53,876.28.
(NUMber DECimal CHARacter)

CURRSYMBOL $ Unless otherwise specified, currency is in dollars. $3,423.65.
(CURRency SYMBOL)

The second element of the Report File is the File Format Summary. As its name implies, this element
provides a summary of the record and field formats for any files involved in whichever process was
executed. The File Format Summary also provides warnings of field length mismatches, such as the
fillers in this example.

09/09/98

©1998 Blackstone & Cullen, Inc. 21 Year 2000 and the euro:
All rights reserved. Testing and Data Management

The third element is the File Error Summary, though this example contains no errors.

The fourth element of the Report File shows Scan Statistics, such as the time to process, average number
of records processed per second, number of records read, etc.

The final element of the Report File is the file Scan Summary, which indicates the number of records of
each type, the number of dates within each record that were either exceptions (none was present in this
example) or on-calendar, and the high and low values of any DATE or NUMBER fields. Knowing the
range of NUMBER values can help decide the precision needed for post-conversion fields.

02/25/1998 10:43:23.55 Data Commander Directives Listing

 * 1 * REMARK *** euro Sample *** Example of euro Conversion *
 * 2 * *
 * 3 * OPTION INPUTPATH "eurosmpi.txt" *
 * 4 * OPTION COMPAREPATH "eurosmpo.txt" *
 * 5 * OPTION OUTPUTPATH "eurosmpo.txt" *
 * 6 * OPTION INPUTFIXED COMPAREFIXED OUTPUTFIXED *
 * 7 * OPTION LINESPERPAGE 42 *
 * 8 * *
 * 9 * FILE DCMFSample "Sample DataCommander euro Conversion" KEY (1 30) *
 * 10 * RECORD Heading1 LENGTH(54 56) (COL(1) NOT ="I") *
 * 11 * DATE RunDate FORMAT(YYMMDD (1), CCYYMMDD (1)) *
 * 12 * FIELD ReptID FORMAT(POS(7,13), POS(9,13)) *
 * 13 * FIELD ReptTitle FORMAT(POS(20,30), POS(22,30)) *
 * 14 * NUMBER Batch FORMAT(NUM_D5(50), NUM_D5V0(52)) *
 * 15 * *
 * 16 * RECORD InvoiceHdr_US LENGTH(56 72) (COL(1 2) ="IH" & *
 * 17 * AND COL(46,47) = " $") *
 * 18 * FIELD IH_ID FORMAT(POS(1,2), POS(1,2)) *
 * 19 * DATE InvDate FORMAT(YYMMDD (3), CCYYMMDD (3)) *
 * 20 * FIELD CustName FORMAT(POS(9,31), POS(11,31)) *
 * 21 * DATE InvDueDate FORMAT(YYMMDD (40), CCYYMMDD (42)) *
 * 22 * FIELD Currency FORMAT(POS(46,2), POS(50,2)) *
 * 23 * NUMBER InvAmount FORMAT(NUM_D7V2(48), NUM_D7V2(52)) *
 * 24 * FIELD New_Currency FORMAT(NULL, POS(61,2)) & *
 * 25 * VALUE("E$") *
 * 26 * NUMBER New_InvAmount FORMAT(NULL, NUM_D7V2(63)) & *
 * 27 * VALUE(1.12 * InvAmount) *
 * 28 * *
 * 29 * RECORD InvoiceHdr_FF LENGTH(56 72) (COL(1 2) ="IH" & *
 * 30 * AND COL(46,47) = "FF") *
 * 31 * FIELD IH_ID FORMAT(POS(1,2), POS(1,2)) *
 * 32 * DATE InvDate FORMAT(YYMMDD (3), CCYYMMDD (3)) *
 * 33 * FIELD CustName FORMAT(POS(9,31), POS(11,31)) *
 * 34 * DATE InvDueDate FORMAT(YYMMDD (40), CCYYMMDD (42)) *
 * 35 * FIELD Currency FORMAT(POS(46,2), POS(50,2)) *
 * 36 * NUMBER InvAmount FORMAT(NUM_D7V2(48), NUM_D7V2(52)) *
 * 37 * FIELD New_Currency FORMAT(NULL, POS(61,2)) & *
 * 38 * VALUE("E$") *
 * 39 * NUMBER New_InvAmount FORMAT(NULL, NUM_D7V2(63)) & *
 * 40 * VALUE(5.35 * InvAmount) *
 * 41 * *
 * 42 * RECORD ItemDetail LENGTH(55 57) (COL(1 2) ="ID") *
 * 43 * FIELD ID_ID FORMAT(POS(1,2), POS(1,2)) *
 * 44 * NUMBER ItemQuantity FORMAT(NUM_D8(3), NUM_D8(3)) *
 * 45 * FIELD ItemID FORMAT(POS(11,4), POS(11,4)) *
 * 46 * FIELD ItemDesc FORMAT(POS(15,35), POS(15,35)) *
 * 47 * DATE ShipDate FORMAT(YYMMDD (50), CCYYMMDD (50)) *
 * 48 * *
 * 49 * EXECUTE CONVERT PREPOST *
 * 50 * *
 * * *** OPTIONS CURRENTLY IN EFFECT *** *
 * * SCAN *
 * * ERRXREF *
 * * NOMONTHEND *
 * * OUTPUT *
 * * INPUTFIXED *
 * * COMPAREFIXED *
 * * OUTPUTFIXED *
 * * CODESET EBCDIC *
 * * MAXINPUT 9,999,999,999 *
 * * MAXERRORS 250 *
 * * MININPUTCOL 1 *
 * * MAXINPUTCOL 79 *
 * * LINESPERPAGE 42 *
 * * DATEEDITCHAR / *
 * * NUMEDITCHAR , *
 * * NUMDECCHAR . *
 * * CURRSYMBOL $ *
 * * *

09/09/98

©1998 Blackstone & Cullen, Inc. 22 Year 2000 and the euro:
All rights reserved. Testing and Data Management

02/25/1998 10:43:23.55 Data Commander File Format Summary

 Record / Date/Field/Number Name Pre Format Length Start End Scal/Wnd Post Format Length Start End Scal/Wnd

 * *
 * Heading1 54 56 *
 * RunDate YYMMDD 6 1 6 CCYYMMDD 8 1 8 *
 * ReptID 13 7 19 13 9 21 *
 * ReptTitle 30 20 49 30 22 51 *
 * Batch NUM_D5 5 50 54 NUM_D5V0 5 52 56 *
 * *
 * InvoiceHdr_US 56 72 *
 * IH_ID 2 1 2 2 1 2 *
 * InvDate YYMMDD 6 3 8 CCYYMMDD 8 3 10 *
 * CustName 31 9 39 31 11 41 *
 * InvDueDate YYMMDD 6 40 45 CCYYMMDD 8 42 49 *
 * Currency 2 46 47 2 50 51 *
 * InvAmount NUM_D7V2 9 48 56 NUM_D7V2 9 52 60 *
 * New_Currency NULL 2 61 62 *
 * New_InvAmount NULL NUM_D7V2 9 63 71 *
 * Filler#1 0 57 56 1 72 72 *
 * *** WARNING *** PRE- AND POST- FIELD/FILLER LENGTHS DO NOT MATCH *
 * *** WARNING *** PRE- FIELDS/FILLER EMPTY/NULL *
 * *
 * InvoiceHdr_FF 56 72 *
 * IH_ID 2 1 2 2 1 2 *
 * InvDate YYMMDD 6 3 8 CCYYMMDD 8 3 10 *
 * CustName 31 9 39 31 11 41 *
 * InvDueDate YYMMDD 6 40 45 CCYYMMDD 8 42 49 *
 * Currency 2 46 47 2 50 51 *
 * InvAmount NUM_D7V2 9 48 56 NUM_D7V2 9 52 60 *
 * New_Currency NULL 2 61 62 *
 * New_InvAmount NULL NUM_D7V2 9 63 71 *
 * Filler#2 0 57 56 1 72 72 *
 * *** WARNING *** PRE- AND POST- FIELD/FILLER LENGTHS DO NOT MATCH *
 * *** WARNING *** PRE- FIELDS/FILLER EMPTY/NULL *
 * *
 * ItemDetail 55 57 *
 * ID_ID 2 1 2 2 1 2 *
 * ItemQuantity NUM_D8 8 3 10 NUM_D8 8 3 10 *
 * ItemID 4 11 14 4 11 14 *
 * ItemDesc 35 15 49 35 15 49 *
 * ShipDate YYMMDD 6 50 55 CCYYMMDD 8 50 57 *
 * *

02/25/1998 10:43:23.55 Data Commander File Error Summary

Note: No Errors in this case

Scan Statistics - Start 02/25/1998 10:43:24. Stop 02/25/1998 10:43:24. Elapsed = .17 Secs; Avg Recds / Sec = 82.35
 *** 14 Records Read from the Input File
 *** 0 Errors encountered during input scan process
 *** 14 Total Records Written to Output eurosmpo.txt (000000000872 BYTES)

 02/25/1998 10:43:23.55 Data Commander File Scan Summary

 Record Date/Number Total Exceptions On-Cal/Legit Low/High Blank Zero Other

 * Heading1 1 *
 * RunDate 1 1997/09/10 *
 * 1997/09/10 *
 * Batch 1 1 *
 * 1 *
 * InvoiceHdr_US 3 *
 * InvDate 3 1997/05/12 *
 * 1997/05/12 *
 * InvDueDate 3 1997/05/30 *
 * 1997/06/12 *
 * InvAmount 3 560.25 *
 * 1,993.67 *
 * New_InvAmount 3 627.48 *
 * 2,232.91 *
 * InvoiceHdr_FF 2 *
 * InvDate 2 1997/05/13 *
 * 1997/05/13 *
 * InvDueDate 2 1997/05/25 *
 * 1997/05/28 *
 * InvAmount 2 2,550.00 *
 * 10,050.00 *
 * New_InvAmount 2 13,642.50 *
 * 53,767.50 *
 * ItemDetail 8 *
 * ItemQuantity 8 6 *
 * 134 *
 * ShipDate 8 1997/05/12 *
 * 1997/05/24 *

09/09/98

©1998 Blackstone & Cullen, Inc. 24 Year 2000 and the euro:
All rights reserved. Testing and Data Management

Summary

Year 2000 testing is different from other computer system testing because of the need to test future dates.

Factors affecting successful completion of testing:
• Complexity and number of programs and data files
• Time available
• Soundness of plan
• Effectiveness of management
• Availability of skilled personnel
• Quality of testing tools

One of the more controllable factors affecting successful compliance is the selection of effective and
efficient testing tools. Blackstone & Cullen’s Data Commander software tool can help with almost every
aspect of the testing process and with data analysis and conversion. Further, Data Commander is useful
whenever data management and regression testing is needed, not just for Year 2000 compliance.

Year 2000 compliance efforts will not occur in isolation from other events. The most significant
coincident event for many computer users will be the advent of a European common currency, the euro.
The same data management capabilities that make Data Commander useful for Year 2000 compliance
also make it useful for accommodating currency conversions.

No one tool does everything needed by everyone, but Data Commander is a powerful and flexible tool that
will help any organization cope with the foreseeable future’s two biggest computer system challenges.

ByBy

Edward MillerEdward Miller
Software Research, Inc.Software Research, Inc.

Software Research, Inc

Remote Testing Technology

Using TestWorks as Your Quality Agent

A Special Application of TestWorks Technology

Remote Testing TechnologyRemote Testing Technology

Using Using TestWorks TestWorks as Your Quality Agentas Your Quality Agent

A Special Application of A Special Application of TestWorks TestWorks TechnologyTechnology

Remote Testing Technology

Software Research, Inc

RTT ConceptRTT Concept

Preparing the Application Under Test (AUT)

Collection of Data from Field

User Operation of AUT

Reduction of Data

Feedback to AUT Developers

Software Research, Inc

 Software
Development

 Application
Under Test AUT

Testworks / RTT
Processing

Local
Use

α - Site

β - Site
 Field
Deployment

Testworks / RTT
Collection

Coverage
Analyses

Feature
Analyses

GUI
Utilization

EmailHTTP
Local Email

HTTP

Email
HTTP

Remote Testing Technology

Software Research, Inc

RTT Benefits / ApplicationsRTT Benefits / Applications

Very Powerful Data Collection

Highly Adjustable to Focus on Specific Areas

Very Accurate Information

Automated Alpha - Testing

Automated Beta - Testing

True Field - Based User Testing

Remote Testing Technology

Software Research, Inc

User Information CollectableUser Information Collectable

Branch Coverage Within Module

TureTime-Mode Keyboard/Mouse Usage

Object-Mode GUI Usage

CallPair Coverage Between Modules

Module Coverage

User-Specified Feature Execution

Remote Testing Technology

Software Research, Inc

Data Collection ModesData Collection Modes

Last N Seconds Activity

Last N Events / Hits

Complete Data

Rotating Buffer

Remote Testing Technology

Software Research, Inc

Data Transmission ModesData Transmission Modes

Local Collection

Web Transmission

Email Submission

Efficient

Fast

Quick

Invisible

Slower

Visible

Remote Testing Technology

Software Research, Inc

GUI Recording CapabilityGUI Recording Capability

TrueTime Mode

Mixed TrueTime and Object Mode

Object Mode

Remote Testing Technology

Software Research, Inc

Code Instrumentation CapabilityCode Instrumentation Capability

Branch Level

Per Set of Modules

Per Module

CallPair Level

Local De-Instrumentation

Remote Testing Technology

Software Research, Inc

Feature Test CapabilityFeature Test Capability

Very-General Capability

Passive Formatted Comments

User Features

Desired Sequences

Hidden Features

Critical Checkpoints

Remote Testing Technology

Software Research, Inc

Analysis CapabilitiesAnalysis Capabilities

Low-Level Code Execution

Feature Test Mode

Object-Mode GUI Interaction

Remote Testing Technology

Software Research, Inc

Analysis Code ExecutionAnalysis Code Execution

Digraph of Function

Coverage

TraceFile

CallTree of Subsystem

Remote Testing Technology

Annotated

CallTree

Annotated

Digraph

Xcover Report

WIN Cover ReportWIN Cover Report

Software Research, Inc

Feature Test ModeFeature Test Mode

Raw Event Log

Coverage Counts

Remote Testing Technology

Software Research, Inc

GUI InteractionGUI Interaction

Raw Log (Recording)

Playback on Application

Remote Testing Technology

Software Research, Inc

RTT Licensing OptionsRTT Licensing Options

Site License Required

Required 1-month Consulting Option

Special Software Bridges Needed

Remote Testing Technology

Software Research, Inc

Software Research, Inc.Software Research, Inc.
625 Third Street625 Third Street

San Francisco, CA 94107 - 1997 USASan Francisco, CA 94107 - 1997 USA

Phone: [1] (415) 957 - 1441

FAX: [1] (415) 957 - 0730

Email: sales@soft.com

WebSite: http://www.soft.com

Contact Information:

1

Year 2000 Functional Testing

Gordon Tredgold
The Testing Consultancy

tredgold@testing-consultancy.com

The Testing Consultancy
SPECIALISTS IN TESTING AND TEST AUTOMATION

Introduction
• Overview of Year 2000 Testing Approach

Functional Testing
Testing Timescales

Case Study of Testing Pilot

The Testing Consultancy
SPECIALISTS IN TESTING AND TEST AUTOMATION

2

The Testing Consultancy
SPECIALISTS IN TESTING AND TEST AUTOMATION

Integration
Testing

Unit
Testing

<2000
Functional
Testing

>2000
Functional
Testing

Y2K
Compliance
Testing

Development
Environment

Functional Testing
Environment

Technically Compliant
Environment

Overall Y2K Testing Approach

Test Types
• Unit Tests

ensure all new and amended code work as planned
Integration Test
ensure that all changed modules within a
subsystem work together
<2000 Functional Testing
ensure the application meets the user requirements
in a below 2000 env.
On completion the application can go live

The Testing Consultancy
SPECIALISTS IN TESTING AND TEST AUTOMATION

3

Test Types (cont.)
• >2000 Functional Testing

ensure the application meets the user requirements
looking forward from 19xx into 20xx, running
over 31/12/99, looking forward from 2000, and
looking back from 20xx to 19xx

Y2K Compliance Testing
ensure that the compliant functionality can work
on compliant technical infrastructure

The Testing Consultancy
SPECIALISTS IN TESTING AND TEST AUTOMATION

The Testing Consultancy
SPECIALISTS IN TESTING AND TEST AUTOMATION

Functional Test Design
• Set up test calendar to run from

15th December to 1st March

This allows us to include
- Year end processing
- Month end processing (3 month ends)
- Weekly and Daily Processing

4

The Testing Consultancy
SPECIALISTS IN TESTING AND TEST AUTOMATION

Test Design
• Use black box testing to design tests to prove the

system meets its business requirements

Use white box testing to design tests for date
specific processing

The Testing Consultancy
SPECIALISTS IN TESTING AND TEST AUTOMATION

Test Design (cont.)

• Ensure that all transactions are run below and
above year end where possible
Ensure any critical date processing is included
Ensure all functionally different data types are

5

The Testing Consultancy
SPECIALISTS IN TESTING AND TEST AUTOMATION

Quick design approach

• Use a RAD/JAD approach to design the tests, use
workshops with the Users
Identify all on-line txns from Txn Logs
Identify all batch jobs from batch schedules
Identify all data types by analysing data base type
tables, e.g. Account Type

The Testing Consultancy
SPECIALISTS IN TESTING AND TEST AUTOMATION

Functional Testing Time Scales

• Time box approach
• 4 weeks design
• 4 weeks build
• 7 weeks execution <2000
• 7 weeks execution >2000
• Total = 22 elapsed weeks

6

The Testing Consultancy
SPECIALISTS IN TESTING AND TEST AUTOMATION

Timescales/Resource requirements
• 22 weeks elapsed to test a system

Approximately 6 months elapsed
Any team starting now Nov could test on average
2 systems by end 1999
With a team of 8 people this gives us
approximately 4 man years of effort to test a

The Testing Consultancy
SPECIALISTS IN TESTING AND TEST AUTOMATION

Prioritise
• Using the estimation metric and the number of

systems requiring testing, it is easy to calculate
the testing capacity required.

For most companies, especially large blue chip
clients, the required capacity will exceed the
available capacity and therefore the systems will
need to be prioritised

7

The Testing Consultancy
SPECIALISTS IN TESTING AND TEST AUTOMATION

Prioritise (cont.)
• The systems need to be systems to be prioritised to

ensure that risks are minimised
e.g... prioritise using the following scale
1 - Critical Systems - Infrastructure
2 - Critical to a business sector

This could also be used to prioritise the txns to be
tested within an application

The Testing Consultancy
SPECIALISTS IN TESTING AND TEST AUTOMATION

Case Study
• Approach piloted on a pension system

The functional testing was actually to be
performed 3 times
 - Prior to remediation (create baseline)
 - Prior to implementation
 - and above >2000
 <2000 tests were created to run Dec 97- Mar 98
then aged for the >2000 test run Dec 99 - Mar 00

8

The Testing Consultancy
SPECIALISTS IN TESTING AND TEST AUTOMATION

Case Study
• Automated test tools were used

- Mercury Winrunner was used for
 Capture/Replay the scripts
- Data Aged using File Aid Data Ager
- Date Simulated using Xchange
For >2000 tests aged
scripts, input data, expected results and actual
results from baseline test
All components were aged by the same amount

The Testing Consultancy
SPECIALISTS IN TESTING AND TEST AUTOMATION

Outcome
• The pilot was successful - the majority of tests

- teething problems with test tools
- learning curve with tools
- understanding result differences
- increased timescales for the first test run
On completion we had an automated reusable test
bed for the application

9

The Testing Consultancy
SPECIALISTS IN TESTING AND TEST AUTOMATION

Summary
• Take an aggressive/time boxed approach

Use Rad/Jad workshops to rapidly design the tests
Make tests reusable
Use tools were possible/appropriate
Outcome - a reusable test model that provides
good test coverage

o:\esprit\ompcast\doc\qwe98\pressl01.ppt - 1 -

Results of the ESSI-project
OMP/CAST

Experiences and results of an experiment

with

Computer Aided Software Testing
 in a

 Graphical and DB environment

Presentation at QWE ‘98
By Luc Van hamme, Jef Rymenants and Jo Wevers

OM Partners N.V. Belgium

Brussels, 9-13 November 1998

o:\esprit\ompcast\doc\qwe98\pressl01.ppt - 2 -

Overview

> Context : the company and the products

> The OMP/CAST project

> The experiment with Computer Aided Testing

> Experiences and Results
- practical experiences

- quantification of the results

> Preventing to (re)invent the wheel : some advice

> Conclusions

o:\esprit\ompcast\doc\qwe98\pressl01.ppt - 3 -

OM Partners : The company

OM Partners n.v.

Software and consulting company

active in developing and implementing

interactive and intelligent planning systems

in the area of operations management

> Some figures
- net sales (group) : 200.000.000,- BEF (5.000.000 ECU)

- company growth : + 20 % per year

- employees (group) : 50, most of them with advanced university degrees

- customer base : over 300

> Research and Development : 35 % of net sales (auto-financed)

o:\esprit\ompcast\doc\qwe98\pressl01.ppt - 4 -

Product Specifics

> Graphical windowing environments

> Multi-user systems
- relational databases

- client server architecture

> Optimization and solver modules
- based on techniques of operations research and/or artificial intelligence

o:\esprit\ompcast\doc\qwe98\pressl01.ppt - 5 -

 The OMP/CAST project (1)

> OM Partners / Computer Aided Software Testing

> OMP/CAST is co-funded by the European Commission in the context of its
ESSI Process Improvements Program

> Objectives of OMP/CAST
- select test software : regression testing, coverage

- evaluate feasibility of automating test effort

- compare automatic testing with manual testing

- implement formal procedures based on automatic testing for the whole
organization

> Motivation
- stable software

. daily operation of our customers’ production relies more and more on our software

- consistent and systematic testing of existing functionality for new releases and
builds

o:\esprit\ompcast\doc\qwe98\pressl01.ppt - 6 -

The OMP/CAST project (2)

> Literature study on automated software testing

> Establish metrics to be used during the evaluation period

> Selection and installation of software tools

> Creating test sets and using computer aids for automatic testing
- robot testing

- coverage tests

- memory checking

> Procedures

o:\esprit\ompcast\doc\qwe98\pressl01.ppt - 7 -

> Concentrate on testing old functionality with new releases and builds

R02.30.01

. new release : approximately every 3 months

. new build : bug fixes only

> Focus on effort needed for :
- training

- set up environment

- maintenance

The experiment - Principle

Build

Release

o:\esprit\ompcast\doc\qwe98\pressl01.ppt - 8 -

The experiment - Set up (1)

> Bug reporting system
- log bug reports and trace progress
- baseline for comparison with automated testing

- logging of time spent in different tasks

> Tests also performed by consultants
- consultants know the different customer applications better

. consultants are responsible for modeling and implementation

- company and customer base too small for full time testing group

> Product MPS was chosen for testing
- stable user interface
- important ongoing development effort

> Tools selected :
- SQA Robot (regression testing)
- Rational PureCoverage (coverage testing)
- Rational Purify (memory checking)
- Rational Quantify (performance analysis)

> Installation of testing environment
- installation of software

o:\esprit\ompcast\doc\qwe98\pressl01.ppt - 9 -

The experiment - Set up (2)

> List of features to be tested
- software manual is one reference

- look at typical customer applications

- make a short scenario on paper

> Record test scripts
- on older software version

. simulate several test runs in a short term period

- on real live customer data

> Recording principle
- start record functionality

- insert test cases
. menu
. data
. graphical comparison
. timers

- edit recorded scripts
. scripts can be edited in a Basic like language
. insert comments
. delete/add wait states and actions

o:\esprit\ompcast\doc\qwe98\pressl01.ppt - 10 -

The experiment - set up (3)

> Play back and test evaluation
- play back the recorded scripts with the new release

- log viewer and built in graphical and text comparators make evaluation easy

> Example of a script

o:\esprit\ompcast\doc\qwe98\pressl01.ppt - 11 -

The experiment - set up (4)

> Example of a log view and comparator

o:\esprit\ompcast\doc\qwe98\pressl01.ppt - 12 -

Experiences and results (1)

> Test scripts are recorded in a Basic like language
- editing possibilities are powerful but require basic programming skills of the

tester

> The user interface is easy to use but guarantees no “plug and play”
- understanding the basics of different modelling alternatives is necessary

> Use of user defined routines for preparation of data, start up and exit, …
saves time

> The testing software is (very) sensitive.
- e.g. changing resolution or number of colours causes graphical test cases to fail

> The built-in image comparator and text comparator are powerful tools
- graphical as well as data differences are easily detected

> The integrated debug features are very useful for the maintenance of scripts

o:\esprit\ompcast\doc\qwe98\pressl01.ppt - 13 -

Experiences and results (2)

> Maintenance caused the following troubles and effort
- new release used different names for window titles and the robot was not able to

recognize the window context

- menu identification by name causes problems when testing other language
versions

- inconsistency in the (customer) data caused problems

- in order to get the right test comparison the context of the test has to be
reproduced

. editing long scripts becomes very time consuming and difficult

- our software typically uses more than 10 graphical windows in a session which
makes recognition and recreation of the test context extra difficult

o:\esprit\ompcast\doc\qwe98\pressl01.ppt - 14 -

Testing effort figures

Robot testing
total time spent until now : approx 50 days

Training 11%
Set up / Getting started 23%
Recording 25%
Maintenance 29%
Test run and analysis results 6%
Coordination 7%

Total 100%

Robot testing for new build
effort (hours) for testing of typical set of 100 actions

Automatic Manual
Training 0 0
Set up / Getting started 0,5 0,5
Recording 0 0
Maintenance 0 0
Test run and analysis results 0,5 5
Coordination 0 0

Total 1 5,5

Robot testing for new release
effort (hours) for testing of typical set of 100 actions

Automatic Manual
Training 0 0
Set up / Getting started 0,5 0,5
Recording 0 0
Maintenance 8 1
Test run and analysis results 0,5 5
Coordination 0 0

Total 9 6,5

o:\esprit\ompcast\doc\qwe98\pressl01.ppt - 15 -

Test result figures

Number of errors detected
Release Regression testing Other testing Both

2.28 2 62 2
2.29 3 24 3
2.30 0 10 1
Tota l 5% 90% 6%

Errors undetected automatically
Action not covered in script 81%
Major error interrupted automatic testing 6%
Relation with data change in new functionality 13%

o:\esprit\ompcast\doc\qwe98\pressl01.ppt - 16 -

Coverage

Coverage test Robot Scripts
OMP MPS

Functions hit 68% 59%
Lines hit 51% 47%

> Coverage test using PureCoverage

> MPS contains approx 100.000 lines of specific code

> Extensive manual testing on product OMP
- estimate of maximum coverage reachable

. simpler user interface

. same programming techniques as MPS

- 40.000 lines of code

- 51% of lines hit

- 68% of functions hit

> Maximum coverage ≠≠ 100%
- unused functionality in underlying layers

. homemade tools

- error exits are very difficult to test
. memory allocation
. database errors

o:\esprit\ompcast\doc\qwe98\pressl01.ppt - 17 -

Advice : Recording test scripts

> Carefully plan the tests
- list all features to be tested

- write a scenario with a typical data set
. keep in mind ongoing developments and anticipate

- plan big but start small
. gradually gain experience in building better test scripts

> Take your time
- creating test scripts is an investment that only pays if you do it thoroughly

- edit and adjust the recorded scripts to make them easy to maintain

> Check your Data
- check for data inconsistency before recording

o:\esprit\ompcast\doc\qwe98\pressl01.ppt - 18 -

Advice : Maintenance

> Maintenance starts at the design
- use several small scripts instead of long scripts

. they are easier to maintain

- start scripts from a point that can be reproduced easily

> Don’t underestimate the effort for maintenance

> Apply good programming practices to your scripts
- add comments

- use understandable names for your scripts and testcases

- introduce visual structure

- …..

> Use language independent references to menus and windows

> Avoid tester input in your test scripts

> Use the integrated debug functionality for debugging

o:\esprit\ompcast\doc\qwe98\pressl01.ppt - 19 -

Advice : Playback and test
evaluation

> Group your test procedure in 1 shell script (and get a coffee during
playback)

> Avoid interaction with other applications
- A pop up mail message can destroy your playback session

> Use the same computer for recording and playback
- Test software has built in features for image and text comparison. Use them !

- difference in graphical resolution may affect your graphical test cases

- difference in calculation speed can affect synchronization of different actions in
the script

> Enhance performance by using memory checking

o:\esprit\ompcast\doc\qwe98\pressl01.ppt - 20 -

Conclusions

> Automatic testing is no miracle solution but can be a good enhancement for
testing existing functionality

> Using CAST is a long term investment. The library of test scripts grows
which makes it possible to perform tests on new builds and releases with a
rather low effort.

> CAST is a step towards more formal testing procedures and we expect an
increase in stability of the released software

> Roll out in the organization
- other products

. date problem

- developers as well as consultants

- maintenance and training effort is the main threshold

- procedures

5HVXOWV
RI�WKH

(66,�3,(�3URMHFW�203�&$67

Luc Van hamme, Jef Rymenants, Jo Wevers
OM Partners n.v.

Brasschaat, Belgium

�� ,1752'8&7,21

The OMP/CAST project, short for “OM Partners/Computer Aided Software Testing”, focuses
on the testing stage of the software development cycle at OM Partners n.v.
The main business of OM Partners is consulting and software development in the area of
decision support systems, and of short, medium and long term production planning and
logistics.
Typically, our software makes use of graphical user interfaces, relational databases, time
consuming algorithms, multi-language interfaces and is available on several platforms.

Our products are of considerable importance for the daily operation of the business of our
customers. Thanks to computer aided testing, we expect to increase the stability of the
released software even more, especially after modifications to existing functionality or data
structures have been introduced.

In this paper, we will mainly report on the experience gained during the implementation of an
automated software testing environment. We will present quantitative results as well.

�� 7+(�203�&$67�352-(&7

The OMP/CAST project is funded by the EC, in the context of its ESSI (European Systems
and Software Initiative) Process Improvements Experiments (PIE) program.

The objective of OMP/CAST is the introduction of formal procedures and software tools for
software testing. The nature of our products (graphical user interfaces, relational databases,
multi-language interfaces) make this project extra challenging.
The OMP/CAST project runs from May 1st, 1997 to October 30th, 1998.

The major activities to be performed during the OMP/CAST project are the following:
• Literature study and market survey of testing tools and practices.
• Definition and implementation of a measurement method.

Two basic systems were implemented: one to trace time spent on different activities, and
one to log and trace software errors and how they were detected.

• Selection and installation of software tools, including training of a core team and gaining
practical experience on test examples.

• The experiment.
It consists of setting up the test environment, training all project members and testing
subsequent releases of our software, while maintaining the test environment. Special
attention is given to measuring the effort spent on each of these tasks, and compare it to
manual testing.

• Evaluation of results and procedures.
• Dissemination of results within our company as well as in the international community.

�� ,03/(0(17,1*�$1�$8720$7('�62)7:$5(�7(67,1*�(19,5210(17

���� &RQWH[W

������ 7KH�203�036�VRIWZDUH

The OMP/CAST experiment is performed on the development process of the OMP/MPS
package, which is the baseline project.
OMP/MPS (Master Production Scheduling) is the newest planning system of OMP Partners
n.v., covering medium-term production planning. OMP/MPS is a standard product, that is
used in different industries. It is a highly interactive tool, in which the user typically works in
approximately 5 windows at a time, each with a spreadsheet-like look and feel. The figure
below gives an idea of the user interface of OMP/MPS.

Because of the mix of classical dialog boxes and graphical objects in our products, regression
tools (which replay recorded user actions) can only be useful if they support both
identification by controls and by low level graphical objects.

Like most of our products, OMP/MPS can be used in multi-user environments, and therefore
its data are stored in a relational database. When comparing results with reference sets,
database contents should be compared as well.
Finally, OMP/MPS contains several algorithms that propose planning solutions to the user.
These algorithms are based on linear programming, constraint logic programming (AI) and
specific heuristics. Since these algorithms are time consuming, it is important to watch out for
important increases in solution time.

All the properties mentioned here are representative for most of our software products.
OMP/MPS is also in a development stage in which the user interface is fairly stable. This is
why the development process of OMP/MPS constitutes a good baseline project.

������ 5HOHDVH�SROLF\

The release policy at OM Partners consists of introducing gradual changes in new releases
rather than bringing out releases and concepts that completely replace existing functionality.
This allows for a fairly high release frequency, of the order of one release every three months.

Release numbers look like

Rxx.yy.zz

in which [[.yy represents the “major and minor release number”, and]] represents the “build
number”. A new (major or minor) release contains new functionality, a new build number
contains fixes of software errors only. Thus, when the build number is increased, the risk of
introducing new software errors is small, resulting in increasing stability of a particular
software release. There are on average 3 to 4 builds per release.

������ 0RWLYDWLRQ

The main motivation for introducing automated software testing, is that new functionality is
typically very well tested by both software developers and consultants, whereas existing
functionality is poorly tested after addition or modification of functionality or data structures.
Therefore, there is a non-negligible risk that existing functionality at customer sites is
disturbed when installing new releases.

���� 6HW�XS�RI�WKH�H[SHULPHQW

������ 0HDVXUHPHQW

In order to correctly evaluate every effort involved in using automated testing on the one
hand, and the number and type of errors discovered on the other hand, a formal measurement
system was put into place. The system is based on spreadsheets and a database.

The following parameters are recorded in this measurement system:
• Time spent on a particular task, by a particular person
• When errors are detected:

• Error description
• Error severity
• Was the error detected in house or at a customer site?
• Was the error detected by automated testing or by other methods?

For traceability purposes, the further life of an error is logged as well.

������ ,QLWLDO�VHW�XS

After an initial study, we have decided to base our automated software testing system on the
following components:
• Regression testing. This component consists of a tool that records user actions on a

reference version of the software, and plays back these actions on newer versions of the
software. The recorded user actions are stored in an editable test script. During the
recording phase, reference data are stored for comparison in the playback phase. The
reference data can be screen images, files or database contents. For regression testing, we
have used SQA Robot of Rational Software.

• Coverage analysis. This component measures the fraction of lines of code that has been
executed during a session. It gives an idea of how well testing covers the softwarepunder
test. We have used Rational’s PureCoverage.

• Memory checking. Almost all the code of our software is written in C. This programming
language has poor protection against overwriting memory (i.e. the contents of other
variables). Such errors can cause the software to crash immediately, or, even worse, to
behave strangely or crash at a later point. Using a memory checking tool during playback,
one can detect errors that would otherwise go unnoticed. For this component, we have
used Rational’s Purify.

������ 2UJDQL]DWLRQ

After gaining some experience using small examples, we have introduced an environment that
is easy to maintain, and that allows testers to easily introduce new test sets.
This environment is based on a directory structure per release, since the contents of test
scripts will differ between releases. Because it is crucial to start each playback session from a
well defined starting situation, the directory of a release contains test scripts, reference data,
and (compressed) databases to start from.
The test scripts are organized in a modular way, and are called from one main script. In this
way, new scripts can easily be added or temporarily deactivated, while maintaining the
possibility of running all scripts at once. There is also one script containing information such
as the software release under test, and relevant directory names. Another script initializes the
environment, that is to say, the database is uncompressed and files are copied to a work
directory.

There is no direct way to compare database contents from the regression tool. However, it is
possible to call other programs. We have therefore written a utility that dumps the database.

Time stamps at the record level are filtered out, since they would disturb any comparison of
the data.

The use of automated testing is mostly performed by consultants, not by developers. This is
because we wanted tests to use real customer data. Due to the nature of their work, our
consultants know best how these data are used by the customers.
Before recording a new test set, testers first write out a rough scenario, listing which
functionality will be tested, in what order. Then, an initial database situation is defined and
stored. A script is recorded, and a line, calling the new script, is added to the main script. The
script is edited to add comments, wait states and possibly some extra actions.
When preparing for testing a new release, test set maintenance consists of converting the data
to possible database design modifications and of adapting the scripts to modifications in the
user interface. This can be modifications to window titles, to menu item texts, or to the
sequence of mouse click actions due to modified dialogs with the user. This work is a mixture
of script editing, script playback and partial re-recording.

�� 5(68/76�2)�7+(�(;3(5,0(17

In this chapter, our results are presented. First, a list of remarks and considerations is given,
summarizing our experiences gained while using the automated testing environment. Second,
we provide quantitative results of the measurements that we performed. Finally, some advice
is supplied for those wanting to start with automated software testing.

���� /HVVRQV�OHDUQW

During the many tests that we ran, we have gathered a list of notes and remarks, which we
summarize here.

• Like in most regression tools, SQA Robot test sessions are stored in scripts. These scripts
are in a Basic like language, with powerful editing possibilities. Editing scripts requires
the tester to master basic programming skills. This is particularly true when manipulating
wait states, timers or system calls.
Fortunately, an integrated debugger is available, providing possibilities such as stepping
through the code, setting breakpoints and viewing the contents of variables.

• In order to easily read and maintain scripts created by other people, a programming style
guide has been written. Amongst other things, it contains guidelines on indentation, and
naming of variables and scripts.

• The user interface of the regression tool is very easy to use. However, this guarantees no
simple “record and playback”. Knowledge of different options and modeling alternatives
is essential. Examples are the aforementioned wait states, but also options concerning the
identification of user interface controls.
Therefore, a substantial training period is required for each person participating in the
automated testing effort. In our organization, in which there are no full-time testers, the
number of individuals involved is high with respect to the time spent on testing. In order
to make this group work consistently in the same way, and to decrease the initial training
effort, we have established a list of options and choices with their values to be used.

• A lot of time can be saved by carefully preparing a standard testing environment like the
one described in the previous chapter. Special attention should be paid to the preparation
of data, such that scripts can start from a well defined state.
Furthermore, it has proven to be handy to centralize information such as directory and
release number information in one script.
Also, introducing modularity reduces the amount of time needed to create new test sets.

• It is not sufficient to test whether a set of test scripts successfully terminates. One should
introduce as many comparison points as possible. This can be done on output files,
database contents and images (screen captures, possibly containing masked regions). The
image comparator provided with SQA Robot is very powerful. It can highlight image
differences, or blink (toggle) between two images.
However, since bitmaps are compared, changing the resolution or number of colours of
the screen, will cause false failures. One should therefore agree upon a resolution and
number of colours to be used when running the test scripts

• Menu identification can be done by the menu text or by its identifier. The former method
has the disadvantage that it is language dependent, which does not allow to automatically
test multi-language environments. The latter method causes severe maintenance problems,
since changing the menu composition changes all identifiers. We have opted for
identification by menu text, because addition of new menu items in new releases is
common in our situation.

• Similarly, window identification can be done by window title or by window identifier.
Again, using window identifiers caused trouble when the user interface evolved. We
therefore decided to use window titles. So far, this has caused an important maintenance
effort once, when we decided to change the systematic of window title texts. However, we
do not expect this to occur frequently.

• New releases sometimes imply modifications to the database model and to customization
parameters. Before running the test scripts, the old data have to be converted to the new
situation. This should be done with great care, in order to avoid unnecessary debugging of
scripts or the application. It is, however, an excellent test bench of data conversion
operations at customer sites.

• When recording and playing back a session, one should avoid as much as possible the
appearance of unexpected windows, such as warning messages for the arrival of new mail.

• Because of the maintenance issues listed above, we consider it necessary to record many
short sessions rather than a few long ones.
Indeed, when a test scripts fails because of a maintenance problem rather than a software
problem, debugging and modifying the test session requires replaying the session from a
well-defined point, which is usually the start of the script. With long test scripts running
for hours, this becomes very tedious and discouraging for the tester.

���� 4XDQWLWDWLYH�UHVXOWV

In the previous section, we have highlighted the major observations that we made during the
process of recording, maintaining and playing back automated tests sets. In this section, we
will give some quantitative results, obtained from monitoring these operations.
One should be aware of the fact that quantitative results depend on the software under test,
and on the commercial environment in which the organization operates. Ours is an
environment with a few hundreds of customers, and software being implemented by our own
consultants, who assist customers in the process of integrating planning tools in their specific
planning and production environment.

������ 5HJUHVVLRQ�WHVWLQJ

In order to gather statistics on several releases in a reasonably short time period, test sets were
recorded on an old release. These tests were then maintained and applied on the following
builds and releases. By doing so, comparison with manual testing was possible.
We have collected data during a period corresponding to 50 person days, carefully tracking
the amount of time spent on each of the individual tasks. This resulted in the following table:

7DVN (IIRUW
Training 11 %
Set up/Getting started 23 %
Recording 25 %
Maintenance 29 %
Test run and results analysis 6 %
Coordination 7 %

7DEOH���(IIRUW�IRU�HDFK�RI�WKH�DXWRPDWHG�WHVWLQJ�WDVNV

“Training” consists of an introductory session, in which the trainee is explained the basics of
automated testing, the basics of the tools used, the procedures and testing environment that we
created. He or she then goes through the manuals and learns the techniques by actually using
(a copy of) the testing environment.
“Set up and getting started” is the time spent on finding out what was the best way to use the
tools and their options for our particular situation, as well as determining what the test
environment and procedures should look like.
Obviously, the percentage of time spent on training and getting started should decrease with
time. However, the training percentage will not tend to zero, since new members of the test
team will always have to be trained.

When analyzing these data, one notices two important facts that are very pronounced. The
first one is that maintenance of test sets takes as much time as recording these sets. This is due
to the changing user interface as functionality is added to the software. Usually, user interface
modifications are not limited to extensions of the window menus, but imply addition or
reorganization of dialog boxes, or even the way output looks.
The second fact is that running tests and analyzing the results takes only little time with
respect to the other tasks. This is because of the ease with which data can be compared to the
reference sets. Testers only have to watch failures, and for each of these failures the tools
emphasize deviations from reference sets. When the failure is caused by a software error, a
bug report is logged by the tester. Otherwise, further maintenance of the test script follows.

Some care should be taken in interpreting the table above. The fraction of time that
maintenance takes will strongly depend on the particular software being developed, and more
specifically on the amount of change to the user interface between releases. Also, if we were
to bring out more builds (containing bug fixes only), the percentage of test script maintenance
would drop.

In one of our tests, we have tried to evaluate the effect of the regression tool on productivity.
We have therefore recorded a short test scenario, and then applied it to a new build and to a
new release. This has been done with the tool, but also “manually”. The manual test consisted

of a person executing the written scenario with the OMP/MPS application, and comparing
screens and files with reference print-outs and reference files. The table below shows the
results, expressed in hours.

7HVWLQJ�D�QHZ�EXLOG 7HVWLQJ�D�QHZ�UHOHDVH
7DVN $XWRPDWLF 0DQXDO $XWRPDWLF 0DQXDO
Set up/Getting started 0.5 0.5 0.5 0.5
Maintenance 0 0 8 1
Test run and results analysis 0.5 5 0.5 5
7RWDO 1 5.5 9 6.5

7DEOH���&RPSDULVRQ�EHWZHHQ�DXWRPDWLF�DQG�PDQXDO�WHVWLQJ�HIIRUWV

As was to be expected, running and analyzing the test takes only a small amount of time when
done automatically, since it only consists of starting the test run and checking the results later
on. However, when new releases are tested, the maintenance effort becomes important, due to
the changed user interface. Obviously, the exact figure depends on how much the
application’s user interface modified, but it is not hard to understand that maintaining a
scenario text takes far less time than maintaining an automated test environment. The final
balance between manual and automatic testing depends on the number of builds per release.

So far, we have reported on the effort involved in automated testing. Table 3 gives an idea on
what the outcome on software quality is.

5HOHDVH 5HJUHVVLRQ�WHVWLQJ 2WKHU�WHVWLQJ %RWK
2.28 2 62 2
2.29 3 24 3
2.30 0 10 1

7RWDO 5 % 90 % 6 %

7DEOH���1XPEHU�RI�VRIWZDUH�HUURUV�IRXQG

Some comment is necessary in order to correctly interpret this table. The column “other
testing” contains those errors found at customer sites and by consultants while preparing
customizations in-house. This represents an amount of hours much larger than those spent on
regression testing. Also, the column “regression testing” only represents errors in
functionality that existed in release 2.27. The “other testing” column, however, also contains
errors introduced to new tasks. Some of these errors would be detected while recording new
sets, corresponding to new functionality.
What this table shows is that the regression testing method detects roughly 5 % of errors that
would otherwise have remained undetected for a longer period of time. We are still recording
new tests scripts. While the number of scripts grows, we expect the percentage of errors found
by automated testing to increase.

������ 5HJUHVVLRQ�WHVWLQJ

Finally, we present some data on coverage of the automated testing. Coverage is defined here
to be the percentage of lines or functions of an application that have actually been executed
during the test. The idea is to try to test all lines of code of the application under test.
The problem of measuring coverage is twofold.

First, measuring the number of lines or functions hit by the test is only an indirect measure for
the number of “situations” that can occur when using the software. For instance, feeding a
zero to a particular routine could very well cause the software to traverse the same number of
lines as feeding a one to the routine. The resulting outcome could be very wrong in one case
and correct in the other case. Yet the line coverage is the same in both cases. Since it is
difficult to measure this kind of effects, one has to accept line and function coverage as an
approximation of this kind of “functionality coverage”.
Second, one can never reach 100 % coverage. This is because applications use tools, in our
case mostly written in-house, of which only part of the functionality is actually used.
Therefore, we have tried to estimate what could be the maximum coverage for OMP/MPS.
This has been done by measuring the coverage in an optimization package, OMP, based on
linear programming techniques. OMP has been written in our company. It uses similar
programming techniques and tools as OMP/MPS. However, the OMP user interface is much
more limited, making it easier to test every functionality. After verification that no routines
were missed by the test, we consider the coverage obtained with OMP to be the maximum
reachable with OMP/MPS.

203 036
Routines hit 68 % 59 %
Lines hit 51 % 47 %

7DEOH���&RYHUDJH�REWDLQHG�GXULQJ�DOO�WHVWV

The numbers represent the cumulative result of all tests that have been recorded. One can see
that the result is good. Further tests will focus on covering the missing routines.

���� $GYLFH

We have now gained experience on using automated software testing. Below, we present
some advice for those who want to start with similar tools. It is based on our own experience
with using automated software testing. It should be interpreted as such, i.e. it is valid for
environments similar to ours.

• Don’t use automated software testing during the first development phase of an
application.
One of the main conclusions is that maintenance of the test sets, due to modifications of
the application, is one of the major efforts involved in automated software testing. If the
development process is still in a phase where the user interface is under construction,
playback of test sessions will always result in false failure reports.

• Carefully plan the tests.
An initial effort should be invested in creating an environment in which test sets can
easily be created and modified. Reproducibility is important, so make sure that there is a
version of the test set corresponding to each release of the application.
When starting the tests, one should first list all the features to be tested. Then a scenario
with a typical data set should be written. Anticipate ongoing developments. With the
scenario, recording can start.

• Plan big but start small.
Experience in building better tests scripts will be gained gradually. It is easier to adapt few
and small test sets to new insights.

• Maintenance starts at the design.

Once experience has been obtained, one can start extending the test sets. Test sets should
consist of many small scripts, not few large ones. These scripts can be called from one
main script, which makes it easy to start a new playback session.
Scripts should start from a point that can be easily reproduced.

• Testers should take their time.
Creating scripts is an investment that only pays off if it is done thoroughly.

• Apply good programming practices to your scripts.
Scripts are small programs!

• Enhance performance by using memory checking tools.
Such tools allow detection of errors that go unnoticed in the output.

• Write out procedures.
The experience gained will be more easily accessible for newcomers.

�� &21&/86,216�$1'�)8785(�86$*(

In this paper, we have presented a testimony of the introduction of automated software
testing. A description has been given of how the environment was set up. We have listed a
series of considerations when applying regression techniques, and have shown measurements
which compare automated testing to manual testing. We have concluded with some advice,
which will be useful for other development organizations.
We have also indicated under which circumstances automated testing tools can lead to an
increase of productivity.

In our company, we will now enter a phase in which the other development teams can use the
new experiences, and apply them to their applications. New challenges will certainly turn up,
as we use the testing techniques with software that relies heavily on the “current date”.

In the OMP/MPS testing team, we will build further on the current impetus. One of the new
possibilities that we see is using the regression tools to reproduce software error reports, even
if the software errors were not found by the automated software testing environment.

Page 1

Vision and ToolsVision and Tools

Boudewijn SchokkerBoudewijn Schokker

VAC Software EngineeringVAC Software Engineering
the Netherlandsthe Netherlands

Visions:Visions:

ll Efficiency improvement by matching the skills of theEfficiency improvement by matching the skills of the
tester and the test interfacetester and the test interface

ll Quality enhancement by integrating systemQuality enhancement by integrating system
development process supporting toolsdevelopment process supporting tools

Page 2

V-model for testingV-model for testing

User Req.

Functional specs

Technical design

Unit development

Acceptance test

System test

Integration test

Unit test

End Users

Business Analyst

Developer

Developer

Test InterfaceTest Interface

User Req.

Functional specs

Technical design

Unit development

Spreadsheet

Spreadsheet

Script

Script

End Users

Business Analyst

Developer

Developer

Page 3

…..…. Database
 Server

ATF/TestWright

ATF/TestLab
Command Center

ATF/TestLab
 Agents

Testsysteem

Demo !!!!Demo !!!!

Page 4

Current and intended status ofCurrent and intended status of
system developmentsystem development

StrategyStrategy
ll Classify the current Classify the current situtationsitutation
ll Identify the goalsIdentify the goals
ll Determine how to achieve the goalsDetermine how to achieve the goals

GuidanceGuidance
ll Use e.g. Capability & Maturity Model (CMM)Use e.g. Capability & Maturity Model (CMM)
ll Determine areas of interest and supporting toolsDetermine areas of interest and supporting tools

Where are we?Where are we?

AchievedAchieved

ll 2 in the world2 in the world

ll 3 in Holland3 in Holland

ll ????

Process statusProcess status

ll OptimizedOptimized

ll ControlledControlled

ll DefinedDefined

ll RepetitiveRepetitive

ll ChaoticChaotic

Page 5

CMM chaotic => repetitiveCMM chaotic => repetitive

Areas of interestAreas of interest
ll Configuration managementConfiguration management
ll Quality AssuranceQuality Assurance
ll Subcontract managementSubcontract management
ll Project planningProject planning
ll Project trackingProject tracking
ll Requirements planningRequirements planning

Tools: Version control, Workflow management, ….Tools: Version control, Workflow management, ….

Areas of interestAreas of interest
ll ReviewsReviews
ll Coordination Coordination between groupsbetween groups
ll Software product engineeringSoftware product engineering
ll Structured testingStructured testing
ll Integrated software managementIntegrated software management
ll Training programsTraining programs
ll Process definitionProcess definition
ll Process focusProcess focus

Tools: GUI tests, Database tests, …..Tools: GUI tests, Database tests, …..

CMM repetitive => definedCMM repetitive => defined

Page 6

Demo !!!!Demo !!!!

ll Tailoring of Test Interface enhances acceptance of TestTailoring of Test Interface enhances acceptance of Test
toolstools

ll Data driven approach increases maintainability, andData driven approach increases maintainability, and
flexibility of flexibility of testwaretestware

ll Process Improvement model sets priorities on toolingProcess Improvement model sets priorities on tooling

ll Structured process improvement requires toolStructured process improvement requires tool
integrationintegration

ConclusionsConclusions

ByBy

Edward MillerEdward Miller
Software Research, Inc.Software Research, Inc.

Software Research, Inc

WebSite Validation TechnologyWebSiteWebSite Validation Technology Validation Technology

WebSite Validation Technology

Software Research, Inc

WebSite Quality FactorsWebSite Quality Factors

Time / Change

Accuracy and Consistency

Content

Structure

Performance

Response Time and Latency

Software Research, Inc

WebSite Architectural AspectsWebSite Architectural Aspects
HTML

Database Access

Cgi-Bin (Perl, etc.)

Java, JavaScript

Multi-Media

WebSite Validation Technology

Software Research, Inc

Assuring WebSite Quality AutomaticallyAssuring WebSite Quality Automatically

Browser Independent

Object Mode

Fonts and Preferences

No Buffering, Caching

Frames

Tables and Forms

WebSite Validation Technology

Software Research, Inc

Basic WebSite Validation StepsBasic WebSite Validation Steps

Page Relationships

Table, Form Quality

Page Quality

Performance, Response Time

WebSite Validation Technology

Software Research, Inc

WebSite Content ValidationWebSite Content Validation

Baseline of Content

Identify Segments

Segment Fragment

Segment

Multiple Segments

All Segments

WebSite Validation Technology

Software Research, Inc

E-Commerce WebSite ValidationE-Commerce WebSite Validation

Stable Inputs

Validation Check

Response Files

Database Access

Typical Uses

WebSite Validation Technology

Software Research, Inc

CAPBAK/Web BrowserCAPBAK/Web Browser
WebSite Validation Technology

Software Research, Inc

CAPBAK/Web File, Test PulldownsCAPBAK/Web File, Test Pulldowns

WebSite Validation Technology

Software Research, Inc

CAPBAK/Web Wizards, View PulldownsCAPBAK/Web Wizards, View Pulldowns

WebSite Validation Technology

Software Research, Inc

CAPBAK/Web Link Check Wizard OutputCAPBAK/Web Link Check Wizard Output

WebSite Validation Technology

Software Research, Inc

CAPBAK/Web Page Link List Wizard OutputCAPBAK/Web Page Link List Wizard Output

WebSite Validation Technology

Software Research, Inc

CAPBAK/Web Form Wizard OutputCAPBAK/Web Form Wizard Output

WebSite Validation Technology

Software Research, Inc

CAPBAK/Web Link DisplayCAPBAK/Web Link Display

WebSite Validation Technology

Software Research, Inc

WebSite Validation Technology

Software Research, Inc

CAPBAK/Web Structure ViewCAPBAK/Web Structure View
WebSite Validation Technology

Software Research, Inc

CAPBAK/Web Sample TestScriptCAPBAK/Web Sample TestScript

WebSite Validation Technology

Software Research, Inc

Contact Information:

Software Research, Inc.Software Research, Inc.
625 Third Street625 Third Street

San Francisco, CA 94107 - 1997 USASan Francisco, CA 94107 - 1997 USA

Phone: [1] (415) 957 - 1441

FAX: [1] (415) 957 - 0730

Email: sales@soft.com

WebSite: http://www.soft.com

10/14/9810/14/98 © 1998, SIM Group Ltd. 11

SIM GROUP Ltd.SIM GROUP Ltd.

Test EnvironmentsTest Environments
on DEMANDon DEMAND

10/14/9810/14/98 © 1998, SIM Group Ltd. 22

AgendaAgenda

nn Types of Software TestingTypes of Software Testing

nn Definition of a Test EnvironmentDefinition of a Test Environment

nn What Testing needs from TestWhat Testing needs from Test
EnvironmentsEnvironments

nn The The QUEST Methodology for Test Methodology for Test
EnvironmentsEnvironments

nn Additional Considerations & Benefits Additional Considerations & Benefits

10/14/9810/14/98 © 1998, SIM Group Ltd. 33

What we all want from testingWhat we all want from testing

nn Maximum coverage of test conditionsMaximum coverage of test conditions

nn Minimum effort and time to testMinimum effort and time to test

nn A fast and easy way to testA fast and easy way to test

nn Minimal problems following release andMinimal problems following release and
during live runningduring live running

10/14/9810/14/98 © 1998, SIM Group Ltd. 44

Different systems require
different types of testing
Different systems require
different types of testing

Information based systemsInformation based systems

Event based systemsEvent based systems

NewNew
SystemsSystems

MaturedMatured
SystemsSystems

Data intensiveData intensive
andand

feature drivenfeature driven

Data IntensiveData Intensive
and and

Data DrivenData Driven

Event Event
combinationscombinations
and flowand flow

TransactionTransaction
ProfilesProfiles

10/14/9810/14/98 © 1998, SIM Group Ltd. 55

Based on experience …..Based on experience …..

nn Predicting (and testing) all possible uses ofPredicting (and testing) all possible uses of
the systemthe system

nn Thorough regression testingThorough regression testing
nn Fully understanding the operational contextFully understanding the operational context

of the systemof the system
nn Using real test cases makes it easier toUsing real test cases makes it easier to

spot problemsspot problems

10/14/9810/14/98 © 1998, SIM Group Ltd. 66

Information based systems ...Information based systems ...

Production Fault Analysis

Production Data
Envirionment

69%

Operational
Condition

31%

10/14/9810/14/98 © 1998, SIM Group Ltd. 77

What in the test environment
prevents finding these problems?
What in the test environment
prevents finding these problems?

nn Data values and combinations of dataData values and combinations of data
nn Technical configuration is differentTechnical configuration is different

nn Placement and location of Databases & filesPlacement and location of Databases & files
nn Sizes, volumes and performance tuningSizes, volumes and performance tuning

nn Processing control differencesProcessing control differences
nn Connectivity and interfacesConnectivity and interfaces
nn Currency of objectsCurrency of objects

10/14/9810/14/98 © 1998, SIM Group Ltd. 88

Scope of Test EnvironmentsScope of Test Environments

Isolation from development
and live environments

Programs / executablesPrograms / executables

File
Definitions

Test Data

Parameters

JCL, PROCS
& schedules

Problem,change
& release CONTROL

Reference
Data Database

definitions

Space allocations

New names
& locations

Binds and Gens

Stored procedures

Test
Results

Security

10/14/9810/14/98 © 1998, SIM Group Ltd. 99

Test Environments -
what are they?
Test Environments -
what are they?

nn DB meta dataDB meta data
nn DBDB
nn FilesFiles
nn DataData
nn Control parametersControl parameters
nn Testing infrastructureTesting infrastructure

nn ToolsTools
nn Test DataTest Data

nn Process control dataProcess control data
nn JCLJCL
nn SchedulesSchedules
nn Batch control statementsBatch control statements
nn Stored ProceduresStored Procedures
nn Process AutomationProcess Automation

nn ExecutablesExecutables

10/14/9810/14/98 © 1998, SIM Group Ltd. 1010

 What testing needs from test
environments
 What testing needs from test
environments

nn Need it nowNeed it now
nn Must work straight awayMust work straight away
nn Contents must be reliable and have integrityContents must be reliable and have integrity
nn Optimum Data (low volume and highOptimum Data (low volume and high

coverage)coverage)
nn Special Test ConditionsSpecial Test Conditions

10/14/9810/14/98 © 1998, SIM Group Ltd. 1111

The QUEST Methodology for
Test Environments
The QUEST Methodology for
Test Environments

nn Responsive to project and testers needsResponsive to project and testers needs
nn Applies to any platformApplies to any platform
nn Tools and utilities to support the processTools and utilities to support the process
nn Complements other testing toolsComplements other testing tools
nn Enables stability for automated testingEnables stability for automated testing
nn Saves lengthy set up timeSaves lengthy set up time

10/14/9810/14/98 © 1998, SIM Group Ltd. 1212

QUEST methodology Step 1QUEST methodology Step 1

nn Hands off analysis and definition ofHands off analysis and definition of
environment contents and object detailsenvironment contents and object details
nn Files and databasesFiles and databases
nn Procedures and process controlProcedures and process control
nn Sizes and locationsSizes and locations
nn Catalog and DirectoryCatalog and Directory

10/14/9810/14/98 © 1998, SIM Group Ltd. 1313

QUEST methodology Step 2QUEST methodology Step 2

nn Can create many environments from oneCan create many environments from one
mastermaster

nn Transformation for individual testTransformation for individual test
environment needsenvironment needs
nn SizingSizing
nn NamesNames
nn File Sharing & separationFile Sharing & separation
nn Location of objectsLocation of objects

10/14/9810/14/98 © 1998, SIM Group Ltd. 1414

QUEST
Environment maintenance
QUEST
Environment maintenance

nn Ability to edit most fields for objectsAbility to edit most fields for objects
nn Can size as requiredCan size as required
nn Locate/place as requiredLocate/place as required
nn Can insert, amend, deleteCan insert, amend, delete
nn Share between applicationsShare between applications
nn Refresh and RenameRefresh and Rename
nn Many fastpath inputsMany fastpath inputs

10/14/9810/14/98 © 1998, SIM Group Ltd. 1515

What we’ve done….
 and next steps
What we’ve done….
 and next steps

nn Registered a systemRegistered a system

nn Built the information tables within Built the information tables within QUEST
nn Transformed the master definition to give theTransformed the master definition to give the

new environment definitionnew environment definition
nn Used maintenance to customise as requiredUsed maintenance to customise as required
nn Now we are ready to Create the objectsNow we are ready to Create the objects
nn The ‘Populate’ steps come after….The ‘Populate’ steps come after….

10/14/9810/14/98 © 1998, SIM Group Ltd. 1616

QUEST Creation Step 3QUEST Creation Step 3

nn All file entriesAll file entries
nn Database definitionsDatabase definitions
nn Database objectsDatabase objects
nn Test procedures and processesTest procedures and processes
nn Batch controlBatch control
nn Generation procedures submittedGeneration procedures submitted

10/14/9810/14/98 © 1998, SIM Group Ltd. 1717

Test Data (The QUEST way)
Step 4
Test Data (The QUEST way)
Step 4

nn Analyse testing requirements and define testAnalyse testing requirements and define test
conditions required to extractconditions required to extract

nn Identify records to extractIdentify records to extract
nn Define relationships for referential integrityDefine relationships for referential integrity
nn Extract all dataExtract all data
nn Transform dataTransform data
nn Populate in data in Test EnvironmentPopulate in data in Test Environment

10/14/9810/14/98 © 1998, SIM Group Ltd. 1818

Transforming Test DataTransforming Test Data

nn Scrambling of Test DataScrambling of Test Data
nn De-personalisation of customer detailsDe-personalisation of customer details
nn Protecting sensitive informationProtecting sensitive information
nn Global changes for testing requirementsGlobal changes for testing requirements

nn Customisation of test cases / conditionsCustomisation of test cases / conditions
nn Date AdvancementDate Advancement

nn Move dates forward to retain date integrityMove dates forward to retain date integrity

nn Currency conversion forCurrency conversion for

10/14/9810/14/98 © 1998, SIM Group Ltd. 1919

The QUEST ProcessThe QUEST Process

BuildBuild
MasterMaster
EnvironmentEnvironment
DefinitionDefinition

GenerateGenerate
TestTest
EnvironmentEnvironment
DefinitionDefinition

CreateCreate
TestTest
EnvironmentEnvironment

AnalyseAnalyse
& Identify& Identify
TestTest
ConditionsConditions

ExtractExtract
TestTest
DataData

PopulatePopulate
Test DataTest Data
withwith
transformationtransformation

GenerateGenerate
proceduresprocedures
& procs.& procs.

ProveProve
EnvironmentEnvironment

10/14/9810/14/98 © 1998, SIM Group Ltd. 2020

Additional Benefits of QUESTAdditional Benefits of QUEST

nn Maintenance of environmentsMaintenance of environments
nn ManagementManagement
nn ControlControl
nn AuditabilityAuditability
nn Efficient utilisation of resourcesEfficient utilisation of resources
nn Test AssetsTest Assets

10/14/9810/14/98 © 1998, SIM Group Ltd. 2121

Managing EnvironmentsManaging Environments

DevelopmentDevelopment

System TestingSystem Testing

Acceptance TestingAcceptance Testing

Operability TestingOperability Testing

LiveLive
Year 2000Year 2000

Next ReleaseNext Release

Performance TestPerformance Test

EMUEMU

 Systems Integration Management Ltd.

White Rose Court, Oriental Road
Woking, Surrey, England, GU22 7PJ

+44 (0)1483 740289, FAX 720112
email info@simgroup.co.uk

URL http//www.simgroup.co.uk

Test Environment Services

1. Overview

Background Successful and effective testing requires reliable test environments.
If the testing environment is up to date and the coverage of data is
correct then the impact of the environment itself on the testing
process is reduced.

Test environments can be created in a variety of ways, for example:

• a full copy of production environment(s)
• sizing a production environment down by careful use of

selection criteria
• starting from scratch.

SIM have a wide experience in this field and can assist you to
choose the most suitable method for your particular environment,
regardless of the platform.

Problems with
Test
Environments

Test environments are generally unreliable for a number of reasons;
• Set up takes a long time and is accorded a low priority by

technicians;
• Set up can take longer than the actual testing;
• Maintenance is difficult, expensive and time-consuming;
• It is often easier to do a little testing and implement;
• Management of test environments is usually minimal;
• They become out of date and the data becomes inconsistent;
• Coverage of data is often insufficient to the objectives of the

testing;
• System ‘experts’ move on and a knowledge gap is created;
• Up to 65% of recorded production problems can be attributed to

‘poor’ testing.

SIM can help you to resolve these issues with the appropriate
elements of our package of services devoted to the creation of test
environments.

 Systems Integration Management Ltd.

White Rose Court, Oriental Road
Woking, Surrey, England, GU22 7PJ

+44 (0)1483 740289, FAX 720112
email info@simgroup.co.uk

URL http//www.simgroup.co.uk

Test Environment
requirements

The main requirement of testing is that as much of the code as
possible is exercised. Since data is the basis of any good test
environment the most important factor is that the coverage of data
is sufficient to the needs of the testing being undertaken. If, along
with good coverage, the test data is of manageable volumes and
retains referential integrity, the subsequent testing results will be
much more reliable. It would be better still if the test data could be
made available quickly, is easily maintained or refreshed, can be
repeated as necessary and is portable between different systems.

The main benefit of having robust test environments is that testing
becomes more complete, more flexible and more responsive to
business needs. Almost inevitably, because of this flexibility, even
more testing is possible.

SIM can assist in the provision of robust test environments
dependant on your needs. We are able to advise on, define and
create the processes necessary to provide the data.

Test Data
Solutions

The test data that constitutes your test environment can, depending
on the requirements, be provided either by taking copies of existing
data or by extracting coherent sets of data. Data is best collected in
natural portions – that is relating to an identifier (region, branch,
product type, etc.) and it should, where possible, relate to specific
test conditions. This meets both the requirement to get best
possible coverage and the need for manageable volumes of data.
Data collection processes must be responsive to project and testing
schedules, may need to be invoked many times during a project
and will certainly need to be both controlled and maintained.

SIM will be able to advise on, define and create reusable processes
for data collection and management which are, where possible,
generic. These processes will be available for reuse with the test
environment for which they are created and may, because they are
generic, be applicable to other test environments.

Test
environments –
an asset

Good test environments lead to better, more complete and more
flexible testing. These test environments and the processes used to
create them will become key components of your overall testing
strategy. As such they should be treated as assets in the same way
that any business software and data would be.

SIM can advise on management of test assets and also provide
tools to assist in this process.

 Systems Integration Management Ltd.

White Rose Court, Oriental Road
Woking, Surrey, England, GU22 7PJ

+44 (0)1483 740289, FAX 720112
email info@simgroup.co.uk

URL http//www.simgroup.co.uk

2. Objectives
of the SIM
Group

The SIM Group specialise in software testing and uses a flexible
approach to assist customers to solve testing issues effectively. Our
consultants and technical staff will work in partnership with your IT
professionals, in the most appropriate and effective way, to provide
test environment creation processes.

We are committed to the success of your test environment project
and our wide range of experience and skills enable us to use ‘best
practice’ to ensure that success.

A range of other consultancy and testing skills are also available.

3.
Methodology

SIM will achieve the above by means of our proven methodology
which includes the following;

• Develop an understanding of the data requirements for each
test environment by means of discussions, workshops,
reference to users, developers and support staff and by the
analysis of the available documentation, objects and data.

• Agree with all interested parties the scope of the test
environment – including objects and data requirements.

• Create the data objects using the most appropriate method.
• Populate the data objects with appropriate levels of data using

the most appropriate method.
• Develop processes and procedures to support the test

environments as test assets.
• Provide access to the QUEST toolset which will automate many

of the more repetitive tasks involved in the creation of
mainframe test environments.

4.
Deliverables

SIM methods and processes provide;

• Test Environment Analysis documentation
• Best methods for Object Creation and Data Provision
• Automation of Object Creation and Data Provision
• Test Asset Processes & Procedures.

 Systems Integration Management Ltd.

White Rose Court, Oriental Road
Woking, Surrey, England, GU22 7PJ

+44 (0)1483 740289, FAX 720112
email info@simgroup.co.uk

URL http//www.simgroup.co.uk

5. Benefits
The SIM Test Environment Creation service will benefit your
company by providing;

• A comprehensive documented understanding of how your
systems are built.

• A known and agreed basis for the creation of test environments.
• A defined and documented process for the creation of test

environment objects.
• A defined and documented process for the population of test

environment objects.
• Automation applied to the appropriate processes.
• The appropriate tools to manage test environment(s).
• Transfer of the necessary skills to ensure that test

environment(s) are managed and maintained.

1

Ido Sarig
Director, European Marketing

M ercury Interactive Corp.

Are you “Euro-Ready”?
 Mercury Interactive’s solutions for EMU

conversion projects

Are you “Euro-Ready”?Are you “Euro-Ready”?
 Mercury Mercury Interactive’s Interactive’s solutions for EMUsolutions for EMU

conversion projectsconversion projects

What is the Euro?What is the Euro?

w Europe’s new single currency - will replace
national currencies by 2002

w Will create the world’s 2nd largest economy
w Will Make Europe more competitive, more

efficient

2

European Central Bank (ECB)
established

The Euro TimelineThe Euro Timeline

1998 1999 2000 2001 2002

Irrevocable fixing of exchange rates
Euro introduced

2003

National currencies in circulation

Euro notes and coins
introduced

National currencies withdrawn

The Euro TimelineThe Euro Timeline

1998 1999 2000 2001 2002

Irrevocable fixing of exchange rates
Euro introduced

2003

European Central Bank (ECB)
established

National currencies in circulation

Euro notes and coins
introduced

National currencies withdrawn

“ No compulsion - no prohibition”

Conversion Window

3

The EuroThe Euro

w Euro is not just a math problem - it is a business problem
w Business drivers

– New competition, changed businesses
– New markets, new products, and services
– New business processes to leverage new opportunities

w EMU projects are more difficult than Y2K conversions
– Money is harder to find than dates
– Automation of conversion is more difficult - few tools available
– Testing is more complex

w Most projects will be done twice or three times by 2002!!

w Business Issues:
– “Euro” can be a competitive differentiator

w Making applications “Euro-Ready”
– Triangulation - implement algorithm to convert national currency 1 to

national currency 2 via the Euro, with 6-digit precision
– Rounding problems - account for rounding differences in systems that

track orders through amount-matching
– Decimalization - add support for decimal point, in Spain, Italy,

Belgium
– Thresholds - What is Ff 99.95 in Euro?
– Dual Display - re-arrange screen layout, reports

w Phase dependant business logic

IT Impact of Converting to EuroIT Impact of Converting to Euro

4

Just another currency?Just another currency?

w The Euro’s definetly not just another
currency:
– Use special algorithms to convert to/from Euro
– Direct or cross rates are not allowed between 2

National currencies
– The required precision is more than most

financial systems support today.
– Need to maintain books and report in Euros

Scale of the Euro ProblemScale of the Euro Problem

w The euro will cost corporations two to six
times more than will Y2K conversions

– Andrew Dailey, Gartner Group

w It will cost software developers about $300
billion to convert their software

– Dennis Keeling, Ovum

w IT departments are already strained for
resources due to Y2K problem

5

Introducing TestSuite EuroIntroducing TestSuite Euro

TestSuite Euro: - Single testing solution for all Euro projects
(legacy and C/S)

TestDirector Defines and Organizes the testing process

WinRunner Euro Powerful regression testing tool enhanced for Euro testing

TestBytes Quick and easy test data generation tool

TestBytes
WinRunner

 Euro
 TestDirector

TestDirectorTestDirector

w A well defined test plan is a must - before
testing begins

w Begin with test planning using TestDirector
NOW

w Use TestDirector to prioritize tasks

6

WinRunner Euro: Automated
Testing of Converted Code

WinRunner Euro: Automated
Testing of Converted Code

Enhanced version of WinRunner accelerates
development of “Euro-Ready” applications

H WinRunner
Ý Automatically records test baseline

Ý Supports all common Terminal Emulators and GUI
development environments

H WinRunner Euro A dds:
Ý Automatic verification for Triangulation results
Ý Support for phase-dependant conversion rules

WinRunner

TE Support

GUI Support

Euro functions

Verifying TriangulationVerifying Triangulation

Old Application: Airtours New Application: Airtours

Ticket Price:
Total:

Ff 1,200
Ff 2,400

Ticket Price:

Total:

EUR 181.08

EUR 362.16

Conversion Table

Ff: 6.626901
DM: 1.969848

Record WinRunner Script on
existing application

Run WinRunner Script on new
application

WinRunner verifies correct implementation of triangulation

DM 356.70

DM 713.40

7

WinRunner EuroWinRunner Euro

w Leverage a single testing solution across the enterprise
– Euro, Y2K, C/S, Web, LR
– Provides lowest cost of ownership

w Only tool with specific Euro functionality
w Use it for Euro today - leverage for the future

Euro Functions

Terminal Emulator

Client/Server

TestBytes - Eliminates
production data requirements

TestBytes - Eliminates
production data requirements

w Rapidly generate realistic test data without accessing sensitive
production data
– Solves Privacy & Security issues
– Allows outsourcing of Euro testing to 3rd party

T estBytesT estBytes Realistic, unclassifiedRealistic, unclassified
T est DataT est Data

Sensitive Production DataSensitive Production Data
(Names, Bank Accounts)(Names, Bank Accounts)

8

SummarySummary

w January 1, 1999 is a non-negotiable date
– Euro conversion MUST be completed by then!

w 50%-80% of the effort will be spent on testing
w Integrating automated testing tools into the process saves

scarce human resources, as well as time and money
w TestSuite Euro - the only comprehensive testing solution

This is the difference between success and failure!

DemoDemoDemo

EMU Conversion –
Test Reality Before Reality Tests You…

Ido Sarig
Director of European Marketing

Mercury Interactive Corp
2 Hayotzrim

Or Yehuda 60218
Israel

Tel: +972 3 538 8846
Fax: +972 3 533 1617

Email: ido@mercury.co.il

Readying information systems for the EMU entails not only the conversion of a large number of applications in a

limited amount of time but also the verification that the systems still function properly. Software testing is therefore a

vital part of this conversion effort, which is at least as momentous as the Year 2000 project and incorporates a wider

range of issues. This paper discusses how to employ automated testing tools to ensure thorough testing, thus avoiding

potentially serious financial pitfalls.

1

Introduction

The introduction of a single European currency, the euro, demands more from IT departments

than simply adding new currency fields and ensuring that currency conversion is performed

correctly. Failure to tackle all the issues involved, such as triangulation, rounding differences and

threshold value conversion, can result in significant problems when the new currency arrives.

Thus, as with Year 2000 compliance, euro-converted information systems must be rigorously

tested to ensure that they function at least as well as they did before.

As with the millennium project, which has already strained the resources of IT departments, the

tight deadlines and the scale of euro conversion rule out the option of manual testing. Automated

testing tools have already demonstrated their value to Year 2000 testing teams, enabling them to

meet the deadline while ensuring that business processes will operate correctly when the

millennium arrives. Coupled with a well-designed testing methodology, euro-specific automated

tools save scarce human resources and significantly accelerate the testing process, as well as

minimizing the number of new errors unintentionally introduced during conversion.

EMU-Specific IT Issues

Triangulation, Rounding Problems and Data Pollution

During the transition period, organizations will be receiving and producing financial information

in both the national currency units and the euro. They may find themselves in the situation where,

because not all systems have been switched to the euro, information systems working in national

currency units will have to communicate with systems working in euro units.

The EC is requiring that currency conversion, which will most frequently be between the national

currency and the euro, is carried out to six-digit precision, using an algorithm more sophisticated

than those found in most financial systems. Conversion between national currencies, which will

occur, though less frequently, must be calculated in a triangular fashion, via the euro, stipulates

the EC.

2

Conversion calculated to such precision unavoidably creates rounding differences, which, if

ignored, can cause financial systems serious problems. Many systems have a built-in capability to

match transactions according to their amounts or to crosscheck to ensure calculations have been

performed correctly. Even minute differences, with barely any financial significance, will result

in a non-matching of amounts. Testing tools identify rounding differences and validate that

modification measures, such as truncation, taken to avoid such problems, have been applied

consistently throughout the application. They also verify that information systems are not

suffering from data pollution, when euro amounts are accidentally combined with amounts in

national currency units.

Threshold Values

Threshold or limiting values are used in many organizations to define the actions of a system. For

example, junior employees may only be empowered to perform transactions up to a certain

amount. If these threshold values are not converted to euros then this can have the undesirable

result of junior employees authorizing transactions up to EUR 10,000 instead of FF 10,000.

Simple conversion of threshold amounts to euros may result in a figure such as EUR 457.90, and

it may be more appropriate to change this to EUR 460.00, in order to create an amount that’s

simpler to remember. This is also relevant for the issue of ‘psychological pricing’: Conversion

may change a FF99.95 price into EUR 6.73, and businesses may wish to change this to EUR 6.95,

in line with in-house pricing policy. If, as is often the case, the threshold value is hard-coded and

scattered throughout the system rather than kept in a separate file, extensive searching and

thorough testing are required to make sure all such values have been properly replaced.

Decimalization

In countries with low-value currency units, such as Spain, Italy and Belgium, financial systems

have no provision for decimal points in monetary units. The euro is subdivided into 100 cents,

and thus another task for the testing tools is to verify that in these countries, data types have been

modified so that they are capable of holding floating point amounts and displays have been

converted accordingly.

3

Regression Testing

As well as the euro-specific issues mentioned above, more generally, it is essential to test that the

new applications work as well as their predecessors, and that no new errors have been introduced

during the conversion process. Thus, the converted applications should be subjected to all the

tests satisfied by the old versions, with test data updated to incorporate the new currency formats.

Since the introduction of the euro is imminent, it is too late to wait to begin the testing process

until all currency-related code has been modified. The most effective test plan is to carry out

testing concurrent with assessment, code inspection and conversion.

Record and Capture of Business Processes

Using an automated testing tool, which will support most common Terminal Emulators and GUI

development environments, organizations can use a simple record-and-capture paradigm to

record their existing business processes using local currencies to form a test baseline —at the

same time as their software engineers convert the system. The record and capture process, which

can be carried out by non-skilled personnel, simply records the actions of real business users as

they are using the system. The recordings are then automatically turned into test cases or scripts

and stored in a repository. Thus, all the test scripts necessary can be created now, without the

need to wait until the system has been euro-converted, saving valuable time. Once conversion is

complete, these test scripts will be used for testing the converted application.

Excluding Fields and Filtering

Once the system conversion is concluded and, simultaneously, all of the critical business process

have been recorded and test scripts created, the testing can begin. Using an object-based testing

tool greatly accelerates the testing process. This is due to the fact that object-based testing tools

view the graphical user interface (GUI) as a set of labeled fields that contain data that may or may

not be changed. Through the automatic creation of an intelligent object map of the screen which

captures the logical purpose of different fields, such tools understand logically what a currency

field is.

4

However, by default, the testing tool assumes that all fields with numerical values — except for

date fields, which are recognizable by their format — are currency fields. Thus, at the outset the

tester must specify which fields are not in fact currency fields but are, say, catalog numbers which

should be excluded. The tester can also, for example, stipulate that any number under a particular

threshold value, say 100, should not be treated as currency, or even filter an entire area of a

screen out of the test.

Once the non-currency fields have been excluded, the actual updating of the test script to convert

currency fields to euro amounts is done on the fly during the test itself, through an automatic find-

and-replace, saving business users and testers precious time.

Running the Test

The test begins with the developer highlighting the currency fields that require verification. The

developer also specifies the original base currency, say the French franc, and the new base

currency, i.e. the euro. The test script is then run on the converted business application to simulate

the actions of a real user. During the execution of the test, the testing tool verifies that all relevant

amounts have been converted accurately and that the expected amounts are returned in the correct

currency. A discrepancy between the expected and actual amounts results in test failure. In the

report generated after the test is completed, the testing tool identifies where exactly the test broke

down, enabling developers to easily see and fix errors.

Diagram 1: Automated Euro Testing Process

Record and
capture
existing
business

processes on
unconverted
application

Use recordings
to

automatically
create test

scripts of each
business
process

Test
converted
system by

replaying test
scripts on
converted

application

While system is being converted to euros Once system has been converted to euros

Compare
actual results

with
automatically

-converted
expected
amounts

Currency
fields

converted
to euros on-

the-fly

If amounts
match – test
succeeds.

If non-
match – test
fails.

Fix errors in
converted
system

5

Screen Layout Modification

One obvious euro conversion issue requiring testing is change to the layout of computer screens,

whether within organizations or on ATMs, cash registers and other money-handling equipment.

Screens will need to be modified twice: once to add euro fields alongside national currency fields,

and a second time, at the end of the transition period, to remove national currency fields (as is

shown in figure 2). Adapting to changes in screen layout poses no problem for object-based

testing tools. With the intelligent object map of the screen which has been created, such tools can

automatically account for currency changes even if the screen location of one or more fields may

have changed. These object-based features eliminate the need for test script re-work, and enable

the reuse of the same script recorded on the original application. As a result, they decrease the

burden on the tester and improve test accuracy.

Diagram 2: Using GUI Map to Cope with Screen Layout Modification

GUI Map
of screen
automati-

cally
created

Logical
names

automati-
cally

assigned
to each

object on
screen

Each object
identified by
set of specific

properties,
such as

“class” and
“label”,

regardless of
on-screen
location

Tester makes
changes to

object
properties in

GUI Map
e.g. Change

label of “OK”
button to
“Save”

Before Screen Layout Modification After Screen Layout Modification

If identifying
properties of
object to be

checked have
changed

If position of
object to be
checked has
changed but
identifying
properties

same

Tool
automatically
searches and
locates object
according to
logical name

and pre-
defined

properties

Timeline

All test
scripts using
that object
can be run

without any
modification

6

Diagram 3: Runtime Identification of Object in Test Script Using GUI Map

Figure 1: Test Script Showing Flight Application Business Process

Test script includes
line describing the

“OK” button:
Button_press (“OK”)

GUI object found
called

OK {class:button;
label: “OK”}

Search through GUI
Map (single external

file) for similar
objects

On-screen,
runtime

identification of
object using

object properties
(class, label etc..)

7

Figure 2: Screens Before and After Euro Conversion

Old Application: Airtours

Ticket Price:

Total:

Ff 1,200

Ff 2,400

New Application: Airtours

Ticket Price:

Total:

EUR 181.08

EUR 362.16

DM 356.70

DM 713.40

8

Data Driven Testing

Because state-of-the-art testing tools understand the data entered by the users and the data

returned by the application in response, they can perform data-driven testing. Testers record a

business process just once and then create a test script, parameterizing currency fields and

highlighting those that require verification. The test can then be played back with a wide variety

of data from an external data file. In the case of the euro, the data could vary in terms of both

currencies and prices, reflecting the real-life actions of many users.

As an example of such a scenario, suppose an organization is converting a flight reservation

system. When the user input data is captured from the pre-converted application, the ticket price

field may contain “BEF 10,000” for a particular flight. To test converted code, testers may want

to execute a series of tests for a wide variety of flights in different price ranges. This data is stored

in an external data file and used by the testing tool during playback of the test script. The euro

testing tool automatically verifies that conversion and triangulation has been correctly

implemented between expected amounts in various currencies.

This process can be further improved by having the external data file generated automatically

from existing data in the database. Tools that perform such automatic data generation connect

directly to the database or test data files and can generate an unlimited number of rows of data

with a structure identical to the original data. This is especially useful when the data involved is

of a sensitive nature, such as that processed by banks. Many banks are, in fact, prohibited from

outsourcing their testing efforts with actual test data containing genuine account numbers and

names. An automatic test data generation tool solves this issue by creating realistic “pseudo-data”

based on the real data but with the real information scrambled. Such psuedo-data generating tools

have become even more useful to euro testing teams following the EU regulations that came into

effect in October 1998 (EU Directive 95/46/EC) placing stricter controls on personal data.

Phase Dependent Business Logic

One method which organizations may decide to adopt to deal with the two phases of the EMU is

to implement phase dependent business logic into their systems so that only one round of

conversion and testing is required. Phase dependent conversion means that applications will

automatically “know” whether to deal in euros and national currencies or solely in euros

9

depending on the date of the transaction. Screen layouts, printed reports and other documents will

be altered accordingly. This is another feature of the system that necessitates rigorous testing.

Testing tools which support such phase dependent logic enable testers to enter data with different

dates in order to verify that the application is responding correctly.

Test Management

A vital part of any software testing project is a well-structured test plan, which takes into account

deadlines, number of test developers, hardware requirements and other issues. This is especially

relevant for euro conversion, which, as with the Year 2000 project, must meet strict deadlines.

Thus the integration of a testing tool and a project management tool can assist in the smooth

execution of tests and analysis of results.

Test script archiving and off-hour testing

First, the test management tool archives all test scripts in a central repository so that every test

developer has access to every test case and the corresponding test results. Second, during the

conversion effort, there will inevitably be contention over hardware, since the production system,

software development and software testing all run on the same hardware. In addition, the euro

conversion project may be competing for resources with a Year 2000 conversion project.

The ability to run automated tests during off hours can help eliminate competition. Intelligent test

management tools can queue tests to run during low access periods, such as midnight to 5 a.m..

The tests can be scheduled to run concurrently or sequentially, and on different machines, if

necessary. Results are automatically saved in the test management database, with any errors

flagged so that developers can quickly scan the results the following morning. Defect reports can

be created to identify within the business process the exact location of failure of the test.

10

Conclusion

As demonstrated above, preparing information systems for the euro is a complex task, at the very

least equal in size to the Year 2000 conversion effort. To tackle euro conversion manually would

drain both human and financial resources and would, in all likelihood, result in failure to meet the

impending deadlines. Automated testing is not longer an unfamiliar concept to IT departments,

many of which are using such tools to avoid millennium-related catastrophes. Euro testing tools

not only take into account the current shortage of skilled personnel due to millennium projects,

but speed up the euro testing process, allowing for the creation of test scripts while information

systems are still being converted, and help to avoid the introduction of new errors. At this late

stage, euro-specific automated testing tools are really the only choice.

THE EURO CONVERSION

MYTH VERSUS REALITY!

A Special Panel Session

Quality Week Europe

Conference Day #2

12 November 1998 @ 1600

Chaired by Thomas Drake, Coastal Research & Technology, Inc.

Panelists

John Corden, Cyrano
Patrick O’Beirne, Systems Modelling Ltd., Consultant

Jens Pas, ps_testware
Graham Titterington, Ovum

The Euro Conversion – Myth vs. Reality!

This special panel session is designed to provide a forum for discussing the Euro conversion with a decided
focus on the technical, economic, cultural, and liability concerns posed by the Euro conversion. Questions
that will be presented and discussed include the following:

- What are the real-world challenges and experiences of those currently working the Euro problem?

- Who and what will be impacted by the Euro conversion?

- What are the facts about the Euro conversion versus what is myth?

- Is the Euro conversion the ultimate millennium challenge for Europe?

- Are the business and technical challenges posed by the Euro conversion more difficult to resolve from
those surrounding the Year 2000 problem and what difference, if any, can quality make?

The Euro conversion would appear to pose not only economic challenges but also a number of technical
and business obstacles and issues, and perhaps most importantly a degree of risk involving historic
proportions. The core period for the Euro conversion is marked by transition over a three-year period
beginning on 1 January 1999 and the numerous technical and managerial challenges posed by the Euro
conversion appear very similar to the Year 2000 problem.

There are a number of common issues relating to applications and package software, source code, service
vendors, testing, program management, information technology resource support, domain expertise, and
time! But what is unique about the Euro conversion? Perhaps the most critical aspect of the conversion lies
in the area of requirements management.

Every business process appears related to the Euro issue and involves far more than just a technical
upgrade and modification of existing business and enterprise systems. More importantly are the strategic
decisions that effect how businesses conduct their enterprises each and every day. The Euro poses perhaps
the greatest challenge in these areas and perhaps the greatest impact of the Euro conversion will occur at
the retail level in the buying and selling of goods and services each and every day.

There are also technical risks and obstacles associated with the Euro conversion. Consider the problem of
possible data pollution and corruption, conversion errors, and display problems. The data migration paths
posed by the Euro conversion encompass a whole host of challenges for testing, quality assurance, and
configuration management including database conversions, numeric translations, and modified pricing
structures.

And what is the definition of Euro conversion compliance and how does one test for it? Some are even
saying that the Euro conversion is actually more complex and has greater impact than even the Year 2000
problem. Why? It will implicitly shift and even perhaps radically alter the day to day lives of the people
affected and have a major and lasting impact on all the business and institutions who invest and trade and
engage in daily economic transactions within Europe and from without Europe vis-à-vis Europe.

The primary intent of this panel session is having a facilitated discussion among the panel members and the
audience on the impact, change, and reality posed by the Euro conversion and explore the question of what
does it all mean from a technical, managerial, and information technology perspective.

Reducing the Risk in Information Systems Implementation of the Euro
through the use of Automated Software Testing Tools By John Corden

Introduction

As part of European Monetary Union, the new Euro currency unit will be introduced on 1st January 1999. This presents
a substantial challenge for all organizations who trade in or into Europe and are dependent on Information Systems
(IS). Business applications will need major modification to handle the Euro. Major changes inevitably bring substantial
risk, and organizations will need to trade off business benefit against this risk when determining their implementation
schedule. This White Paper outlines how automated software testing tools can be used to minimize risk in Euro IS
implementation.

Note: all conversion rates quoted are for illustrative purposes only and may not necessarily represent a realistic
estimate of the actual conversion rates to be set on 1st January 1999.

Business Benefits

It is not the purpose of this White Paper to discuss the merits of adopting the Euro. However, it is essential to
acknowledge that there are substantial benefits for organizations based within, or trading extensively with, the eleven
Participating Countries1, to adopt the Euro as soon as possible. As a result, suppliers to organizations who unilaterally
adopt the Euro could come under considerable pressure to contract and trade in the Euro, even though they are not
legally obliged to2 and may not even reside in a participating country. So failure to adopt the Euro might have a
negative effect on competitiveness.

Transitional Period

The technical challenge, and hence the risk, occurs not so much from the introduction of the Euro, but from the
transitional period, which ends on 31st December 2001. During the transition, all organizations that wish to operate
with the Euro will need to run dual currencies, i.e. their National Currency Unit (NCU) and the Euro. The main point to
remember is that the Euro is the Base Currency while the NCU is simply an alternative measure of the Base Currency
at a fixed conversion rate, just as pounds and kilograms are alternative measures of weight with a constant conversion
between the two.

Thus a French organization (i.e. an organization in a participating country) could sell at either Euro or Franc prices, but
the values must be exactly equivalent according to the fixed Euro/FF conversion rate. This situation is comparatively
straightforward, because the format of the two values is the same. However, in countries like Italy and Spain, where
NCU values are generally whole numbers, the systems will not only need to be enhanced to handle dual currencies,
but will also need to accept, store and output decimal values.

Article 235 of the Maastricht Treaty

Organizations in participating countries must apply the Article 235 Regulations of the EC Treaty which:

• Specify that conversion rates will be expressed as one Euro = n NCU to six significant figures
(e.g. Euro/£ = 0.775735 or Euro/French Franc = 7.36945)

• Prohibit inverse rates (e.g. £/Euro = 1.28910 is not allowed)

• Specify that for conversions into the Euro, calculations should be rounded up or down to the nearest Cent

• Specify that for conversions into NCU calculations should be rounded up or down to the nearest unit or sub-unit
(e.g. for French Francs, round to the nearest Centime; for Italian Lira, round to the nearest Lira.)

• Specify that for values of 0.5, calculations should be rounded up

1 Austria, Belgium, the Netherlands, Finland, France, Germany, Ireland, Italy, Luxembourg, Portugal, Spain
2 Article 109L(4), Regulation 1: the principle of no compulsion, no prohibition

Reducing the Risk in Information Systems Implementation of the Euro through the use of Automated Software Testing Tools.
© CYRANO 1998

V1.0

2

The problem is even greater if an organization wants to convert one participating NCU into another (e.g. Deutsche
Marks (DM) into French Francs (FF)). Because Article 235 mandates use of “Triangulation”, this means that it is
necessary to convert DM into Euros first, then Euros into FF.

E.g. if the Euro/DM conversion rate is 1.93933 and the Euro/FF conversion rate is 7.36945 then to convert DM1,000 to
FF the calculation is:

DM1,000 ÷ 1.93933 = EU515.64
EU515.64 x 7.36945 = FF3,799.98

The Information Systems Impact

Consider the following quotation in French Francs (FF), issued by one French company to another.

FF.Quotation

Quantity Description FF.Unit Price FF.Net Price

100 Ring Binder 9.90 990.00
100 500 Sheets A4 copier paper 29.50 2950.00

FF.Total 3940.00

If the company wished to issue the same quotation in Euros (EU), according to Article 235 the FF.Unit Price, FF.Net
Price and FF.Total Values would each be calculated at the fixed Euro/FF conversion, rounded to the nearest Cent.

So, if the exchange rate were 7.75735, the correct calculations would be:

FF Euro
9.90 ÷ 7.75735 = 1.276209 Rounded to 2 decimals = 1.28

990.00 ÷ 7.75735 = 127.6209 Rounded to 2 decimals = 127.62
29.50 ÷ 7.75735 = 3.802845 Rounded to 2 decimals = 3.80

2950.00 ÷ 7.75735 = 380.2845 Rounded to 2 decimals = 380.28
3940.00 ÷ 7.75735 = 507.9054 Rounded to 2 decimals = 507.91

But if the program producing the quotation calculated the Euro Total by summing the Euro Net Price column, it might
well reach a different answer:

EU.Quotation

Quantity Description EU.Unit Price EU.Net Price

100 Ring Binder 1.28 127.62
100 500 Sheets A4 copier paper 3.80 380.28

EU.Total 507.90

The point here is that the CORRECT total, according to Article 235, is EU507.91.

Reducing the Risk in Information Systems Implementation of the Euro through the use of Automated Software Testing Tools.
© CYRANO 1998

V1.0

3

This is obviously a very simple example. The situation would become even more complicated if the French company
needed to issue the quotation in Deutsche Marks, because of the need for Triangulation.

Any programmer who has ever coded an invoice VAT calculation will know that, depending on exactly how
programming variables are specified (integer, fixed decimal, floating point etc.), you may get slightly different results if
you calculate VAT line by line or calculate it once on the net total. Because such inconsistency would cause confusion
between trading partners, Article 235 states that all calculations must be performed in Base Currency and then
converted immediately before output. This, together with the relatively short duration of the Transitional Period,
suggests that most organizations will strive to minimize changes by simply overlaying a conversion filter on existing
output.

Business Risk

Whenever business processes and information systems require extensive modification, there are substantial risks that
either the modifications will fail to operate correctly, will de-stabilize other processes, or will introduce undesirable
side-effects.

Taking the example of the French company's quotations system, imagine that a programmer is asked to modify the
application to give the option of producing quotations in Euros. A number of scenarios might result:

(i) The programmer might implement the specification correctly, and in all circumstances the FF and Euro
quotations produced would be exactly equivalent according to Article 235.

(ii) The programmer might make a programming error that means that, in some circumstances, the FF and Euro
quotations might not be exactly equivalent.

(iii) The programmer might not correctly interpret the specification or the provisions of Article 235, and in some or
all circumstances the quotations are not equivalent.

(iv) In modifying the program, the programmer might de-stabilize other functions of the system which are not
directly related to calculation of the Euro equivalent values

Of course, there may be any combination of scenarios ii, iii & iv.

If incorrect values are calculated or applications are de-stabilized, the organization would, at best, suffer disruption and
inconvenience. At worst, it could lose competitiveness, lose money or become liable for damages. Suppose, for
example, that a stockbroker incorrectly quotes an equity value in Euros and a customer acts on the information and
loses money?

Reducing the Risk in Information Systems Implementation of the Euro through the use of Automated Software Testing Tools.
© CYRANO 1998

V1.0

4

Testing to Reduce Risk

The answer, of course, is to test applications to ensure that, in all circumstances, they correctly process and output
Euro values equivalent to NCU and/or perform conversion between NCU, according to Article 235. And, in addition, we
must ensure that unwanted side-effects haven’t been introduced.

Conventional software testing, whether automated or not, works as follows:

(i) Specify conditions
(ii) Specify expected results
(iii) Execute test
(iv) Compare test results with expected results
(v) Correct as necessary, and go back to step iii

This can be narrowly focused on the modifications, or broadly focused to encompass all functions to ensure that
side-effects haven't been introduced. Also, if modifications are applied incrementally (i.e. modify, test, correct errors,
test, correct errors…), then regression testing might be used to ensure that error correction doesn't upset correct
behavior observed and tested at an earlier stage.

So, in our example above, if we were to modify the original, single currency quotation system so that we could,
optionally, produce alternative currency quotations, we would need to:

(i) Specify the conditions

Quotation required in Euros for:
100 x Ring Binders
100 x 500 Sheets of A4 Copier Paper

(ii) Specify the expected results

Ring Binder unit price = EU1.28
100 x Ring Binders = EU127.62
500 Sheets of A4 Copier Paper unit price = EU3.80
100 x 500 Sheets of A4 Copier Paper = EU380.28
Total = EU507.91

(iii) Execute the test

(iv) Compare test results with expected results

(v) If the results are incorrect, make corrections and go back to iii

This could be done manually for a simple system but, for anything even slightly more complex, the task would become
onerous and error prone. Imagine, for example, a complex business process such as a tax assessment, with multiple
inputs, rules, thresholds and rates.

In all situations, what is needed is a tool that can:

§ capture NCU values output by a system for a given set of conditions when working in currency A

§ automatically convert them according to Article 235 to produce the expected results in currency B

§ execute the test automatically, comparing the test results with the expected results and reporting differences as
errors

Reducing the Risk in Information Systems Implementation of the Euro through the use of Automated Software Testing Tools.
© CYRANO 1998

V1.0

5

For example, going back to our quotation system, the tool would need to record the conditions from the FF quotation,
and each of the NCU amounts: FF.Unit Price, FF.Net Price and Total. Then, when the Euro test is run, it must
substitute the correctly calculated Euro amounts. In doing so, the tool must also take account of changes in numeric
format (use of commas or periods, number of decimal places, currency symbol, etc.).

Because the tool is most unlikely to be able to distinguish monetary values from other numeric fields, operator
intervention is required. The simplest way to achieve this is to allow the operator to highlight monetary fields while
recording the test.

Also, during the recording the operator should capture other crucial elements of application behavior. These can then
be checked during test execution to ensure that the modification process has not introduced undesirable side-effects.

The test tool should allow tests to run ‘lights out’, i.e. once initiated, they will run without operator intervention,
processing transactions at the maximum possible system throughput while maintaining input/output synchronization. It
should also be possible to build control structures into the test to enable a range of conditions to be tested.

Conditions

NCU Values

Conditions

Euro Values

Reducing the Risk in Information Systems Implementation of the Euro through the use of Automated Software Testing Tools.
© CYRANO 1998

V1.0

6

Example of Euro Compliance Testing:

Quotation - QU05 Currency = FF 07-Jul-1998

Stock Code Quantity Description FF.Unit Price FF.Net Price

RB100 100 Ring Binder 9.90 990.00
CP500A4 100 500 Sheets A4 copier paper 29.50 2950.00

Total 3940.00

Accept <enter>, Modify <PF2>, Reject <PF3>_

Currency = EU 08-Jul-1998
Quotation - QU05

Quantity Description EU.Unit Price EU.Net Price

RB100 100 Ring Binder 1.28 127.62
CP500A4 100 500 Sheets A4 copier paper 3.80 380.28
Total 507.90

Accept <enter>, Modify <PF2>, Reject <PF3>_

Start - Euro Compliance Test Report.
============================

Transaction = Quotation - QU05
Currency = EU
Test Date = 08-Jul-1998

07-Jul-98 12:23:54 EURO QUOTATION Product Code = RB100
07-Jul-98 12:23:54 EURO QUOTATION PASS Euro.Unit Price for Ring Binders
07-Jul-98 12:23:54 EURO QUOTATION PASS Euro.Net Price for 100 * Ring Binders

07-Jul-98 12:23:54 EURO QUOTATION Product Code = CP500A4
07-Jul-98 12:23:54 EURO QUOTATION PASS Euro.Unit Price for 500 Sheets A4 copier paper
07-Jul-98 12:23:55 EURO QUOTATION PASS Euro.Net Price for 100 * 500 Sheets A4 copier paper

07-Jul-98 12:23:56 EURO QUOTATION ******FAIL****** Total

Expected value was: EU507.91
Value displayed was: EU507.90

End - Euro Compliance Test Report.
============================

FF 9.90 ÷ 0.775735 = EU 1.28
FF 29.50 ÷ 0.775735 = EU 3.80
FF 990.00 ÷ 0.775735 = EU 127.62
FF 2950.00 ÷ 0.775735 = EU 380.28
FF 3940.00 ÷ 0.775735 = EU 507.91

FF 9.90
FF 29.50
FF 990.00
FF 2950.00
FF 3940.00

Capture NCU Values
Convert to Euro

Execute Test

Report Results

Reducing the Risk in Information Systems Implementation of the Euro through the use of Automated Software Testing Tools.
© CYRANO 1998

V1.0

7

Conclusions

The Euro deadline is 1st January 1999. The specification is that all monetary values expressed in both NCUs and
Euros must be exactly equivalent according to Article 235.

IS departments and contractors historically have a poor track record for delivering mission-critical systems on time, and
there is nearly always some latitude in the specification. But with the Euro, there is no contingency for either late
delivery or failure to meet the specification. Any failure in mission-critical IS can cripple an organization, so it is
absolutely essential that all reasonable steps are taken to ensure that any changes necessary to achieve Euro
compliance are thoroughly tested.

In this context, the purpose of testing is to find out whether the application behaves in the same way, independent of
the currency, given a defined set of circumstances. To validate this, the user can either:

§ Laboriously work out the predicted set of results for every set of circumstances (if the answer in NCUs is A, then
the answer in Euros should be B). Then run tests and compare predicted with actual results manually.

or

§ Use an automated testing tool to capture A and automatically calculate the predicted result B, run a test and
automatically compare the predicted with the actual result, reporting variances.

Given the wide extent and range of tests necessary, particularly if regression testing is employed, an organization can
make enormous savings by using an automated testing tool which incorporates the necessary functions to convert
NCUs to Euros (and vice versa) and automatically checks results for correct values. If it can also create a substantive
audit trail that proves that the user has run adequate tests in a scientific and systematic manner, it can provide the
levels of confidence essential for a business to make the transition into the Euro.

CYRANO have a 12-year track record in developing and deploying test tools and methodologies that help major
organizations prove their mission critical IS.

CYRANO MillenniumTest is used by hundreds of users to test mission-critical systems for Year 2000 compliance.

CYRANO EuroTest, which is 100% compatible with CYRANO MillenniumTest, and will be released during the summer
of 1998, provides a comprehensive solution to Euro compliance testing.

Systems Modelling Ltd. Suite 2, Villa Alba
Tara Hill, Gorey, Co. Wexford, Ireland

Tel: +353 55 22294 Fax: +353 55 22297

Patrick O’Beirne
pobeirne@sysmod.ie

Euro Myths and Realities

Gartner Group

• “Billions of lines of code to be changed
Estimated $1.10 to fix each line of code

 character to font sets, printer
drivers, keyboards, ATMs, cash registers
We're talking about taking all of this
information and changing it all, it's crazy”

Giga Group

– “Almost every system falls over when it has to
do triangulation, the computer starts to choke
all systems will have to be able to account for
six significant decimal places
sound like nit-picky little problems but each
one of them will kill you
if a company converts its history, the numbers
become almost meaningless”

Businessweek

• GETTING READY FOR THE EURO BUG
• A scary fact: That transition period, designed to

coddle consumers, poses all sorts of frightening
conundrums for computer systems
The challenges range from the mundane ... coming
up with a computer key for the
to inserting the most abstruse mathematics into

• http://www.businessweek.com/premium/13/b3571164.htm

Manage the risk

“Managing the risk in euro currency
conversions”
– Patrick O’Beirne, Cutter IT Journal June 1998
– Most processing currency-independent

Look for input , exchange & output functions

http://www.iol.ie/sysmod/euroriskarticle.htm

10/15/98 panel.obeirne.doc (4) 1/2

Quality Week Europe, November 1998

Panel Discussion : Euro Myths and Realities

* What are the real world challenges and experiences of those working the
Euro problem?
Trying to get business managers to decide what they want

* Is the Euro conversion the ultimate Millennium challenge for Europe and
what is the impact?
So is Y2K; so is e-commerce; so is the global economic environment.

* Are the business and technical challenges for the Euro conversion more
difficult to resolve than those surrounding the Year 2000 problem?
Some are, some are not; see following.

* What are the myths and the realities surrounding the Euro Conversion?
See the following.

Patrick O'Beirne provides consultancy on Year 2000 issues for the
desktop and euro conversion of business systems. He may be contacted at
Systems Modelling Ltd., Tel. +353-55-22294 email pobeirne@sysmod.ie
URL: http://www.iol.ie/sysmod/emu.htm

10/15/98 panel.obeirne.doc (4) 2/2

Euro myths and realities

"We will comply with EU regulations whenever they come out"
These are characteristic statements from software suppliers on the euro, taken from an article in a
recent buyer's guide to accounts software:
• "There is still no definitive interpretation of EMU compliance for accounting software"
• "Our development plan is ... subject to the directives from Brussels becoming available in time"
• "The EU has not settled the issue, but we ... will be ready when they are ready"

The facts are, the rules have been known since 1996 and embodied in Regulations of July 1997
based on Article 235 of the Maastricht treaty. Articles 4 and 5 of those regulations contain the
conversion and rounding rules. There will never be a specification for euro-compliance from
Brussels. That will be a matter for the marketplace. For example, there is no law that you must use
the euro symbol in documents; in practice, people will want to.

"We have multi-currency accounting, we don't need to do anything"
Very few current “multi-currency” packages meet the criteria in Articles 4 & 5 of the Regulations, as
they were designed for the management of floating rates, not a six-digit fixed rate regime. The euro
needs more than most multi-currency packages provide. Multi-base-currency packages have been
proposed, and may suit some but one size does not fit all. And of course, even if you don't have to
change your accounting, you may have to change your business.

"We must be ready on 1 Jan. 1999"
"We can afford to wait until 30 June 2002"
Both are potentially true, but may be misleading in your specific industry. There may be industry
codes to practice to change on 1 Jan. 2001. "No compulsion, No prohibition" on the use of the euro
only means that partners to a contract are free to contract in either national currency or euro terms.
This is of course subject to normal commercial practice and pressures.

"Triangulation is mandatory in currency conversion"
The famous “Triangulation” rule in Article 4 is that to convert from one participating currency to
another, you must convert via the euro, and round the euro amount to not less than 3 decimal places.
Other methods are allowed only if they produce the same result; and that is the let-out clause that
software companies will be using. Triangulation is not a matter of government enforcement, national
or local, but a matter of data integrity, audit trail, and maybe dispute resolution/litigation. Unless
there is a dispute the method of calculation is not relevant. And it is only relevant where an
alternative method, if used, reaches a different result. In Brussels there are certainly no plans to
setup a "Triangulation Enforcement Agency".
It also depends on the purpose. As non-EMU currencies such as the dollar float against the euro, it
makes no real difference how US trading companies do it as most commercial companies use an
artificially fixed rate for a period and reconcile the differences at the end of an accounting period
with the actual receipts from the bank.

"All amounts must be stored to six decimal places"
Computerworld 3 August 1998: "The euro requires that you keep six figures to the right of the
decimal point, so fields designed to accommodate prices such as 5.99 will have to be expanded to
5.990000. "

Article 5 states that you must round to nearest cent for amounts to be paid; therefore rounding does
not apply to other numbers such as unit prices such as a phone charge of .00416p/sec. Prices can be
to any number of places you like, including none. Only the conversion RATES are to 6 significant
figures, which only for Irish Pounds is six decimal places.

Copyright  1998 - Copyright ps_testware 1/3
panel.pas.DOC

TESTING THE EURO

Complex simplicity

The Euro-project regards the introduction of simplicity. We remove all the different
currencies, forget about foreign exchange rates and agree that one monetary
currency has to be used in Europe1. How simple life can be. This debate will not
discuss the economical advantages and consequences of the introduction of this
standard money-platform. We also know that this simplification requires quite a
complex IT-modification. What we, IT-people, seem to forget is that also the
business is undergoing a complex change.

Focus on IT

As with the Y2K-project, people heavily focus on the IT-side of the story. Indeed,
there is a lot to do. Both Euro and Y2K require a lot of modification and adaptation
work. Which of the two is more complex is not the issue here. It all depends on
how you look at it.

Focussing on IT is not the only similarity between these two projects. Another one
is that they are considered as “Conversion”-exercises. Not the functionality
changes, the software only has to perform “business as usual” under different
circumstances.

The assumption behind this logic is that business does not change. For Euro,
nothing is less true. Business does change and not just to a small extent. The
introduction of the Euro is more than “just a currency addition” (which, by the way,
we as Europeans are very familiar with). The introduction of the Euro requires
Business Process Re-engineering. After all, if we choose to introduce the Euro and
business does not alter, why bother to change to Euro. Current processes will get a
new or stream-lined life and new opportunities arise.

Business Process Thinking

The wrong assumption that we are dealing with a simple “conversion”-exercise has
as a consequence that the planned testing, if there is any, is of the regression type.

1

Copyright  1998 - Copyright ps_testware 2/3
panel.pas.DOC

Regression testing typically is a simple task where well-known application
behaviour is used as a base line for the testing of the converted software.

There are two issues. The first issue concerns the fact that regression testing heavily
focuses on the testing of isolated functionality. In order to control the testing work,
people tend to divide the work based upon the structure of the functionality of the
application (e.g. first test “File access”, then “edit”, the “Print”…). Again a hidden
and most important wrong assumption behind this action can be found. Using the
functionality structure of the application implies that one considers the structure as
being correct and representative for the business. The way the structure was chosen,
however, was mainly based upon the technical constraints of the IT-infrastructure
and on the so-called de-facto industry standards (e.g. the “File menu” must always
be located on the left of a window). Since we are focussing on testing known
functionality, testing is considered as an IT-activity, a so-called system test.

The second issue concerns the regression aspect itself. As mentioned above, we are
not facing a simple regression activity. We are dealing with new business
behaviour. It would be a paramount mistake not to take the new business rules into
consideration when defining our modification and test criteria. People will not
speculate on exchange rates anymore. Electronic Euro, available three years before
cash, has a competitive advantage which some people might want to exploit.

We have to think in business processes rather than in IT functionality if we want to
succeed in the Euro-project.

Structured Software Testing

Proper structured software testing takes into account these business processes. At
least, if you consider the set-up of a Test Requirements Hierarchy™ using the

2” (BPT). BPT™ starts by stating that the reason why we
are busy with an IT-project is to make more profit. This is, or at least should be, the
prime objective of any IT-activity. Thus, the final “acceptance test” should be the
measurement of a profit increase due to the new IT-solution that was implemented,
even if it is “only” an addition of a currency. BPT™ then will decompose this simple,
yet powerful acceptance criterion into sub-goals, which are the objectives of well-
known business processes (e.g. “We must be able to send out”). These processes
are then split up into different functions. These functions represent the functionality
of the IT-solution.

This way of working causes test criteria to be based upon business rules (e.g. “I can
write a letter”) rather than on technical criteria (e.g. “I can write a Word
document”). This way of working prevents us from relying on assumptions such as

2 BPT: Business Process Thinking: Technique applied to analyse a IT-functionality from a business
process point of view instead as of from a classical functionality point of view.

Copyright  1998 - Copyright ps_testware 3/3
panel.pas.DOC

the structure of the available functionality or the stability of the business
requirements.

When reading the above, one might say that the applied arguments are generic to
any IT-project. This is indeed the fact. The Euro-project is a “normal” IT-project. It
requires the same approach as any professional software (and hardware)
development. The Euro is not more complicated, nor simpler than any other IT-
work.

The Euro opportunity

What is different, however, is that we are all involved. The Euro- (and Y2K-)
project is an issue that we are all tackling. So there must be an opportunity of
economies of scale. We should encourage the exchange of experiences in these
projects in order to improve effectiveness and efficiency. This way the IT-cost will
considerably decrease. One of these experiences is structured testing. We know
that testing costs a lot of money or, to put it more correctly, exposes how much
money we really spend achieving a specific quality level. Testing is considered as a
necessary evil. As such, little is invested in it. Sharing Euro-test experience could
mean that we share test effort. We outsource our testing to external teams or we
adopt a standard testing approach. We hire “test capacity”. We decrease our cost,
both in testing, but also in post-implementation support (the software will be of
higher quality).

Shared experience is also a leverage to get to a higher level of Software
Engineering. We should look at the Euro-project as the momentum to detach
ourselves from our legacy of craftsmanship and to become real software engineers.

We must keep a relative perspective however. Although the Euro is an opportunity
for IT to mature, the issue itself remains a business matter.

The Euro Conversion - Myth vs realityThe Euro Conversion - Myth vs reality

Euro characteristics(1) Euro characteristics(1) Graham Graham TitteringtonTitterington

•• Euro is a business issue with ITEuro is a business issue with IT
implicationsimplications

•• The Euro project is about achievingThe Euro project is about achieving
business benefitbusiness benefit

•• EMU is being introduced in 3 phasesEMU is being introduced in 3 phases

•• Many new applications will be neededMany new applications will be needed

The Euro Conversion - Myth vs realityThe Euro Conversion - Myth vs reality

Euro characteristics (2)Euro characteristics (2)

•• Most Euro related changes are extensionsMost Euro related changes are extensions
to applicationsto applications

•• Euro changes only affect application layerEuro changes only affect application layer

•• Euro changes are logically moreEuro changes are logically more
complicated than Y2k changescomplicated than Y2k changes

•• You need to concurrently process new andYou need to concurrently process new and
old currencies, and store historic dataold currencies, and store historic data

The Euro Conversion - Myth vs realityThe Euro Conversion - Myth vs reality

The risk of interactionThe risk of interaction

Y2K Project Euro Project

EMUNational Economies

The Euro Conversion - Myth vs realityThe Euro Conversion - Myth vs reality

ConclusionConclusion

•• Most Euro related changes are not mechanicalMost Euro related changes are not mechanical

conversionsconversions

•• The Euro project is flexible in extent, time-scale,The Euro project is flexible in extent, time-scale,

and strategyand strategy

PPoossiittiioonn PPaappeerr::

TThhee EEUURROO CCoonnvveerrssiioonn –– MMyytthh vveerrssuuss RReeaalliittyy!!
BByy GGrraahhaamm TTiitttteerriinnggttoonn,, OOvvuumm

EEuurroo cchhaarraacctteerriissttiiccss((11))
•• EEuurroo iiss aa bbuussiinneessss iissssuuee wwiitthh IITT iimmpplliiccaattiioonnss
•• TThhee EEuurroo pprroojjeecctt iiss aabboouutt aacchhiieevviinngg bbuussiinneessss bbeenneeffiitt
•• EEMMUU iiss bbeeiinngg iinnttrroodduucceedd iinn 33 pphhaasseess
•• MMaannyy nneeww aapppplliiccaattiioonnss wwiillll bbee nneeeeddeedd
EEuurroo cchhaarraacctteerriissttiiccss ((22))
•• MMoosstt EEuurroo rreellaatteedd cchhaannggeess aarree eexxtteennssiioonnss ttoo aapppplliiccaattiioonnss
•• EEuurroo cchhaannggeess oonnllyy aaffffeecctt aapppplliiccaattiioonn llaayyeerr
•• EEuurroo cchhaannggeess aarree llooggiiccaallllyy mmoorree ccoommpplliiccaatteedd tthhaann YY22kk

cchhaannggeess
•• YYoouu nneeeedd ttoo ccoonnccuurrrreennttllyy pprroocceessss nneeww aanndd oolldd ccuurrrreenncciieess,,

aanndd ssttoorree hhiissttoorriicc ddaattaa
TThhee rriisskk ooff iinntteerraaccttiioonn
CCoonncclluussiioonn
•• MMoosstt EEuurroo rreellaatteedd cchhaannggeess aarree nnoott mmeecchhaanniiccaall ccoonnvveerrssiioonnss
•• TThhee EEuurroo pprroojjeecctt iiss fflleexxiibbllee iinn eexxtteenntt,, ttiimmee--ssccaallee,, aanndd ssttrraatteeggyy

A comparison of the IT implications of the Y2k and the Euro issues

© Ovum Ltd 1998 Page 1 of 2

The Euro Conversion – Myth vs Reality

Discussion position paper for the 2nd International Quality Week

Graham Titterington

Ovum Ltd
e-mail gct@ovum.com

Characteristics of IT Euro projects

The introduction of the Euro is primarily a business issue. Beyond the basic
requirement to enable financial transactions to occur, the purpose of a Euro
project is to deliver business benefit. The role of IT is to support business
needs. Therefore supporting IT projects contain a small element of mechanical
conversion, and a large element of extensions to support new business
processes.

IT changes for the Euro can be categorised into four groups:

• changes needed to enable businesses to trade using Euro

• changes needed to maintain historical records in old currencies

• extensions to enable systems to handle both Euro and national currencies
during the transitional period

• new systems and extensions needed to support new business methods.

The second and third groups can be considered as transitional, and account for
most of the subjects which regularly appear in discussions about the Euro in
IT, including triangulation. It is important to look at the substance of the
changes which have to be made, and the spirit in which they were formulated,
and not to get bogged down in the negative minutiae of compliance.

Changes needed to enable businesses to trade using Euro

These comprise changes to:

• enlarge the size of fields holding monetary values

• add a decimal point in countries where there is no sub-unit of currency in
common current use because the main unit of currency is of relatively low
value (for example Italy, Belgium, Portugal, Spain)

• add a currency symbol to avoid ambiguity where this is not already present

• redesign forms and schemas to accommodate these changes, if necessary

• modify the ranges of values that are allowed in currency fields and
variables.

Many financial processes are triggered by financial values (for example credit
checks) and so clearly these trigger levels will need to be re-calculated for the
Euro.

Note that there are no permanent changes affecting foreign exchange
calculations. Once the transitional period is complete the Euro will be a normal
international currency with a very large multi-national economy behind it.

A comparison of the IT implications of the Y2k and the Euro issues

Page 2 of 2 © Ovum Ltd October 1998

Scope of the software problem

The number of programs affected by the EMU is much smaller than the
number affected by year 2000. The Euro is concerned with money; year 2000 is
concerned with time. Money is not as pervasive as time in the computing world.

Although the scope of the problem is more limited, where changes to programs
are necessary, they are more logically complex than the typical date related
changes. The date problem is mainly about data representation, whereas the
Euro changes involve altering the logic of applications and developing some
substantial new applications

Is Software Testing Scientific?

Bogdan Bereza-Jarocinski, ENEA Test
Enea Data AB

www.enea.se

Box 232, S-183 23 Täby, Sweden
Tel: +46-8-638 50 00
Fax: +46-8-638 50 50
e-mail: bogb@enea.se

Human Cognition

• The reach of knowledge
– private - local - public knowledge

reasons for spreading knowledge

• How new is knowledge?
– pure science versus applied science

• Is knowledge true?
– various ways to validate knowledge

Validating Knowledge

• Superstition
• Intuition
• Authority

– good and bad aspects of generalisation
• Rational-Inductive Argument

– various levels of rational-inductive argument
correct argument but wrong conclusions
theorem proving in theoretical sciences
source of hypotheses in natural sciences

Experimentation

• Excluding extraneous variables
• Measurement of results
• Operational definitions
• Experiment in engineering: build it
• Limitations of experimental method

– permanent relationship
– statistical relationship

Descriptive Statistics

• Statistics - cure for limited knowledge
• Significance
• Correlation
• Choosing right validation method

– experimental and observational studies
causal and correlational relationship
limitations for evaluating significance

Offences against Science 1 (3)

• Confounds
• Operational definitions

– example: test suite effectiveness

• Independent and dependent variable
– relationship between variables

• Internal validity
• External validity

Offences against Science 2 (3)

• Experimental group
• Control group

– inadequate control groups in research around QA

• Group equivalence
• Effect of longitudinal (sequential) studies
• Using representative samples
• Sampling techniques

Offences against Science 3 (3)

• Different populations in SW testing:
– user activities (SUT), population of bugs (bug

seeding), population of systems
• Observer bias and expectancy
• Hypothesis testing

– null hypothesis
• Variance and standard deviation
• Multi-dimensional environment

– limitations in validity, possible solutions

Conclusions

• Are we the only sinners?
• Is software testing science?

– common denominators with other testing
• Prohibitive costs of experimental studies
• How to improve quality of observational

– comparative thinking
– ask how representative sample is

estimate statistical significance

The Goal of Quality

• Making money - market success - right
quality quickly and economically - test as

• Correlation between quality and quality

– achieving quality through quality systems?
relationships between “qualities”

Introducing Quality Systems

• Disadvantages of quality systems
• Bottom-up implementation of quality

– need for right dimensioning of quality system
disadvantages of top-down introduction
need for independent quality engineers

Psychology of Testing

• Plenty of psychology in literature on

 “testing is destructive”, “test is mental discipline”, “testing is
creative and difficult”, “testing requires independence”, “test
results must be carefully controlled”, “test specialists must be

• Advantages of using mainstream
psychology

• Theory of cognitive dissonance

Constructive Work

• Creative activities and intrinsic

• Why is testing disruptive?
• Re-defining test to make it more creative
• New role for test automation?
• The boredom factor

– optimal level of stimulation
– how to put testing on this level

Neurosis of Testing

• Security and anxiety
– emotional disorders and excessive anxiety

obsessive-compulsive disorders

• Security and anxiety of testing
– emotional need for secure systems

emotionally hard to accept SUT and MTBF
when to stop testing - is there “obsessive

Social Psychology of Reviews

• Potential for quality improvements

• Basic contradictions of reviews and

– unwillingness
– cognitive impossibility
– external impediments to reviews

Group Dynamics in Reviews

• What is group dynamics?
• Disadvantages:

– group pressure
– Asch conformity experiment
– group solidarity
– “groupthink”
– group polarisation

Review psychology - continued

• Communication, information gathering,
creating technical solutions - when?

• Can algorithms be verified with

• Holland’s six occupational interests
• What should be done:

– let psychologists re-asses existing review

experimental studies are possible in this area

Why is QA so Boring?

• Partial explanations possible through
concepts used for review analysis

• Hackman’s model of work design:
– job contents description

• skill variety, task identity, task significance,
autonomy, feedback

– job evaluation
• meaningfulness, responsibility, knowledge of the

– job improvement
• combining tasks, natural group units, client

relationship, vertical loading, better feedback

Psychology of Usability

• For engineers: esoteric, fuzzy, soft
• Increasing number of unfriendly devices

– “human error” is really bad design

• Bad MMI typical for software infects

• Usability testing limited to MMI, not
valid for whole systems in their

Factors of Usability

• Intuitive usage
• Models
• Visibility
• Mapping
• Feedback

• Social pressures
• Designer terrorism
• Human errors and

natural constraints
• What can be done:

– marketing
– design
– QA (requirements)
– testing

1

Is Software Testing Scientific?

Bogdan Bereza-Jarocinski, ENEA Test
Enea Data AB
www.enea.se

Box 232, S-183 23 Täby, Sweden
Tel: +46-8-638 50 00
Fax: +46-8-638 50 50
E-mail: bogb@enea.se

© 1998 Enea Data AB
All rights reserved

Abstract

This paper deals with three relatively independent subjects:

• Analysis of practices used in the study of software testing (i.e. not in the actual
process of testing itself) from the point of view of scientific methods. Applied to
discussion on correlation between quality systems and product quality.

• Discussion on how certain psychological and sociological theories and concepts
can be profitably applied to analysis of testing process.

• Psychology of usability: an attempt to depict it in broader terms, not limited to
windowing standards and GUI.

These subjects, although different, have three features in common:

• They are interdisciplinary.

• They are mostly neglected or ignored at present.

• They exist at crossroads of technology and social sciences.

Key words

scientific method, descriptive statistics, psychological analysis, software testing, QA,
psychology of usability, usability, experimentation, product quality, quality systems,
significance, correlation, causal relationship

2

1 Introduction

This and the following chapters contain concepts, which may be new to software
professionals. They are explained farther in the text. They are not cross-referenced to their
definitions to avoid too many cross-references.

1.1 The Rules of Scientific Reasoning
The knowledge of descriptive statistics and of rules of scientific reasoning among

software professionals is insufficient. Teaching courses in software testing, I have many times
observed that participants had problems grasping concepts of Statistical User-Based Testing
and found it “fuzzy” and “not enough technical”. Concepts like correlation or statistical
significance are never mentioned.

1.2 Quality Assurance
Another group of my experiences, which motivated me to write this paper, refers to

QA. Why are QA measures so often experienced as stiff, boring, bureaucratic – a burden
rather than help for developers and project managers?

1.3 The Psychology of Testing
Studying software testing, I have encountered many statements that belong to

psychology. Examples: “testing is destructive”, “test is mental discipline”, “testing is creative
and difficult”. However, all this is not connected to mainstream psychology; rather, authors
rely on their own “psychological intuition”.

1.4 The Design of Things
The fourth area about which I have for a long time experienced intense wonderment

is why so many things are so strikingly badly designed?

1.5 Are These Areas Related?
These four issues are in fact closely related, in more than one respect. They are

problems that have grown at the crossroads of technology and social sciences, at no-man’s-
land between everyday experience and science.

1.6 The Status of This Paper
This paper is only a tentative essay. I point out and partially describe a number of

possible areas for improvement or for further study, but I have no own research results to
present.

2 Human Cognition

2.1 Definition
Human beings create in their mind representation of the outside world. This

representation is called knowledge about the world.

3

2.2 The Reach of Knowledge
2.2.1 Concepts

Some knowledge is individual, some is local for a limited group of people like a
family or a neighbourhood, or a company department, some is public – is has been spread and
stored so that anybody can access it.

2.2.2 Application

Applied to software testing, the purpose of magazine articles, books on testing or
conferences is to spread knowledge about testing, to make it more public. However, it is
worth remembering that making knowledge more public is not a goal in itself. In the age of
WWW we are aware that filtering and selecting knowledge is at least as important as making
it accessible.

2.3 How New Is Knowledge?
2.3.1 Scientific Knowledge

Generally, gathering and producing new knowledge is the ultimate goal of pure
science. For practical purposes however, it is often more useful to discover that a certain well-
known fact is applicable in a given area than to create advanced theories that have no
immediate application.

2.3.2 Applied Sciences

This is worth keeping in mind when dealing with applied sciences. Otherwise one
may be tempted to regard ones favourite area too seriously. For a company acting in market
environment, the right dimensioning and direction of its R&D effort is of prime economic
importance.

2.4 Is Knowledge True?
This is the basic question for the next two chapters. Any piece of information may be

true, partially true, or false. “Automating testing using our Hyper-Bang-Bug-Killer-Test-Tool
will cut your lead-times by half” (and cost you a lot of money). To assess the validity of this
claim may be critical for a company’s survival as well.

3 Validity and Verification of Knowledge
Theories and opinions can be validated by various means. This means that assessing

whether to expect that adding vinegar to water really does enhance the way your hair looks
can be done in a number of different ways.

3.1 Superstition
You believe computer hardware is strongly influenced by full moon, therefore all

testing should be done only then. Even if pure superstition of the grotesque kind like in the
example above is rather rare in software testing, its elements exist.

3.2 Intuition
The borderline between superstition and intuition is hard to draw. Intuition, when

applied by an intelligent person with extensive experience, not strongly emotionally involved
in the field that she will validate, can be very effective.

4

3.3 Authority
3.3.1 Example

You know that Boris Beizer is an established authority in testing, therefore you
follow his recommendation that 100% statement coverage is a must.

3.3.2 Generalisation

This approach may be rational. Generalisation is a cognitive mechanism that allows
humans to structure their knowledge and recognise environmental elements more effectively
than would be feasible otherwise.

3.3.3 Authority as Validation Tool

To validate all information coming from various sources by checking it by oneself is
a time-consuming method. An alternative way is to assess the information source; once it has
been classed as trusted, you accept by default all information coming from it.

3.4 Rational-Inductive Argument
3.4.1 Examples and Limitations

Certain rules of reasoning are used in order to arrive at a conclusion. The rules are
either well defined and precise (formal logic, mathematics), or fuzzy. They may be correct or
wrong. They may be used intentionally or unconsciously. Note that even correct inductive
argument may lead to wrong conclusions if premises are not true.

3.4.2 Rational-Inductive Argument in Natural Sciences

In natural and social sciences rational-inductive argument is used to create theories
and formulate hypotheses, which are then proved using experimental or statistical methods
(see sections below).

3.4.3 Rational-Inductive Argument in Theoretic Sciences

In mathematics and all sciences with strong mathematical component (like parts of
computer science), rational-inductive argument is widely used to prove theorems. Numerous
areas of software testing are derived from mathematics. Control-flow testing, path testing,
loop testing, transaction-flow testing and finite-state testing have strong bonds to graph
theory. Domain testing is based on linear algebra and set theory, syntax testing on
metalinguistics. Matrix calculus is sometimes used in configuration testing. Formal logic and
theory of probability are used extensively as well.

3.4.4 When Rational-Inductive Argument is not Enough

Of course, no experimental or statistical backing is needed for them any more than
“two plus two equals four” needs statistical proving by adding twos of different objects!
However, as soon as mathematical theories are used as models of natural phenomena, the
validity of models must be verified with experimentation and statistical calculations.

3.5 Experimentation
3.5.1 Example

Compare the results of two test methods to see which is better.

3.5.2 Experiment Quality: Extraneous Variables

One difficulty is to design experiments is such a way that extraneous variables cannot
influence results, thus hiding the influence of the independent variable.

5

3.5.3 Experiment Quality: Operational Definitions

The example above demonstrates other difficulties. For fuzzy variables like “better
test method” operational definition of variable and its values is needed. Unless exact,
unequivocal and measurable definition is used, conclusions will always be open for
discussion. If operational definitions are formulated early, flaws in experimental design can
sometimes be discovered in advance.

3.5.4 Experiments in Natural Sciences

Experimental method is a de-facto standard in applied sciences including engineering.
If you can make something (an appliance, a piece of software) and it works as expected, you
have proven that your design is correct.

In physics, chemistry and biology the result of one or few experiments may be
enough, too. Unless there are strong reasons to suspect the influence of uncontrolled
extraneous variables, experiments need not be repeated. If the number of suspected
extraneous variables is large, then a number of required trials must be larger to minimise the
probability that the result obtained in one experiment is contrary to what would occur if value
of an unknown variable was different.

3.6 Statistical Methods
3.6.1 Application Area

Statistical methods are used either because our knowledge is incomplete or because
“laws of nature” are statistical. When studying complex enough systems like humans or large
computer systems, only statistical knowledge is available.

3.6.2 Basic Concepts: Correlation and Significance.

Correlation is “a measure of the degree of relationship between two variables”.
There exists for example positive correlation between body height and weight but not a 100%
correlation. One may expect a negative correlation between test coverage and the number of
bugs not found during testing. Actually, most studies about software testing and quality
assurance are typical correlational studies.

Significance is a measure of how likely a result (a correlation, a mean value, or a
difference between two values) is to have occurred by chance alone. This value is of interest
whenever an attempt to make conclusions about some population in general based on a
sample from that population. A number of factors affect significance: sample size, expected
(or known) distribution, standard deviation etc.

Knowing the significance of a result is necessary to be able to predict whether it can
be generalised even to other, similar situations.

3.7 Choosing the Right Verification Method
3.7.1 Experiments for Conclusions about Causality

Experiment results can be used as a basis for conclusions about the existence of
causal relationship. Both experiments that show permanent relationship (gravity makes apples
fall down) and experiments that reveal statistical relationship (boredom causes people to seek
more stimulation) can be used. The important point is to design experiments in such a way
that we are able to draw inferences that changes in the level of independent variable have
caused the corresponding changes in dependent variable.

3.7.2 Observations for Conclusions about Correlation

For observational it is usually not possible to make conclusions about causal
relationship. Only conclusions about the existence of correlational relationship are valid for
them.

6

3.7.3 Different Methods for Different Purposes

There is no telling which method is strongest or best, it depends on what is being
validated, what data is available and - last but not least - what the requirements are.

3.7.4 Pitfalls of Statistics

Statistical methods can be dangerous when used incorrectly, as they give a kind of
false “dignity” to unscientific (and incorrect) conclusions.

4 Common Offences against Scientific Methods

4.1 Confounds
4.1.1 Definition

Confounds are flaws in research design that permit alternative explanations for the
results. Not taking into account possible extraneous variables is a typical confound. Thus,
confounds may – but not always do – lead to false conclusions.

4.1.2 Confounds in Studies about QA

In studying software testing and QA we are more often than not reduced to carry
research on whatever data happens to be available, we cannot design own research nor carry
own experiments.

There exist many kinds of confounds, they are described more in detail in the following
sections.

4.2 Operational Definition
4.2.1 Definition

Operational definition is the exact procedure used to produce a phenomenon or to
measure a variable. For science, operational definitions are what test instructions are for
testing.

4.2.2 Example: Operational Definition of Test Effectiveness

A vital part of software testing is the study of various methods of generating test
cases. They are compared to each other to find out which is most effective. However, an
operational definition of how effectiveness of test methods can be measured is missing.
Actually, no single definition is enough, but a number is needed. The ability to find typical
bugs, the ability to find unusual bugs, the ability to find design bugs, the ability to find
random bugs – all these are different scales.

4.2.3 Operational Definitions in QA - Conclusions

In the research around testing and QA it is prohibitively difficult to formulate
working operational definitions. It means that it is very difficult to be exact in our evaluations
of various test methods. Therefore today these evaluations are based more on experience and
“gut feeling” than on substantial data.

7

4.3 Independent and Dependent Variables
4.3.1 Definition

The variable manipulated by researcher in an experiment is called independent
variable. The variable whose changes are measured (and presumed to be caused by the
changes of independent variable) is called dependent variable.

In study of testing, independent variable can be - for example - the extent to which
formal reviews are used during development, and dependent variable - the ratio of bugs found
before dynamic testing to those found during it.

4.3.2 Variables and Causal Relationship

The important question is whether measured changes in the value of dependent
variable are really caused by manipulating independent variable or are they caused by other,
extraneous variables?

4.3.3 Possible Extraneous Variable

For example, the introduction of formal reviews may force projects to use more
written specifications or to employ more experienced project leaders, which - and not the
review process - could be the real reason for better bug discovery before testing. Such
situation cannot be excluded - even if it feels contrary to what you believe - unless both
groups of projects can be made equivalent in all respects but the different levels of
independent variable (i.e. reviews) – see chapter on group equivalence [8] for more details.

4.4 Internal and External Validity
4.4.1 Definitions

Internal validity of a study and its results is a measure of how well it answers the
actual question. If no metrics from the period before the introduction is available, no reliable
answer to that question can be provided and the study has low internal validity. If those
results are available, the internal validity is higher.

4.4.2 Pre-conditions of External Validity

External validity of a study is the extent to which its results can be generalised
beyond the actual study. For high external validity to exist certain conditions must be
fulfilled:

• some “beyond” must exist, i.e. the study is devoted to a project or product that is
not totally unique

• there is no reason to expect any statistical distribution of the results; i.e. the
relationship is permanent.

• results are statistically significant (for studies which do not fall into the category
above)

Studies with high internal validity can have either high or low external validity, but
not the other way round (low internal validity always entails low external validity).

4.5 Experimental and Control Groups
4.5.1 Example

In experiments, two (or more) values or levels of independent variable are used. For
example, an experiment to check how reviews affect time distribution of bug discoveries may
study two groups/projects: one that uses reviews (experimental group), one that does not
(control group).

8

One widespread problem for experiments and observations in testing and QA is the
lack of control group.

4.5.2 Group Equivalence

In order to minimise the influence of extraneous variables (and thus maximise the
internal validity of studies), experimental and control groups should be as equivalent as
possible with regard do those variables which can be suspected of influencing the results. If,
for example, we have reasons to suspect that engineers’ experience may substantially
influence the results of how successful studied test method is, it is advisable to assure that
experimental and control groups do not differ much in this respect.

4.5.3 Confounds in QA Due to Group Composition

Many difficulties, which decrease internal validity of research in software testing and
QA, arise from the fact that the same group serves first as control group (before introducing
the studied method), then as experimental group (after introducing the method).

4.5.4 Reactivity Problem

Reactivity is the change in behaviour caused by the subject’s knowledge that she is
being studied. In social sciences its effects are called the Hawthorne Effect. The mere
knowledge of the subjects that productivity was studied caused increased productivity,
regardless of other factors! This effect - largely unknown to engineers - certainly may lead to
spectacular positive effects of introducing not only new QA measures but even of simply
gathering metrics.

4.5.5 History Effects

History effects are outside conditions which - unlike extraneous variables - do not
exist permanently but simple happen to occur at the same time when dependent variable is
measured. Events like company acquisition, major market turbulence or radical product re-
design can influence results and effectively hide the relatively smaller change caused by the
independent variable.

4.5.6 Maturation Effects

Maturation effects are changes in measured values of dependent variable due to
reasons like subject experience, tiredness or boredom. If one company department is used for
trying many new QA methods, then after some time of such maltreatment it is bound to stop
reacting to whatever new schemes are inflicted on it.

4.6 Representative Group
4.6.1 Definition

How representative the studied sample is for the whole population is the key for
being able to evaluate external validity. Calculating statistical significance of a finding makes
sense only provided the studied sample is not biased; i.e. that it fairly represents the
population.

4.6.2 Consequences of Non-representative Groups

By failing to take into account that non-representative sample is used, false
assumptions of external validity can be made. It is for practical reasons difficult to do much
about actually choosing more representative samples for the purpose of studying test methods.

4.6.3 Various Populations in QA-studies

Evaluating the effectiveness of test methods or other QA-measures it is necessary to
take into account how “representative” is the situation in which it is applied. This situation is
multi-dimensional i.e. it contains elements from a number of populations.

9

4.6.3.1 The Population of User Activities

How well do test cases reflect what users actually do with the system? This subject is
sufficiently covered by techniques like Statistic User-Based Testing (part of Cleanroom
Engineering) and by Software Reliability Engineering.

4.6.3.2 The Population of Bugs

Example: for some types of bugs increasing statement coverage may yield higher bug
hit ratio, whereas for certain “malicious” bugs even multiple condition coverage may not
bring about any increase in the number of found bugs.

A technique called bug seeding makes small inroads in this direction. This technique
attempts to evaluate test cases (and methods used to generate them) by applying them to
programs with some known (seeded) bugs. What is missing from this technique is the
evaluation of to what extent the seeded bugs fairly represent the population of all bugs. If they
are not representative, then it is invalid.

4.6.3.3 The Population of Systems

This subject is fairly well covered; most test techniques are discussed from this
perspective. However, these conclusions are mainly based on rational-inductive argument or
intuition and cannot be considered as sufficiently proved.

4.6.3.4 The Population of Projects

Example: whether test automation is worthwhile or not does not depend so much on
technical aspects of the tested system but rather on project aspects: lead-times, required
quality, the expected extent of regression testing etc. This particular area is on one hand pretty
well covered by numerous case-studies (“Success/failure story: XX-testing in YY-project at
ZZ-company”), on the other hand this knowledge is chaotic, unstructured and its pieces are
not connected to each other.

4.6.3.5 The Population of Development Techniques

Only isolated pieces of knowledge are available in this area. What test methods work
best for which development paradigms?

4.7 Hypothesis Testing
4.7.1 Example and Definition

Let us assume that we have some data (from a handful of companies) about the
existence of positive correlation between company’s financial results and the percentage of
money it spends on test and QA in its R&D.

Even without making unwarranted conclusions about causal relationship we might
wish to know how significant this finding is, how probable it is that there would be no such
correlation if we took all software companies into account. The statistical technique to be
used is called hypothesis testing. The so-called null hypothesis (in our example, that there is
no correlation in the population in spite of the correlation present in the studied sample) is
formulated. The probability of rejecting true null hypotheses and of failing to reject false null
hypotheses is then calculated.

4.7.2 Significance

Hypothesis testing is central technique for the calculation of statistical significance
(and thus external validity) of findings. Surprisingly, it is hardly ever mentioned in literature
on testing and QA.

10

4.8 Many Variables Involved
4.8.1 Multiple Variables when Studying Testing

Compared to social sciences, research in the realm of testing and QA must cope with
definitely less science-friendly environment for observations and experiments. The
dominance of observational studies over experimental studies has been mentioned already.
Another problem is that the number of variables involved is typically very large, which makes
it much more difficult to discover relationship between any two of them.

4.8.2 Planning for Higher External Validity

Two possible actions can be undertaken to minimise the negative consequences of
this. One, which has already been recommended a few times, is to be more prudent when
drawing inferences about possible relationship between two variables.

The other possible action is - as much as possible - to plan the evaluation,
introduction and follow-up of measures in testing and QA in such a way that the influence of
extraneous variables diminishes or becomes more controllable.

4.9 Consequences and Possibilities
In the previous chapter I have mentioned a number of offences against what can be

called good scientific style, which even technically brilliant authors and speakers commit
sometimes. What are possible practical consequences of these observations?

4.9.1 Testing in Perspective

By the way, this situation is in no way unique to testing, it appears in other applied
sciences too. For example, various management methods or software development methods
could be very appropriate objects for parts of this paper. To take but one example, consider
Object-Oriented Development. Examples can be found outside software industry as well.

4.9.2 Is Software Testing Science?

4.9.2.1 Is There Testology?

Software testing is not an established and separate branch of science, nor – in my
opinion – it will ever be. The same probably applies to testing products of human activities in
general: there is no “testology”, which software testing would be part of. Obviously, many
similarities exist between development testing of mechanical designs (like cars or washing
machines) and testing software systems. Today these two fields keep converging, because
embedded systems become more widespread. Some similarities exist even between software
testing and testing of still other kinds of systems: administrative routines, organisational
structures, distribution systems, architecture, design of traffic flows etc. Interesting lessons for
software industry can surely be learned from studying test methods used in other industries
and I am looking forward to reading or listening to a comparative study of these areas.
However, the existence of a common denominator for these branches does not constitute a
“testology”.

4.9.2.2 Testing is a Skill

Software testing (or even system testing in general) is a practical skill or practical
study, not a science. In software testing, methods borrowed from various established sciences
are used, mixed with a number of practical skills. This fact defines the scope of the
application of scientific rigours for studying software testing: there is no intrinsic requirement
for using them.

11

4.9.3 Advantages of Scientific Discipline

4.9.3.1 Avoiding Pitfalls

However, as we know from everyday experience, using some scientific discipline is
often beneficial even for most mundane, trivial tasks. It simply guards us to some extent
against pitfalls of sloppy thinking, wishful thinking etc.

4.9.3.2 Less Chaos

A lot of chaotic discussions and spurious arguments could be avoided. Subjects like
value of ad-hoc testing, benefits of test automation, strategies for regression testing or the
level of required coverage are objects of heated arguments, which are in a sense futile. No
number of examples, however striking, can prove that - for example - ad-hoc testing is either
always beneficial or always harmful.

4.9.4 Recommendations

4.9.4.1 Difficult to Promote Experiments

For practical reasons, I do not believe there is much sense in promoting more
experimental studies. The costs could be prohibitively huge, the findings probably not very
significant due to a large amount of involved variables. Just imagine starting three or more
parallel versions of one project in order to evaluate different testing methods!

4.9.4.2 Low Predictive Value

On the other hand, from the point of view of non-profit scientific institutions, such
studies would not yield interesting enough “scientific return”. In spite of daunting
organisational complexities, the findings would be rather trivial. These findings would
constitute separate, isolated chunks of knowledge, which could not easily be connected
together into theories. Their predictive value would be tiny.

4.9.4.3 Enhancement of Observational Studies

The quality of observational studies could be significantly enhanced with little
additional cost. A few fundamental rules of design of scientific studies should be applied
when you decide what kind of software, process, project or bug metrics to gather.

4.9.4.4 Comparative Thinking

Simply gathering lots of data that cannot be compared to any other similar data
normally does not allow us to discover trends or to estimate relative effectiveness. Are there
fewer bugs after shipment when the new test tool is used? To get an answer, we need at least
two result data sets.

4.9.4.5 Are Samples Representative?

For example, to be able do draw inferences about relative values of 60%, 80% and
100% coverage we must know that no other variable (like module complexity, programmer
experience or the quality of specifications) has influenced the results.

4.9.4.6 Significance Estimation

To calculate statistical significance is probably hardly ever achievable since it
requires knowledge of the type of distribution of the variable(s) being measured. However, an
intelligent estimate would be acceptable.

12

4.9.4.7 Pitfalls of Unwarranted Conclusions

A typical pitfall for human mind is hasty conclusions about causal relationship: “the
introduction of this method has caused the number of bugs to lessen”. The truth is, as
mentioned previously, that the correlation between the number of bugs and the use of a
certain method has been observed. Such false conclusions are simply not true (more exactly:
we do not know whether they are true or not) and very misleading for readers not prepared to
critically assess the validity of conclusions.

4.9.4.8 “So What?”

It is profitable to try to formulate prudent but general and comparative conclusions
even for most down-to-earth, self-contained case studies. From the point of view of
distributing knowledge, just telling “how we did it” is worth much less than the same
information plus analysis.

4.9.4.9 Open Scientific Standards

We ought to be explicit about what scientific rigours your study has observed (and
keep it in mind while formulating conclusions). This information enables readers to evaluate
internal and external validity of your study.

5 Process versus Product Quality

5.1 The Goal of Quality
5.1.1 Profit is the King

QA gurus and test experts often sound as if quality systems and advanced testing
techniques were goals in themselves. They are not. For private companies, the ultimate goal is
to make money (without breaking against ethical or legal constraints) and to survive in a
competitive environment. The latter requires striking appropriate balance between short-term
financial gains and long-term adaptability.

5.1.2 Profit Components

To make money, market success and competitively low costs are necessary. For
market success, you must be able to deliver what customers want when they want it, and you
must do it at least as well as your competitors. To deliver “right” quality products as
economically as possibly, without sacrificing too much of potential for future development
and improvements, is the ultimate goal of QA.

5.1.3 Test and QA

Testing is an important component of QA. It is not easy to achiever the right balance
between test and other components of QA. Too much testing in comparison to requirement
management, configuration management, security, handling of deliveries, trouble report
handling etc. means that test results are not fully utilised for higher product quality.

5.2 Correlation between Quality and Quality Systems
5.2.1 Quality Systems

A widely accepted method to assure the “economical delivery of right quality” is to
adopt quality system: a system of co-ordinated organisational and technical measures to
support high process, project and product quality in a company.

13

5.2.2 Do Quality Systems Bring Quality?

However, the correlation between various “qualities” (process, project and product)
and quality systems is by no means obvious. Interesting but contradictory success and failure
stories abound, and the (pretty unscientific, often superstition-ridden) quest for the Holy Grail
of economic success goes on. The funny thing is that - while not even a weak correlation is
firmly established - many QA professionals maintain that there exists a causal relationship.

5.3 Negative Effects of Quality Systems
5.3.1 Love and Hate Relation

Most people officially profess their belief in quality systems, at the same time hating
them deeply in private. This hate is by no means irrational: the introduction of quality systems
entails a large number of negative consequences.

5.3.2 Why Hate?

These negative effects are well known to engineers in software industry. You become
less productive as you have to spend a large part of your time with QA-related bureaucracy.
Product changes become more difficult to make, you often choose not to fix a minor bug just
to avoid the hassle involved. The development process becomes more involved in its internal
workings than in trying to satisfy customers. The quality system is so complex that nobody -
except perhaps QA manager high up - understands it fully. Futile and time-consuming
discussions about correct document classes, numbering of product releases, trouble report
statuses etc. entail. The tools used for QA-support cause problems.

5.4 Top-down and Bottom-Up Quality
5.4.1 Size is Important

At the same time, QA is absolutely vital. The problem seems to be the appropriate
dimensioning of quality system. It must address real problems experienced by developers and
low-level managers in order to be accepted and really useful for them. If the system is too
large and comprehensive and some parts of it inadequate to the activities, then the cost of
using it (boredom, irritation, time) will be higher than its advantages. On the other hand, the
cost of not having any (or too little) quality systems is prohibitive, too.

5.4.2 Quality Managers

It is my belief that the reason for this unfortunate situation is that quality systems are
mostly imposed form above. This fact is reflected in situations-vacant column: companies
seek test (or verification) engineers but quality managers. Thus quality systems arrive top-
down, which has a number of negative consequences, some of them mentioned above.

5.4.3 Quality Engineers

A much better solution would be - in my opinion - to introduce quality systems
bottom-up starting from the actual needs of developers as experienced by them. The position
of quality engineer would be a solution. Such person would be well acquainted with all local
quality problems and needs and would solve them in close co-operation with developers.

Test professionals may have in many cases right qualifications to become such
quality engineers.

14

6 Psychology and Sociology of Testing

6.1 Generalities
In the first chapters of this paper an attempt is made to analyse practices used in the

study of software testing (i.e. not in the actual process of testing itself) from the point of view
of scientific methods. Now we take a full turn: the subject matter of this chapter is how some
psychological and sociological theories and concepts can be profitably applied to testing
process. Only minor comments will be devoted to the study of testing.

6.2 The Status of This Chapter
This chapter – psychology and sociology of testing - is a tentative study, which means

that I just give a few examples of possible applications of psychological concepts and theories
to software testing. Probably, a more comprehensive study would reveal more, and maybe
better application areas.

6.3 Cognitive dissonance
6.3.1 Description

The theory of cognitive dissonance• could successfully be applied to study testing and
explain many of the psychological aspects of testing. This theory, together with other theories
belonging to cognitive psychology (a general name for the branches of psychology dealing
with learning and cognitive processes), could be used to describe, explain and predict human
behaviour during testing. Developers build systems and expect them to work, whereas testing
process reveals when they do not work, which means that cognitive dissonance is often
encountered in test situations.

6.3.2 Psychology of Testing

At present we have some quasi-scientific rules for how to organise testing effort,
which attempt to into account psychological factors. “Developers should not test their own
programs”, “testing is creative”, “testing is destructive” etc. Using more systematic approach
based on established psychological theories and following the rules of scientific research, a
more comprehensive set of concepts about the “psychology of testing” could be perhaps
created.

6.4 Constructive Work and Motivation
6.4.1 Creative Work

Human activities have two kinds of motivation: intrinsic (doing something for “its
own sake”) and extrinsic (doing something in order to achieve a desirable goal which is
located outside the actual activity). One of the intrinsic rewards of work situation is the
gratification (satisfaction) derived from creative activity. All disturbances interfering with the
flow of creative activity are experienced as disruptive and avoided. This knowledge
accommodates well known experiences concerning negative attitude of developers towards
testing and consequently historically lower status of test as compared to new development.

• Theory of cognitive dissonance: we are motivated to make adjustments to remove cognitive

dissonance – a negative emotional state set up when two simultaneously held attitudes are inconsistent
or there is a conflict between attitude and behaviour.

15

6.4.2 Re-definition of Test

If these conclusions are true, a radical re-definition of testing is required in order to
make testers and managers alike to experience it as more creative and thus find more intrinsic
rewards in it. Because test automation entails plenty of creative work, it creates intrinsic
incentives for testing effort. This area seems very promising for further studies.

6.4.3 Optimal Stimulation Level

Experimental data indicate that there is an optimal level of stimulation, which people
seek. Too little sensory stimulation is experienced as boredom and more stimulation is sought.
Too much stimulation causes stress and individual attempts to withdraw or otherwise
decrease the level of stimulation. Specifically for test execution as well as test result
evaluation - which are often described as repetitive and boring - ways should be sought to
increase the level of stimulation in this work so that it is more enjoyable for testers.
Alternatively - as stated in numerous articles on automation – one ought to prioritise boring
activities on the list of candidates for automation.

6.5 Security, Anxiety
6.5.1 Basic Concepts

According to widespread opinion and a bunch of psychological theories, one of basic
human needs is the need of security. When this need is not satisfied, people experience
anxiety. Anxieties have various levels. Excessive anxieties characterise many emotional
disorders. A disorder that is of interest here is called obsessive-compulsive disorder, which is
characterised by mounting tension and anxiety, which is temporarily relieved by giving in to
compulsive, repetitive, ritualistic behaviour.

6.5.2 Neurosis of Testing

All this has some bearing to testing. Apart from fully rational motives, part of the
explanation why customers want tested and secure systems is emotional: we do not like
insecurity and unpleasant surprises. The same applies to vendors: delivering untested products
creates anxiety, which we want to avoid. This is probably why the myth of “exhaustive
testing” is so strong. It appeals to our deep anxieties. It might be the reason for why the notion
of statistic testing and the measure of MTBF are accepted only unwillingly: known, measured
risk feels greater than unknown.

6.6 Reviews
6.6.1 Advantages

On one hand, there is plenty of data indicating that potential for quality improvements
to be achieved through more extensive use of formal reviews and inspections is huge.

6.6.2 Internal Contradictions

On the other hand, although complex and detailed review techniques exist and are
widely discussed, basic contradictions of review have not been solved. You are expected to
appraise by means of reading and discussion (provided used method allows for the latter)
complex algorithms or design that has taken their author weeks to produce.

6.6.3 External Impediments

There exist a number of external impediments to effective reviews as well. Whatever
is said about team spirit, organisations recognise, promote and reward employees on the merit
of their own achievements, not on how good reviewers they are.

16

6.6.4 Group Dynamics

6.6.4.1 Definition

Group dynamics is the study of what happens in groups, with emphasis on power,
leadership, cohesiveness and decision-making.

6.6.4.2 Negative Aspects of Group Dynamics

Group pressure influence members to adjust their views to conform with those of the
group, as the famous Asch conformity experiment amply demonstrates.

Group solidarity develops easily and may cause the development of goals not
concurrent with the goals of a larger organisation.

“Groupthink” appears when the need to achieve consensus takes priority over the
motivation to obtain true knowledge and make optimal decisions. There are many examples
of disastrous decisions taken by competent groups because of this phenomenon.

Group polarisation is the tendency for the individuals in a group to take more
extreme attitudes as group members than they held individually.

Generally, there are many negative consequences of acting in groups; whereas
literature on reviews generally emphasises gains, which is a dangerous fallacy.

6.6.5 Problem Solving: Algorithms and Heuristics

The basic contradiction of review process is that heuristics is used to verify
algorithmic designs. I have no proposal how to eliminate this serious cognitive flaw. One
cannot help wondering whether one reviewer studying the object of review for a week would
not do a much better job than seven people riffling through it during one day and making a
spectacle of pretending to understand!

6.6.6 Personal Interests and Goals (Holland’s Theory)

Holland divides occupational interests into six basic groups: realistic (engineering,
outdoors), investigative (science), artistic, enterprising (sales, politics, PR), social (work with
people in helping ways) and conventional (organised work like clerical or accounting).
According to Holland, people seek tasks that match their interests, and avoid tasks that do not.

Serious consideration should be given to the possibility of choosing reviewers
(perhaps even “professional reviewers”, whose main task would be reviewing?) according to
their occupational preferences, not only their technical skills.

6.6.7 Conclusions

Let organisational and social psychologists critically assess existing review
techniques. Advocate experimental studies in this area.

6.7 Why is QA Boring?
6.7.1 Some Possible Explanations

One possible explanation may be the same as in the chapter “Constructive Work and
Motivation” above: that QA measures are in a sense disruptive for creative work with its
intrinsic gratification and therefore create negative emotions.

Another explanation could be that QA-related activities are repetitive and routine,
therefore boring.

Third explanation could be based on Holland’s theory (see 6.6.6). QA-work requires
perhaps “conventional interests”, while developers have realistic interest?

17

However, the point is not in inventing numerous more or less plausible explanations,
but to provide tool for structured analysis.

6.7.2 Hackman’s Model: Description

Hackman’s model of work design could be useful for this purpose. This model
describes job content using five dimensions. For a particular job or task, scores it gets on skill
variety, task identity and task significance scales define together the meaningfulness of work.
The level of autonomy defines experienced responsibility for outcome and existing feedback
defines knowledge of the results.

6.7.3 Hackman’s Model: Application

Neither detailed description of Hackman’s model (one of many competing models
within organisational psychology) nor the solution of the boredom dilemma is my goal here.
Using Hackman’s theory as an example, I want to illustrate how much can be gained by
applying established psychological theories for the analysis of numerous problems in QA and
testing.

6.7.4 How to Enhance “Job Quality”

The model contains rules on how to change job dimensions in order to obtain higher
job quality, or higher M.P.S. They encompass combining tasks (increases skill variety and
task identity), using natural work units, establishment of client relationship (influences skill
variety, autonomy and feedback), “vertical loading” (closing the gap between doing and
controlling – this really has strong relationship with actual QA-problems) and improving
feedback channels.

7 Psychology of Usability

7.1 Current Status
7.1.1 Real Engineers Read Binary Dumps

For many engineers, “psychology of usability” or “user-friendliness” seems esoteric,
fuzzy subject, with no practical application.

7.1.2 Hostile Technology

A growing number of devices become increasingly user-unfriendly, devilishly
difficult to use intuitively. Accidents, routinely attributed to “human error”, happen in reality
because erroneous design of the user-interface has made this accident probable in the first
place.

7.1.3 Bad Design is Contagious

As mechanical and software appliances increasingly grow together into embedded
systems, the worst habits of software industry of producing bad MMI infect other industries.
A car radio produced twenty years ago with its obvious and user-friendly knobs and buttons is
much easier to operate than any modern car radio.

7.1.4 Describe a Talon, Ignore the Dragon

The study of user-friendliness and the so-called “usability testing” is today mostly
confined to the study of software MMI, especially GUI, and not to the usability of the whole
systems in their social and organisational environment. Such comprehensive studies are
sometimes made (on already installed systems) by academic institutions, but seldom by
vendors before delivery. A piece of software is hardly ever friendly or unfriendly itself, but
this quality emerges in interaction with how and for what purpose it is used by end-users.

18

7.1.5 MSc in Usability?

No coherent theory on “appliance usability” exists today. However, some authors
have managed to identify a series of important characteristics that influence usability. In the
following section I borrow heavily from “The design of everyday things” by D. Norman.

7.2 Checklist: Some Factors of Usability
7.2.1 Intuitive Usage

The form of an appliance should somehow invite the user to perform an appropriate
action. Whenever users have to turn a gadget around in order to find some tiny and hidden
key to open it or switch it on, this factor is not realised properly. Example: find a switch to
turn on a copier.

7.2.2 Models

The design of the interface should hide all implementation complexities and support
simplified user model instead. Finite-state testing could be used for testing this. Example:
buttons to operate telephones.

7.2.3 Visibility

Sensitive areas should be clearly visible, possible actions properly marked. Syntax
testing could be utilised for testing or modelling the complexity (perhaps unnecessary and
confusing) of the “protocols” (for example, sequences of button pressing) that are necessary
for controlling appliances.

7.2.4 Mapping

The location of controls should in some intuitive, “natural” way map to the results or
controlled objects. The classical example of unnatural (arbitrary) mapping is stove controls.
Almost all consumer electronics appliances today have extremely user-unfriendly mapping
between controls and the results of their actions.

7.2.5 Feedback

It must be easy and obvious to see in what mode a device or system currently is, or
what the results of one’s actions are. If you press a key, you expect a visible result of your
action and no guesswork regarding what is the current status of the device.

7.2.6 Social Pressures

Sadly, end-users have developed a tendency to blame themselves for errors caused by
design deficiencies and do not exert enough pressure on vendors. As long as this attitude
remains unchanged, there are no immediate financial rewards for producers who deliver
better, more friendly design.

7.2.7 Designer Terrorism

A special form of social pressure is what may be called “designer terrorism”.
Designers inflict on us designs, which may be aesthetically pleasing but are not functional.
An object whose form does not tell us whether it is a telephone, an alarm clock or a kitchen
appliance may be original, but definitely not functional and not intuitive.

7.2.8 Human Errors and Natural Constraints

Many designs are made so that they do not allow for users’ errors. The “cancel”
options are missing or insufficient, and error consequences are unreasonably catastrophic.

7.3 Conclusions
Companies engage at present in futile competition in unnecessary features that are not

really required by customers, even if today’s customers are conditioned to declare they wish

19

them. At the same time there seems to exist a huge potential of hidden demand for devices
that are intuitive and not frustrating.

The connection between desirable design features on one hand, and QA and testing
on the other hand, is that it is possible for QA to influence (during requirement analysis) the
design process in this direction. Testing could act as an agent of improvement by developing
and using methods for broader usability testing.

8 References
Agresti, A., & Finlay, B. (1986). Statistical methods for the social sciences. San Francisco:
Dellen.

Beizer, B. (1984). Software system testing and quality assurance. New York: Van Nostrand
Reinhold.

Beizer, B. (1995). Black-box testing: techniques for functional testing of software and
systems. New York: John Wiley & Sons.

Berne, Eric, M. D. (1978). Games people play: the psychology of human relationships.

Festinger, L. (1957). A theory of cognitive dissonance. New York: Harper

Gilb, T., Graham, D., Finzi, S. (1993). Software inspection. Perseus Pr.

Hackman, R. (1991). Work design. In: R. Steers and L. Porter Motivation and work
behaviour. McGrow-Hill.

Hetzel, B. (1988). The complete guide to software testing. Wellesley: QED Information
Sciences.

Holland, J.L. (1973). Making vocational choices: a theory of careers. Englewood Cliffs, New
Jersey: Prentice Hall.

Janis, I. L. (1990). Groupthink. In: P. Chance and T,G. Harris The best of psychology today
magazine. New Yoirk: McGrow-Hill.

Kaner, C., Falk, J., Hung Quoc, N. (1993). Testing Computer Software. New York: Van
Nostrand Reinhold.

NFI Quality A/S. (1997). TickIT auditors’ training course (course material).

Norman, Donald A. (1988). The design of everyday things. New York: Currency Doubleday.

Reber, Arthur S. (1995). Dictionary of psychology. Penguin Books.

Rubin, J. (1994). Handbook of Usability Testing. New York: John Wiley & Sons.

Schweigert, Wendy A. (1994). Research methods & statistics for psychology. Pacific Grove:
Brooks/Cole Publishing Company.

Systems Modelling Ltd. 10/14/98 1

The euro project for I.S.

• Conflict with Y2K
• Business Requirements
• Project management
• Quality assurance

Patrick O’Beirne
pobeirne@sysmod.ie

Systems Modelling Ltd. 10/14/98 2

Timetable for the euro

 1997 1998 1999 2000 2001 2002 2003

Assess
Convergence

Participating
States Chosen
ECB established

Announcement
of bilateral rates

No compulsion / no prohibition

Introduction of
euro banknotes
and coins
Retail activity

Withdrawal
of national
notes &
coins

Dual
period

Conversion rates locked
Euro becomes a currency
Wholesale activity in euro

Y2K

Systems Modelling Ltd. 10/14/98 3

The IS Manager’s view

Sales Purchasing

Accounts

I.S.

Operations

Systems Modelling Ltd. 10/14/98 4

Project planning

u Strategic preparation
u Project Team
u Trading partners synchronisation
u Information systems changeover
u Overlap with Year 2000 project

– Share scarce resources
– Plan together, deliver separately

u User Training

Systems Modelling Ltd. 10/14/98 5

Year 2000 & euro projects

• Year 2000
– Maintenance project
– Fixed deadline
– No functionality

change
– regression tests
– future date testing
– No fallback

• Euro changeover
– Strategic decisions
– Transition period
– New functionality user

training
– regression tests
– New func. testing
– Fallback

Combination may exceed management capacity

Systems Modelling Ltd. 10/14/98 6

Y2K & Euro conflict
• “One of the worst public policy decisions in

human history” (Capers Jones)
– "Resource Conflicts Between the Year 2000 and Euro Currency

Software Problems" (Year 2000 Journal, Jan/Feb 1998)

– “Dangerous Dates for Software Applications”
http://www.comlinks.com/mag/ddates.htm

• “EMU & the Y2K Gamble” (Peter de Jager)
– The added burden is unreasonable, and considering the

consequences of failure, foolhardy
– http://www.year2000.com/y2kgamble.htm

Systems Modelling Ltd. 10/14/98 7

Questions

• Raise your hand if you have a high degree
of confidence in your ability to deliver the
Y2K project on time

• Raise your hand if over the past three years,
you have delivered 100% of your
applications on time

• 80% .. 60% ... 40% ?

Systems Modelling Ltd. 10/14/98 8

Gartner Group

• “Billions of lines of code to be changed
• Estimated $1.10 to fix each line of code
• Adding the euro character to font sets, printer

drivers, keyboards, ATMs, cash registers
• We're talking about taking all of this

information and changing it all, it's crazy”

Systems Modelling Ltd. 10/14/98 9

Giga Group

– “Almost every system falls over when it has to
do triangulation, the computer starts to choke

– all systems will have to be able to account for
six significant decimal places

– sound like nit-picky little problems but each
one of them will kill you

– if a company converts its history, the numbers
become almost meaningless”

Systems Modelling Ltd. 10/14/98 10

Businessweek

• GETTING READY FOR THE EURO BUG
• A scary fact: That transition period, designed to

coddle consumers, poses all sorts of frightening
conundrums for computer systems

• The challenges range from the mundane ... coming
up with a computer key for the euro symbol,

• to inserting the most abstruse mathematics into
software.

• http://www.businessweek.com/premium/13/b3571164.htm

Systems Modelling Ltd. 10/14/98 11

Manage the risk

“Managing the risk in euro currency
conversions”
– Patrick O’Beirne, Cutter IT Journal June 1998
– Most processing currency-independent
– Look for input , exchange & output functions

http://www.iol.ie/sysmod/euroriskarticle.htm

Systems Modelling Ltd. 10/14/98 12

Manage the Requirements
• Opportunities for new products
• Opportunities marketing / customer service
• What Customers want (euro-friendly?)
• What Suppliers will do (power balance?)
• What Competitors could do
• What your Bank can do for you
• What legal requirements will be imposed
• Accounting standards

Systems Modelling Ltd. 10/14/98 13

Changeover options
• Manual (Single currency + calculator)

• Parallel (Not integrated)

• Modify (Risk of introducing more problems)

• Replace with multi-currency
• Dual base currency?
• Timing

Systems Modelling Ltd. 10/14/98 14

Systems that need conversion

• All financial systems, Treasury mgmt
• EDI & Dependence on external information

providers - stock exchange feed, bureau services
• Inventory, work-in-progress, Assets
• Costing, Budgeting, DSS, Planning
• End-user developed applications
• Cash registers, specialised hardware
• Vending, note & coin handling machines

Systems Modelling Ltd. 10/14/98 15

Conversion

• Big Bang or Gradual
• End of year considerations
• Timing w.r.t. partners changeover
• Time lags in account changeover of open items

orders /deliveries /invoices /payments /statements
• Print hard copies as audit trail evidence
• Historical databases & normalisation

Systems Modelling Ltd. 10/14/98 16

Other issues

• Customer special price lists
• Revaluation of thresholds / bands
• Payroll, taxes, staff education
• Dependence on external service providers

of information systems - e.g. stock
exchange feed, bureau services

Systems Modelling Ltd. 10/14/98 17

Web Sources
• Information Systems guidelines at
http://www.ispo.cec.be/y2keuro

• Federation of European Accounting Experts
http://www.fee.be

• Frequently Asked Questions answered
http://www.iol.ie/sysmod/eurofaq.htm

• Articles on EMU and I.T. :
– http://www.iol.ie/sysmod/emu.htm

Systems Modelling Ltd. 10/14/98 18

What we know
uu80% of s/w projects are late80% of s/w projects are late

–– The Year 2000 project must not be lateThe Year 2000 project must not be late
–– The Euro changeover may be negotiableThe Euro changeover may be negotiable

uu10% of new code contains defects10% of new code contains defects
–– 10% of the fixes will too10% of the fixes will too

FFetc. etc.etc. etc.

Graphic: Chemical Engineering July’97Graphic: Chemical Engineering July’97

Systems Modelling Ltd. 10/14/98 19

Classic mistakes (Steve McConnell, “Rapid Development”)

Systems Modelling Ltd. 10/14/98 20

Software quality

uuPreventing errors is cheaper than fixingPreventing errors is cheaper than fixing

uuCode review is the most effectiveCode review is the most effective

uuDo you believe “Quality is free”?Do you believe “Quality is free”?

Systems Modelling Ltd. 10/14/98 21

The Personal Software ProcessThe Personal Software Process

uuResults from a course given at theResults from a course given at the Centre Centre
for Software Engineering, DCU, Dublinfor Software Engineering, DCU, Dublin

• Defects reduced by 75%
• No change in productivity
• Therefore quality is free!
• How is it done? - Code Review

Systems Modelling Ltd. 10/14/98 22

Group average defect rate

1 2 3 4 5 6 7
0

20

40

60

80

100

120

140

1 2 3 4 5 6 7

Total Defects/KLOC
Test Defects/KLOC

Systems Modelling Ltd. 10/14/98 23

Group productivity LOC/hr

0

5

10

15

20

25

30

35

40

Systems Modelling Ltd. 10/14/98 24

Cost of Quality measures
Appraisal = (Des.Rev+Code Rev) / Total time

Failure = (Compile+Test) / Total time

1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7

Failure COQ %
Appraisal COQ %

Systems Modelling Ltd. 10/14/98 25

Conclusion

•• The only way to meet the Year 2000 andThe only way to meet the Year 2000 and
euroeuro challenges is to do it right, on time. challenges is to do it right, on time.

•• Manage theManage the euro euro requirements requirements
•• Manage Y2K : Replace/Repair/RetireManage Y2K : Replace/Repair/Retire
•• Define the processDefine the process
•• Measure the performance - pilot firstMeasure the performance - pilot first
•• Re-plan, re-budget, re-assess.Re-plan, re-budget, re-assess.

Systems Modelling Ltd. 10/14/98 26

Systems Modelling Ltd. Suite 2, Villa Alba
Tara Hill, Gorey, Co. Wexford, Ireland

Tel: +353 55 22294 Fax: +353 55 22297
http://www.iol.ie/sysmod

1

BrusselsestraatBrusselsestraat 125 125
B-3000B-3000 Leuven Leuven
Tel.: +32-16-310880Tel.: +32-16-310880
Fax: +32-16-310888Fax: +32-16-310888
e-mail:e-mail: ps ps_testware@_testware@compuservecompuserve.com.com

putting method into practiceputting method into practice

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 2

AgendaAgenda

•• psps_testware_testware
•• IntroductionIntroduction
•• ConversionConversion model model
•• ImplementationImplementation model model
•• Metrics Metrics & & ReportsReports
•• ToolsTools
•• QuestionsQuestions

2

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 3

psps_testware_testware

•• StartedStarted in 1991 in 1991
•• 1993:1993: Tools Tools & &

technicaltechnical services services
–– Tool Tool TrainingTraining
–– CoachingCoaching

•• 1995: Services1995: Services
around Methodsaround Methods
–– ConsultancyConsultancy

•• 1996: Software1996: Software
TestingTesting Services Services
–– TestTest Assignments Assignments
–– Test PlanTest Plan
–– Test ReportTest Report

•• 1997: Software1997: Software
Testing Testing ServicesServices
SuiteSuite
–– Test Test AssessmentsAssessments
–– Y2K trainingY2K training
––

666

666

555

202020

20 + 20?20 + 20?
20 + 20?

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 4

ProductsProducts

•• ToolsTools: Training and: Training and Implementation Implementation
–– Cyrano-Test (V-Test)Cyrano-Test (V-Test)
–– MERCURY: (MERCURY: (WinRunnerWinRunner,, TestDirector TestDirector))
–– Rational products Rational products (Preview, (Preview, RequisiteProRequisitePro,SQA,…),SQA,…)

•• ServicesServices
–– TrainingTraining
–– CoachingCoaching
–– ConsultancyConsultancy
–– OutsourcingOutsourcing

3

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 5

TESTING THE YEAR 2000TESTING THE YEAR 2000

??

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 6

AgendaAgenda

•• psps_testware_testware
•• IntroductionIntroduction
•• ConversionConversion model model
•• ImplementationImplementation model model
•• Metrics Metrics & & ReportsReports
•• ToolsTools
•• QuestionsQuestions

4

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 7

GoalGoal

–– Real Time representation must work forReal Time representation must work for
past, present and future situations.past, present and future situations.

–– Business as usualBusiness as usual

© 1998 ps_testware - Jens Pas - naam klant - 19 januari 1998 - 8

The Method

5

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 9

Impact AnalysisImpact Analysis

How to Proceed 1/7?How to Proceed 1/7?

11 22 33 44 55 66

Project Strategy

Make Inventory

Modify

TEST ?

Triage/Prioritisation

S
o
l
u
t
i
o
n

T
e
s
t
I
n
g

Solution >> TestingSolution >> TestingUSUALLY ADOPTEDUSUALLY ADOPTED

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 10

How to Proceed 2/7?How to Proceed 2/7?

Impact AnalysisImpact Analysis

11 22 33 44 55 66

Project Strategy

Make Inventory

Modify

TEST ?

Triage/Prioritisation

Test

Test

Test

Test

Test

SOLUTION = TESTINGSOLUTION = TESTINGA BETTER SOLUTIONA BETTER SOLUTION

6

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 11

Rapid Conversion Testing (RCT)Rapid Conversion Testing (RCT)

MAKE SUPER EFFICIENT TESTS :

“the right action at the right time by the right actor”

MAKE SUPER EFFICIENT TESTS :

“the right action at the right time by the right actor”

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 12

Project Strategy Test

Project StrategyProject Strategy

Impact AnalysisImpact Analysis

11 22 33 44 55 66

Make Inventory

Modify

Triage/Prioritisation

Test

Test

Test

Test

Project Strategy Test

7

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 13

In
su

ra
nc

e ?

Legal Aspects ?

How to Proceed 3/7 ?How to Proceed 3/7 ?

PROJECT STRATEGYPROJECT STRATEGY

Make InventoryMake Inventory

Who ? Experience ?

Responsibilities ?

Resources allowed ?

Number man/hr ?

Organisation ?

Skills ? Budget ?STRATEGY

TEST

ASSESS

STRATEGY

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 14

Assess Strategy

Impact AnalysisImpact Analysis

A New ModelA New Model

11 22 33 44 55 66

Project Strategy

Make Inventory

Modify

Triage/Prioritisation

Project Strategy Assess Strategy

Test

Test

Test

Test

8

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 15

AgendaAgenda

•• psps_testware_testware
•• IntroductionIntroduction
•• ConversionConversion model model
•• ImplementationImplementation model model
•• Metrics Metrics & & ReportsReports
•• ToolsTools
•• QuestionsQuestions

© 1998 ps_testware - Jens Pas - naam klant - 19 januari 1998 - 16

The The psps__testwaretestware method method
for conversion testing (Y2K)for conversion testing (Y2K)

The Model The Model V

9

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 17

The The ModelModelV

Modify Regression TestRegression Test

Triage/PrioritisationTriage/PrioritisationTriage/PrioritisationTriage/Prioritisation

Make Inventory

Impact Analysis

Inventory TestInventory Test

Impact TestImpact Test

Modify Regression TestRegression TestModify Regression TestRegression Test

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 18

The The ModelModelV

Modify Regression TestRegression Test

Triage/PrioritisationTriage/PrioritisationTriage/PrioritisationTriage/Prioritisation

Impact Analysis

Make Inventory Inventory TestInventory Test

Impact TestImpact Test

Make Inventory Inventory TestInventory Test

Modify Regression TestRegression TestModify Regression TestRegression Test

10

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 19

SOURCES?

A
na

ly
sis

Docum
entation

How to Proceed 4/7 ?How to Proceed 4/7 ?

Project Strategy

Make Inventory

Impact Analysis

Compilers ? Versions ?

Software ? Functionalities ?

Resources ? System ?

Hardware ?

Languages ?

Inventory

Test
FURH

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 20

FURH ???FURH ???

•• Functional RequirementsFunctional Requirements
•• application functionality the user requires toapplication functionality the user requires to

perform his daily businessperform his daily business

•• UserUser
•• the person who will use the application, forthe person who will use the application, for

whom the software is designedwhom the software is designed

•• HierarchyHierarchy
•• a representation in a formal and structured waya representation in a formal and structured way

that takes order and sequence into accountthat takes order and sequence into account

REG TEST
REG TEST

INV TEST
INV TEST

IMP TEST
IMP TEST

TRIAGE
TRIAGE

11

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 21

FURH (continued)FURH (continued)

New Modify Delete

Current .../...

Accounting

.../...

User

.../...

Bank

Administration

.../...

.../...

.../...

.../...

Management

History Charts

Reporting

PERSONAL
BANKING

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 22

The The ModelModelV

Modify Regression TestRegression Test

Triage/PrioritisationTriage/PrioritisationTriage/PrioritisationTriage/Prioritisation

Make Inventory Inventory TestInventory Test

Impact Analysis Impact TestImpact TestImpact Analysis Impact TestImpact Test

Modify Regression TestRegression TestModify Regression TestRegression Test

12

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 23

Sys
tem

 ?

Number of lines?

A
na

ly
sis

O
ccurrences ?

Date m
anipulation

D
ate calculation LOC ?

Technical complexity

D
at

e
co

nc
en

tr
at

io
n

Dependency
Date ?

How to Proceed 5/7 ?How to Proceed 5/7 ?

Inventory

Impact Analysis

Triage/Prioritisation

Resources ?

 Impact
Test

I(FURH)

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 24

I(FURH) ???I(FURH) ???

–– Business activity that uses or requires datesBusiness activity that uses or requires dates

–– Tagged FURH as verification of technicalTagged FURH as verification of technical
impact analysisimpact analysis

–– Business activities at the light of :Business activities at the light of :
•• criticalitycriticality
•• costcost
•• Y2K concernY2K concern

REG TEST
REG TEST

INV TEST
INV TEST

IMP TEST
IMP TEST

TRIAGE
TRIAGE

13

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 25

The The ModelModelV

Modify Regression TestRegression Test

Triage/PrioritisationTriage/Prioritisation

Make Inventory Inventory TestInventory Test

Impact Analysis Impact TestImpact Test

Modify Regression TestRegression TestModify Regression TestRegression Test

Triage/PrioritisationTriage/PrioritisationTriage/PrioritisationTriage/PrioritisationTriage/PrioritisationTriage/Prioritisation

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 26

Time Resources

Com
plex

ity

Cost

Business Critical

How to Proceed 6/7 ?How to Proceed 6/7 ?

Impact Analysis

Triage/Prioritisation

Modify

Business critical
Triage /

Prioritisation
P(I(FURH))

14

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 27

Triage/PrioritisationTriage/Prioritisation

•• Business criticalBusiness critical

– Now (no delay, do it !) (no delay, do it !)

– Later (not so critical, can wait some time) (not so critical, can wait some time)

– Never (no more in use, drop it) (no more in use, drop it)

IMPACT
IMPACT

MODIFICATION
MODIFICATION

INVENTORY
INVENTORY

TRIAGE
TRIAGE

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 28

The The ModelModelV

Triage/PrioritisationTriage/PrioritisationTriage/PrioritisationTriage/Prioritisation

Make Inventory Inventory TestInventory Test

Impact Analysis Impact TestImpact Test

Modify Regression TestRegression TestModify Regression TestRegression TestModify Regression TestRegression Test
Modify Regression TestRegression TestModify Regression TestRegression TestModify Regression TestRegression TestModify Regression TestRegression Test

15

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 29

Testability

Coverage

Test everything

Test data

Structure
Cho

ice
s

How to Proceed 7/7 ?How to Proceed 7/7 ?

11 22 33 44 55 66
Modify

Triage/Prioritisation

Regression

Tests
TRH

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 30

Test Requirements HierarchyTest Requirements Hierarchy
Test Requirements Hierarchy

No previous version

Previous version

Valid install conditions

Invalid install conditions

Physical installation

Identification of the product

Installation documentation

Set-up program

Quality

Installation

Invalid User ID

Beginning of the application

Creation of Users/Groups

Administration

general functions

Definition of a sales point

Definition of a supplier

Definition of a customer

Registration of a sale

Business functions

Functionality

WIndows 95

Windows NT (Client)

Windows NT (Server)

Configuration

Memory interruption

Stress interruption

Crash test

REG TEST
REG TEST

INV TEST
INV TEST

IMP TEST
IMP TEST

TRIAGE
TRIAGE

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 30

Test Requirements HierarchyTest Requirements Hierarchy
Test Requirements Hierarchy

No previous version

Previous version

Valid install conditions

Invalid install conditions

Physical installation

Identification of the product

Installation documentation

Set-up program

Quality

Installation

Invalid User ID

Beginning of the application

Creation of Users/Groups

Administration

general functions

Definition of a sales point

Definition of a supplier

Definition of a customer

Registration of a sale

Business functions

Functionality

WIndows 95

Windows NT (Client)

Windows NT (Server)

Configuration

Memory interruption

Stress interruption

Crash test

REG TEST
REG TEST

INV TEST
INV TEST

IMP TEST
IMP TEST

TRIAGE
TRIAGE

16

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 31

Practical Testing AspectsPractical Testing Aspects

•• Do not Do not onlyonly use “real” data for testing Y2K use “real” data for testing Y2K
•• Equivalence partitioning Equivalence partitioning vsvs. whole database. whole database
•• Boundary values and intermediateBoundary values and intermediate
•• Do not test everythingDo not test everything
•• Code coverage complementary to FURH andCode coverage complementary to FURH and

TRHTRH
•• …/...…/...

REG TEST
REG TEST

INV TEST
INV TEST

IMP TEST
IMP TEST

TRIAGE
TRIAGE

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 32

The The ModelModelV

Triage/PrioritisationTriage/PrioritisationTriage/PrioritisationTriage/Prioritisation

Make Inventory Inventory TestInventory Test

Impact Analysis Impact TestImpact Test

Modify Regression TestRegression TestModify Regression TestRegression TestModify Regression TestRegression Test
Modify Regression TestRegression TestModify Regression TestRegression TestModify Regression TestRegression TestModify Regression TestRegression Test

ClusterCluster

Define ClusterDefine Cluster

Modify ModuleModify Module Module TestModule Test

Integration TestIntegration Test

Cluster TestCluster Test
ClusterCluster

Define ClusterDefine Cluster

Modify ModuleModify Module Module TestModule Test

Integration TestIntegration Test

Cluster TestCluster Test
ClusterCluster

Define ClusterDefine Cluster

Modify ModuleModify Module Module TestModule Test

Integration TestIntegration Test

Cluster TestCluster Test

CLUSTERS INTEGRATION TESTCLUSTERS INTEGRATION TEST

17

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 33

The The ModelModelV

•FURH = Functional User Requirements Hierarchy
•I(FURH) = FURH after Impact (time involvment in business)
•P(I(FURH)) < FURH (less functionality requirements; base for testing)
•TRH = Test Requirements Hierarchy

•FURH = Functional User Requirements Hierarchy
•I(FURH) = FURH after Impact (time involvment in business)
•P(I(FURH)) < FURH (less functionality requirements; base for testing)
•TRH = Test Requirements Hierarchy

Modify Regression TestRegression Test

Triage/PrioritisationTriage/PrioritisationTriage/PrioritisationTriage/Prioritisation

Make Inventory

Impact Analysis

Inventory TestInventory Test

Impact TestImpact Test

Modify Regression TestRegression TestModify Regression TestRegression Test

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 34

AgendaAgenda

•• psps_testware_testware
•• IntroductionIntroduction
•• ConversionConversion model model
•• ImplementationImplementation model model
•• Metrics Metrics & & ReportsReports
•• ToolsTools
•• QuestionsQuestions

18

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 35

Implementation Implementation model: 3 model: 3 phasesphases

FollowFollow--upup

ExecutionExecutionDevelopmentDevelopmentPlanningPlanning

TestTest RepairRepair RetestRetestScopeScope PlanPlan ProjectProject BuildingBuilding

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 36

AgendaAgenda

•• psps_testware_testware
•• IntroductionIntroduction
•• ConversionConversion model model
•• ImplementationImplementation model model
•• Metrics Metrics & & ReportsReports
•• ToolsTools
•• QuestionsQuestions

19

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 37

MetricsMetrics

–– % Passed Product% Passed Product

–– ThroughputThroughput

Number of procedures designed
Number of procedures scripted
Number of procedures executed

Number of procedures designed
Number of procedures scripted
Number of procedures executed

The pace at which the process
produces solved errors
The pace at which the process
produces solved errors

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 38

MetricsMetrics

–– Test maintainability (%)Test maintainability (%)

–– Test wasteTest waste

TO = TO =
Man-Man-daysdays test test maintenance maintenance

Man-Man-daysdays test design test design
) x100) x100(1 -(1 -

TV = TV =
 Man- Man-daysdays test repair test repair

Man-Man-daysdays test test creationcreation
x100 x100

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 39

Weekly Weekly ProgressProgress Report Report
Weekly test progress report

Project ID CCC/nnn Date 24/04/1997
Project title This is an example weeknr. 199717

Start date 30/03/1997 Laptime spent 9%
End date 31/12/1997

1. Goal achievement

Test Requirement Coverage

Number of test requirements 102

Design coverage 72%
Test coverage 72%

Passed product 70%

2. Test quality

Effectiveness This week Total index Plan Total Plan
Are we doing the right thing ? (hours) (T days) (T days)

Number of defects 46 8

Hours of test preparation 0,0 5,0 13% 40,0
Hours of test planning 6,0 15,0 13% 120,0

Hours of test design 4,0 24,0 9% 280,0
Hours of testing 0,0 23,0 14% 160,0

Hours of test repairing 4,0 15,0 38% 40,0
Hours of defect tracking 2,0 6,0 8% 80,0

Hours of Maintenance 9,0 14,0 18% 80,0
Hours of Overhead 1,0 15,0 19% 80,0

Total 26,0 117,0 13% 880,0 18 110
16%

Efficiency This week Total index Plan
Are we doing the thing right ?

Average hours/day 6,5 6,7 84% 8
Test maintainability -125% 42% 58% 71%

Test spoilage 15% 13% 282% 5%
Overhead 4% 13% 141% 9%

Defect throughput (per day) 0,40 0,40
Defect detection rate (per day) 1,84 0,32

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 40

Weekly Weekly ProgressProgress Report Report
3. Constraints analysis

0. New 20
1. Pend. Invest. 2
2. Pend. Distr. 0
3. Pend. Repair 7
4. Pend. Rep. Valid. 5
5. Pend. Freeze Valid. 1
6. Froozen 1
7. Solved 10

Defect distribution

20

2
0

7
5

1 1

10

0

5

10

15

20

25

0. New 1. Pend.
Invest.

2. Pend. Distr. 3. Pend. Repair 4. Pend. Rep.
Valid.

5. Pend. Freeze
Valid.

6. Froozen 7. Solved

N
r.

 o
f d

ef
ec

ts

Defect trend (1)

0
10
20
30
40
50

19
97

14

19
97

15

19
97

16

19
97

17

19
00

01

19
00

01

19
00

01

19
00

01

19
00

01

19
00

01

19
00

01

19
00

01

19
00

01

19
00

01

19
00

01

19
00

01

19
00

01

19
00

01

19
00

01

N
r.

 o
f d

ef
ec

ts

Total
7. Solved

Defect trend (2)

0
10
20
30
40
50

19
00

01

19
00

01

19
00

01

19
00

01

19
00

01

19
00

01

19
00

01

19
00

01

19
00

01

19
00

01

19
00

01

19
00

01

19
00

01

19
00

01

19
00

01

19
00

01

19
00

01

N
r.

 o
f d

ef
ec

ts

Total
7. Solved

21

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 41

RelativeRelative Quality MeasurementQuality Measurement SW SW

•• Defect Removal Effectiveness (DRE)Defect Removal Effectiveness (DRE)

The number of solved defects in a
release relative to the total
number of found errors.

TheThe number number of of solved defectssolved defects in a in a
release release relative torelative to the the total total
numbernumber of of found errors found errors..

DRE = DRE =
Solved defectsSolved defects in a release in a release

TotalTotal # # foundfound errors errors
X 100X 100

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 42

AgendaAgenda

•• psps_testware_testware
•• IntroductionIntroduction
•• ConversionConversion model model
•• ImplementationImplementation model model
•• Metrics Metrics & & ReportsReports
•• ToolsTools
•• QuestionsQuestions

22

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 43

Type of ToolsType of Tools

•• TestingTesting
–– Test & Process managementTest & Process management
–– Dynamic testing toolsDynamic testing tools
–– Static testing toolsStatic testing tools
–– Time manipulationTime manipulation

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 44

AgendaAgenda

•• psps_testware_testware
•• IntroductionIntroduction
•• ConversionConversion model model
•• ImplementationImplementation model model
•• Metrics Metrics & & ReportsReports
•• ToolsTools
•• QuestionsQuestions

23

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 45

QuestionsQuestions

??

BrusselsestraatBrusselsestraat 125 125
B-3000B-3000 Leuven Leuven
Tel.: +32-16-310880Tel.: +32-16-310880
Fax: +32-16-310888Fax: +32-16-310888
e-mail:e-mail: ps ps_testware@_testware@compuservecompuserve.com.com

putting method into practiceputting method into practice

24

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 47

New ProjectsNew Projects

•• KredietbankKredietbank
•• BarcoBarco Graphics Graphics
•• Levi’sLevi’s
•• Siemens NixdorfSiemens Nixdorf
•• OrdaOrda-B-B Antwerpen Antwerpen
•• TessaTessa
•• RZGRZG
•• GAKGAK
•• CadansCadans

•• ExactExact Maatwerk Maatwerk
•• Exact InternationalExact International
•• ING BankING Bank
•• Bank Card CompanyBank Card Company
•• Janssen PharmaceuticaJanssen Pharmaceutica
•• LGT SoftLGT Soft
•• BossartBossart

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 48

Evolution : Human ResourcesEvolution : Human Resources

0

5

10

15

20

25

30

35

40

1994 1995 1996 1997 1998

Test Engineers

Test Consultants

Management
Consultants
Sales

Administration

Direction

25

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 49

CredoCredo

ps_testware’s first responsibility goes to the customers who use our
services. Our services must be of high quality and must be a reference for
our customers. In line with our primary business, Structured Software
Testing, we may not indulge in pressure, quantity or quick profit.

We are responsible to our members, the men and women who work with
us. Every member must be respected as an individual and must be
rewarded personally and fairly. We must support our members through
competent management, an adequate working environment and proper
working conditions. Our members must have the means to provide and
receive feedback, allow them and the organisation to learn continuously.
We must support our members in their family responsibilities. Our actions
must be just and ethical.

Our final responsibility is to our stockholders. Our business must make a
sound profit. We must innovate and continuously improve our methods
and techniques. We must develop new services and implement them
effectively and efficiently. We must create reserves to provide for adverse
times. Our stockholders must receive a fair return on their investments.

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 50

ServicesServices

•• Training and SupportTraining and Support
•• Test Process ManagementTest Process Management
•• Coaching “on the job”Coaching “on the job”
•• Outsourcing/ConsultancyOutsourcing/Consultancy

26

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 51

We teach you how to do itWe teach you how to do it

Training & SupportTraining & Support

•• Test Methods & TechniquesTest Methods & Techniques
•• Test AutomationTest Automation
•• On-Site SupportOn-Site Support
•• Telephone SupportTelephone Support

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 52

How it should be doneHow it should be done

Test Process ManagementTest Process Management

•• QA State of MindQA State of Mind
•• Testing StrategyTesting Strategy
•• Productive TestingProductive Testing
•• CommunicationCommunication
•• Test Life CycleTest Life Cycle

27

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 53

We help you do itWe help you do it

CoachingCoaching

•• Test PlanningTest Planning
•• Test EngineeringTest Engineering
•• Test Procedure DevelopmentTest Procedure Development
•• Test Case DesignTest Case Design
•• Implementing ToolsImplementing Tools

© 1998 ps_testware - Jens Pas - Testing the Year 2000 - 1st March 1998 - 54

We do it for youWe do it for you

OutsourcingOutsourcing

•• TestingTesting
•• Test Project ManagementTest Project Management
•• Acceptance TestingAcceptance Testing
•• Volume/Load/Stress TestingVolume/Load/Stress Testing
•• Test ConsultingTest Consulting

28

BrusselsestraatBrusselsestraat 125 125
B-3000B-3000 Leuven Leuven
Tel.: +32-16-310880Tel.: +32-16-310880
Fax: +32-16-310888Fax: +32-16-310888
e-mail:e-mail: ps ps_testware@_testware@compuservecompuserve.com.com

putting method into practiceputting method into practice

1

ab
(c) British Telecommunications plc, 1998

Richard Tinker
Ron Walters

BT Laboratories

ab
(c) British Telecommunications plc, 1998

System Integration and VV&T Strategies
are not just Test Plans

l How we use Web to manage our System Integration and
VV&T Activities

l The Processes we use

l How we develop Test Strategies

l How it is easy to produce a Test Plan not a VV&T
Strategy

2

ab
(c) British Telecommunications plc, 1998

System Integration and VV&T Strategies
are not just Test Plans

l The paper shows some examples of the documents and
check lists that we link to

l The most important factor is the need to make the right
way of doing something easy

l The main area of interest here is the need for clear VV&T
Strategies

l These are not just Test Plans

ab
(c) British Telecommunications plc, 1998

Where we are

l All our process documents are WWW based

l These documents are accessible by all our people and most
of our Customers (other BT Divisions)

l The Top Level Document is the Integration Handbook

3

ab
(c) British Telecommunications plc, 1998

Typical Actions
Maintain ECMS Model;
Build & Integrate System;
Baseline System;
Manage Configuration on ECMS;
Produce Installation Guide;
Produce Metrics Report;
Security Activities

Typical Inputs
Support Strategy
Integration Strategy
VV&T Strategy
Designs
Deployment Design/Plan
Configuration Management Plan
Quality Plan
Requirements Traceability
System Test Plan
Design Review Report
Security Policy Documents
Cost Estimate
Project Requirement Definition
Production Plan
Information Request Note
Scope Statement
Tested System
Error List
Build List
Test Reports
Metrics
Updated ECMS
System Documentation
Integration Plan
User Documentation

Typical Checks
Documentation is available;
Error List;
Production Plan;
Compliance With Security Requirements;
Test Reports;
Build List;
Adequacy Of Test Cover;
Under Configuration Management;
Actions From Previous Quality Gates;
Cost Estimate;
Scope Statement;
Project Requirement Definition;
Information Request Note.

Typical Outputs
Updated ECMS
Scope Statement
Error List
Integrated System
Test Report
Metrics Report
Build List
System Documentation
User Documentation
Security Policy Document
Cost Estimate
Production Plan
Project Requirement Definition
Information Request Note
Design Review Report
Installation Guide

System Build
& Integration

ab
(c) British Telecommunications plc, 1998

VV&T Strategy
The aims of the VV&T exercise

 the political and budget constraints

 the aims of the business case

 the quality goals

 how the aims of the business case will be addressed by the verification and validation process

 the relationships between VV&T, requirements, design, development, project management, quality assurance
and configuration management

the VV&T teams and defining roles, responsibilities, and authorities

measurable objectives for the quality and testing required

mapping of the VV&T activities onto the chosen lifecycle - this may also include systems integration stages

schedule of the VV&T activities with respect to the requirements, design, development and release schedule,
and agreed with the project manager

etc….

4

ab
(c) British Telecommunications plc, 1998

Important aspects of the Strategy

l The SI & VV&T Strategy is the guiding principle on how
efficient use of test resource will produce a quality product
that meets the objectives laid out in the business case

l The Generic Document tries to ensure that all possible
problems are considered and that any defects are found as
early as possible in the lifecycle.

ab
(c) British Telecommunications plc, 1998

Important aspects of the Strategy

l The most important aspect of the strategy is to ensure that
the objectives of the business are the things addressed by
the VV&T work. The political and budget constraints are
addressed

l It needs to ensure that the right things will be done to find
problems early, it is difficult to integrate systems that
contain major functional errors

l It should usually be fairly short

5

ab
(c) British Telecommunications plc, 1998

What we found

l Use of Generic Documents is inconsistent

l Strategies are produced based on the Generic but with little
considered thought

l Strategy contains no Strategy!

l The contents clearly show a test plan with test milestones,
structure of test cases, test report requirements, etc.

ab
(c) British Telecommunications plc, 1998

Why do Strategies become Test Plans

l Not produced early enough - decisions taken by default

l Project development-led - ignores later lifecycle stages

l Quality goals not openly discussed

l Author is usually a tester not a systems engineer

6

ab
(c) British Telecommunications plc, 1998

Why do Strategies become Test Plans

l The objectives of the business case may not be clearly
defined

l Time and cost pressures lead to short cuts

l The client may not fully understand the role of the VV&T
process and dictate the requirements of the testing process

ab
(c) British Telecommunications plc, 1998

Why do Strategies become Test Plans

l Produced under pressure to get a tick in a box

l So they produce a plan for their part of the lifecycle not a
true strategy

7

ab
(c) British Telecommunications plc, 1998

The Way Forward

l Use of web to hold latest techniques, feedback, tool tips

l Make it simple to use

l Educate about value of this approach

l Management and technical Review

ab
(c) British Telecommunications plc, 1998

The Way Forward

l Make sure that Business Goals are identified and testable

l Make it easy to produce a good document

l Project manager education & accreditation

l Integration-led projects

8

ab
(c) British Telecommunications plc, 1998

The Way Forward

l Review all strategies

l Qualified Reviewers with systems engineering skills

l Produce Strategies at the earliest possible time

l Make it clear

ab
(c) British Telecommunications plc, 1998

The Way Forward

l Strategy is whole lifecycle document

l Make sure everyone in team knows what the strategy is

l Allow time to correct mistakes (YOU WILL MAKE
THEM)

l Review result

9

ab
(c) British Telecommunications plc, 1998

Millenium Testing

l Clear web based guidance and support

l Standard strategy and test cases provided

l Database of all company applications visible to all

l Formal compliance certificates used to record status

ab
(c) British Telecommunications plc, 1998

Conclusions

l Web based process guidance is effective in spreading good
practice

l Writing a good VV&T Strategy is a demanding exercise
requiring systems engineering skills

© British Telecommunications Plc 1998

System Integration and VV&T Strategies
are not just Test Plans

Richard Tinker VV&T Manager
Ron Walters Integration Manager

BT N&S Systems Engineering

© British Telecommunications Plc 1998

1. Introduction

This paper presents how the Systems Integration Unit in BT’s System Engineering Organisation has
implemented business-wide Internet based process guidelines for Systems Integration and Verification,
Validation and Test (VV&T). The Systems Integration Unit carries out most of the large Integration and
VV&T activities for BT’s Internal Networks and Systems. It is a unit of over 1000 permanent and
contract people.

The paper shows how even with example Generic Strategy Documents as guidance, it is easy to fall into
the trap of creating of Test Plans, not true Strategies.

The paper highlights the use of the Internet based process guidelines and background to their creation. It
shows how the generic documents were created and the lessons learned from their use. It covers the
steps being taken to improve the quality of the System Integration and VV&T strategies being produced
across the Systems Engineering unit.

The strategies being created in Systems Integration address BT’s steps to ensure that it has taken the
right actions to overcome Millennium compliance issues.

© British Telecommunications Plc 1998

2. Process Guidelines

The top-level documents that identify how to carry out System Integration and Validation, Verification
and Testing (VV&T) are contained in a number of Internet documents. These documents are available
across BT and therefore most of our customers (largely other BT units) have access to them. The use of
Internet has enabled us to promote the use of generic document that can be quickly updated to take
account of experience of their use and improvements in technology and process.

The Internet documents can also be easily linked to the company wide advice and process documents in
areas relating to security, environment, etc.

Integration Handbook

The top-level process document is the Integration Handbook, which is an Internet publication (a printed
version is available and is titled the Integration Guide).

After the formal approval of the ISO9000/TickIT Quality Management System it became clear that given
the diverse range of projects carried out in Systems Integration (SI) that a very formally structured
Management System was becoming a burden and not helping to deliver good quality products. The need
to reduce this bureaucracy and replace it with easily obtainable, usable guidance from the recognised
experts in the organisation led to a small team producing the handbook and then getting it accepted
across the Systems Engineering part of BT as the chosen way of working.

The ability to link to very good examples of the right way of doing things enabled Project Managers to
choose the appropriate methods of working to suit their Project.

The Integration Handbook contains the main elements of management of an Integration project. It is
designed as a guidance manual with links to the company’s Quality Management System.

The guidance contained in the Handbook is in two main areas, Lifecycle activities and across-lifecycle
processes. The lifecycle stages covered by the Handbook are:

System System System System System Release & Pilot Delivery & Operation & System
Requirements Design Development Build & Test Customer Installation Maintenance Withdrawal/

Integration Acceptance Replacement

SYSTEM INTEGRATION PROCESS

A typical lifecycle stage (taken from the Integration Guide) is shown next:

© British Telecommunications Plc 1998

System Build & Integration

This stage is part of the Development Phase of the BT Project Management Handbook [4]. The purpose of this process is to
integrate the system units with each other, producing a system that will satisfy the system requirements. The main inputs to
this stage are various sub-systems of known quality and the main output is a version of the final system.

The criteria for this stage are:-

Typical Actions
Maintain ECMS Model;
Build & Integrate System;
Baseline System;
Manage Configuration on ECMS;
Produce Installation Guide;
Produce Metrics Report;
Security Activities.

Typical Inputs Typical Outputs
5.2 Support Strategy Updated ECMS ..5.5
5.2 Integration Strategy Scope Statement ..5.5
5.2 VV&T Strategy Error List..5.5
5.2 Designs Integrated System ..5.5
5.2 Deployment Design/Plan Test Report ..5.5
5.2 Configuration Management Plan Metrics Report ...5.5
5.2 Quality Plan Build List ...5.5
5.2 Requirements Traceability Matrix System Build & System Documentation......................................5.5
5.2 System Test Plan Integration User Documentation..5.5
5.3 Design Review Report Security Policy Document5.5
5.3 Security Policy Documents Cost Estimate...5.5
5.3 Cost Estimate Production Plan..5.5
5.3 Project Requirement Definition Project Requirement Definition5.5
5.3 Production Plan Information Request Note5.5
5.3 Information Request Note Design Review Report.......................................5.5
5.3 Scope Statement Installation Guide ..5.8
5.3 Tested System
5.3 Error List
5.3 Build List
5.3 Test Reports
5.3 Metrics
5.3 Updated ECMS
5.3 System Documentation
5.3 Integration Plan
5.3 User Documentation

Typical Checks
Documentation is available;
Error List;
Production Plan;
Compliance With Security Requirements;
Test Reports;
Build List;
Adequacy Of Test Cover;
Under Configuration Management;
Actions From Previous Quality Gates;
Cost Estimate;
Scope Statement;
Project Requirement Definition;
Information Request Note.

Note: Consideration needs to be given to the identification of Minimum Input/Output Gate Criteria.

The Internet Version has links to appropriate documents and company wide processes (i.e. Systems
Security).

An examples of the type of document provide by these links is the Feasibility Checklist:

© British Telecommunications Plc 1998

A Feasibility Report

A feasibility report identifies and evaluates which of the alternative options can best meet the clients requirements. Options identified during the
Feasibility Phase are included in addition to those specified during the Inception Phase.

Alternative options may have to be supported by the study and analysis of specific technical, operational and other aspects which affect their viability.
This may require advice and assistance from specialists and input from users before feasibility can be established.

A feasibility report details:

 Which options have been investigated.
 Which options could deliver the client's requirements,
 The timescales and costs which would be incurred by the adoption of each feasible option,
 The risks, assumptions, dependencies and impact to the business associated with each feasible option.
 The reasons why options were rejected,
 A recommendation,

The recommendation should be supported by:

 Financial considerations and justification and timescale for implementation
 Technical and operational viability and practicality and match to requirements.

This includes consideration of aspects such as:

The use of the proposed technologies and their compatibility with corporate medium and long term strategic aims and policy direction.
Compatibility and configuration control requirements in relation to dependent and driver projects.
This may involve harmonisation and rationalisation of objectives and scope with those of other projects, which in turn may affect planned benefits to
be delivered by the project.
Future flexibility, ease of upgrading and expansion,
Ease and speed of migration from existing to new facilities, processes and procedures,
Competitive advantage,
Life expectancy of the asset,
Ease of installation.
Priority of deliverables if phased implementation is to be involved.
Compliance with statutory, legal and regulatory requirements and engineering standards,
Consideration of security and audit requirements,
Environmental considerations,
Any local site considerations.
Quality aspects including reliability and spares provisioning, stand-by/ back-up arrangements, operational life expectancy and
ease of replacement, and functionality and performance issues.
Operational requirements including manning levels.
Resource requirements and availability
A broad assessment of risks, assumptions and dependencies which could lead to cost or duration overruns together with assessment of the risk
management strategy that could be employed to reduce or eliminate them.
A glossary of terms used should be included to ensure effective communication.

The feasibility report provides input to:

 Implementation timescale and cost estimates.
Operational capital and revenue expenditure forecasts.
At the end of the Feasibility Phase, other documents produced in support of the feasibility report are:
An outline PRD,
An outline business case based on the option agreed by the client.
A Definition Phase plan detailing the resources, timescales and cost estimates required.
An outline plan for the whole project.

One of the areas where it became clear that good guidance was needed was in the creation of VV&T
Strategies.

Generic Strategies

The generic strategies in use have been developed from those that have been proven to be successful.
However they have all been the subject of considerable thought in their production. Early on it was
recognised that there can be a tendency to take a generic document and change a few words without the
right level of thought into its application. Also for the documents to become a larger general test plan and

© British Telecommunications Plc 1998

not a description of the strategy proposed to undertake a complex Systems Integration or VV&T
exercise.

It came as a surprise to find that all the VV&T Strategies we examined actually contained no real
strategic discussion! There were several reasons for this:
• They were not produced early enough in the project, so key decisions had been taken by default;
• Projects are frequently development-led and so ignore late-lifecycle issues;
• Projects avoided discussing quality targets because of the ‘emperors new clothes’ syndrome;
• They were produced under pressure to get a ‘tick in a box’

A true strategy for large projects should address areas that relate to the political and financial aspects of
the project, as well as technical issues. It should clearly identify how the work of the VV&T team is
going to ensure that the benefits outlined in the Business Case that gave authority to the project are going
to be validated and tested, and required quality delivered.

A dilemma here is that providing a good example to copy can reduce thinking about the project goals,
whereas providing a template can produce a strategy with minimal content. We decided that it was better
to provide a good example to copy.

The Generic Strategy published as part of our VV&T Handbook and linked to the Integration Handbook
has the following contents. (An example is available by contacting the authors.)

VV&T Strategy

Is a strategy produced for the project or task as a whole, and it should cover the following?

 the aims of the VV&T exercise
 the political and budget constraints
 the aims of the business case
 the quality goals
 how the aims of the business case will be addressed by the verification and validation process
 the relationships between VV&T, requirements, design, development, project management, quality assurance and
 configuration management
 the VV&T teams and defining roles, responsibilities, and authorities
 measurable objectives for the quality and testing required
 mapping of the VV&T activities onto the chosen lifecycle - this may also include systems integration stages
 what will and won't be tested
 schedule of the VV&T activities with respect to the requirements, design, development and release schedule, and
 agreed with the project manager
 the approach to be used, that is, strategies, methods, techniques, tools, the pass/fail criteria, configuration
 management, problem reporting, co-ordination of test data and so on,
 the test environment to be used
 resource and training needs of VV&T team
 the VV&T documentation structure, referring to the definitions of each document type
 testing start, exit and handover acceptance criteria - this will mean referencing specific handover documents
 interruption, suspension and resumption criteria
 any standards and conventions to be used
 the assumptions, risks and contingencies used in formulating the VV&T Strategy (for instance, assumptions -
 machine access, availability of tools, revisions of compiler; risks - use of untrained staff, complex modules, late
 delivery of units)
 how the results of the VV&T work will be reviewed

A Strategy may contain information more properly located in the Test Plan and what happens frequently
is that it effectively becomes a Test Plan because it is hard to write the strategic sections of the document.
A good test plan will have the following main points:

© British Telecommunications Plc 1998

Test Plan

A test plan prescribes the scope, approach, resources and schedule for the testing activities, and it is recommended that one should be produced for each test phase
(for instance, acceptance, system). It identifies the items being tested, the features to be tested, the tasks to be performed, the personnel responsible for each task and
the risks associated with the plan.

introduction - summarise the items and features to be tested. The need for each item and its history may be included.

test items - identify the test items including their version/revision level.(If version/revision numbers are likely to change during the life of the test plan, it may be
better to specify these in a separate document which can be kept up-to-date to give a snapshot view of the status of the system at any time). Specify any means by
which the items may be transferred (for example, programs may be transferred from tape to disc). This could be specified in the Configuration Management Plan,
and referenced here. Supply references to the following item documentation, if it exists:

 requirements specification
 design specification
 user's guide
 operations guide
 installation guide.

Reference any incident reports relating to the test items. Items which are to be specifically excluded may be identified.

features to be tested - identify all features and combinations of features to be tested. Identify the test design specification associated with each feature or
combination of features.

features not to be tested - identify all features and combinations of features not to be tested and the reasons.

approach - describe the overall approach to testing. Identify the approach to each test feature, or major group of features. Specify activities, techniques and tools to
be used. The approach should be described in sufficient detail to permit identification of the major testing tasks and estimation of the time required to complete each
one. Specify completeness criteria and degree of comprehensiveness. Identify any constraints on testing.

entry/exit criteria - specify the criteria used for the commencement and completion of the testing activity in the test phase associated with this plan - see handover
criteria/quality gates.

suspension criteria and resumption requirements - specify the criteria used to suspend all or a portion of the testing activity on the test items associated with this
plan. Specify the testing activities which must be repeated when testing is resumed.

test deliverables - identify the test deliverables, which may include:

 test design specifications
 test case specifications - these may be test tool scripts
 test procedure specifications
 release notes
 test logs
 test incident reports
 test summary reports
 test input/data should be identified as deliverables
 test tools (for example, drivers, stubs) should be included
 handover criteria document.

testing tasks - identify the set of tasks necessary to prepare for and perform testing, all inter-task dependencies and any special skills required. (It is highly likely that
this information would be put into a project management software package, and the resulting schedule referenced here).

environmental needs - specify both the necessary and desired properties of the test environment. This specification should contain the physical characteristics of
facilities including the hardware, the communications and system software, the mode of usage and any other software or supplies needed to support the test. Specify
the level of security which must be provided for the test facilities, system software and proprietary components. Identify special test tools needed. Identify any other
testing needs (for example, publications, office space). Identify the source for all needs which are not currently available to the testing team. Any differences between
the operational environment and the test environment,
and the effect this may have on the scope of testing, could be identified here.

responsibilities - identify the groups responsible for managing, designing, preparing, executing, witnessing checking and
resolving. In addition, identify the groups responsible for providing the test items and environmental needs.

schedule - include test milestones identified by the project schedule as well all item delivery events. Define any additional milestones, and the time to complete each
testing task and milestone. For each testing resource(for instance, tools, staff) specify its period of use. This information could be entered into a project management
software package, and the resulting plan could be referenced here. risks and contingencies - identify the high risk assumptions of the test plan, and specify
contingency plans for each.

approvals - specify the names and titles of all persons who must approve the plan.

© British Telecommunications Plc 1998

The Way Forward

As part of the continuing improvement actions for N&S Systems Engineering, a VV&T Improvement
team is working to improve the Strategies in use on projects. Action is in place to ensure that all VV&T
strategies are properly reviewed and compared against the Generic and the identified best of type. The
key areas being addressed are:

Make it simple to use
Educate about value of this approach

Projects often developer-led – change to integration-led
Focus on whole-lifecycle costs

Project Manager training and accreditation
Management and technical Review

Make sure that Business Goals are identified and testable
Identifies constraints due to organisation, market place, politics
Identifies risks
Use qualified reviewers – systems engineering skills are critical
Puts requirements on other lifecycle activities eg implementation technology
Constrains system architecture to ensure cheap, efficient testing can be done

Team input – whole lifecycle must buy into the approach
Learning and review

Use of web to hold latest techniques, feedback, tool tips
Research better techniques for decision making

Millenium

Finally, it is worth just looking at how WWW is used in BT’s Millenium programme. All the millennium
testing in BT is being carried out against a set of defined strategies and test cases. These cover both
Operation Support and Network Systems. All this documentation, together with databases about the
Millenium test status of all BT applications, and guidance on Millenium approaches, are available to all
people within BT. This has made a significant difference to the clarity and general awareness of the
Millenium issues.

Below is an example of the kind of documentation we have made available.

Conclusion

Web based process guidance with links to exemplar documents and detailed techniques has proved
effective in spreading good practice over a very wide audience.

Writing a good VV&T Strategy is a demanding activity requiring excellent systems engineering skills.
These skills are not as widespread as is desirable and the use of Web has helped capture best practice in
a very effective, usable manner.

© British Telecommunications Plc 1998

Generic Year 2000 Testing Checklist

This checklist defines the minimal set of tests which will be required to demonstrate that a system or component is Year 2000
compliant. It can be used to record the results of a test or to confirm that evidence is available (e.g. from test results) that the system or
component is compliant.

The checklist may be used for both internally developed systems and externally supplied products and can be used as a supplement to
existing acceptance/quality gate criteria.

The received system or component has been subjected to the following tests, the results of which are recorded below:

Test Case Test Case
Reference:

Pass/Fail

Roll Over:
• Test that the system handles the roll over from 31st December 1999 to 1st January 2000 (

and similarly for 2000 to 2001)
Day of the Week:
• Test that 1st January 2000 has the correct day of the week, Saturday. (It is possible that a

Monday is assigned incorrectly which is the day for 1st January 1900)
Leap Year:
• Test that the 29th February is recognised and processed as a valid date. Also test around these

dates to detect secondary defects.
• Test specifically across the dates 27th, 28th and 29th February and 1st March 2000 (29th

February is a valid date)
• Test the same dates for 1999 (29th February should fail)
• Test the same dates for 2001 (29th February should fail)
• Test the same dates for 2004 (29th February is a valid date).
Financial Year:
• Test processing of data forwards and backwards across the century date change for the

financial year (e.g. dates up to and including 31st March 2000)
Processing time horizons
• Test the application’s processing time horizon spanning the century date change, e.g. over a

period extending into the next century, and from a future date in the next century covering a
period extending back into this century. The processing of information under these situations
must ensure that any data manipulations, calculations, sorts, etc. work correctly over the
century cross over.

Implicit Century
• The correct century must be interpreted unambiguously and be inferred with 100% accuracy

based on the value for date.
• Where inferencing logic is used, e.g. with 2 digit representing the year, the rules and pivot

dates must be clearly defined.
• Test around the pivot dates to ensure that the dates are interpreted correctly.
• Rules for century inferencing as a whole must apply to all contexts in which the date is used,

although different inferencing rules may apply to different date sets.
High Risk/Special Meaning Dates
• Test that the system does not use special date values as logical flags, such as "99" for the year

to mean "no end date" or "00" to mean "does not apply."
• 31/12/1999 - should be able to distinguish between a regular end-of-year 1999 date and a

special meaning date. For example, a never-expiring date indicator which is sometimes used.
• 9/9/1999 - should be processed correctly and is not used as a special meaning date.
• Test other high risk dates, e.g. 01/01/2000, 01/01/2001.
Use of Ordinal Dates
• For applications using ordinal dates, test that conversion to Gregorian dates are handled

properly. For example, 2000/60 should convert to 29th February, 2000/61 to 1st March, etc.
Check that 31st December 2000 is represented as 2000/366.

Archives, backups and restores
• Test correct functioning of house keeping routines, e.g. a system reload in 2000 from an

archive taken in 1999 (also 2001 from a 2000 archive).

System Name:

Certified compliant by:

Name:
Date:

SPONSOR

Software Research, Inc.

Software Research, Inc. created the field of Automated Software Testing, and has been
providing the QA community with testing tools since 1987, with CAPBAK capture/playback
system, SMARTS, the corresponding test manager and the first commercial test coverage
analyzer, TCAT.

Since 1995 TestWorks has been the original and only Suite of Integrated Testing Tools that
includes both test regression and test coverage support for Embedded, GUI, Client/Server
and Web Applications, on UNIX and Windows platforms. TestWorks has been successfully
applied in enterprise wide Y2K testing applications.

More recently TestWorks has added TCAT for Java, the first coverage analyzer for Java
applets and the Remote Testing Technology (RTT) with local, Email, and over-the-Web
collection of snapshot user interaction and refined test coverage data from Java applets.

Software Research, Inc., the company that pioneered end-to-end testing solutions, looks
forward to helping improve the Quality of your applications and achieving 100% return on
your IT tools and technology investment.

TestWorks. It's what you need most.

To learn more about TestWorks from Software Research, Inc., explore the
web at: http://www.soft.com, or send email at info@soft.com

CO-SPONSORS

Gold Sponsors

CMG Information Technology

CMG plc is a leading European IT services company, providing business information
solutions through consultancy, systems and services to clients worldwide. Established in
1964, CMG now operates in more than 40 countries from its bases in the UK, The
Netherlands, Germany, France and Belgium. The company is listed on the London and
Amsterdam stock exchanges. CMG supplies services and products in the finance, trade and
industry, transport, telecommunications, energy and public sectors. The Group also provides
managed information processing services, including networks, payroll and personnel.

Onc of CMG's many specialisations is the automation of structured testing. Testing of new
software products is a time consuming business. CMG has developed a very successful

testing method TestFrame. TestFrame is based on CMG:CAST, an approach for the
structured and automated testing of new or modified software. TestFrame reduces testing
times considerably, and thus speeds up the time-to-market for new products and services.
With this method, CMG is currently one of the leading companies in this field. CMG is
dedicated to helping its clients and their people become more successful through the quality
of its services and staff. Strong employee commitment ensures the Group's long term success
and hence the success of its clients. Visit CMG's website at:
http://www.cmg.nl.

SIM Group Ltd.

SIM Group Ltd (Systems Integration Management Limited) has developed its own approach
to implementing test automation technology known as Automated Testing Support (ATS).
This is a proven combination of techniques, tools and training which is effective of many
different types of systems and platforms. SIM's independent position on all issues related to
testing is invaluable to its customers, providing an objective view of the test processes taking
place and recommending the tools, utilities and technology best suited to each environment.
Our working relationship with major tool vendors and experience in the implementation
and use of such tools place us in an unparalleled position for independent advice, As a result
of our many years of practical experience in testing, SIM offer a specialised range of services
which are encompassed in the following ways:

Software Testing
Testing Environments
Testing Methods
Testing Consultancy

Visit SIM Group's website at: http://www.simgroup.co.uk.

Silver Sponsors
IQUIP Informatica B.V.

Since 1972 IQUIP Informatica B.V.\ has been supporting organisations in carrying out their
core processes. With its 1200 employees IQUIP does this by constructing, maintaining testing
and implementing application software systems. IQUIP increasingly concentrates on
carrying out assignments with result responsibility. In testing, IQUIP achieves this through
her dedicated division Components & Testing (300 employees), using the structured testing
approach TMap. TMap was developed by IQUIP itself and has become a widely used
international standard. TMap related methods such as TAKT (test automation), TSite (test
laboratory) and TPI (Test Process Improvement) have recently completed the product range.
A dedicated R&D team is continuously improving these methods and, if required, develops
new products. Visit IQUIP's website at: http://www.iquip.nl.

Mercury Interactive

Mercury Interactive is the world's leader in enterprise application testing solutions. The
company offers a comprehensive line of automated testing tools that address the full range of
quality needs for testing client/server, e-business, Y2K, Euro, and packaged applications. Its
testing solutions enable corporations, systems integrators and independent software vendors
to identify software errors more quickly and efficiently than traditional methods allow.

Mercury Interactive offers a complete family of tools to test the enterprise. WinRunner 5.0
for Windows and XRunner 5.0 for UNIX deliver fast, accurate, repeatable and automated
tests that are unrivaled in the automated client application testing tools market. They
simplify test automation, providing the most powerful, productive and cost-effective test
solutions. LoadRunner 5.0 is Mercury Interactive's integrated client, server and Web load
testing tool. It provides the only scalable load testing solution for managing the risks of
client/server systems. By using a powerful set of automated management functions and an
open database repository to store and access test information, TestDirector 5.0 offers the
most productive workgroup test management software. Astra SiteManager is a
comprehensive visual Web site management tool, Astra Site Test is a load testing tool for
Web-based systems and Astra QuickTest is an icon-based functional testing tool for
e-business. Visit Mercury Interactive's website at: http://www.merc-int.com.

The Testing Consultancy

The Testing Consultancy is a specialist consultancy that was formed to provide independent
testing services within the IT Industry.

With our highly qualified and experienced Consultants and Associates, we are strongly
positioned to provide guidance, expertise and support for all your testing requirements.
Our independent and objective advice will help your business to increase the quality and
reliability of its systems, whilst actually reducing costs, and delivering those systems within
the required timescales.

Golden Leaf Sponsor

GiTek Software n.v.

GiTek Software nv supplies a number of services offering a global solution to testing:
Consultancy in testware
Structuring of the test process
Education and training
Test planning and test management
Test project and test execution

PARTNERSHIPS
About ACM

ACM, the Association for Computing Machinery, is an international scientific and
educational organization dedicated to advancing the arts, sciences and application of
information technology. With a worldwide membership of 80,000, ACM functions as a locus
for various fields of Information Technology. Membership benefits include a subscription to
the Communications of the ACM, discounts on conferences and publications, 36 special
interest groups and the new ACM Digital Library. The Digital Library includes unlimited
access to 22 ACM publications and archives, 6 years of conference proceedings and over
100,000 pages of text, with full searching capabilities.
For more information, visit our website at: http://www.acm.org or contact ACM directly at:
1 (800) 342-6626 (USA & Canada) or 1 (212) 626-0500 (anywhere), by fax at: 1(212) 944-1318,
email: acmhelp@acm.org, or by writing to ACM, Member Services Department, P.O. Box
11315, New York, NY 10286-1315.

European Software Institute (ESI)

The European Software Institute is one of the world's leading independent authorities on
software process improvement. ESI is a non-profit making organisation driven by the
demands of European industry. It is supported by the European Commission, the Basque
Government and through company membership. ESI's work is centred on products and
services that are tied directly to core business objectives such as reducing costs and increasing
predictability of results among others. ESI's headquarters are in Bilbao, Spain.

European System and Software Institute (ESSI)

Enterprises in all developed sectors of the economy - and not just the IT sector - are
increasingly dependent on quality software-based IT systems. Such systems support
management, production, and service functions in diverse organisations. Furthermore, the
products and services now offered by the non-IT sectors, e.g., the automotive industry or the
consumer electronics industry, increasingly contain a component of sophisticated software.
For example, televisions require in excess of half a Mbyte of software code to provide the
wide variety of functions we have come to expect from a domestic appliance. Similarly, the
planning and execution of a cutting pattern in the garment industry is accomplished under
software control, as are many safety-critical functions in the control of, e.g., aeroplanes,
elevators, trains, and electricity generating plants. Today, approximately 70% of all software
developed in Europe is developed in the non-IT sectors of the economy. This makes software
a technological topic of considerable significance. As the information age develops, software
will become even more pervasive and transparent. Consequently, the ability to produce
software efficiently, effectively, and with consistently high quality will become increasingly
important for industries across Europe if they are to maintain and enhance their
competitiveness.

The goal of the European Systems and Software Initiative (ESSI) is to promote improvements
in the software development process in industry, through the take-up of well-founded and
established - but insufficiently deployed - methods and technologies, so as to achieve greater
efficiency, higher quality, and greater economy. In short, the adoption of Software Best
Practice.

De Koninklijke Vlaamse Ingenieursvereniging (KVIV)

De Koninklijke Vlaamse Ingenieursvereniging (KVIV) was founded in 1928 and has 12,000
members: civil engineers, agricultural engineers, chemical engineers, bio-engineers, and
polytechnical engineers from the Royal Military School. It also has 1800 members in its
subdivision: Software Metrics.

KVIV is an open and flexible organization that gives ongoing training programs and
publications for entrepreneurs, managers, docents, and government employees. Thanks to its
internal structure, KVIV contacts diverse public groups as well as academic and industry
circles.

Studiecentrum voor Automatische Informatieverwerking
(SAI)

SAI (Studiecentrum voor Automatische Informatieverwerking) is a non-profit organization
whose purpose is to promote the knowledge of Information. As far as the theoretical as
practical aspects of information knowledge, the organization takes a stand on social questions
that has to do with automation of information as far as it applies. The activities of the
organization are focused on people who are specialists in information. SAI organizes
discussions, meetings, seminars, workshops and a magazine called "Informatie".

Vendors

Blackstone & Cullen, Inc.

Blackstone & Cullen, Inc. is an information technology consulting firm. Its Data
Commander product is a year 2000 testing and data management tool that also offers
currency conversions.

CYRANO (UK) Ltd.

CYRANO is a worldwide provider of Testing Solutions for Client/Server, Internet and legacy
application. CYRANO Millennium Test Suite: comprehensive Y2K compliance testing

McCabe & Associates

McCabe and Associates will be showing a suite of software tools for Euro Conversion, Year
2000 compliance, Quality Assurance, Test Coverage, reverse engineering and software
maintenance.

McGraw-Hill Publishing Company

The McGraw-Hill Publishing Company is one of the world leading publishers in Computer
Science. We publish for academics and professionals on subjects like software engineering,
programming and certification.

OM Partners

OM Partners n.v. is a company specialized in consulting and software development in the
area of decision support systems, and of short, medium and long term production planning
and logistics. We apply computer aided software testing to ensure high quality software to
our customers.

VAC Software Engineering

VAC Software Engineering provides professional software development solutions to design,
build, test and maintain information technology systems including tools, consultancy,
training, support and implementation services.

John Wiley & Sons

Visit the Wiley Display to view information on the latest software books and journals
available. Alternatively, visit the Wiley website to keep updated - http://www.wiley.co.uk

www.cyrano.com

CYRANO specialises in the provision of software testing solutions
supplying a range of services to cater for any and/or all of your
software testing needs. This is particularly useful to many organisations
that, as a result of the Millennium Bug, have been forced to undertake
the testing of their systems, often for the first time. In such circumstances,
the benefits of acquiring an automated tool are often lost due to a lack of
resource and/or expertise in testing.

Y2K Compliance testing is such that traditional manual testing methods are insufficient and unlikely to identify many
of the faults that will lead to system failures. Manual testing would require more time and human resource than is
available, with the possibility of even the most critical of applications going untested.

CYRANO's philosophy of providing complete working solutions enables such organisations to solve their immediate
testing problems.

Expenditure on Year 2000 Compliance test tools is considered the only aspect of a year 2000 project spend that has a
value after the year 2000, and one that can lead to an improvement in performance. This makes the expenditure an
investment rather than a cost.

MillenniumTest is the only GCAT listed testing tool for Y2K.

CYRANO (UK) Ltd.
Devon House · 89 Park Street · Slough SL1 1PX

Tel: 01753-516500 · Fax: 01753-516441

http://www.cyrano.com

 CYRANO MillenniumTest™ is a
comprehensive, easy to use solution that
includes automated testing software with
a unique client/server architecture, a doc-
umented Y2K methodology and training –
all specifically designed for character-based
applications. CYRANO MillenniumTest will
help you validate an application’s date
sensitive behavior and its core functionality,
as well as generate documented results
that identify what was tested, when it was
tested and how.

 The return on investment is immediate
– empower your team with CYRANO Mil-
lenniumTest and speed up your Y2K
projects.

Relax. With CYRANO Millennium Test.

Year 2000 is coming.

your converted applications...

The Euro is coming.

©1997 MERCURY INTERACTIVE BENELUX, AMBACHTENLAAN 13A, 3001 LEUVEN, BELGIUM TEL: 32-16-396139, FAX: 32-16-396130
HTTP://WWW.MERC-INT.COM

haven’t you?
You've finished testing

Two major conversion projects are coming your way. We're talking about deadlines that are etched in stone.
And your IT staff is already stretched to the limit by their existing workload. The only answer is to use Mercury
Interactive's Automated Testing Solutions. They'll automatically test and verify all your functionality and key
business processes under real working conditions, while managing the entire project. And you can use the same
tools for all your testing needs across the enterprise. So, when the inevitable happens, you'll be ready.

SIM Group Ltd. are totally dedicated to software testing.
SIM will supply and manage testing teams that perform
testing work to the highest standards of efficiency and
effectiveness. SIM performs consultancy, execution and
training of testing. SIM's methods and techniques for
testing include testing frame works, libraries, documented
procedures and deliverable templates that can all be used
to speed up the adoption and use of good testing
practices. SIM's approach to testing relies heavily on the
adoption of automated testing techniques as much as is
practical and SIM has a proven track record of success
with automated testing. SIM's subsidiary SOFTech Tools
Ltd. provides selected and specialised testing tools that
contribute to a fully automated testing process.

White Rose Court
Oriental Road
Woking, Surrey
England GU22 7PJ

Phone + 44(0) 1483 740289
FAX +44(0) 1483 720112
email: info@simgroup.co.uk
URL www.simgroup.co.uk

⇒ Automated Testing Facility
⇒ eSuite
⇒ SunTest Suite
⇒ Quest
⇒ Test Master

⇒ Testing Projects
⇒ Testing staff
⇒ Testing Consultancy
⇒ Testing Environments
⇒ Testing Automation

Are you prepared for Year 2000 and the euro?

Are you sure?

Let Data Commander help ensure that your
answer to these questions is YES.

Data Commander:
Quality Year 2000 Testing and Data Management Tool

Featuring eurodollar conversions,
smart output testing and data migration

Your Y2K & Euro Solution

Developed by:

Call Blackstone & Cullen, Inc. today:

2000 RiverEdge Parkway, Suite 750
Atlanta, Georgia 30328 USA

+ 1 770-612-1550/ FAX: +1 770-612-1471
http://www.bac-atl.com

http://www.datacommander.com

The optimum solution

Semi Process like: Animal feed, Chemicals, Dairy, Fertilizers, Food & Beverages, Pharmaceutics, Starch, …

Flow Shop like: Corrugated Board, Metals, Paper, Plastics, Solid Board, Textiles, …

OM Partners n.v. • Michielssendreef 40-48 • B-2930 Brasschaat, Belgium
Tel. +32-3-652.03.03 • Fax +32-3-652.07.72 • E-mail: sales@ompartners.com • http://www.ompartners.com

Hortica for horticultural production and optimization of crossings.

COMPANY

SECTORS

OM Partners is a solution provider with 15 years of experience in developing and implementing Supply Chain Planning Systems.
Beyond the delivery of software, we provide professional assistance from analysis, over implementation to support.

PRODUCTS
The OM Partners product range for Supply Chain planning integrates all levels of the planning hierarchy with both inter-
active and intelligent solutions. These are standard software packages, which can be parametrised to your needs.

Interactive,
Intelligent

and Integrated
Supply Chain Planning Solutions

OMP Optimization (OMP) is our solution for the highest level of Supply Chain planning. It deals with strategic issues like optimal product
mix of co- and by-products, sourcing and make-or-buy decisions, warehouse localization and (re)allocation problems.

OMP Optimization

OMP Graphical Manufacturing Planner (GMP) is OM Partners’ solution for
detailed scheduling problems. GMP models your production facilities in
great detail: set-ups, precedence relationships, tanks and silos, multiple
BOMs and resources, batching rules, warehouses, etc.
GMP allows to simulate in a mouse-driven windowing
environment: drag & drop facilities, order split &
merge, graphs and reports built through interactive
contents selection, etc. You can monitor inven-
tory and WIP evolution, see the impact of pro-
duction events and order changes on set-up
costs, resource usage, due date performance.

OMP Graphical Manufacturing Planner

Sophisticated solvers

OMP Master Production Scheduler (MPS) is an interactive graphical package for Master Planning. Based on sales forecasts and orders from
different customer groups in various countries, MPS can take into account machine-, resource- and storage capacities in different plants, mate-
rial requirements, transportation (truck, train, barge, etc.) and customer specific constraints (batch sizes, buffering policies, etc.). MPS will
automatically generate a multi-level finite capacity plan with minimal transportation, manufacturing and storage costs, minimal deviation from
inventory and production targets, etc.. MPS also allows for real-time order promising and
service level optimization.

OMP Master Production Scheduler

Intelligent modules exist for optimization
problems like cutting, blending, sequencing,
cycle planning, ...

OM Partners n.v. • Michielssendreef 40-48 • B-2930 Brasschaat, Belgium
Tel. +32-3-652.03.03 • Fax +32-3-652.07.72 • E-mail: sales@ompartners.com • http://www.ompartners.com

Interactive,
Intelligent

and Integrated
Supply Chain Planning Solutions

The Testing Consultancy, Dynamic Business Practitioners,

providing independent testing services to the IT industry. Tool

independent, our recommendations are based solely on your

requirements, helping you to increase the quality of your systems,

while actually reducing costs and delivering on time

Our mission : “to provide a practical testing solutions”

Our services include
• Testing Consultancy

Test Strategy Definition, Test Planning & Test Management

• Test Process Improvement
Testing Review, Test Measurement& Metrics, QA Procedures

• Test Outsourcing
On site or Off site

• Test Automation
Tool Evaluation, Selection & Implementation

• Testing Resources
Test Managers, Test Designers, Test Analysts & Technical Specialists

• Test Training
Bespoke training courses for all phases of testing

Contact Details
• Lynn Thopmson c/o The Testing Consultancy Ltd
• 3 Linford Forum, Rockingham Drive Linford Wood, Milton Keynes. MK14 6LY
• Tel : +44 1908 395050 Fax : +44 1908 395051 info@testing-

The Testing Consultancy
SPECIALISTS IN TESTING AND TEST AUTOMATION

The Testing Consultancy
SPECIALISTS IN TESTING AND TEST AUTOMATION

VAC is authorised distributor in the Netherlands ie the Benelux of BitbyBit, Help Desk Systems,
Information Advantage, Micro Focus, MKS, Netron, Progress Software and Softbridge. For IT training has
VAC an exclusive partnership with Gartner Learning. VAC is a subsidiary of Management Share N.V.,
listed at the Amsterdam Stock Exchange.

Software Quality Management & Automated Testing
The demand for reliable high quality software is increasing
continuously to support the business needs. One of the
aspects to improve software quality is testing. A clear and
concise vision towards software testing is one of the
success factors of this aspect as well as an adapted
infrastructure of testware.

As a distributor of software tools in the Benelux, VAC
focuses on:
- support of the development and test process by a

suitable choice of available tools, and
- adaption of the user interface of test tools to the end
user.

We believe a table driven test suite combined with a
configuration management tool, a problem tracking
system, and a suite of testware to support automated
software testing leverages to a higher level of development
process maturity.

VAC
Hullenbergweg 371
Postbus 12470
1100 AL Amsterdam
The Netherlands
Phone: + 31 (0)20
6520200
Fax : + 31 (0)20 6918522
E-mail: solutions@vac.nl
Internet:
http://www.vac.nl

VAC Software
Engineering provides
professional software
development solutions to
design, build, test and
maintain information
technology systems
including tools, consultancy,
training, support and
implementation services.

Come and see us
To experience our table driven
test suite we invite you to
Dr. Boudewijn Schokker’s
presentation at the
Vendor Technical Track on
Thursday 12. November at
11.00 am

International Software Quality Week
Conferences

Request for Conference Proceedings
Request for Tutorial Notes

Yes, I am interested in copies of the Proceedings of the International Quality Week Conferences (QW
and QWE). This form indicates the publications I am ordering.

Note: Email all questions or comments related to Quality Week to qw@soft.com.

Conference Proceedings

Specify
Number Description Price
 CD-ROM Quality Week Europe 1998 (QWE’98) $50

 Quality Week Europe Proceedings 1998 (QWE’98) $50

 Quality Week Proceedings 1998 (QW’98) $50

 Quality Week Europe Proceedings 1997 (QWE’97) $25

 Quality Week Proceedings 1997 (QW’97) $25

 Quality Week Proceedings 1996 (QW’96) Sold Out

 Quality Week Proceedings 1995 (QW’95) $25

 Quality Week Proceedings 1994 (QW’94) Sold Out

 Quality Week Proceedings 1993 (QW’93) $25

Tutorial Notes

Specify
Number Description Price
 QWE’98 Tutorial Notes $25

 QW’98 Tutorial Notes $25

 QWE’97 Tutorial Notes $25

 QW’97 Tutorial Notes $25

 QW’96 Tutorial Notes Sold Out

 QW’95 Tutorial Notes $25

 QW’94 Tutorial Notes $25

Shipping and Handling Per Proceeding Set (USA Destination)

USA Destination:
 UPS Ground $10
 US Postal Service Priority $25
 US Postal Service Express $30

Canada & Mexico:
 UPS Standard $30
 UPS Expedited $65
 UPS Express $70

Shipping and Handling Per Proceeding Set (International)

Europe:
 US Postal Service - Surface $35 (2-3 weeks)
 US Postal Service - Air $50
 UPS Eastern Europe $170 (4-7 days)
 UPS Western Europe $110 (4-7 days)

Pacific Rim:
 US Postal Service - Surface $35 (2-3 weeks)
 US Postal Service - Air $70
 UPS Expedited Air $90 (Tokyo, Hong Kong)
 UPS Expedited Air $100 (Other Asia)

 Quantity of Proceedings Ordered:

 Total Proceedings Shipping Cost:

Shipping and Handling Per Tutorial Set (USA Destination)

USA Destination:
 UPS Ground $10
 US Postal Service Priority $20
 US Postal Service Express $35

Canada & Mexico:
 UPS Standard $25
 UPS Expedited $50
 UPS Express $55

Shipping and Handling Per Tutorial Set (International)

Europe:
 US Postal Service - Surface $15 (2-3 weeks)
 US Postal Service - Air $30
 UPS Eastern Europe $110 (4-7 days)
 UPS Western Europe $75 (4-7 days)

Pacific Rim:
 US Postal Service - Surface $15 (2-3 weeks)
 US Postal Service - Air $35
 UPS Expedited Air $65 (Tokyo, Hong Kong)
 UPS Expedited Air $70 (Other Asia)

 Quantity of Tutorials Ordered:

 Total Tutorials Shipping Cost:

 TOTAL SHIPPING PRICE:

 TOTAL PRICE:

I’m returning this form with:

 Check
 Credit Card
 WireTransfer

 Visa Number Exp. Date

MasterCard Number Exp. Date

 AMEX Number Exp. Date

Advance Payment by international wire transfer to:

Name: Software Research Institute

Account Number: 0052-078029

Address: Wells Fargo Bank
 Brannan Office
 601 Third Street
 San Francisco CA 94107 USA

Please send the Quality Week Proceedings or Tutorials without delay to my attention:

First Name: Last Name:

 Title:

 Company:

 Address1:

 Address2:

 City: State: Postal/ZIP Code:

 Country:

 Phone:

 FAX:

 E-Mail:

SUBMIT INFORMATION
CLEAR FORM

2nd INTERNATIONAL
SOFTWARE QUALITY WEEK EUROPE

(QWE’98)

9-13 November 1998, Brussels, Belgium

SPONSORING ORGANIZATIONS

[QW Series | QWE’98 Home | Download (Call, Ad) | Download Brochure | Send Brochure]
[Kudos | Tour | PROGRAM | Abstracts | Bios | Y2K Clock]

[Advisory Board | Sponsors | Exhibits | REGISTER | Hotels | Brussels]

Quality Week/Europe ’98 (QWE’98) is run by Software Research Institute (SR/Institute), a
not-for-profit subsidiary of Software Research, Inc.. Organizations which have agreed to be
sponsors of the QWE’98 event are given below.

The QWE’98 event is organized and presented in cooperation with certain other
organizations, whose support is also acknowledged below. Note: Additional sponsors and
cooperating organizations are expected to be added. The information given below was last
updated on 26 August 1998.

IN COOPERATION WITH...

ABOUT THE ACM...

The ACM (Association for Computing Machinery) has approved Quality Week
’98 as an event presented in cooperation with the ACM. ACM members receive
a 10% discount when they register using their ACM Membership Number.

ACM, the Association for Computing Machinery, is an international scientific
and educational organization dedicated to advancing the arts, sciences, and

application of information technology. With a worldwide membership of 80,000, ACM
functions as a locus for various fields of Information Technology.

Membership benefits include a subscription to Communications of the ACM, discounts on
conferences and publications, 36 special interest groups and the new ACM Digital Library.
The Digital Library includes unlimited access to 22 ACM publications and archives, 6 years
of conference proceedings and over 100,000 pages of text, with full searching capabilities.

For more information visit our website at: http://www.acm.org or contact ACM directly at: 1
(800) 342-6626 (U.S.A. & Canada) or 1 (212) 626-0500 (anywhere), by fax at: 1 (212)

944-1318, email: acmhelp@acm.org, or by writing to ACM, Member Services Department,
P.O. Box 11315, New York, NY 10286-1315.

ABOUT ESI...

The European Software Institute is one of the world’s leading
independent authorities on software process improvement. ESI is a
non-profit-making organisation driven by the demands of European

industry. It is supported by the European Commission, the Basque Government and through
company membership. ESI’s work is centred on products and services that are tied directly
to core business objectives such as reducing costs and increasing predictability of results
among others. ESI’s headquarters are in Bilbao, Spain.

ABOUT ESSI...

Enterprises in all developed sectors of the economy - and not just the
IT sector - are increasingly dependent on quality software-based IT
systems. Such systems support management, production, and service
functions in diverse organisations. Furthermore, the products and
services now offered by the non-IT sectors, e.g., the automotive
industry or the consumer electronics industry, increasingly contain a

component of sophisticated software. For example, televisions require in excess of half a
Mbyte of software code to provide the wide variety of functions we have come to expect
from a domestic appliance. Similarly, the planning and execution of a cutting pattern in the
garment industry is accomplished under software control, as are many safety-critical
functions in the control of, e.g., aeroplanes, elevators, trains, and electricity generating
plants. Today, approximately 70% of all software developed in Europe is developed in the
non-IT sectors of the economy. This makes software a technological topic of considerable
significance. As the information age develops, software will become even more pervasive
and transparent. Consequently, the ability to produce software efficiently, effectively, and
with consistently high quality will become increasingly important for all industries across
Europe if they are to maintain and enhance their competitiveness.

The goal of the European Systems and Software Initiative (ESSI) is to promote
improvements in the software development process in industry, through the take-up of
well-founded and established - but insufficiently deployed - methods and technologies, so as
to achieve greater efficiency, higher quality, and greater economy. In short, the adoption of
Software Best Practice.

ABOUT KVIV...

De Koninklijke Vlaamse Ingenieursvereniging (KVIV) was founded in 1928 and
has 12,000 members: civil engineers, agricultural engineers, chemical engineers,
bio-engineers, and polytechnical engineers from the Royal Military School.

KVIV is an open and flexible organization that gives ongoing training programs and

publications for entrepreneurs, managers, docents, and government employees. Thanks to its
internal structure, KVIV contacts diverse public groups as well as academic and industry
circles.

ABOUT SAI...

SAI (Studiecentrum voor Automatische Informatieverwerking) is a
non-profit organization whose purpose is to promote the knowledge of
Information. As far as the theoretical as practical aspects of information

knowledge, the organization takes a stand on social questions that has to do with automation
of information as far as it applies. The activities of the organization are focused on people
who are specialists in information. SAI organizes discussions, meetings, seminars,
workshops and a magazine called "Informatie".

SPONSORED BY...

ABOUT SR/TestWorks...

Software Research, Inc. (SR) offers the TestWorks suite of integrated
software test tools that include regression and coverage testing support
for UNIX and Windows platforms, in use by thousands of sites
worldwide. SR’s active program of new-product development includes

current applications in Web Testing, UML-Based Test Planning and Development and
Remote Testing Technology. SR publishes the widely subscribed TTN-Online, an Emailed
monthly newsletter (click to subscribe).

CO-SPONSORS...

GOLD SPONSOR

ABOUT CMG Information Technology...

CMG plc is a leading European IT services company,
providing business information solutions through consultancy,
systems and services to clients worldwide. Established in
1964, CMG now operates in more than 40 countries from its

bases in the UK, The Netherlands, Germany, France and Belgium. The company is listed on
the London and Amsterdam stock exchanges. CMG supplies services and products in the
finance, trade and industry, transport, telecommunications, energy and public sectors. The
Group also provides managed information processing services, including networks, payroll
and personnel.

One of CMG’s many specialisations is the automation of structured testing. Testing of new
software products is a time consuming business. CMG has developed a very successful
testing method TestFrame. TestFrame is based on CMG:CAST, an approach for the

structured and automated testing of new or modified software. TestFrame reduces testing
times considerably, and thus speeds up the time-to-market for new products and services.
With this new method, CMG is currently one of the leading companies in this field.

CMG is dedicated to helping its clients and their people become more successful through the
quality of its services and staff. Strong employee commitment ensures the Group’s long term
success and hence the success of its clients.

GOLD SPONSOR

ABOUT SIM Group Ltd...

SIM Group Ltd. are totally dedicated to software testing. SIM will supply
and manage testing teams that perform testing work to the highest standards
of efficiency and effectiveness. SIM performs consultancy, execution and
training of testing. SIM’s methods and techniques for testing include testing
frame works, libraries, documented procedures and deliverable templates that

can all be used to speed up the adoption and use of good testing practices. SIM’s approach to
testing relies heavily on the adoption of automated testing techniques as much as is practical
SIM has a proven track record of success with automated testing. SIM’s subsidiary SOFTech
Tools Ltd. selected and specialised testing tools that contribute to the full automated testing
process.

SILVER SPONSOR

ABOUT IQUIP Informatica B.V...

Since 1972 IQUIP Informatica B.V. has been supporting organisations in
carrying out their core processes. With its 1200 employees IQUIP does this by
constructing, maintaining, testing and implementing application software
systems. IQUIP increasingly concentrates on carrying out assignments with

result responsibility. In testing, IQUIP achieves this through her dedicated division
Components & Testing (300 employees), using the structured testing approach TMap®.
TMap® was developed by IQUIP itself and has become a widely used international
standard. TMap® related methods such as TAKT (test automation), TSite (test laboratory)
and TPI® (Test Process Improvement®) have recently completed the product range. A
dedicated R&D team is continuously improving these methods and, if required, develops
new products.

SILVER SPONSOR

ABOUT Mercury Interactive...

Mercury Interactive is the world’s leader in enterprise application testing
solutions. The company offers a comprehensive line of automated testing
tools that address the full range of quality needs for testing client/server,
e-business, Y2K, Euro, and packaged applications. Its testing solutions
enable corporations, system integrators and independent software vendors to
identify software errors more quickly and efficiently than with traditional
methods.

SILVER SPONSOR

ABOUT The Testing Consultancy...

The Testing Consultancy is a specialist consultancy that was formed to provide independent
testing services within the IT Industry.

With our highly qualified and experienced Consultants and Associates, we are strongly
positioned to provide guidance, expertise and support for all your testing requirements.

Our independent and objective advice will help your business to increase the quality and
reliability of its systems, whilst actually reducing costs, and delivering those systems within
the required timescales.

Gold Leaf Sponsor

ABOUT GiTek Software n.v...

GiTek Software nv supplies a number of services offering a global solution to testing:

Consultancy in testware
Structuring of the test process
Education and training

Test planning and test management
Test project and test execution

ORGANIZERS...

ABOUT SR/INSTITUTE...

Software Research Institute (SR/Institute), a not-for-profit subsidiary of
Software Research, Inc., was founded to promote the issues of Software
Quality throughout the software development community.

In addition to the Quality Week Conference series SR/Institute sponsors continuing
education seminars in the general area of software quality and software engineering, and
Software Quality Forums at which software quality industry leaders provide state of the art
technology transfer to industry executives about how to best apply current technology to
immediate software quality needs.

	06s.ziv_vg.pdf
	What Is Coverage?
	Outline
	Off-The-Shelf Vs. Custom Made Coverage Models,
	Which Is The One for You?
	Benefits of Using Coverage
	Risks of Using Coverage
	Code Coverage
	Functional Coverage
	Functional Coverage Example - Parcel Sorting System
	Parcel Sorting System - Model Definition
	Code vs. Functional
	Coverage
	Comet - General Purpose Tool for Functional Coverage
	Coverage Guidelines
	Conclusions
	The Functional Coverage Process
	Code vs. Functional
	Coverage
	Code vs. Functional
	Coverage
	Code vs. Functional
	Coverage
	Comet Methodology
	Comet - Overall Structure
	Which Coverage Method to Use

	View Ad:
	Go Back:
	Go Back to Conference:

