
T esting Object-Oriented S ys tems: Best Practices
T esting Object-Oriented S ys tems:Lessons
Learned

1999 Nov 31999-Nov-3

Copyright (C) 1999 RBS C CorporationCopyright
 1999 RBS C Corporation 1

7HVWLQJ�2EMHFW�2ULHQWHG7HVWLQJ�2EMHFW�2ULHQWHG
6\VWHPV�6\VWHPV�
/HVVRQV�/HDUQHG/HVVRQV�/HDUQHG

5REHUW�9��%LQGHU5REHUW�9��%LQGHU
5%6& &RUSRUDWLRQ ZZZ�UEVF�FRP5%6& &RUSRUDWLRQ ZZZ�UEVF�FRP

2YHUYLHZ2YHUYLHZ

�� /HVVRQV�/HDUQHG/HVVRQV�/HDUQHG

±± 'HVLJQ��DXWRPDWLRQ��DQG�SURFHVV'HVLJQ��DXWRPDWLRQ��DQG�SURFHVV

�� 7KH�6WDWH�RI�WKH�$UW7KH�6WDWH�RI�WKH�$UW

±± 'HVLJQ��DXWRPDWLRQ��DQG�SURFHVV'HVLJQ��DXWRPDWLRQ��DQG�SURFHVV

�� 7KH�6WDWH�RI�WKH�3UDFWLFH7KH�6WDWH�RI�WKH�3UDFWLFH

±± 7KUHH�OHYHOV7KUHH�OHYHOV

±± 7HVWLQJ�FDQ�DFKLHYH�ZRUOG�FODVV�TXDOLW\7HVWLQJ�FDQ�DFKLHYH�ZRUOG�FODVV�TXDOLW\

T esting Object-Oriented S ys tems: Best Practices
T esting Object-Oriented S ys tems:Lessons
Learned

1999 Nov 31999-Nov-3

Copyright (C) 1999 RBS C CorporationCopyright
 1999 RBS C Corporation 2

/HVVRQV�/HDUQHG/HVVRQV�/HDUQHG

�� &ODVV�&OXVWHU�WHVW�GHVLJQ&ODVV�&OXVWHU�WHVW�GHVLJQ

±± 6XSHU�VXEFODVV�LQWHUDFWLRQ�PXVW�EH�WHVWHG�6XSHU�VXEFODVV�LQWHUDFWLRQ�PXVW�EH�WHVWHG�

WHVW�DW�IODWWHQHG�VFRSH�WHVW�DW�IODWWHQHG�VFRSH�

±± 'HVLJQ�VXEFODVV�WHVW�VXLWHV�WR�UH�UXQ�RQ'HVLJQ�VXEFODVV�WHVW�VXLWHV�WR�UH�UXQ�RQ

VXSHUFODVVHV�VXSHUFODVVHV�

±± 'HVLJQ�VXSHUFODVV�WHVW�VXLWHV�WR�UH�UXQ�RQ'HVLJQ�VXSHUFODVV�WHVW�VXLWHV�WR�UH�UXQ�RQ

VXEFODVVHV�VXEFODVVHV�

±± 7HVW�SRO\PRUSKLF�VHUYHUV�IRU�/637HVW�SRO\PRUSKLF�VHUYHUV�IRU�/63

FRPSOLDQFH�FRPSOLDQFH�

/HVVRQV�/HDUQHG/HVVRQV�/HDUQHG

�� &ODVV�&OXVWHU�WHVW�GHVLJQ&ODVV�&OXVWHU�WHVW�GHVLJQ

±± ([HUFLVH�HDFK�ELQGLQJ�RI�D�SRO\PRUSKLF([HUFLVH�HDFK�ELQGLQJ�RI�D�SRO\PRUSKLF

VHUYHU�PHVVDJHVHUYHU�PHVVDJH

±± 7HVW�DOO�SDUDPHWHUV�IRU�JHQHULFV7HVW�DOO�SDUDPHWHUV�IRU�JHQHULFV

±± 7HVW�LQWHUIDFH�GDWD�IORZ�RI�QRQ�PRGDO�FODVVHV7HVW�LQWHUIDFH�GDWD�IORZ�RI�QRQ�PRGDO�FODVVHV

T esting Object-Oriented S ys tems: Best Practices
T esting Object-Oriented S ys tems:Lessons
Learned

1999 Nov 31999-Nov-3

Copyright (C) 1999 RBS C CorporationCopyright
 1999 RBS C Corporation 3

/HVVRQV�/HDUQHG/HVVRQV�/HDUQHG

�� 6XEV\VWHP�V\VWHP�WHVW�GHVLJQ6XEV\VWHP�V\VWHP�WHVW�GHVLJQ

±± &RQWURO�HDVLO\�REVFXUHG�RU�DFFLGHQWDO&RQWURO�HDVLO\�REVFXUHG�RU�DFFLGHQWDO

�� &RPSOH[�GHSHQGHQFLHV�EHWZHHQ�FRQFUHWH&RPSOH[�GHSHQGHQFLHV�EHWZHHQ�FRQFUHWH
VWDWH�DQG�PHVVDJH�VHTXHQFHVWDWH�DQG�PHVVDJH�VHTXHQFH

�� +LHUDUFKLF�FRQWURO�LQ�VWDWH�EDVHG�VXEFODVVHV+LHUDUFKLF�FRQWURO�LQ�VWDWH�EDVHG�VXEFODVVHV

�� 0RVDLF�PRGXODULW\�DW�ODUJHU�VFRSH0RVDLF�PRGXODULW\�DW�ODUJHU�VFRSH

±± 0RGHO�EHKDYLRU�ZLWK�VWDWH�PDFKLQHV��DFKLHYH0RGHO�EHKDYLRU�ZLWK�VWDWH�PDFKLQHV��DFKLHYH

WUDQVLWLRQ�FRYHU�RU�EHWWHUWUDQVLWLRQ�FRYHU�RU�EHWWHU

/HVVRQV�/HDUQHG/HVVRQV�/HDUQHG

�� 6XEV\VWHP�V\VWHP�WHVW�GHVLJQ6XEV\VWHP�V\VWHP�WHVW�GHVLJQ

±± 2EMHFWV�GRQ¶W�FRPSRVH��HDVLO\�2EMHFWV�GRQ¶W�FRPSRVH��HDVLO\�

±± 3URGXFHU¶V�IUDPHZRUN�VKRXOG�QRW�EH�LQ3URGXFHU¶V�IUDPHZRUN�VKRXOG�QRW�EH�LQ

FRQVXPHU¶V�WHVW�VFRSHFRQVXPHU¶V�WHVW�VFRSH

±± 0LQLPXP�V\VWHP�VXEV\VWHP�WHVW�LQFOXGHV0LQLPXP�V\VWHP�VXEV\VWHP�WHVW�LQFOXGHV

�� 7HVWLQJ�H[FHSWLRQV7HVWLQJ�H[FHSWLRQV

�� 7HVWLQJ�FODVV�DVVRFLDWLRQV7HVWLQJ�FODVV�DVVRFLDWLRQV

�� 7HVWLQJ�XVH�FDVHV��UHTXLUHV�WHVWDEOH�FRQWHQW�7HVWLQJ�XVH�FDVHV��UHTXLUHV�WHVWDEOH�FRQWHQW�

T esting Object-Oriented S ys tems: Best Practices
T esting Object-Oriented S ys tems:Lessons
Learned

1999 Nov 31999-Nov-3

Copyright (C) 1999 RBS C CorporationCopyright
 1999 RBS C Corporation 4

/HVVRQV�/HDUQHG/HVVRQV�/HDUQHG

�� 7HVW�$XWRPDWLRQ7HVW�$XWRPDWLRQ

±± (QFDSVXODWLRQ�DQG�PRVDLF�PRGXODULW\(QFDSVXODWLRQ�DQG�PRVDLF�PRGXODULW\

GHFUHDVH�FRQWUROODELOLW\�DQG�REVHUYDELOLW\GHFUHDVH�FRQWUROODELOLW\�DQG�REVHUYDELOLW\

±± 'HVLJQ�E\�FRQWUDFW�DVVHUWLRQV�LV�WKH�RQO\'HVLJQ�E\�FRQWUDFW�DVVHUWLRQV�LV�WKH�RQO\

SUDFWLFDO�FRXQWHU�PHDVXUH�IRU�LQKHUHQW�QRQ�SUDFWLFDO�FRXQWHU�PHDVXUH�IRU�LQKHUHQW�QRQ�

GHWHUPLQLVP�DQG�ORVV�RI�WHVWDELOLW\GHWHUPLQLVP�DQG�ORVV�RI�WHVWDELOLW\

/HVVRQV�/HDUQHG/HVVRQV�/HDUQHG

�� 7HVW�$XWRPDWLRQ7HVW�$XWRPDWLRQ

±± $YRLG�VWXEV��LQFUHDVH�VFRSH�RI�WKH�,87�RU$YRLG�VWXEV��LQFUHDVH�VFRSH�RI�WKH�,87�RU

WHVW�LQ�ERWWRP�XS�RUGHUWHVW�LQ�ERWWRP�XS�RUGHU

±± 'HVLJQ�WHVW�KDUQHVV�WR�H[SORLW�WKH�VWUXFWXUH'HVLJQ�WHVW�KDUQHVV�WR�H[SORLW�WKH�VWUXFWXUH

DQG�SDUWLFXODUV�RI�WKH�V\VWHP�XQGHU�WHVWDQG�SDUWLFXODUV�RI�WKH�V\VWHP�XQGHU�WHVW

±± &RPSOHWH�DSS� �DSS�FRPSRQHQWV���WHVW&RPSOHWH�DSS� �DSS�FRPSRQHQWV���WHVW

FRPSRQHQWV�XQGHU�&0�FRQWUROFRPSRQHQWV�XQGHU�&0�FRQWURO

T esting Object-Oriented S ys tems: Best Practices
T esting Object-Oriented S ys tems:Lessons
Learned

1999 Nov 31999-Nov-3

Copyright (C) 1999 RBS C CorporationCopyright
 1999 RBS C Corporation 5

/HVVRQV�/HDUQHG/HVVRQV�/HDUQHG

�� 3URFHVV3URFHVV

±± ,QVSHFW�IRU�RPLVVLRQV�DQG�LQFRQVLVWHQFLHV�,QVSHFW�IRU�RPLVVLRQV�DQG�LQFRQVLVWHQFLHV�

WHVW�IRU�HYHU\WKLQJ�HOVHWHVW�IRU�HYHU\WKLQJ�HOVH

±± 'HVLJQ�IRU�WHVWDELOLW\'HVLJQ�IRU�WHVWDELOLW\

�� ,PSOHPHQW�KLHUDUFKLF�DUFKLWHFWXUH�SDWWHUQV,PSOHPHQW�KLHUDUFKLF�DUFKLWHFWXUH�SDWWHUQV

�� (OLPLQDWH�RU�HQFDSVXODWH�F\FOLF�GHSHQGHQFLHV(OLPLQDWH�RU�HQFDSVXODWH�F\FOLF�GHSHQGHQFLHV

�� $VVHUW�FODVV�LQYDULDQWV��DW�OHDVW$VVHUW�FODVV�LQYDULDQWV��DW�OHDVW

±± 6XSSRUW�UHXVH�ZLWK�FRPSOHPHQWDU\6XSSRUW�UHXVH�ZLWK�FRPSOHPHQWDU\

SURGXFHU�FRQVXPHU�WHVWLQJ�VWUDWHJLHVSURGXFHU�FRQVXPHU�WHVWLQJ�VWUDWHJLHV

/HVVRQV�/HDUQHG/HVVRQV�/HDUQHG

�� 3URFHVV3URFHVV

±± ��WR���GHYHORSPHQW�LQFUHPHQWV��WR���GHYHORSPHQW�LQFUHPHQWV

�� 'HYHORSHU�FODVV�FOXVWHU�WHVW����5XQ�WHVWV'HYHORSHU�FODVV�FOXVWHU�WHVW����5XQ�WHVWV
ORFDOO\��GHVLJQ�WHVWV�JOREDOO\��³XQLJUDWLRQ´ORFDOO\��GHVLJQ�WHVWV�JOREDOO\��³XQLJUDWLRQ´

�� ;3��³&RQWLQXRXV�LQWHJUDWLRQ��UHOHQWOHVV;3��³&RQWLQXRXV�LQWHJUDWLRQ��UHOHQWOHVV
WHVWLQJ´WHVWLQJ´

�� ,QGHSHQGHQW�EXLOG�LQWHJUDWLRQ�JURXS�WHVWV,QGHSHQGHQW�EXLOG�LQWHJUDWLRQ�JURXS�WHVWV
FRPSOHWHG�LQFUHPHQWFRPSOHWHG�LQFUHPHQW

�� 7HVW�VXLWHV�PXVW�EH�UHJUHVV�DEOH7HVW�VXLWHV�PXVW�EH�UHJUHVV�DEOH

±± 6\VWHP�WHVWLQJ�RQ�ILQDO�LQFUHPHQW6\VWHP�WHVWLQJ�RQ�ILQDO�LQFUHPHQW

T esting Object-Oriented S ys tems: Best Practices
T esting Object-Oriented S ys tems:Lessons
Learned

1999 Nov 31999-Nov-3

Copyright (C) 1999 RBS C CorporationCopyright
 1999 RBS C Corporation 6

6WDWH�RI�WKH�$UW6WDWH�RI�WKH�$UW

�� 5HSUHVHQWDWLRQ5HSUHVHQWDWLRQ

�� 'HVLJQ�IRU�7HVWDELOLW\'HVLJQ�IRU�7HVWDELOLW\

�� 7HVW�'HVLJQ7HVW�'HVLJQ

�� 7HVW�$XWRPDWLRQ7HVW�$XWRPDWLRQ

62$��5HSUHVHQWDWLRQ62$��5HSUHVHQWDWLRQ

�� %HVW�3UDFWLFHV%HVW�3UDFWLFHV

±± 6\QWURS\��'HVLJQ�E\�&RQWUDFW6\QWURS\��'HVLJQ�E\�&RQWUDFW

±± 80/�2&/����80/�2&/����

±± 'HVLJQ�3DWWHUQV'HVLJQ�3DWWHUQV

�� &KDOOHQJHV&KDOOHQJHV

±± $UFKLWHFWXUH$UFKLWHFWXUH

±± /LPLWV�RI�FDUWRRQV/LPLWV�RI�FDUWRRQV

±± 7HVW�GHVLJQ�DV�VRIWZDUH�HQJLQHHULQJ7HVW�GHVLJQ�DV�VRIWZDUH�HQJLQHHULQJ

T esting Object-Oriented S ys tems: Best Practices
T esting Object-Oriented S ys tems:Lessons
Learned

1999 Nov 31999-Nov-3

Copyright (C) 1999 RBS C CorporationCopyright
 1999 RBS C Corporation 7

62$��'HVLJQ�IRU�7HVWDELOLW\62$��'HVLJQ�IRU�7HVWDELOLW\

�� %HVW�3UDFWLFHV%HVW�3UDFWLFHV

±±)UDPHZRUNV�OLEUDULHV�ZLWK�DVVHUWLRQV)UDPHZRUNV�OLEUDULHV�ZLWK�DVVHUWLRQV

±± /DNRV¶��OHYHOL]DEOH�DUFKLWHFWXUH/DNRV¶��OHYHOL]DEOH�DUFKLWHFWXUH

±± 3HUFRODWLRQ�SDWWHUQ3HUFRODWLRQ�SDWWHUQ

±± 26�����WHVW�IUDPHZRUN26�����WHVW�IUDPHZRUN

62$��'HVLJQ�IRU�7HVWDELOLW\62$��'HVLJQ�IRU�7HVWDELOLW\

�� &KDOOHQJHV&KDOOHQJHV

±± 6HDPOHVV�ODQJXDJH�VXSSRUW6HDPOHVV�ODQJXDJH�VXSSRUW

±± 22�WHVWDELOLW\�DQ�R[\PRURQ"22�WHVWDELOLW\�DQ�R[\PRURQ"

±± (QWURS\�KRUL]RQ�DERXW����PRQWKV(QWURS\�KRUL]RQ�DERXW����PRQWKV

T esting Object-Oriented S ys tems: Best Practices
T esting Object-Oriented S ys tems:Lessons
Learned

1999 Nov 31999-Nov-3

Copyright (C) 1999 RBS C CorporationCopyright
 1999 RBS C Corporation 8

62$��7HVW�'HVLJQ62$��7HVW�'HVLJQ

�� %HVW�3UDFWLFHV%HVW�3UDFWLFHV

±± 7HVW�GHVLJQ�SDWWHUQV7HVW�GHVLJQ�SDWWHUQV

�� &KDOOHQJHV&KDOOHQJHV

±± ,QWUD�FODVV�FRYHUDJH,QWUD�FODVV�FRYHUDJH

±± 3RO\PRUSKLF�SDWKV3RO\PRUSKLF�SDWKV

±± 9DOLGDWHG�IDLOXUH�PHWULFV�IDXOW�PRGHOV9DOLGDWHG�IDLOXUH�PHWULFV�IDXOW�PRGHOV

7HVW�'HVLJQ�3DWWHUQ7HVW�'HVLJQ�3DWWHUQ

�� 1HZ�SDWWHUQ�VFKHPD�IRU�WHVW�GHVLJQ1HZ�SDWWHUQ�VFKHPD�IRU�WHVW�GHVLJQ

Name/Intent
Context
Fault Model
T est Model
E ntry Criteria
E xit Criteria
Consequences
Known Uses

Name/Intent
Context
Fault Model
T est Model
E ntry Criteria
E xit Criteria
Consequences
Known Uses

R epresentation
T est Generation
Oracle
Automation

R epresentation
T est Generation
Oracle
Automation

7HVWLQJ�2EMHFW�2ULHQWHG�6\VWHPV��0RGHOV��3DWWHUQV�

DQG�7RROV���$GGLVRQ�:HVOH\�

7HVWLQJ�2EMHFW�2ULHQWHG�6\VWHPV��0RGHOV��3DWWHUQV�

DQG�7RROV���$GGLVRQ�:HVOH\�

T esting Object-Oriented S ys tems: Best Practices
T esting Object-Oriented S ys tems:Lessons
Learned

1999 Nov 31999-Nov-3

Copyright (C) 1999 RBS C CorporationCopyright
 1999 RBS C Corporation 9

7HVW�'HVLJQ�3DWWHUQV7HVW�'HVLJQ�3DWWHUQV

�� 0HWKRG�6FRSH0HWKRG�6FRSH

±± &DWHJRU\�3DUWLWLRQ&DWHJRU\�3DUWLWLRQ

±± &RPELQDWLRQDO)XQFWLRQ&RPELQDWLRQDO)XQFWLRQ

±± 5HFXUVLYH)XQFWLRQ5HFXUVLYH)XQFWLRQ

±± 3RO\PRUSKLF 0HVVDJH3RO\PRUSKLF 0HVVDJH

�� &ODVV�&OXVWHU�6FRSH&ODVV�&OXVWHU�6FRSH

±± ,QYDULDQW %RXQGDULHV,QYDULDQW %RXQGDULHV

±± 0RGDO &ODVV0RGDO &ODVV

±± 4XDVL�0RGDO &ODVV4XDVL�0RGDO &ODVV

±± 3RO\PRUSKLF 6HUYHU3RO\PRUSKLF 6HUYHU

±± 0RGDO +LHUDUFK\0RGDO +LHUDUFK\

7HVW�'HVLJQ�3DWWHUQV7HVW�'HVLJQ�3DWWHUQV

�� 6XEV\VWHP�6FRSH6XEV\VWHP�6FRSH

±± &ODVV $VVRFLDWLRQV&ODVV $VVRFLDWLRQV

±± 5RXQG�7ULS 6FHQDULRV5RXQG�7ULS 6FHQDULRV

±± 0RGH 0DFKLQH0RGH 0DFKLQH

±± &RQWUROOHG ([FHSWLRQV&RQWUROOHG ([FHSWLRQV

�� 5HXVDEOH�&RPSRQHQWV5HXVDEOH�&RPSRQHQWV

±± $EVWUDFW &ODVV$EVWUDFW &ODVV

±± *HQHULF &ODVV*HQHULF &ODVV

±± 1HZ)UDPHZRUN1HZ)UDPHZRUN

±± 3RSXODU)UDPHZRUN3RSXODU)UDPHZRUN

T esting Object-Oriented S ys tems: Best Practices
T esting Object-Oriented S ys tems:Lessons
Learned

1999 Nov 31999-Nov-3

Copyright (C) 1999 RBS C CorporationCopyright
 1999 RBS C Corporation 10

7HVW�'HVLJQ�3DWWHUQV7HVW�'HVLJQ�3DWWHUQV

�� ,QWUD�FODVV�,QWHJUDWLRQ,QWUD�FODVV�,QWHJUDWLRQ

±± 6PDOO 3RS6PDOO 3RS

±± $OSKD�2PHJD &\FOH$OSKD�2PHJD &\FOH

�� ,QWHJUDWLRQ�6WUDWHJ\,QWHJUDWLRQ�6WUDWHJ\

±± %LJ %DQJ%LJ %DQJ

±± %RWWRP XS%RWWRP XS

±± 7RS 'RZQ7RS 'RZQ

±± &ROODERUDWLRQV&ROODERUDWLRQV

±± %DFNERQH%DFNERQH

±± /D\HUV/D\HUV

±± &OLHQW�6HUYHU&OLHQW�6HUYHU

±± 'LVWULEXWHG 6HUYLFHV'LVWULEXWHG 6HUYLFHV

±± +LJK)UHTXHQF\+LJK)UHTXHQF\

7HVW�'HVLJQ�3DWWHUQV7HVW�'HVLJQ�3DWWHUQV

�� 6\VWHP�6FRSH6\VWHP�6FRSH

±± ([WHQGHG 8VH &DVHV([WHQGHG 8VH &DVHV

±± &RYHUHG LQ &58'&RYHUHG LQ &58'

±± $OORFDWH E\ 3URILOH$OORFDWH E\ 3URILOH

�� 5HJUHVVLRQ�7HVWLQJ5HJUHVVLRQ�7HVWLQJ

±± 5HWHVW $OO5HWHVW $OO

±± 5HWHVW 5LVN\ 8VH &DVHV5HWHVW 5LVN\ 8VH &DVHV

±± 5HWHVW 3URILOH5HWHVW 3URILOH

±± 5HWHVW &KDQJHG &RGH5HWHVW &KDQJHG &RGH

±± 5HWHVW :LWKLQ)LUHZDOO5HWHVW :LWKLQ)LUHZDOO

T esting Object-Oriented S ys tems: Best Practices
T esting Object-Oriented S ys tems:Lessons
Learned

1999 Nov 31999-Nov-3

Copyright (C) 1999 RBS C CorporationCopyright
 1999 RBS C Corporation 11

62$��7HVW�$XWRPDWLRQ62$��7HVW�$XWRPDWLRQ

�� %HVW�3UDFWLFHV%HVW�3UDFWLFHV

±± 'HVLJQ�SDWWHUQV�IRU�WHVW�DXWRPDWLRQ'HVLJQ�SDWWHUQV�IRU�WHVW�DXWRPDWLRQ

±± $XWRPDWLF�GULYHU�JHQHUDWLRQ$XWRPDWLF�GULYHU�JHQHUDWLRQ

±± 6LPSOH�FRYHUDJH�DQDO\]HUV6LPSOH�FRYHUDJH�DQDO\]HUV

62$��7HVW�+DUQHVV�3DWWHUQV62$��7HVW�+DUQHVV�3DWWHUQV

�� 7HVW�&DVH7HVW�&DVH

,PSOHPHQWDWLRQ,PSOHPHQWDWLRQ

±± 7HVW &DVH�7HVW 6XLWH7HVW &DVH�7HVW 6XLWH

0HWKRG0HWKRG

±± 7HVW &DVH �7HVW 6XLWH7HVW &DVH �7HVW 6XLWH

&ODVV&ODVV

±± &DWFK $OO ([FHSWLRQV&DWFK $OO ([FHSWLRQV

�� 7HVW�&RQWURO7HVW�&RQWURO

±± 6HUYHU 6WXE6HUYHU 6WXE

±± 6HUYHU 3UR[\6HUYHU 3UR[\

�� 7HVW�'ULYHUV7HVW�'ULYHUV

±± 7HVW'ULYHU 6XSHU &ODVV7HVW'ULYHU 6XSHU &ODVV

±± 3HUFRODWH WKH 2EMHFW3HUFRODWH WKH 2EMHFW

8QGHU 7HVW8QGHU 7HVW

±± 6\PPHWULF 'ULYHU6\PPHWULF 'ULYHU

±± 6XEFODVV 'ULYHU6XEFODVV 'ULYHU

±± 3ULYDWH $FFHVV 'ULYHU3ULYDWH $FFHVV 'ULYHU

±± 7HVW &RQWURO ,QWHUIDFH7HVW &RQWURO ,QWHUIDFH

±± 'URQH'URQH

±± %XLOW�LQ 7HVW 'ULYHU%XLOW�LQ 7HVW 'ULYHU

T esting Object-Oriented S ys tems: Best Practices
T esting Object-Oriented S ys tems:Lessons
Learned

1999 Nov 31999-Nov-3

Copyright (C) 1999 RBS C CorporationCopyright
 1999 RBS C Corporation 12

62$��7HVW�+DUQHVV�3DWWHUQV62$��7HVW�+DUQHVV�3DWWHUQV

�� 7HVW�([HFXWLRQ7HVW�([HFXWLRQ

±± &RPPDQG /LQH 7HVW&RPPDQG /LQH 7HVW

%XQGOH%XQGOH

±± ,QFUHPHQWDO 7HVWLQJ,QFUHPHQWDO 7HVWLQJ

)UDPHZRUN �H�J� -XQLW�)UDPHZRUN �H�J� -XQLW�

±±)UHVK 2EMHFWV)UHVK 2EMHFWV

�� %XLOW�LQ�7HVW%XLOW�LQ�7HVW

±± &RKHUHQFH LGLRP&RKHUHQFH LGLRP

±± 3HUFRODWLRQ3HUFRODWLRQ

±± %XLOW�LQ 7HVW 'ULYHU%XLOW�LQ 7HVW 'ULYHU

62$��7HVW�$XWRPDWLRQ62$��7HVW�$XWRPDWLRQ

�� &KDOOHQJHV&KDOOHQJHV

±± 9DOLGDWHG�IDLOXUH�PHWULFV�IDXOW�PRGHOV9DOLGDWHG�IDLOXUH�PHWULFV�IDXOW�PRGHOV

±± 7RRO�FDSDELOLW\�JDSV7RRO�FDSDELOLW\�JDSV

�� 1R�VXSSRUW�IRU�22�VSHFLILF�FRYHUDJH1R�VXSSRUW�IRU�22�VSHFLILF�FRYHUDJH

�� 9HU\�ZHDN�VSHFLILFDWLRQ�EDVHG�WHVW�JHQHUDWLRQ9HU\�ZHDN�VSHFLILFDWLRQ�EDVHG�WHVW�JHQHUDWLRQ

�� :HDN�VXSSRUW�IRU�WHVW�KDUQHVV�JHQHUDWLRQ:HDN�VXSSRUW�IRU�WHVW�KDUQHVV�JHQHUDWLRQ

T esting Object-Oriented S ys tems: Best Practices
T esting Object-Oriented S ys tems:Lessons
Learned

1999 Nov 31999-Nov-3

Copyright (C) 1999 RBS C CorporationCopyright
 1999 RBS C Corporation 13

6WDWH�RI�WKH�3UDFWLFH6WDWH�RI�WKH�3UDFWLFH

�� %HVW�3UDFWLFHV%HVW�3UDFWLFHV

±± 7HVWLQJ�E\�VFRSH��DERXW�����7HVWLQJ�E\�VFRSH��DERXW�����

±± 0DQ\�HPEHGGHG�UHDO�WLPH�VKRSV0DQ\�HPEHGGHG�UHDO�WLPH�VKRSV

±± ([WUHPH�3URJUDPPLQJ([WUHPH�3URJUDPPLQJ

�� &KDOOHQJHV&KDOOHQJHV

±± +LJK�IUHTXHQF\�VKRUW�F\FOH�GHYHORSPHQW+LJK�IUHTXHQF\�VKRUW�F\FOH�GHYHORSPHQW

±± 1DwYH�WHVW�GHVLJQ1DwYH�WHVW�GHVLJQ

±± 7RRO�FDSDELOLW\�JDSV7RRO�FDSDELOLW\�JDSV

623��7HVWLQJ�E\�3RNLQJ�$URXQG623��7HVWLQJ�E\�3RNLQJ�$URXQG

�� $ERXW�����RI�DOO�RUJDQL]DWLRQV$ERXW�����RI�DOO�RUJDQL]DWLRQV

�� &KDUDFWHULVWLFV&KDUDFWHULVWLFV

±± 7HVWLQJ�GRQH�DW�GHYHORSHU�GLVFUHWLRQ7HVWLQJ�GRQH�DW�GHYHORSHU�GLVFUHWLRQ

±± 1R�WHVW�HQWU\�H[LW�FULWHULD1R�WHVW�HQWU\�H[LW�FULWHULD

±± +LJK�WROHUDQFH�IRU�ORZ�TXDOLW\+LJK�WROHUDQFH�IRU�ORZ�TXDOLW\

T esting Object-Oriented S ys tems: Best Practices
T esting Object-Oriented S ys tems:Lessons
Learned

1999 Nov 31999-Nov-3

Copyright (C) 1999 RBS C CorporationCopyright
 1999 RBS C Corporation 14

623��7HVWLQJ�E\�3RNLQJ�$URXQG623��7HVWLQJ�E\�3RNLQJ�$URXQG

�� ,PSURYHPHQW�6WUDWHJ\,PSURYHPHQW�6WUDWHJ\

±± $VVHVV�OLPLWV�RI�LPSURYDELOLW\$VVHVV�OLPLWV�RI�LPSURYDELOLW\

±± 7UDLQ�GHYHORSHUV�LQ�EDVLF�WHVW�GHVLJQ7UDLQ�GHYHORSHUV�LQ�EDVLF�WHVW�GHVLJQ

±± ,QVWDOO�EDVLF�WRRO�VHW�,QVWDOO�EDVLF�WRRO�VHW�

�� &RYHUDJH�DQDO\]HU&RYHUDJH�DQDO\]HU

�� 0HPRU\�OHDN�GHWHFWRU0HPRU\�OHDN�GHWHFWRU

�� 7HVW�KDUQHVV�IUDPHZRUN�JHQHUDWRU��H�J��-XQLW�7HVW�KDUQHVV�IUDPHZRUN�JHQHUDWRU��H�J��-XQLW�

623��7HVWLQJ�E\�8VH�&DVHV623��7HVWLQJ�E\�8VH�&DVHV

�� $ERXW�����RI�DOO�RUJDQL]DWLRQV$ERXW�����RI�DOO�RUJDQL]DWLRQV

�� &RPSOLHV�ZLWK�³8QLILHG�3URFHVV´�WHVW&RPSOLHV�ZLWK�³8QLILHG�3URFHVV´�WHVW

DSSURDFKDSSURDFK

�� &KDUDFWHULVWLFV&KDUDFWHULVWLFV

±± $VVXPHV�REMHFWV�³MXVW�ZRUN´$VVXPHV�REMHFWV�³MXVW�ZRUN´

±± 6\VWHP�WHVW�IURP�XVH�FDVHV6\VWHP�WHVW�IURP�XVH�FDVHV

±±)UXVWUDWHG�ZLWK�FKURQLF�EXJJLQHVV)UXVWUDWHG�ZLWK�FKURQLF�EXJJLQHVV

T esting Object-Oriented S ys tems: Best Practices
T esting Object-Oriented S ys tems:Lessons
Learned

1999 Nov 31999-Nov-3

Copyright (C) 1999 RBS C CorporationCopyright
 1999 RBS C Corporation 15

623��7HVWLQJ�E\�8VH�&DVHV623��7HVWLQJ�E\�8VH�&DVHV

�� ,PSURYHPHQW�6WUDWHJ\,PSURYHPHQW�6WUDWHJ\

±± $FKLHYH�H[LW�FULWHULD�IRU�LQGLFDWHG�FODVV�FOXVWHU$FKLHYH�H[LW�FULWHULD�IRU�LQGLFDWHG�FODVV�FOXVWHU

WHVW�SDWWHUQVWHVW�SDWWHUQV

±± 8VH�DSSURSULDWH�FRPSRQHQW�VXEV\VWHP�WHVW8VH�DSSURSULDWH�FRPSRQHQW�VXEV\VWHP�WHVW

GHVLJQ�SDWWHUQV�GHVLJQ�SDWWHUQV�

±± 'HYHORS�WHVWDEOH�XVH�FDVHV'HYHORS�WHVWDEOH�XVH�FDVHV

±± ,PSOHPHQW�WHVW�DXWRPDWLRQ�WR�VXSSRUW,PSOHPHQW�WHVW�DXWRPDWLRQ�WR�VXSSRUW

UHJUHVVLRQ�WHVWLQJUHJUHVVLRQ�WHVWLQJ

623��7HVWLQJ�E\�6FRSH623��7HVWLQJ�E\�6FRSH

�� $ERXW�RQH�LQ�WHQ$ERXW�RQH�LQ�WHQ

�� &KDUDFWHULVWLFV&KDUDFWHULVWLFV

±± 7HVW�GHVLJQ�FRUUHVSRQGV�WR�VFRSH7HVW�GHVLJQ�FRUUHVSRQGV�WR�VFRSH

±± 6FRSH�VSHFLILF�WHVW�HQWU\�H[LW�FULWHULD6FRSH�VSHFLILF�WHVW�HQWU\�H[LW�FULWHULD

±± (IIHFWLYH�WHVW�DXWRPDWLRQ(IIHFWLYH�WHVW�DXWRPDWLRQ

±± 6WDEOH��UHSHDWDEOH�SURFHVV6WDEOH��UHSHDWDEOH�SURFHVV

T esting Object-Oriented S ys tems: Best Practices
T esting Object-Oriented S ys tems:Lessons
Learned

1999 Nov 31999-Nov-3

Copyright (C) 1999 RBS C CorporationCopyright
 1999 RBS C Corporation 16

623��7HVWLQJ�E\�6FRSH623��7HVWLQJ�E\�6FRSH

�� ,PSURYHPHQW�6WUDWHJ\,PSURYHPHQW�6WUDWHJ\

±± ,QWHUQDO�WHVW�GHVLJQ�SDWWHUQ�PLQLQJ,QWHUQDO�WHVW�GHVLJQ�SDWWHUQ�PLQLQJ

±± 'HVLJQ�IRU�WHVWDELOLW\'HVLJQ�IRU�WHVWDELOLW\

±± $GYDQFHG�WHVW�DXWRPDWLRQ$GYDQFHG�WHVW�DXWRPDWLRQ

±± 4XDQWLILHG�FORVHG�ORRS�IHHGEDFN4XDQWLILHG�FORVHG�ORRS�IHHGEDFN

%HVW�3UDFWLFH�([DPSOHV%HVW�3UDFWLFH�([DPSOHV

�� 6WHSVWRQH�&RUSRUDWLRQ6WHSVWRQH�&RUSRUDWLRQ

�� (ULFVVRQ�&((�3URMHFW(ULFVVRQ�&((�3URMHFW

�� 7HVWLQJ�ZDV�WKH�SULPDU\�TXDOLW\�WHFKQLTXH7HVWLQJ�ZDV�WKH�SULPDU\�TXDOLW\�WHFKQLTXH

T esting Object-Oriented S ys tems: Best Practices
T esting Object-Oriented S ys tems:Lessons
Learned

1999 Nov 31999-Nov-3

Copyright (C) 1999 RBS C CorporationCopyright
 1999 RBS C Corporation 17

6WHSVWRQH�&RUSRUDWLRQ6WHSVWRQH�&RUSRUDWLRQ

�� ,&SDFN��������2EMHFWLYH�&�FODVV�OLEUDU\,&SDFN��������2EMHFWLYH�&�FODVV�OLEUDU\

�� ,QVSHFWLRQV�IRU�DOO�FODVVHV,QVSHFWLRQV�IRU�DOO�FODVVHV

�� ([WHQVLYH�DXWRPDWHG�WHVW�KDUQHVV([WHQVLYH�DXWRPDWHG�WHVW�KDUQHVV

GHYHORSHG�IRU�HDFK�FRPSOH[�FODVVGHYHORSHG�IRU�HDFK�FRPSOH[�FODVV

�� 1R�V\VWHPDWLF�WHVW�GHVLJQ1R�V\VWHPDWLF�WHVW�GHVLJQ

(ULFVVRQ�&(((ULFVVRQ�&((

�� ���./2&�&���FHOOXODU�VXSSRUW�DSSOLFDWLRQ���./2&�&���FHOOXODU�VXSSRUW�DSSOLFDWLRQ

�� 6\VWHPDWLF�WHVWLQJ�DW�FODVV��FOXVWHU��DQG6\VWHPDWLF�WHVWLQJ�DW�FODVV��FOXVWHU��DQG

V\VWHP�VFRSHV\VWHP�VFRSH

�� 1R�RWKHU�YHULILFDWLRQ�WHFKQLTXHV�XVHG1R�RWKHU�YHULILFDWLRQ�WHFKQLTXHV�XVHG

T esting Object-Oriented S ys tems: Best Practices
T esting Object-Oriented S ys tems:Lessons
Learned

1999 Nov 31999-Nov-3

Copyright (C) 1999 RBS C CorporationCopyright
 1999 RBS C Corporation 18

$FKLHYLQJ�:RUOG�&ODVV�22�4XDOLW\$FKLHYLQJ�:RUOG�&ODVV�22�4XDOLW\

�� %HVW�LQ�&ODVV�OHYHO�%HVW�LQ�&ODVV�OHYHO�

±± $Q�DYHUDJH�RI�³OHVV�WKDQ�������XVHU�UHSRUWHG$Q�DYHUDJH�RI�³OHVV�WKDQ�������XVHU�UHSRUWHG

GHIHFWV�SHU�IXQFWLRQ�SRLQW´�LQ�WKH�ILUVW�\HDUGHIHFWV�SHU�IXQFWLRQ�SRLQW´�LQ�WKH�ILUVW�\HDU

DIWHU�UHOHDVHDIWHU�UHOHDVH

�� :RUOG�&ODVV� ���[�%HVW�LQ�&ODVV:RUOG�&ODVV� ���[�%HVW�LQ�&ODVV

Capers Jones . S oftware Quality: Analys is and Guidelines for S uccess .

(London: International T hompson Computer Press , 1997) p. 44

$FKLHYLQJ�:RUOG�&ODVV�22�4XDOLW\$FKLHYLQJ�:RUOG�&ODVV�22�4XDOLW\

2UJDQL]DWLRQ�
/DQJXDJH

./2&)3 0DMRU
3RVW
5HOHDVH
%XJV

%XJV�)3

6WHSVWRQH
2EMHFWLYH�&

�� ��� � ������

(ULFVVRQ
&��

�� ���� � ������

T esting Object-Oriented S ys tems: Best Practices
T esting Object-Oriented S ys tems:Lessons
Learned

1999 Nov 31999-Nov-3

Copyright (C) 1999 RBS C CorporationCopyright
 1999 RBS C Corporation 19

6XPPDU\6XPPDU\

�� /HVVRQV�OHDUQHG��22�WHVWLQJ�UHTXLUHV/HVVRQV�OHDUQHG��22�WHVWLQJ�UHTXLUHV

XQLTXH�WHVW�GHVLJQ�DSSURDFKHVXQLTXH�WHVW�GHVLJQ�DSSURDFKHV

�� 6WDWH�RI�WKH�DUW��H[SUHVVHG�LQ�SDWWHUQV6WDWH�RI�WKH�DUW��H[SUHVVHG�LQ�SDWWHUQV

�� 6WDWH�RI�WKH�SUDFWLFH��ZRUOG�FODVV�TXDOLW\6WDWH�RI�WKH�SUDFWLFH��ZRUOG�FODVV�TXDOLW\

FDQ�EH�DFKLHYHGFDQ�EH�DFKLHYHG

Netherlands

LESSONS LEARNED:
TEST PROCESS IMPROVEMENT

Martin Pol, IQUIP Informatica B.V.,
Wildenborch 3, 1110 AG Diemen, The Netherlands,
phone: +31 20 660 66 00, fax: +31 20 695 32 98
email: polmarti@iquip.nl, TPIemail: tpi@iquip.nl
TPI-website: www.iquip.nl/tpi (in Dutch, English, German and Spanish)
TPI-book authors: Tim Koomen and Martin Pol
(books available in Dutch, English and German (shortly))

1. Introduction

Apart from continuous evolutions in the technical infrastructure (e.g. Client/Server,
GUI's and the Internet) and in the development infrastructure (e.g. OO, RAD) the
challenges for testing lie in the integration of business processes and related innovations
such as electronic commerce and computer telephony integration. We will connect
customers, suppliers, employees, public services, etc., 24 hours per day, 7 days a week,
world-wide. Complexity of the IT-solutions and testing will grow dramatically. The
industry will focus on component integration, components of tailor-made software,
packages, odd data files and incompatible technical infrastructure have to play together.
Reusability and adaptability will be major quality requirements.

The growing need for testing and the ever changing challenges has made testing more
and more mature. New testing methods, techniques and tools of a satisfactory level are
developed, trained and experienced testing staff are more and more available and testing
approaches which are generic to some degree enable organisations to deal with the
continuous technology push. However, in practice it turns out to be hard to define what
steps to take, and in what order, for improving and controlling the test process. A
reference model for test process improvement is required to support the growing test
maturity with the definition of small and controlled improvement steps.

Since Software Process Improvement models such as CMM/SEI generally are less
specific for testing, suitable Test Process Improvement models are developed to enable
structured test process improvement. The TPI® model, which is based on current state-of-
the-art test process improvement practices, is an increasingly popular model that
supports the selection and prioritisation of improvement steps. The purpose of such
improvement could be reaching CMM level 3. The model also provides a large number
of practical details and instructions on how to implement the improvement steps.
Improving the test process is required to establish the stable testing foundation, which is
a condition to face future challenges.

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands

2. Description of the TPI model

The model is visualised as follows:

Key Areas

Levels

Checkpoints Improvement Suggestions

Test
Maturity
Matrix

2.1 Key Areas

In each test process certain areas need specific attention in order to achieve a well defined
process. These Key Areas are therefore the basis for improving and structuring the test
process. The TPImodel has 20 key areas.

The scope of test process improvement usually comprises black-box tests like system and
acceptance tests. Most key areas are adjusted to this. However, to improve more "mature" test
processes, attention must also be given to verification activities and white-box tests like unit
and integration tests. Separate key areas are included in order to give due attention to these
processes as well.

A full list of key areas is given below, followed by an explanation.

Test strategy
Life cycle model
Moment of involvement
Estimating & planning
Test design techniques
Static test techniques
Metrics

Test tools
Test environment
Office environment
Commitment and motivation
Testing functions and training
Scope of methodology
Communication

Reporting
Defect management
Testware management
Test process management
Evaluation
White-box testing

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands

Key Area Description

Test strategy Test strategy should be aimed at finding the most important defects as early
and as cheap as possible. In the test strategy it is determined what
(quality)risks are covered by testing. By involving more tests and more
detective measures, a better balanced strategy is possible. Unintentional
overlaps or gaps between different tests can be prevented by co-ordinating
testers and test activities, and by determining thoroughness.

Life cycle model Within the test process a number of phases are discerned: planning,
preparation, design, execution and completion. In each phase several
activities are performed. For each activity aspects like goal, input, process,
deliverables, dependencies, techniques and tools, facilities and
documentation are recorded. The importance of a life cycle model lies in
better control of the test process, since the activities can be planned and
controlled consistently.

Moment of involvement Although the actual test execution usually starts after the realisation of the
software, the test process should start a lot earlier. Earlier involvement of
testing in the system development life cycle helps detecting defects as early
and/or as easy as possible, and even helps preventing defects. Better co-
ordination between tests is possible and the critical path time of testing can
be greatly reduced.

Estimating & planning Estimating and planning are required in order to define which activities are
performed at what moment and how many resources will be needed.
Estimating and planning is the basis for reserving capacity and for co-
ordinating test activities and project activities.

Test design techniques A test design technique is defined as 'a standardised approach for deriving
test cases from documentation'. Usage of these techniques increases insight
in the quality and coverage of tests and leads to higher re-usability of tests.
Based on a test strategy, different test design techniques are used in order
to produce test coverage of the intended parts of the software to the extent
which was agreed upon.

Static test techniques Not everything can and needs to be tested dynamically, i.e. by running the
programmes. The phenomenon of checking products without running the
actual programmes or evaluating specified quality measures, is called static
testing. Checklists and similar devices are very useful here.

Metrics Metrics are quantified observations (measurements). For the test process,
measuring the progress and the quality of the software under test is very
important and so are metrics in these areas. Metrics are used in order to be
able to manage the test process, in order to support advice to be given, and
also in order to compare different systems or processes. It helps answering
questions such as 'Why is it that system A has far less failures in production
than system B has, why is it that test process A can be performed faster and
more thoroughly than process B can?' In the improvement of the test
process, metrics are specifically important for judging the results of certain
improvement actions. This is done by measuring before and after the
improvement takes place.

Test tools Automation of the test process can be done in a variety of ways. As a rule,
automation serves one of the following goals:
- less resource consumption;
- less time consumption;
- better test coverage;
- more flexibility;
- more or faster insight in the status of the test process;
- better motivation of test staff.

Testing environment Test execution takes place in a so called test environment. This
environment consists of the following components:
• hardware;
• software;
• communication facilities;
• facilities for creation and use of data sets;
• procedures.

The environment should be arranged so that optimal testing is possible.
The environment greatly influences the quality, duration and costs of the
test process. Important aspects of the environment are responsibilities,
control, timely and sufficient availability, flexibility and representativeness
of the actual production situation.

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands

Office environment Test personnel need offices, desks, chairs, PC's, word processing facilities,
printers, telephones, etc. Good and timely arrangement of the office
environment positively influences motivation of testers, and
communication and efficiency of (the execution of) test tasks.

Commitment &
motivation

Commitment and motivation of the people involved in testing are
conditions for a mature test process. People involved are not only
members of the test team, but also, amongst others, project managers and
senior management. The test process is supplied with sufficient time,
money and resources (both quantitatively and qualitatively) to perform a
good test. Co-operation and communication with the others in the project
results in an efficient process and in earlier involvement.

Testing functions &
training

The test team requires a certain composition. A mixture is needed of
different disciplines, functions, knowledge and skills. For example, apart
from specific test expertise, also knowledge of the system under test is
necessary, knowledge of the organisation and general knowledge of
automation. Certain social skills are also very important. In order to get this
mixture, education and training is needed.

Scope of methodology For each test process a certain methodology or approach is used, consisting
of activities, procedures, standards, techniques, etc. If these methodologies
differ for each test process in the organisation, or if the methodology used
is too generic, a lot of things have to be reinvented over and over again.
The aim for an organisation is to use a methodology that is sufficiently
generic to be widely applicable, but that has enough detail at the same time
to be able to prevent undesired reinvention for each new test process.

Communication In a test process communication takes place in a number of ways, both
between testers as a group, and between testers and other members of the
project, such as the developer, the end-user, the project manager. Topics of
communication are test strategy, progress and quality of the software under
test.

Reporting Testing does not only deal with the detection of defects, but also with
giving advice on (the lack of) quality of software. Reporting should be
aimed at giving well funded advice to the project and customer on (the
quality of) software and even on the software development process.

Defect management Although defect management is in fact the project's responsibility, testers
are strongly involved here. A good administration should be able to control
the life cycle of a defect and to create several (statistical) reports. These
reports are used to give well funded quality advice.

Testware management Test products should be maintainable and reusable, and should therefore be
managed. Apart from test products, also the products of prior phases, such
as design and realisation, have to be managed well (although not by
testers!). The test process can be seriously disrupted by delivery of wrong
programme versions, etc. The demand of good management of these
products, increases testability (and quality) of software.

Test process
management

In order to manage each process and each activity, the four steps of the so
called Deming circle are essential: plan, do, check, act. A well managed
test process is of the utmost importance to perform the best possible test in
the often very turbulent test arena.

Evaluation Evaluation in this context means testing deliverables such as the functional
design. In comparison to testing, the advantage of evaluation is the
opportunity of early detecting defects. This causes the costs of repair to be
considerably lower. Also, evaluation is relatively simple to establish since
no programmes have to be run, no environment needs to be composed, etc.

White-box testing A white-box test is defined as a test of the internal properties of the object,
using knowledge of internal functioning. These tests are performed by
developers. Well known white-box tests are the unit test and the integration
test. Just like evaluation these tests take place earlier in the system
development life cycle than black-box tests. Also, white-box tests are
relatively cheap because less communication is required and because
analysis is easier (the person detecting the defect is often the same person
as the one who is to do the repairing. Besides, smaller objects are tested).

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands

2.2 Levels

The way key areas are organised within a test process determines the 'maturity' of the process.
It is obvious that not each key area will be addressed equally thoroughly: each test process has
its strengths and weaknesses.

In order to enable insight in the state of the key areas, the model supplies them with Levels
(from A to B to C). On the average, there are three levels for each key area.

Each higher level (C being higher than B, B being higher than A) is better than its prior level
in terms of time (faster), money (cheaper) and/or quality (better). By using levels we can
unambiguously assess the current situation of the test process. It also increases the ability to
advice targets for stepwise improvement.

Each level consists of certain requirements for the key area. The requirements (= checkpoints)
of a certain level also comprise the requirements of lower levels: a test process at level B
fulfils the requirements of both level A and B. If a test process does not satisfy the
requirements for level A, it is considered to be at the lowest and, consequently, undefined
level for that particular key area.

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands

Below a description is given of the different levels of the key areas.

Levels
Key Area

A B C D

Test strategy Test strategy for single test Combined test strategy for black-box tests Combined strategy for black-box tests plus
white-box tests or evaluation

Combined strategy for all test and
evaluation activities

Life cycle model Planning, Design, Execution Planning, Preparation, Design, Execution,
Completion

Moment of involvement Completion of specification Start of specification Start of requirements definition Project initiation

Estimating and planning Fundamental estimating & planning Statistically founded estimating &
planning

Design techniques Informal techniques Formal techniques

Static test techniques Intake test basis Checklists

Metrics Project statistics (product) Project statistics (process) System statistics Organisation statistics

Test tools Planning & control tools Test execution & analysis tools Integrated test automation

Test environment Managed and controlled environment Testing in most suitable environment Environment on call

Office environment Adequate & timely office environment

Commitment and motivation Assignment of budget & time Testing integrated in project organisation Test engineering

Test functions and training Test manager and testers Support (methodical, technical,
functional), control

Internal Quality Assurance

Scope of methodology Project specific Organisation, generic Organisation, optimising (R&D)

Communication Internal communication Project communication (defects, change
control)

Communication in organisation

Reporting Defects Progress (status of tests and products),
activities (costs + time, milestones),
defects with priorities

Risks & advice, including statistics SPI advice

Defect management Internal defect management Extended defect management, flexible
reporting facilities

Project defect management

Testware management Internal management & control of test
deliverables

External management & control of test
basis and test object

Reusable testware Traceability: from requirements to test
cases

Test process management Plan, do Plan, do, check, react Check, react in organisation

Evaluation Evaluation techniques Evaluation strategy

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands

White-box testing Life-cycle: Planning, Design, Execution White-box design techniques White-box test strategy

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands

2.3 Checkpoints

In order to determine levels, the TPI-model is supported by an objective measurement
instrument. The requirements for each level are defined in the form of Checkpoints:
questions that need to be answered positively in order to classify for that level. Based on the
checkpoints a test process can be assessed, and for each key area the proper level can be
established. As each next level of a key area is considered an improvement, this means that
the checkpoints are cumulative: in order to classify for level B the test process needs to
answer positively to the checkpoints both of level B and of level A.

2.4 Test Maturity Matrix

After determining the levels for each key area, attention should be directed as to which
improvement steps to take. This is because not all key areas and levels are equally important.
For example, a good test strategy (level A of key area Test Strategy) is more important than a
description of the test methodology used (level A of key area Scope of Methodology). In
addition to these priorities there are dependencies between the levels of different key areas.
Before statistics can be gathered for defects found (level A of key area Metrics), the test
process has to classify for level B of key area Defect management. Such dependencies can be
found between many levels and key areas.

Therefore, all levels and key areas are related to each other in a Test Maturity Matrix. This
has been done as a good way to express the internal priorities and dependencies between
levels and key areas. The vertical axis of the matrix indicates key areas, the horizontal axis
shows scales of maturity. In the matrix each level is related to a certain scale of test maturity.
This results in 13 scales of test maturity. The open cells between different levels have no
meaning in themselves, but indicate that achieving a higher maturity for a key area is related
to the maturity of other key areas. There is no gradation between levels: as long as a test
process is not entirely classified at level B, it remains at level A.

Scale

Key Area

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Test strategy A B C D

Life cycle model A B

Moment of involvement A B C D

Estimating and planning A B

Test design techniques A B

Static test techniques A B

Metrics A B C D

Test tools A B C

Test environment A B C

Office environment A

Commitment and motivation A B C

Test functions and training A B C

Scope of methodology A B C

Communication A B C

Reporting A B C D

Defect management A B C

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands

Scale

Key Area

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Testware management A B C D

Test process management A B C

Evaluation A B

White-box testing A B C

The main purpose of the matrix is to show the strong and weak sides of the current test
process and to support prioritising actions for improvement. A filled in matrix offers all
participants a clear view of the current situation of the test process. Furthermore, the matrix
helps in defining and selecting proposals for improvement.

The matrix works from left to right, so low mature key areas are improved first. As a
consequence of the dependencies between levels and key areas, practice has taught us that real
'outlyers' (i.e., key areas with high scales of maturity, whereas surrounding key areas have
medium or low scales) give little return on investment. For example, what is the use of a very
advanced defect administration, if it is not used for analysis and reporting? Without violating
the model, deviation is permitted, but sound reasons should exist for it.

In the example below, the test process does not classify for the lowest level of the key area test
strategy(level < A), the organisation is working conform a life cycle model (level A) and the
testers are involved at the moment when the specifications are completed (level A).

Scale

Key Area

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Test strategy A B C D

Life cycle model A B

Moment of involvement A B C D

etc.

Based on this instance of the matrix, improvements can be discussed. In this example, a
choice is made for a combined test strategy for black-box tests (=> level B) and for a full life
cycle model (=> level B). Earlier involvement is at this moment not considered to be of
relevance. The required situation is represented in the following matrix.

Scale

Key Area

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Test strategy A B C D

Life cycle model A B

Moment of involvement A B C D

etc.

2.5 Improvement Suggestions

Improvement actions can be defined in terms of desired higher levels. For reaching a higher
level the checkpoints render much assistance. Beside these, the model has other means of
support for test process improvement: the Improvement Suggestions, which are different
kinds of hints and ideas that help to achieve a certain level of test maturity. Unlike the use of
checkpoints, the use of improvement suggestions is not obligatory. Each level is supplied with
several improvement suggestions.

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands

3. Application of the TPI model

The process of test improvement is similar to any other improvement process. The figure
below shows the various activities of an improvement process. These activities are discussed,
with special attention for the places where the TPI model can be used.

Awareness

 Define
improvement

actions

Perform
evaluation

Formulate
plan

Determine scope
and approach

 Implement
improvement

actions

Execute
assessment

Awareness
The first activity of a test improvement process is to create awareness for the necessity to
improve the process. Generally speaking, a number of problems concerning testing is the
reason for improving the test process. There is a need to solve these problems and an
improvement of the test process is regarded as the solution. This awareness also implies that
the parties mutually agree on the outlines and give their commitment to the change process.
Commitment should not only be acquired at the beginning of the change process, but be
retained throughout the project. This requires a continuous effort.

Determine scope and approach
We determine what the improvement targets are and what the scope is. Should testing be
faster, cheaper or better? Which test processes are subjects for improvement, how much time
is available for the improvement and how much effort is it allowed to cost?

Execute assessment
In the assessment activity, an evaluation is given of the current situation. The use of the TPI

model is an important part of the assessment, because it offers a frame of reference to list the
strong and weak points of the test process. Based on interviews and documentation, the levels
per key area of the TPI model are examined by using checkpoints, and it is determined which
checkpoints were met, which were not met, or only partially. The Test Maturity Matrix is used
here to give the complete status overview of the test process. This will show the strengths and
weaknesses of the test process in the form of levels assigned key areas and their relative
position in the matrix.

Define improvement actions
The improvement actions are determined based on the improvement targets and the result of
the assessment. These actions are determined in such a way that gradual and step by step
improvement is possible.

The TPI model helps to set up these improvement actions. The levels of the key areas and
the Test Maturity Matrix give several possibilities to define gradual improvement steps.
Depending on the targets, the scope, the available time and the assessment results, it can be
decided to carry out improvements for one or more key areas. For each selected key area it can

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands

be decided to go to the next level or, in special cases, even to a higher level. Besides this, the
TPI model offers a large number of improvement suggestions which help to achieve higher
levels.

Formulate plan
A detailed plan is drawn up to implement (a part of) the short term improvement actions. In
this plan the aims are recorded and it is indicated which improvements have to be
implemented at what time to realise these aims. The plan deals with activities concerning the
content of the test process improvement as well as general activities needed to steer the
change process in the right direction.

Implement improvement actions
The plan is executed. Because during this activity the consequences of the change process
have the largest impact, much attention should be spent on communication. Opposition, which
no doubt is present, must be brought to the surface and be discussed openly.
It has to be measured to what extent actions have been executed and have been successful. A
means for this is the so-called "self assessment", in which the TPI model is applied in order
to quickly determine the progress. Here, the persons involved inspect their own test processes
using the TPI model.
Another vital part of this phase is consolidation. It should be prevented that the implemented
improvement actions have a once-only character.

Perform evaluation
To what extent did the implemented actions yield the intended result? In this phase the aim is
to see to what extent the actions were implemented successfully as well as to evaluate to what
extent the initial targets were met. A decision about the continuation of the change process is
made based on these observations.

4. Conclusions and remarks

Current developments proceed at a very high speed. The productivity of developers is rising
continuously and the customers demand ever higher quality. Even if your current test process
is fairly satisfactory, your process will need to improve in the future. The TPI-model can
help you with this.

The TPI-model is an objective means to gain quick insight in the current situation of the test
process. The model greatly offers help for improvement in the form of key areas, levels and
improvement suggestions. It supports the definition of small and controlled improvement
steps, based on priorities.

The reader might get the impression that use of the TPI-model automatically leads to good
analysis of the current and required situation. This is not true. The model should be seen as a
tool for structuring the improvement of the test process and as a very good means of
communication. Apart from the tool, improvement of test processes demands a high degree of
knowledge and expertise of people involved, at least in the areas of testing, organisation and
change management.

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands

5. References

Beizer, B. (1990), Software Testing Techniques, International Thomson Computer
Press, ISBN 1-850-32880-3

Bender, R. (1996), SEI/CMM Proposed Software Evaluation and Test KPA, STAR
'96

Boehm, B.W. (1979), "Software Engineering Economics", Prentice-Hall, Inc.,
Englewood Cliffs, NJ 07632

Boeters, A., Noorman, B., (1997), Kwaliteit op maat, Kluwer Bedrijfsinformatie,
ISBN 90-267-2579-5

Burns, T., Stalker, G.M. (1995), The Management of Innovation, Oxford University
Press, ISBN 0-19-828878-6

Deming, W. Edwards (1992), Out of the crisis, University of Cambridge, ISBN 0-
521-30553-5

Emam, K. El (editor), Drouin, J. (editor), (1998), Spice: The Theory and Practice of
Software Process Improvement and Capability Determination, IEEE Computer
Society, ISBN 0-81867-798-8

Ericson, T., Subotic, A., Ursing, S. (1996), Towards a Test Improvement Model,
EuroSTAR '96

Gelperin, D. (1996), A Testability Maturity Model, STAR '96

Grady, Robert B., Caswell, Deborah L. (1987), Software Metrics: Establising a
Company-Wide Program, Prentice-Hall, ISBN 0-13-821844-7

Graham D., Herzlich, P., Morelli, C. (1996), Computer Aided Software Testing, The
CAST-report, Cambridge Market Intelligence Limited, ISBN 1-897977-74-3

Hall, Terence J. (1995), The Quality Systems Manual : The Definitive Guide to the
Iso 9000 Family and Tickit, John Wiley & Sons, ISBN 0-471-95588-4

Hetzel, W. (1993), Making Software Measurement Work, Wiley-QED, ISBN 0-471-
56568-7

Horch, John W. (1996), Practical Guide to Software Quality Management, Artech
House Publishers, ISBN 0-89006-865-8

Humphrey, Watts S. (1989), Managing the Software Process, Addison-Wesley,
ISBN 0-201-18095-2

Jarvis, A., Crandell, V. (1997), Inroads to Software Quality, Prentice Hall, ISBN 0-
13-238403-5

Juran, J.M. (1988), Juran's Quality Control Handbook, McGraw-Hill, ISBN 0-070-
33176-6

Kaner, C., Falk, J., Nguyen, H. Q. (1993), Testing Computer Software (second
edition), International Thomson Computer Press, ISBN 1-85032-847-1

Kit, Edward (1995), Software testing in the real world, Addison-Wesley, ISBN 0-
201-87756-2

Kuvaja, P., Simila, J., Krzanik, L., Bicego, A., Saukkonen, S., Koch, G. (1994),
Software process assessment and improvement: the Bootstrap approach, Blackwell

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands

McFeeley, Bob (1996), IDEALsm: a user's guide for Software Process Improvement,
Software Engineering Institute

Myers, G.J. (1979), The Art of Software Testing, Wiley-Interscience, New York
NY10158, ISBN 0-471-04328-1

Perry, William E., Rice, Randall W. (1997), Surviving the Challenges of Software
Testing, Dorset House Publishing, ISBN 0-932633-38-2

Pol, M., Teunissen, R., Veenendaal, E. van (1995), Testen volgens TMap®, Tutein
Nolthenius, 's-Hertogenbosch, ISBN 90-72194-33-0

Pol, M., Teunissen, R., Veenendaal, E. van (1996), Gestructureerd testen: een
introductie tot TMap®, Tutein Nolthenius, 's-Hertogenbosch, ISBN 90-72194-45-4

Pol, M., Veenendaal, E. van (1998), Structured Testing of Information Systems: an
Introduction to TMap®, Kluwer, Deventer, ISBN.90-267-2910-3

Pulford, K., Kuntzmann-Combelles, A., Shirlaw S. (1995), A quantitative approach
to Software Management, the ami Handbook, Addison-Wesley, ISBN 0-201-87746-5

Software Engineering Institute, Carnegie Mellon University (1995), The Capability
Maturity Model, Addison-Wesley, ISBN 0-201-54664-7

Trienekens, J., Veenendaal, E. van (1997), Software Quality from a Business
Perspective, Kluwer Bedrijfsinformatie, ISBN 90-267-2631-7

Books on TPI:
Dutch:
Koomen, T. and M. Pol (1998), Test Process Improvement, Leidraad voor stapsgewijs beter
testen, published by Kluwer BedrijfsInformatie,The Hague
English:
Koomen, T. and M. Pol (1999), Test Process Improvement: a Practical Step-by-Step Guide
to Structured Testing, Published by Addison Wesley Longman, London
German:
Koomen, T. and M. Pol (1999), Test Process Improvement, Anleitung für ein stufenweise
optimiertes Testen, planned to be published shortly.

Internet:
at 'www.iquip.nl/tpi' several TPI-products can be viewed and downloaded. Also questions
can be asked and remarks can be made. Products are available in Dutch, English, German and
Spanish.

98 405 SCT 1

Lessons Learned:
Test Process Improvement

Martin Pol

98 405 SCT 2

Agenda

• Lessons learned
• Future challenges
• Test Process Improvement

98 405 SCT 3

Why keep on testing ?

• Maturity of the industry
– Error free software?
– Prevention not enough
– Technology push

• Business risks
– Importance software quality
– Integration business processes
– Time-to-market
– Competition

No Risk, No Test

98 405 SCT 4

Testing: Past, Present and Future

Development Exploitation

Past

Present

Future

98 405 SCT 5

Testing under pressure

Development

RAD

OO
GUI’s

Integration

Business

Tester
Automation

Internet

CBDC/S
Time-to-market

Error free

Quality

Cheap

Reuse

User-friendliness
Maintainability

Packages

Growing
Complexity

98 405 SCT 6

Agenda

• Lessons learned
• Future challenges
• Test Process Improvement

98 405 SCT 7

Future Challenges

• Component Based Development
• Growing Complexity
• Suitable Test Methods and Tools
• Adequate Test Process Maturity

98 405 SCT 8

Component Based Development
What’s happening?

Tailor made Packages

Low

High

Components

Efficiency Best-fit

98 405 SCT 9

Growing complexity

back-office
front-office
customer
supplier
employee
government

7 days a week
24 hours a day
world wide

e-commerce
virtual corporations
knowlegde mngnt
data mining
computer & telephony

object-orientation
client / server
GUI’s
component assembly
Internet
……...

hardware
software
networks
colour
graphics

art
sound
video
TV
smell?
……...

98 405 SCT 10

Suitable Test Methods and Tools

Available
Use them!

98 405 SCT 11

Suitable Test Methods and Tools

• Research & Development
– Vendors & service suppliers
– Universities, trendwatchers
– In company
– SIGIST’s

• Training, conferences & publications
• Tester’s professionalism

– Skills and expertise for “whatever” test

98 405 SCT 12

Unwanted situation

Effort

Development

Testing

4GL, CASE, OO, SPI, CBD

198x 200x
Importance Software Quality
“Test Legacy”
Testing becomes Visible
Growing Complexity

98 405 SCT 13

Desired situation

Effort

Development

198x 200xTest Professionalism
Test Automation
Reuse
Test Process Improvement

Testing

98 405 SCT 14

Agenda

• Lessons learned
• Future challenges
• Test Process Improvement

98 405 SCT 15

What is Test Process Improvement?

“Continuous improvement of the quality and the
 efficiency of the testing process, related to the
 output of the total software process”

• Quality Insight
Coverage
Control
Timeliness

• Costs Cheaper
• Lead time Faster

Required:

a reference model

98 405 SCT 16

Model Requirements

• Controlled improvement steps
• Practical
• As objective as possible
• Options and priorities
• Highly detailed
• Fast assessment
• Independent

98 405 SCT 17

Capability Maturity Model

Repeatable

Defined

Managed

Optimizing

Initial 1

5

4

3

2

Improving
process

Predictable process

Standard & consistent
process

Disciplined process

Ad hoc/chaotic process

TPI

and TPI

98 405 SCT 18

The TPI model

Key areas

Levels Test
Maturity
Matrix

Improvement suggestionsCheckpoints

98 405 SCT 19

• Test strategy
• Life-cycle model
• Moment of involvement
• Estimating and planning
• Test specification

techniques
• Static test techniques
• Metrics
• Test tools
• Test environment
• Office environment

20 Key Areas

• Commitment and motivation
• Testing functions and

training
• Scope of methodology
• Communication
• Reporting
• Defect management
• Testware management
• Test process management
• Evaluation
• Low-level testing

98 405 SCT 20

Test Maturity Matrix
K e y a r e a / S c h a l e 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

1 T e s t s t r a t e g y A B C D

2 L i f e - c y c l e m o d e l A B

3 M o m e n t o f i n v o l v e m e n t A B C D

4 E s t i m a t i n g a n d p l a n n i n g A B

5 T e s t s p e c i f i c a t i o n t e c h n i q u e s A B

6 S t a t i c t e s t t e c h n i q u e s A B

7 M e t r i c s A B C D

8 T e s t t o o l s A B C

9 T e s t e n v i r o n m e n t A B C

1 0 O f f i c e e n v i r o n m e n t A

1 1 C o m m i t m e n t a n d m o t i v a t i o n A B C

1 2 T e s t f u n c t i o n s a n d t r a i n i n g A B C

1 3 S c o p e o f m e t h o d o l o g y A B C

1 4 C o m m u n i c a t i o n A B C

1 5 R e p o r t i n g A B C D

1 6 D e f e c t m a n a g e m e n t A B C

1 7 T e s t w a r e m a n a g e m e n t A B C D

1 8 T e s t p r o c e s s m a n a g e m e n t A B C

1 9 E v a l u a t i o n A B

2 0 L o w - l e v e l t e s t i n g A B C

98 405 SCT 21

Current situation - example
K e y a r e a / s c h a l e 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

1 T e s t s t r a t e g y A B C D

2 L i f e - c y c l e m o d e l A B

3 M o m e n t o f i n v o l v e m e n t A B C D

4 E s t i m a t i n g a n d p l a n n i n g A B

5 T e s t s p e c i f i c a t i o n t e c h n i q u e s A B

6 S t a t i c t e s t t e c h n i q u e s A B

7 M e t r i c s A B C D

8 T e s t t o o l s A B C

9 T e s t i n g e n v i r o n m e n t A B C

1 0 O f f i c e e n v i r o n m e n t A

1 1 C o m m i t m e n t a n d m o t i v a t i o n A B C

1 2 T e s t f u n c t i o n s a n d t r a i n i n g A B C

1 3 S c o p e o f m e t h o d o l o g y A B C

1 4 C o m m u n i c a t i o n A B C

1 5 R e p o r t i n g A B C D

1 6 D e f e c t m a n a g e m e n t A B C

1 7 T e s t w a r e m a n a g e m e n t A B C D

1 8 T e s t p r o c e s s m a n a g e m e n t A B C

1 9 E v a l u a t i o n A B

2 0 L o w - l e v e l t e s t i n g A B C

98 405 SCT 22

Desired situation - example
K e y a r e a / s c h a l e 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

1 T e s t s t r a t e g y A B C D

2 L i f e - c y c l e m o d e l A B

3 M o m e n t o f i n v o l v e m e n t A B C D

4 E s t i m a t i n g a n d p l a n n i n g A B

5 T e s t s p e c i f i c a t i o n t e c h n i q u e s A B

6 S t a t i c t e s t t e c h n i q u e s A B

7 M e t r i c s A B C D

8 T e s t t o o l s A B C

9 T e s t e n v i r o n m e n t A B C

1 0 O f f i c e e n v i r o n m e n t A

1 1 C o m m i t m e n t a n d m o t i v a t i o n A B C

1 2 T e s t f u n c t i o n s a n d t r a i n i n g A B C

1 3 S c o p e o f m e t h o d o l o g y A B C

1 4 C o m m u n i c a t i o n A B C

1 5 R e p o r t i n g A B C D

1 6 D e f e c t m a n a g e m e n t A B C

1 7 T e s t w a r e m a n a g e m e n t A B C D

1 8 T e s t p r o c e s s m a n a g e m e n t A B C

1 9 E v a l u a t i o n A B

2 0 L o w - l e v e l t e s t i n g A B C

98 405 SCT 23

Controlled Efficient Optimizing

Project Organization

K e y a r e a / S c h a l e 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

1 T e s t s t r a t e g y A B C D

2 L i f e - c y c l e m o d e l A B

3 M o m e n t o f i n v o l v e m e n t A B C D

4 E s t i m a t i n g a n d p l a n n i n g A B

5 T e s t s p e c i f i c a t i o n t e c h n i q u e s A B

6 S t a t i c t e s t t e c h n i q u e s A B

7 M e t r i c s A B C D

8 T e s t t o o l s A B C

9 T e s t e n v i r o n m e n t A B C

1 0 O f f i c e e n v i r o n m e n t A

1 1 C o m m i t m e n t a n d m o t i v a t i o n A B C

1 2 T e s t f u n c t i o n s a n d t r a i n i n g A B C

1 3 S c o p e o f m e t h o d o l o g y A B C

1 4 C o m m u n i c a t i o n A B C

1 5 R e p o r t i n g A B C D

1 6 D e f e c t m a n a g e m e n t A B C

1 7 T e s t w a r e m a n a g e m e n t A B C D

1 8 T e s t p r o c e s s m a n a g e m e n t A B C

1 9 E v a l u a t i o n A B

2 0 L o w - l e v e l t e s t i n g A B C

TPI Maturity Cate gories

98 405 SCT 24

Process of Chan ge

Perform
evaluation

Formulate
plan

 Implement
improvement

actions

Obtain
awareness

Execute
assessment

 Define
improvement

actions

Determine target,
area of consideration

and approach

98 405 SCT 25

Don'ts

• Exclusive top-down or bottom-up
• Confine to training
• Unbalanced improvement
• Unsuitable pilots
• High-level tests only
• Test tools are ‘the’ thing
• Underestimation of implementation
• Too many promises raise false expectations

98 405 SCT 26

Books:

Website:
Email:

English (available);
Dutch (available);
German (shortly)
www.iquip.nl/tpi
tpi@iquip.nl

Info about TPI:

Control Flow Animation

as a means of

Class Testing

by

Harry M. Sneed
Software Test Consultant

Arget, Bavaria

Fax: # 49-8104-669920
Email: Harry.Sneed@T-Online.de

for
Quality_Week_Europe

Brussels
1999

2

Abstract

In this paper a tool supported method for the dynamic analysis of object-oriented programs is
described. The method involved uses animation to navigate through the source classes and
to simulate the actual function execution. The goal is to test the control flow logic without
compilation and without data. It amounts to an automated code inspection technique with
data flow analysis.

Boris Beizer [1], Robert Binder [2], Gail Kaiser [3], Robson [4] and others [5] have pointed out
the difficulties of testing object-oriented systems. Encapsulation means that object data is not
accessible from outside the capsule. Distribution means that the data is distributed
throughout the system and that it is allocated dynamically. Code inheritance makes it difficult
to test derived classes without the superordinate base classes. Polymorphism prohibits being
able to statically define paths through the system and forces the tester to consider all
potential server functions. With the exception of encapsulation, these features discourage
class testing. Probably the greatest obstacle to class testing is inheritance since it prohibits
testing classes independently of one another. Another obstacle is the sheer number of
foreign methods referred to. Many classes e.g. control classes, tend only to invoke methods
in other classes. If these classes are not included in the test, their methods must be
represented by stubs. All of these obstacles combine to discourage OO-developers from
even trying to test their classes.

The experience made by the author in a large scale object-oriented development project only
confirms the observations made above. The whole system encompasses more than 3600

3

classes with 13 inheritance levels and 1.250.000 lines of code. Almost all of the subordinate
classes are dependent on other classes at a higher level. Since multiple inheritance has been
used frequently, the degree of dependence is even higher. The fact that any one class
implementation may invoke up to 200 foreign methods makes independent class testing
impossible. No more than five different class testing tools have been tried, including Cantata,
Testbed and the McCabe tool, but none of them were accepted by the class developers.
Either they are not able to cope with the complexity or they require too much effort to set up
and use.

As a result of the difficulties involved in independent class testing, the author, who is
responsible for quality assurance, decided to take another approach, an approach which
would work without data at the source level. The new approach is based on source code
animation. This paper describes that approach and how it contributes to error detection.

Source Code Animation

Animation is not new to software development. It has already been used in state charts to
visualize the dynamics of parallel processing by stepping through the events. [6] It has also
been used in CASE tools like SELECT to simulate data and process flow. [7] It has been
particularly useful in simulating business processes. Time and again, animation has been
used to step through the nodes of program control graphs. In this way, it gives the
programmer the opportunity to validate the control logic. [8]

In current procedural code animators CALLs to other modules are generally ignored or simply
recorded. This doesn't detract from the value of the animator since in procedural modules the
number of calls to foreign modules is limited. However in object-oriented programs function
calls make up a good part of the code. If they are not handled, the animation becomes
useless. Therefore, the goal of animation in class testing must be to follow the control flow
from one function to another across class boundaries. This will give the tester the possibility
of tracing object interactions as depicted in the UML sequence diagram. [9]

Source code animation is implemented as an extension to static analysis. In static analysis all
of the statements of a source code member, i.e. the class implementation, are identified and
classified, including the function definitions. The tester must only identify where he wants to
enter the class under test. This can be done by positioning the cursor on a particular line. The
animator then steps through the code from statement to statement, displaying the current
statement in a scroll bar until it comes to a decision or a function reference, at which point a
pop up window is displayed.

When arriving at a decision node the user is requested to make a choice. In the case of an IF
the answer is "true" or "false". In the case of a loop the answer is to continue or not. In the
case of a switch statement, the user must select which CASE branch is to be taken. The
stepping through of the statements is then continued from there.

4

When arriving at a function reference, the user is asked whether the function should be
included in the test or not. If not the animator skips over it to the next statement. If yes, the
animator must look up in a table in which source member, i.e. class, the function is located.
Then it loads that source member and continues the animation at the function indicated. A
return statement causes the animator to go back to the next statement in the original code.

In this manner, a tester can step through nested layers of source code proceeding statement
by statement, until she reaches the final return or until she terminates the animation. Since
the user controls the step through process by mouse click or control key, she can also
interrupt it at any time and also back up to a previous statement.

Animation Implementation

Source code animation is relatively easy to implement provided one already has a static
analyzer. In this case, the author has already written a static analyzer called CPPANAL which
was described in a previous paper. [10] The analyzer provides a statement table with
references to the line number of the statement itself as well as line numbers of functions
referenced. There is also an indicator of the statement type such as if, for, switch, while, etc.

First the tables are generated by a static analyzer and then turned over to a dynamic analyzer
which interprets them. Using the statement table it is relatively easy to follow the control flow

5

and to move the scroll bar through the source text. Decisions and function calls are readily
recognized. Besides the statement table for each source, there is a function table which
indicates in which source member the functions are located. In the case of polymorphic
functions, the function can be located in many different classes. Here the user must decide
which one to branch to. The only problem that may arise is when a function referenced is in a
foreign class that has not been analyzed yet. Then the user is given an error message and
the animation continues in the original source.

The function table indicating where functions are located is a set of binary tuples

<function-name> : <source-name>

stored in an index table. The statement tables are hashed tables in core memory which are
read in sequentially when referenced. Since source members in C++ seldom exceed 2000
lines, there has never been a size problem.

Benefits of Source Code Animation

There are, of course, many who claim that since nothing is really executed, there is no real
benefit except to familiarize the user with the source code. Besides the fact that this is, in
itself, an important means of program comprehension there are other benefits as well.

6

For one thing, there is the opportunity of following the control flow through functions seeing
the effects of conditional statements and loops and visualizing the sequence in which
expressions are resolved. Here it may occur to the tester that certain conditions are wrongly
formulated and that she may never get out of a loop.

Another benefit is to see what foreign functions are used and which ones are never reached.
By marking the functions referenced, the animator is able to list out the functions not
referenced at the end of the session. This is a means of identifying dead code.

Furthermore, it becomes visible to the tester at the source level how functions interact and in
what order the interactions take place. As a consequence, the tester is able to detect
sequence errors. The animator generates during the session a dynamic sequence diagram
which can be compared to the original static one. [11]

Finally, since the statement table also contains the expressions with their results, it is
possible to produce a data flow table containing the operations performed upon given results.
This comes close to symbolic execution as defined by Howden back in the 1970's. [12] Each
significant output variable is assumed a path condition which defines the conditions and
expressions to be executed to attain a given state.

7

Interest =: Account.Balance*Current->Interest-Rate
 if(Account.Balance>0) && (Validate.Account)

 if(Current->Date==Account.Interest.Date)
 if(This.Account==Sarmysaccount)

Justification of Animation

When it comes to testing classes which are dependent on many other classes in a complex
class hierarchy, there may be no better method of detecting errors in the source than
through animation. The problem with sophisticated class testbeds is that they often hide
problems and are of themselves a source of error if not used properly. In stubbing out
function calls the user is forced to simulate the return results of the functions called which
may be complex objects or pointers to complex objects. Then there is the whole problem of
inheritance which makes it so difficult to test derived classes without the base classes. If used
extensively, inheritance prohibits single class testing.

In light of the difficulties involved in setting up an adequate class test environment animation
may prove to be an economic compromise which is easy to implement, easy to use and still
useful in detecting certain type of errors, i.e. the same types of errors that are found when
actually executing the modules.

8

Conclusion

In 1978, this author and Dr. Ed Miller of SRA, San Francisco set up the first European testing
factory in Budapest, Hungary. The purpose of this factory was to test SPL modules for a large
scale Siemens project on a fixed price basis. As reported on at the Florida Workshop on
Software Testing in Dec.,1978 only 48 % of the total errors found were actually discovered in
module testing. [13] The rest were either interface errors, environment errors or errors of
omission. In module testing, mainly logic, initialization and computation errors were detected.
In almost all cases these errors were discovered while analyzing the code to specify test
cases prior to actually testing the module, i.e. the test execution was only a confirmation of
the assumption that an error exited.

With the aide of source code animation the same results can be achieved with much less
effort. Thus, for the 48 % of errors that may be detected in module testing, animation would
suffice to uncover at least 80 %. [14] That is more than enough to justify using this approach.

Finally, there is something often overlooked by test tool developers in their obsession to find
a perfect solution and that is, that their ingenious devices must be used by quite ordinary
programmers working under extreme time pressure, who have little time for tinkering with
sophisticated tools resembling a Rube Goldberg machine. Their job is to find as many errors
as possible in the limited time available. Animation is a good way of achieving this goal.

9

References

[1] Beizer, B.: "Testing Technology - The growing Gap" in American Programmer, Vol. 7,
No. 4, April 1994, p. 3-11

[2] Binder, R.: "Design for Testability in object-oriented Systems" in Comm. of ACM, Vol.
37, No. 9, Sept. 1994, p. 28-52

[3] Perry, D./Kaiser, G.: "Adequate Testing and object-oriented Programming" in IOOP,
Jan. 1990, p. 13-19

[4] Smith, M./Robson, D.: "Object-oriented Programming - The Problems of Validation" in
Proc. of int. Conf. on Software Maintenance - 1990, IEEE Press, San Diego, Nov.
1990, p. 272-281

[5] Sneed, H.: "Objektorientiertes Testen" in Informatik Spektrum, No. 18/1, Feb. 1995, p.
6-12

[6] Harel, D.: "Executable Object Modeling with Statecharts" in IEEE Computer, July 1997,
p. 31-42

[7] Allen, P./Frost, S.: "Component-Based Development for Enterprise Systems - The
Select Perspective", Cambridge Press, Cambridge, 1998, p. 151-160

[8] Stevens, S.: "Intelligent Interactive Video Simulation of a Code Inspection", in Comm.
of ACM, Vol. 32, No. 7, July 1989, p. 832

[9] Poston, R.: "Automated Testing from Object Models" in Comm. of ACM, Vol. 37, No. 9,
Sept. 1994, p. 48-58

[10] Sneed, H.: "Comprehending a complex, distributed, object-oriented Software-System"
in Proc. of 7th Int. Workshop on Program Comprehension, Pittsburgh, PA, May 1999

[11] Sidhu, D./Leung, T.-K.: "Formal Methods for Protocol Testing", in IEEE Trans, on S.E.,
Vol. 15, No. 4, April 1989, p. 413-426

[12] Howden, W.: "Symbolic Testing with the DESSECT Symbolic Evaluation System" in
IEEE Trans. on S.E. Vol. 1, No. 4, July 1977, p. 266-278

[13] Budd, T./Majoros, M.: "Experiences in a Software Test Factory", in Proc. of IEEE
Workshop on Software Testing, Dec. 1978, p. 112-137

[14] Daran, M./Pacale, T.: "Software Error Analysis - A real case study" in Proc. of ISSTA-
96, ACM Press, Jan. 1996, p. 158-171

1

Software Quality Week Europe
Brussel, November 1999

Control Flow Animation
as a means of Class Testing

by

Harry M. Sneed
Software-Test Consultant

Fax #49-8104-669920
E-Mail:Harry.Sneed@t-online.de

Experience with the use of a source animation tool
in validating C++ classes

Topics:
The test process

 Specification validation
Code checking
Class testing

Results obtained
Conclusions

Requirements

Specification
Convention

Coding
Convention

Specification
Analysis

Code
Analysis

Developers

Program
integration

test

Unit
Test

Test
Convention

UnitTest
Convention

Subsystem
Test

Functions
Test

C / C++
Code

CMF
SpecificationAnalysts

ComponentsTesters

QS

Error
DB

System
integration

test

System
Errors

Spec
Metrics Code

Metrics

Test
Metrics

1

2

4

5

6

7

Static Analysis Dynamic Analysis

SDS

Test Process

QW-1

Spec. Corrections

Code
Corrections

Comparison
3

2

CMFANAL Spec. Metrics
Report

Process.c99
Structure info

Process.t99
Text info

Spec. Problem
Report

Spec.
Structure &

Content

Process.scm

Code
Comparison

Quality
Analysis

QS

Analyst

Inputs Outputs

CMFANAL Specification Checking

QW-2

Spec. Metric
Parameters

CMF
Rules

Spec-Size for Defect
Analysis

QW-3

CPPTEST

Test coverage
Report

Class

Source

Assertion
Violations

Developer

UnitTest Process

Output
Comparison

CPPINST

TESTED

Test
Cases

Developer

QS

Class test

Module test

Test
Database

Developer

Test
Parameters

3

QW-4

Defect Analysis

Error
Reports

Test
Metrics

Spec
Metrics

SDS Product
Quality Analysis

DEFANAL
(Filtering)

Defect
Metric File

Component
List

TESTDOC

Code
Metrics

CMFANAL CPPANAL CPPINST

Selection
Parameters

Report
Parameters

Defect Status
by Comp.

Defect Status
by Source

Defect Status
by Test cycle

LOTUS
Error

Database

Project
Release
Version

1) Defect Analysis 5) Code Metrics
2) Spec Deficiencies 6) Defect Rate
3) Code Deficiencies 7) Deficiency Rate
4) Spec Metrics 8) Test Coverage

Specification Code Test

Product.defProduct.txt

Testdoc1

Testdoc2

Testdoc3

Base
Class

Foreign
Class

Server
Object

Server
Object

Server
Object

Foreign
Class

Base
Class

?

Object

CUT Foreign
Function

Invocation

Foreign
Function

Invocation

Polymorphic Invocation How to isolate the class
under test from it’s
environment ?

How to generate multiple
object instances, each
with a representative
state?

CUT = Class Under Test

QW-5

Difficulties of Class Testing

4

100 void SRMMatgr_MatgrBearbeitenDlg: CommonboxSelect (shortusCombox)
101 {

102 switch (usCombobox)
103 {

104 Case KB_MATGR_1:

105 {
110 If (GetControl (KB_MATGR_BELEG_BEREICH) ❺Get())

111

115 Rc = Enable Control (PB_DELETE, TRUE);
116 else

117

130 break;
131 }

132 Case KB_MATGR_2:

133
140 Case KB_MaTGR_3:

Pop Up Menu
Select Case
KB_MATGR_1✴
KB_MATGR_2
KB_MATGR_3

True✴
False

Select Funktion
Class1.EnableControl
Class2.EnableControl
Class3.EnableControl
Classn.EnableControl

Control Flow Step Thru

QW-6

Line_Nr

100
102

104
105
110

111
115

102
104
132
140
105
106
111
116
112
1
1
1
1

Funct
Switch
Switch
Switch
Case

Assym
if

else
Assign
invoke
invoke
invoke
invoke

KB_MATGR_1
KB_MATGR_2
KB_MATGR_3

True
False

Class1.EnableControl
Class2.EnableControl
Class3.EnableControl
Classn.EnableControl

Nexnt
Line_Nr

Stmt
Type

Alternative Targets

GetControl
EnableControl
EnableControl
EnableControl
EnableControl
Delete

WinClass
Class1
Class2
Class3
Classn
User Class

Function Table

Statement Table

Statement and Function Tables

QW-7

5

Process_Combobox
(usCombobox)

GetControl
Get

ComboboxSelect
(KB_MATGR_BELEG_BEREICH)
()
(PB_DELETE, TRUE) EnableControl EnableControl

WinClass SRMMatgr_MatgrBearbeitungDlg Class1 Class2

Dynamic Sequence Diagramm

QW-8

Rc == EnableControl (PB_DELETE, TRUE)

If (GetControl (KB_MATGR_BELEG_BEREICH) ❺ Get ())

Case usCombobox = KB_MATGR_1

In Function: ComboboxSelect (short usCombobox)

In class: SRMMatgr_MatgrBearbeitenDlg

Path Expression for RC

QW-9

6

Errors
not detectable

in
Class Testing

Errors
detectable

in
Class Testing

Interface
Errors

Version
Errors

Interface
Errors Database

Errors

Errors of
Omission!

Errors
detectable

by
Animation

Error Distribution

QW-10

1

Seizing Control of the
Development Lifecycle

Nick Borelli

Microsoft Corporation

Introduction

◗ My background
• Life B.T. (before testing)

• The tester awakens

◗ Expectations of this talk
• Why I’m here today

• Management and Process Oriented

• Empowering the Test Org to improve
Development Methodology

2

Addressing our differences:
Products & Paradigms
◗ The labels we live by

• CMM, ISO, SEI, etc.

• MIL-Spec

• Shrink Wrap

◗ Common ground
• We all want a better process

• Higher quality

• Accurate Schedules

Why should Testing drive this?

◗ Biggest stakeholder?

◗ Desire

◗ Pragmatism

◗ Can any one else do it better?

◗ Don't forget the Tester's Mission

3

Seizing Control: Step 1,
Collecting Data
◗ In-depth Post-Mortem: Test

• Various methods to collect data

• Spend as much energy on your group as
critiquing others

• Important to reach consensus on items in
conflict

• Roll-up big ticket items from Cross-Functions
only

Seizing Control Step 1:
Collecting Data
◗ In-depth Post-Mortem, Cross-Functional

• Powerful Process to collect both Best/Worst
Practices

• Techniques
• Moderated Post-Mortems

• Self-Administrated Post-Mortems

• Frequency & Follow-up

4

Seizing Control Part 2: Analysis

◗ How can the current Development model
hurt test?
• Identify areas both from Post-Mortem and ones

missed

• How could these change?

• How would change affect other teams?

• Would these improve the chances for higher
quality and earlier ship date?

• Refine your "laundry list"

Seizing Control Part 3:
Communicating Results
◗ Rollout of Changes to your Test/Quality

Organization
• Hash out with your leads/managers

• Discuss changes with entire team

• Pitfalls
• Solving the right problem the wrong way

• Process change overload

• Cost/Benefit analysis

5

Seizing Control Part 3:
Communicating Results
◗ Rollout of Changes to Cross-Functions

• Meet with key stakeholders

• Identify benefits

• Review issues that the Post-Mortem identified

• Install feedback process

Seizing Control Part 3:
Communicating Results
◗ Testing-driven Development Lifecycle

• Rolling up changes in Test/Development Plans

• Modifying Milestone Criteria

• Milestone Post-Mortems

• Use Microsoft Project™ for tracking

6

Seizing Control Part 4:
Examples
◗ Real-World Examples of Process Changes

• Specification feedback

• Defect discovery: How can it be earlier?

• Automation re-work too costly

• Test documentation taking too much time

• Quality of code

• Development schedules/process out of sync
with milestones

Seizing Control: Conclusions

◗ More effective organization

◗ Higher quality

◗ Less conflict

◗ Improved communication

◗ Improved morale

7

Seizing Control: Conclusions

◗ Success breeds success
• Peer test groups

• Cross-functional groups in your company

Thanks for listening!

Questions or additional notes, send
email to:

Nickbo@Microsoft.com

1

Seizing Control of the
Development Lifecycle

Nick Borelli

Microsoft Corporation

Introduction

◗ My background
• Life B.T. (before testing)

• The tester awakens

◗ Expectations of this talk
• Why I’m here today

• Management and Process Oriented

• Empowering the Test Org to improve
Development Methodology

2

Addressing our differences:
Products & Paradigms
◗ The labels we live by

• CMM, ISO, SEI, etc.

• MIL-Spec

• Shrink Wrap

◗ Common ground
• We all want a better process

• Higher quality

• Accurate Schedules

Why should Testing drive this?

◗ Biggest stakeholder?

◗ Desire

◗ Pragmatism

◗ Can any one else do it better?

◗ Don't forget the Tester's Mission

3

Seizing Control: Step 1,
Collecting Data
◗ In-depth Post-Mortem: Test

• Various methods to collect data

• Spend as much energy on your group as
critiquing others

• Important to reach consensus on items in
conflict

• Roll-up big ticket items from Cross-Functions
only

Seizing Control Step 1:
Collecting Data
◗ In-depth Post-Mortem, Cross-Functional

• Powerful Process to collect both Best/Worst
Practices

• Techniques
• Moderated Post-Mortems

• Self-Administrated Post-Mortems

• Frequency & Follow-up

4

Seizing Control Part 2: Analysis

◗ How can the current Development model
hurt test?
• Identify areas both from Post-Mortem and ones

missed

• How could these change?

• How would change affect other teams?

• Would these improve the chances for higher
quality and earlier ship date?

• Refine your "laundry list"

Seizing Control Part 3:
Communicating Results
◗ Rollout of Changes to your Test/Quality

Organization
• Hash out with your leads/managers

• Discuss changes with entire team

• Pitfalls
• Solving the right problem the wrong way

• Process change overload

• Cost/Benefit analysis

5

Seizing Control Part 3:
Communicating Results
◗ Rollout of Changes to Cross-Functions

• Meet with key stakeholders

• Identify benefits

• Review issues that the Post-Mortem identified

• Install feedback process

Seizing Control Part 3:
Communicating Results
◗ Testing-driven Development Lifecycle

• Rolling up changes in Test/Development Plans

• Modifying Milestone Criteria

• Milestone Post-Mortems

• Use Microsoft Project™ for tracking

6

Seizing Control Part 4:
Examples
◗ Real-World Examples of Process Changes

• Specification feedback

• Defect discovery: How can it be earlier?

• Automation re-work too costly

• Test documentation taking too much time

• Quality of code

• Development schedules/process out of sync
with milestones

Seizing Control: Conclusions

◗ More effective organization

◗ Higher quality

◗ Less conflict

◗ Improved communication

◗ Improved morale

7

Seizing Control: Conclusions

◗ Success breeds success
• Peer test groups

• Cross-functional groups in your company

Thanks for listening!

Questions or additional notes, send
email to:

Nickbo@Microsoft.com

 Otto Vinter / Brüel & Kjær Quality Week Europe ‘99 Page 1 of 12

Experience-Based Approaches to
Process Improvement

Otto Vinter
Brüel & Kjær Sound & Vibration Measurement A/S, DK-2850 Nærum, Denmark

Email: ovinter@bk.dk

Abstract

Software process improvement (SPI) is usually based on well-known models of software process
maturity such as the Software Engineering Institute’s Capability Maturity Model (CMM) and the
European counterpart Bootstrap. This paper reports on alternative approaches to SPI based on
knowledge and experience that is already available in the organisation. Rather than a formal
comprehensive assessment of the all software development processes in the organisation a “problem
diagnosis” is performed. The problem diagnosis approach to SPI aims at identifying the most
important (process) issues as perceived by the organisation. Improvement actions are then planned
and implemented in close collaboration with the powerful actors in the organisation. The paper
focuses on the results of using such problem diagnosis techniques at Brüel & Kjær as an alternative
SPI strategy. The paper will report on problems and successes, and relate these results to formal
assessments performed in parallel by an external body.

1 Introduction

Software process improvement (SPI) is usually based on well-known models of software process
maturity such as the Software Engineering Institute’s Capability Maturity Model (CMM) [6] and the
European counterpart Bootstrap [2]. The assessment of current practices through the use of such
normative models is generally considered as the proper way of identifying and prioritising
improvement initiatives.

However, it is also claimed [3] that these models represent a too rigid and limited view of the software
development processes and that they do not consider the variety and complexities of software
producing organisations.

Furthermore, many organisations have found it very difficult to translate the assessment results into
concrete improvement actions. And almost all process improvement persons or groups in
organisations at the lower levels of maturity (1-2) have encountered severe resistance to their
improvement initiatives from within the organisation. Alternative or complementary approaches to
assessments should therefore be considered.

© Otto Vinter / Brüel & Kjær Quality Week Europe ‘99 Page 2 of 12

This paper reports on alternative approaches to SPI based on knowledge and experience that is already
available in the organisation. Rather than a formal comprehensive assessment of the all software
development processes in the organisation a “problem diagnosis” is performed. The problem
diagnosis approach to SPI aims at identifying the most important (process) issues as perceived by the
organisation. Improvement actions are then planned and implemented in close collaboration with the
powerful actors in the organisation.

The paper focuses on the results of using such problem diagnosis techniques at Brüel & Kjær as an
alternative SPI strategy. The paper will report on problems and successes, and relate these results to
formal assessments performed in parallel by an external body.

The next section (section 2) describes one problem diagnosis approach based on the analysis of
defects (error reports) from earlier projects. Two improvement actions were initiated and completed
successfully as a result of this approach. In section 3 is reported the findings of the first Bootstrap
assessment, which was performed during the implementation of the above-mentioned improvement
actions.

Section 4 describes another problem diagnosis approach based on interviews of the leading project
managers in the organisation – the powerful actors of a level 2 organisation. Based on the findings
from these interviews a number of improvement actions were identified and implemented by the
project managers. Improvement actions that directly related to development projects succeeded; those
of a more general nature (e.g. organisation-wide) did not.

Section 5 describes the findings of the second Bootstrap assessment, which was performed after the
above improvement actions. The findings and recommendations clearly indicate that the improvement
actions performed as a result of the problem diagnosis approaches actually helped our organisation to
improve on the key practices of a normative model.

Section 6 compares the findings of the different approaches. Section 7 draws the conclusion, that
problem diagnosis approaches to SPI seem to be an effective improvement strategy for an organisation
at the lower maturity levels (1-2), and a valid alternative to formal assessments according to
normative models like CMM and Bootstrap, when an organisation wants to initiate a SPI programme.

2 Defect Analysis

When we first considered improving our processes at Brüel & Kjær, our management did not want to
invest in a comprehensive improvement programme. The company had just been through a major
reorganisation and downsizing. So rather than starting our process improvement programme with an
assessment according to one of the common maturity models, the improvement strategy had to be an
experience-driven, incremental process based on the available information in the organisation, and
focusing first on the major process issues.

We therefore started by performing root cause analyses of error logs generated during previous
development projects. Based on the findings of the analyses we would then introduce improvements
in our development process to prevent frequently occurring types of errors. We conducted thorough
analyses of bugs reported during development and after release of products. In these analyses we
classified bugs according to a taxonomy described by Boris Beizer [1].

© Otto Vinter / Brüel & Kjær Quality Week Europe ‘99 Page 3 of 12

The analyses [7][8] showed the need to perform a more systematic unit test of our products. The first
improvement action therefore focused on improving our testing process. However, the analyses also
showed that the major cause of bugs stemmed from requirements related issues. So when the test
improvement action had completed with success, a second improvement action was then undertaken
to improve our requirements engineering process.

These improvement actions have been funded by the Commission of the European Communities
(CEC) under the ESSI programme: European System and Software Initiative. The title of the test
improvement project is: PET - The Prevention of Errors through Experience-Driven Test Efforts
(ESSI project no. 10438) [7][8]. The title of the requirements engineering project is: PRIDE - A
Methodology for Preventing Requirements Issues from Becoming Defects (ESSI project no. 21167)
[9].

2.1 The Test Improvement Project

The software quality of our company was felt to be unsatisfactory. Too many products were shipped
with bugs. It was the general opinion that this was caused by a lack of testing by the developers before
release.

It was therefore decided to conduct a process improvement experiment to find ways to improve the
testing process. The project was titled: The Prevention of Errors through Experience-Driven Test
Efforts (PET) [7][8].

The problem reports were analysed and bugs in them categorised using Boris Beizer's taxonomy [1].
We found that bugs in embedded real-time software follow the same pattern as other types of
software. We found that the major cause of bugs reported (36%) are directly related to requirements,
or can be derived from problems with requirements. The second largest cause of bugs (22%) stems
from lack of systematic unit testing.

The techniques selected to improve unit testing were: Static and dynamic analysis. Tools were
installed to support these techniques. We experienced a 46% improvement in testing efficiency (bugs
found per person hour) and we raised the branch coverage of all units to above 85%.

An improved (production) version of the baseline product was then released and tracked for the same
number of weeks we had measured on the existing (trial) version after its release, so that we were able
to evaluate the effect of the experiment on problem reports.

The team received 75% fewer error reports than for the trial-release version of the product. Of those
error reports 70% were found to be related to requirements e.g. to bugs that could not have been found
through static and dynamic analysis. This once more confirmed the need for us to improve the
requirements process.

In spite of these remarkable results the use of static and dynamic analysis never spread throughout the
organisation. Some project managers ignored the results. Others started to work with the techniques,
but stopped when time pressure built up. Those who continued, released products with remarkably
fewer bugs.

© Otto Vinter / Brüel & Kjær Quality Week Europe ‘99 Page 4 of 12

2.2 The Requirements Engineering Improvement Project

In the second improvement action we performed a closer analysis of requirements related bugs in
order to find and introduce effective prevention techniques in our requirements engineering process.
The project was titled: A Methodology for Preventing Requirement Issues from Becoming Defects
(PRIDE) [9].

From the analysis of requirements related bugs we found that requirements issues are not what is
expected from the literature. Usability issues dominate (64%). Problems with understanding and co-
operating with 3rd party software packages and circumventing their errors are also very frequent
(28%). Functionality issues that we (and others) originally thought were the major requirements
problems only represent a smaller part (22%). Other issues account for 13%. The sum of these figures
adds up to more than 100% because one bug may involve more than one issue.

This result had an impact on our methodology. We focused on usability problems, and early
verification and validation techniques, rather than correctness, and completeness of requirements
documents.

We therefore introduced the following techniques on a real-life project:

• Scenarios
Relate demands to use situations. Describe the essential tasks in each scenario.

• Navigational Prototype Usability Test, Daily Tasks
Check that the users are able to use the system for daily tasks based on a navigational prototype of
the user interface.

We found an overall reduction in error reports of 27%. We saw a 72% reduction in usability issues
per new screen, and a 3 times increase in productivity in the design and development of the user
interface.

What was also surprising was that not only did we experience a reduction in bugs related to
requirements issues, we also found a reduction in other bug categories. The derived effect on other
types of bugs than the requirements related can be explained by the fact that most of the developers
achieved a deep understanding of the domain in which the product was going to be used from
describing use situations (scenarios) and taking part in the usability tests. This invariably leads to a
reduced uncertainty and indecision among the developers on what features to include and how they
should be implemented and work. In the previous project the new screens were constantly subject to
change all through to the end of the project.

However, the impact of these techniques on the perceived quality of the released product is even
greater than the prevention of bugs. Describing use situations (scenarios) enabled the team at a very
early stage in the requirements engineering process to capture the most important demands seen from
a user/customer perspective. The developers therefore got a very clear vision of the product before the
requirements were fixed. The subsequent usability tests on very early prototypes verified that the
concepts derived from the descriptions of use situations (scenarios) still matched the users’ needs and
could be readily understood by them in their daily use situations.

© Otto Vinter / Brüel & Kjær Quality Week Europe ‘99 Page 5 of 12

The product has now been on the market for more than 18 months and it steadily sells more than twice
the number of copies than the product we have compared it to. This is in spite of the fact that it is
aimed at a much smaller market niche, and that the price of the new product is much higher.

In contrast to the test techniques, the interest among project managers to adopt the scenario and
usability techniques has been much higher. This may be because developers much rather will work
with requirements than with test.

3 Bootstrap Assessment

When the first results of the improvement actions based on defect analysis had materialised, the
management of our company could be convinced that a more formal assessment of our software
development processes should be performed in order to further the improvement programme.

A Bootstrap assessment was performed using the Danish company DELTA as assessors. Four projects
and the software development management were interviewed by the external assessors. The overall
result of the assessment was that we were at level 2.25.

The recommendations from the assessors pointed out weaknesses in the following areas:

• Development Model
The shift in focus from a primarily hardware driven development to software had to be more
focused. The assessors recommended to introduce a specific life-cycle for software development.

• Process Descriptions
Introduce the formal as well as informal improvement actions of the software processes in the
quality management system.

• Unit and Integration Testing
The assessors commented that the improvements we had achieved under the test improvement
experiment (PET) needed to be applied on a wider scale in the company.

• Configuration Management
Again the assessors commented on the need for a more uniform way of performing configuration
management, change control, and planning.

• Requirements
The assessors were aware of the ongoing requirements engineering experiment (PRIDE) and
commented on the need for a description of the process.

• Project Management
Improve planning, estimating procedures, introduction of time and resource usage, closer
monitoring of project progress.

The recommendations above clearly show that a Bootstrap assessment has a much wider perspective
of the software development process than defect analysis. Defect analysis primarily highlights “hot-
spots” in the development process. However, the testing and requirements “hot-spots” that we found
through our defect analysis were also found through the assessment.

 Otto Vinter / Brüel & Kjær Quality Week Europe ‘99 Page 6 of 12

Due to the strong project manager culture of our company, which is typical of a level 2 maturity, the
recommendations from the assessment were never turned into improvement actions. Top management
had stated their commitment to follow up on the assessment recommendations, but in the end they left
it to the project managers themselves to find and introduce improvement actions on their individual
projects. And the process improvement group did neither have the resources nor the “power” to be
able to introduce new activities on a wider scale.

With no “pressure” from the top, and projects running late, it is no wonder that the project managers
chose to concentrate on their day-to-day problems of getting products out of the door. Consequently,
no improvement actions were started as a result of the assessment. This is characteristic of an
organisation of level 1-2 maturity.

4 Project Manager Involvement

At this point it was evident to us that we were effective in defining and introducing new and improved
processes on individual development projects. However, the diffusion and adoption of the techniques
on an organisation wide scale did not happen by itself. The failure of the Bootstrap assessment to spur
new improvement initiatives among the project managers themselves made it evident to us that we had
to involve these powerful organisational actors directly in order to improve on a broader scale.

For this to happen we needed to increase our resources for process improvements, and we succeeded
in convincing our management to let Brüel & Kjær participate in the Center for Software Process
Improvement [5], which is partly funded by the Danish government. The participation gave us access
to a number of researchers and consultants and the resulting joint effort became the basis for
spreading improvements on a wider scale in the organisation.

We involved the project managers directly by performing a new type of problem diagnosis. We
wanted to analyse which (process) issues were perceived as important by them. The most common
problems would then form the basis for our next improvement activities, and this - we hoped - would
enable an easier diffusion and adoption across the projects.

The problem diagnosis technique [4] we used was to conduct a series of structured interviews with
each of the leading project managers where they were asked about which type of problems in their
development projects they felt were the most serious. Seven project managers were interviewed and
detailed minutes were recorded.

From these minutes we could compose a list of problem areas that the project managers found to
influence their projects most. The problems perceived by the project managers correlated very well,
so a consensus could be reached quite easily:

• Software Development Model
The present ISO9001 registered waterfall model was deemed unsatisfactory for efficient software
development. A new model based on iterations, e.g. through experimental prototypes, was asked
for. Risk management was also mentioned as an important element.

• Requirements
The project managers were aware of the ongoing requirements engineering improvement action
(PRIDE) and requested improvements in this area.

© Otto Vinter / Brüel & Kjær Quality Week Europe ‘99 Page 7 of 12

• Project Monitoring
Better estimating procedures, follow up, and progress evaluations.

• Project Conclusion
Configuration management, release criteria, and testing.

• Reuse
Actually this item did not appear in the interviews, but the organisational changes that took place
at the time of the evaluation centred on establishing a group responsible for reuse. So the process
improvement group added reuse to the list.

The problems perceived by the project managers clearly resemble the recommendations from the
Bootstrap assessment. Once again we see a much wider perspective of the software development
process than defect analysis. However, the testing and requirements “hot-spots” that we found through
our defect analysis were also found through this evaluation.

The project managers were presented with the findings at a workshop where top management also was
present. They were each asked to select a topic from the list that they felt most natural to work with on
their present (or up-coming project). The process improvement group and the researchers from the
Center for Software Process Improvement then established support groups that would train, mentor,
and follow these projects.

Three project managers chose to work with implementing the requirements engineering techniques
from PRIDE (section 2.2). Two chose to work with new development models. One chose to work with
reuse and one with project conclusion. Finally the R&D manager wanted to contribute by improving
project monitoring.

These new improvement actions were performed headed by the project managers with mentoring and
support from the process improvement group.

The reuse improvement project was initiated, but the group responsible for this never received the
necessary resources and support to get the project going. This is in fact quite natural since the item
was added by the improvement group and not perceived as a problem by the project managers. We are
a level 2 company, and reuse is an organisation wide activity (level 3).

Similarly the project monitoring improvement project did not succeed. The R&D manager acquired
and implemented a tool to support estimation and monitoring activities. But since he did not press the
project managers to use the tool, which by the way also had quality problems, the project managers to
a very large extent simply ignored the tool. The improvement group tried to establish a support group,
which should assist in getting the project managers to accept the tool, but the R&D manager felt that
he was too busy to take part in such an activity. The failure of this improvement project is also quite
natural. A tool by itself never solves a process problem, you need methodology and organisational
support, and this was not achievable at our level of maturity.

The project conclusion improvement project concentrated on testing. It did not directly use the tools
and techniques from PET (section 2.1). However, the philosophy from PET that a project should
achieve a certain level of testing before release was permanently in the minds of the people working
on the project. A number of persons were assigned to testing the products, and they managed to

© Otto Vinter / Brüel & Kjær Quality Week Europe ‘99 Page 8 of 12

achieve the necessary credibility from the developers and project managers, so that the products were
not released until accepted by them.

Finally the three projects that decided to work with the requirements techniques, and the two projects
that wanted to work with development models were successful. There seemed to be very little
resistance to the improvement actions recommended by the support group. In fact there was great
enthusiasm in the teams for both the development model experiments and requirements engineering
techniques.

The conclusion that can be drawn from these improvement actions is that only those improvements
will be successful that are perceived by the project managers as solving their problems. Neither the
introduction of tools nor organisation wide actions will be effective in an organisation at maturity
level 1-2 unless they align with the “power structure”.

5 Did We Improve Our Maturity?

After the improvement actions mentioned in the previous sections had been completed a second
Bootstrap assessment was performed in order to check on the results and further the improvement
programme.

The Bootstrap assessment was performed by the same assessors from DELTA. Four projects and the
software development management were interviewed by the external assessors. The overall result of
the assessment was still level 2.25.

This immediately seems like no improvement. However, when you study the detailed results that lead
to this number, you can see that the first assessment result was only a little more than halfway
between 2.0 and 2.25 (and the final result therefore achieved through rounding), the second is straight
at the level.

More important, however, than this number was the changes in recommendations made by the
assessors. This time they pointed out weaknesses in the following areas:

• Configuration Management
The assessors commented on the need for a more uniform way of performing configuration
management, change control, and planning.

• Project Management
Improve planning, estimating procedures, introduction of time and resource usage, closer
monitoring of project progress.

• Management Responsibility
Improve status reporting, roles and responsibilities, common policies and strategies.

• Architectural Design
Introduce interface design methods and standards.

• Process Measurements
Introduce measurement programme and procedures.

© Otto Vinter / Brüel & Kjær Quality Week Europe ‘99 Page 9 of 12

• (Unit and Integration Testing)
The assessors acknowledge that the present level of testing seems adequate for the quality of the
products in the market.

These recommendations clearly show that those improvement actions that the project managers have
undertaken w.r.t. development model and requirements are no longer on the list. The testing
recommendation has been moved to the bottom position of the list, and the assessors acknowledge
that the testing performed seems to be adequate for products like ours, even though it is not performed
fully according to the maturity model.

The recommendations from the previous assessment on configuration management and project
management that we had either ignored in our improvement actions (configuration management) or
not succeeded in getting to work (project management) are still on the list and now at the top of the
list.

Based on the new recommendations from the assessors, two further improvement actions have been
initiated. One improvement action addressing configuration management, and one action attempting
to revitalise the acceptance and use of the estimation and monitoring tool, this time focusing on
project feed-back and management reporting, e.g. addressing the organisation around the tool. It
remains to be seen whether we will be successful in implementing these actions.

We also intend to repeat the problem diagnosis by performing another round of interviews with the
project managers in order to evaluate the changes in the (process) issues that they perceive as
important to them.

6 Comparison of Approaches

The recommendations from the different approaches to SPI that we have performed show a great deal
of overlap though they sometimes use different words.

Recommendation Defect Analysis

(section 2)

Bootstrap
Assessment
(section 3)

Project Mgr.
Interviews
(section 4)

Development Model
- iterations
- risk management

x x x
x

Requirements x x x
Project Monitoring
- estimation
- time & resource usage
- monitor progress

x
x
x

x

x
Project Conclusion
- configuration mgmt.
- testing
- release criteria

x
x

x
x

x
x
x

Reuse x
Process Descriptions x

© Otto Vinter / Brüel & Kjær Quality Week Europe ‘99 Page 10 of 12

What is important, however, is the fact that the findings from the defect analysis approach are
recommended by the more general evaluations. This means that a problem diagnosis approach to SPI
based on the available error logs in the organisation is a valid approach to initiate a process
improvement programme. And we have seen that improvement actions based on the defect analysis
approach actually lead to improvements that changed the recommendations in a formal Bootstrap
assessment.

The majority of the assessment recommendations are also found by the approach based on project
manager interviews. This means that a problem diagnosis approach to SPI based on the (process)
issues perceived by the project managers is also a valid approach to initiate or sustain a process
improvement programme. And we have seen that improvement actions, which are adopted by the
project managers, actually lead to improvements that changed the recommendations in a formal
Bootstrap assessment.

7 Conclusions

From the above comparison of approaches and the results of our improvement actions, we conclude
that problem diagnosis approaches to SPI based on already available experience in the organisation
are effective and valid alternatives to formal assessments for organisations at maturity level 1-2.

Normative models for SPI like CMM and Bootstrap should not be discarded because of this. They
represent a comprehensive framework for improvement actions and have established a way of
measuring (assessing) whether improvement actions have been successful within an organisation.

However, their basic principle of establishing levels of maturity, and consequently the
recommendation for organisations to improve from one level to the next until the top level is reached,
seems to be very difficult for organisations to accomplish. This may discourage many organisations
from improving their processes at all.

Alternative approaches to SPI like the ones we have employed tend to be hot-spot solutions to very
specific problems. However, they have a high motivational effect because of the immediate quick
wins they bring. This will encourage the organisation to pursue a continuous line of improvement
actions, and as we have seen, completely in sync with the key process improvement areas of the
normative models.

Irrespective of the SPI approach, it is our experience that in order to achieve a widespread adoption of
process improvements in an organisation, it is necessary that the improvement actions are defined by
or co-ordinated with the powerful actors in the organisation, which at a level 2 maturity are the project
managers. Recommendations from a Bootstrap assessment or dedicated improvement actions will
only be effective if they are aligned with the “power structure” of the organisation.

8 References

[1] Beizer B., Software Testing Techniques. Second Edition, Van Nostrand Reinhold New York,
1990.

[2] Bicego A., Khurana M., Kuvaja P., BOOTSTRAP 3.0: Software Process Assessment
Methodology, Proceedings of the SQM’98, 1998.

© Otto Vinter / Brüel & Kjær Quality Week Europe ‘99 Page 11 of 12

[3] Bollinger, T. B. and McGowan, C., A Critical Look at Software Capability Evaluations, IEEE
Software, Vol. 8, No. 4, pp. 25-41, 1991.

[4] Iversen, J., Nielsen, P. A., and Nørbjerg, J., Problem Diagnosis in Software Process
Improvement, Proceedings of the IFIP WG8.2 & WG8.6 Working Conference, Helsinki, Finland,
1998. (http://www.bi.no/dep2/infomgt/wg82-86/proceedings/iversen.pdf)

[5] Mathiassen L., Beskrivelse af forskningsprojekt om: Softwareprocesforbedring, Aalborg
Universitet, DK-9220 Aalborg Øst, Denmark, 1996.

[6] Paulk, M.C., Curtis, B., Chrissis, M.B., and Weber, C.V., Capability Maturity Model for
Software, Version 1.1, 93-TR-024, Software Engineering Institute, Pittsburgh, Pennsylvania,
1993.

[7] Vinter O., Poulsen P.-M., Nissen K., Thomsen J.M., The Prevention of Errors through
Experience-Driven Test Efforts. ESSI Project 10438. Final Report, Brüel & Kjær A/S, DK-2850
Nærum, Denmark, 1996. (http://www.esi.es/ESSI/Reports/All/10438).

[8] Vinter O., Poulsen P.-M., Nissen K., Thomsen J.M., Andersen O., The Prevention of Errors
through Experience-Driven Test Efforts, DLT Report D-259, DELTA, DK-2970 Hørsholm,
Denmark, 1996.

[9] Vinter O., Lauesen S., Pries-Heje J., A Methodology for Preventing Requirements Issues from
Becoming Defects. ESSI Project 21167. Final Report, Brüel & Kjær Sound & Vibration
Measurement A/S, DK-2850 Nærum, Denmark, 1999.
(http://www.esi.es/ESSI/Reports/All/21167)

Appendix A: CV of Author

Otto Vinter is managing a software technology and process improvement group at Brüel & Kjær
responsible for projects to improve the software development process. He has been active in defining
software engineering standards, procedures, and methods to be employed at Brüel & Kjær. He has also
been the driving force in the company's transition from procedural programming to Object-Oriented
development.

He has managed software development projects for almost 30 years; with Brüel & Kjær from 1986,
before that with the Danish branch of Control Data Corporation, and with Regnecentralen.

The author received his Masters Degree in Computer Science from the Danish Technical University in
1968. He is an associate teacher for BSc. level education in Computer Science, is an active participant
in Danish software knowledge exchange groups, performs mentoring activities for clients, and is on
the programme committee of several international conferences.

Appendix B: The Company

Brüel & Kjær is a leading manufacturer of high-precision measurement instruments. Brüel & Kjær
develops high-precision electronic instruments for sound and vibration measurement applications. The
company is headquartered in Denmark, but the majority of the products are sold through subsidiaries
around the world. In the past most of the products were based on embedded real-time software, but
now PC applications prevail.

Brüel & Kjær Sound & Vibration Measurement A/S
Skodsborgvej 307, DK-2850 Nærum, Denmark
Tel: +45 4580 0500, Fax: +45 4580 1405

© Otto Vinter / Brüel & Kjær Quality Week Europe ‘99 Page 12 of 12

http://www.bk.dk, Email: ovinter@bk.dk

1Experience-Based Approaches to Process Improvement© Otto Vinter /

Quality Week Europe ‘99

Experience-Based Approaches to
Process Improvement

-

Otto Vinter
Manager Software Technology and Process Improvement

Tel: +45 4580 0500, Fax: +45 4580 1405
ovinter@bk.dk

&
Software Engineering Mentor

Tel/Fax: +45 4399 2662, Mobile: +45 4045 0771
vinter@inet.uni2.dk http://inet.uni2.dk/~vinter

2Experience-Based Approaches to Process Improvement© Otto Vinter /

Normative Models for SPI

CMM
BOOTSTRAP

SPICE (ISO15504)

Defined comprehensive process
Levels of maturity (capability)
Key process areas for each level
Assessed by certified assessors

3Experience-Based Approaches to Process Improvement© Otto Vinter /

Fundamentals in Normative Models

Software Process
Assessment & Improvement
(The BOOTSTRAP Approach)
ISBN 0-631-19663-3

4Experience-Based Approaches to Process Improvement© Otto Vinter /

Problems with Normative Models

Abstract model
Assessment by external body
Costs money
Organisational focus
Points out KPAs to be improved
Little help on precisely what to do
Raises a lot of expectations

5Experience-Based Approaches to Process Improvement© Otto Vinter /

Alternative Approaches to SPI

Experience-based improvement actions

• Analyse problems from previous projects to extract
knowledge on frequently occurring problems

• Change the development process through the use of an
optimum set of methods and tools available to prevent
these problems from reappearing

• Measure the impact of the changes in a real-life
development project

• Diffuse the results to the rest of the organisation

6Experience-Based Approaches to Process Improvement© Otto Vinter /

Characteristics of Alternative Approaches

Experience-based
No specific model
Hot-spot driven
Focus on prevention
One issue at a time (incremental)
Piloting at project level
Evolve rather than define (feed-back)
Fits CMM level 1-2 cultures
(where most of us are)

7Experience-Based Approaches to Process Improvement© Otto Vinter /

Examples of Alternative Approaches

Analysis of
• defects
• progress reports, etc.

Structured/Selective interviews
• project managers
• project members
• customers, etc.

Goal-Question-Metric paradigm (GQM)

Some frameworks for alternative approaches:
• Experience Factory (V. Basili e.a.)
• Product Process Dependency Models

(PROFES: www.ele.vtt.fi/profes)
• but primarily: you must find your own way

8Experience-Based Approaches to Process Improvement© Otto Vinter /

1st Action: The Prevention of Errors through
Experience-driven Test Efforts (PET)

Results of the analysis of error logs
• no special bug class dominates embedded software

development
• requirements problems, and requirements related

problems, are the prime bug cause (>36%)
• problems due to lack of systematic unit testing is the

second largest bug cause (22%)

Action: Introduction of static/dynamic analysis
• 75% Reduction in bugs after release
• 46% Improvement in testing efficiency
• 70% Requirements bugs after release

=> Increased focus on the requirements process

Funded by CEC. Final Report: http://www.esi.es/ESSI/Reports/All/10438

9Experience-Based Approaches to Process Improvement© Otto Vinter /

2nd Action: A Methodology for Preventing Requirements
Issues from Becoming Defects (PRIDE)

Results of the analysis of error logs
• Requirements related bugs 51%
• Usability issues dominate 64%
• External software (3rd party & MS products) 28%

Action: Introduce requirements techniques
• Use Situations (Scenarios)

- Relate demands to use situations. Describe tasks for each scenario.

• Usability Test, Daily Tasks, Navigational Prototype
- Check that the users are able to use the system for daily tasks,

based on a navigational prototype of the user interface.

Funded by CEC. Final Report: http://www.esi.es/ESSI/Reports/All/21167

10Experience-Based Approaches to Process Improvement© Otto Vinter /

Results of the 2nd Improvement Action

Quantitative
• Developers were almost 3 times as productive in the

development of the user interface
• Usability issues per new screen reduced by: 72 %
• Total reduction in error reports: 27 %

Qualitative
• User interaction with the product was totally changed as

a result of the usability tests
• Selling steadily more than twice as many
• Product was released in December 1997 so orders could

be shipped before the end of the financial year

11Experience-Based Approaches to Process Improvement© Otto Vinter /

3rd Action: Project Manager Interviews

Problem diagnosis:
• Slow diffusion and adoption of results
• 1st Bootstrap assessment had no effect
• Project managers were the powerful actors (level 2)

Action: Involve the project managers
• interview them on their (process) problems
• classify the (process) issues
• present the major common issues for them (workshop)
• let each select an issue to improve
• train, coach, and support them and their teams
• collect experience and results

12Experience-Based Approaches to Process Improvement© Otto Vinter /

Results of the 3rd Improvement Action

Seven managers interviewed
• problems perceived by them correlated well

Workshop on the major issues
• three chose requirements techniques
• two chose new iterative development models
• one chose project conclusion (test and release)
• R&D manager chose project monitoring

Follow-up by SPI support group
• Introduce and train the team on the issue
• coach and support on request (at least monthly)
• improvement actions performed with enthusiasm
• project related actions completed successfully

13Experience-Based Approaches to Process Improvement© Otto Vinter /

Comparison of Recommendations

Recommendation Defect 1 st Bootstrap Project Mgr. 2 nd Bootstrap
 Analysis Assessment Interviews Assessment

Development Model
 - iterations x x x √
 - risk management x

Requirements x x x √
Project Monitoring
 - estimation x x x
 - time & resource usage x x
 - monitor progress x x x

Project Conclusion
 - configuration mgmt. x x x
 - testing x x x (√)
 - release criteria x x

Reuse x

Process Descriptions x √

14Experience-Based Approaches to Process Improvement© Otto Vinter /

Problem Diagnosis Results

Defect analysis from error logs
• has established a basic process for testing and release
• has improved our requirements process and products

Improvements from interviews
• successful diffusion and adoption of previous

improvement actions
• established a new software development model

Impacts on maturity
• development model, test, and requirement issues are no

longer on the Bootstrap recommendation list

15Experience-Based Approaches to Process Improvement© Otto Vinter /

In Conclusion

Problem diagnosis
• is a simple and effective way to find problems in the

software development process
• good starting point for process improvement

programmes in companies
• step-wise improvements with quick wins
• changes assessment recommendations

However, normative models are needed
• comprehensive framework

- KPAs are important, forget the levels
• established assessments

- effect of improvements

Formal Methods in Robotics:

Fault Tree Based Veri�cation

Axel Lankenau and Oliver Meyer

Bremen Institute of Safe Systems
TZI, University of Bremen

P.O. Box 330440, D{28334 Bremen
falone, emmg@tzi.de

phone: +49-421-218-f4684, 3337g
FAX: +49-421-218-3054

Abstract. The intention of this paper is to emphasize the importance
of employing formal methods for the design of robotic systems. After
a brief survey of current research in this area, a set of requirements is
discussed that formal development process should ful�l. As an extended
example, a general veri�cation approach for reactive systems is described
in detail. It is based on a CSP speci�cation of a fault tree that observes
the behaviour of the target system. A template for the modelling of fault
tree leaves and nodes is given, and it is instantiated by a \real{world"
application taken from the �eld of mobile robotics.

Keywords: Safety in Robotics, Formal Veri�cation, Fault Tree Analysis
Target Audience: Technical
Basis: Academic Research

1 Introduction

When considering systems engineering tasks in the context of avionics or railway
interlocking systems, the use of formal methods in the design process is becoming
state of the art. Due to the fact that a malfunction of such systems may cause
severe harm to human beings or result in other catastrophic consequences, these
systems are referred to as safety{critical systems [27, 16]. Formal methods are
used to formally specify the safety requirements of these systems, to de�ne the
physical model of the system and its environment. They facilitate the veri�ca-
tion, validation and test (VVT) processes and are absolutely necessary if these
processes are to be automated.

As the potential damage robot actions can cause to human beings increases
with the spatial proximity in which man and machine operate, service and es-
pecially rehabilitation robots have to be classi�ed as safety{critical systems.

This point of view represents an extension to a common understanding in the
robotics community that a reliable robot is a dependable robot (for de�nitions
cf. [14]). This statement may be true for exploration robots which operate in

2

volcanoes or on Mars, but it is an inadequate simpli�cation of matters with
respect to those robots that work in the vicinity of men. For them, the notion
dependable additionally comprises the properties available and safe.

There exists a lot of knowledge how safety{critical systems such as nuclear
power plants or airplanes have to be built. Various requirements engineering
methods, a huge variety of speci�cation languages, many veri�cation approaches
as well as test tools have been developed. This paper intends to specify the
demands that applications in robotics impose on a formal method to be employed
in this domain. For the �rst time, a method which comprises hazard analysis,
the formal speci�cation of safety requirements and their subsequent veri�cation
is applied to a service robotics system.

2 Formal Methods in Robotics | A Brief Survey

In contrast to other application �elds such as avionics, the use of formal methods
is not yet very widespread in the new research areas of service and rehabilitation
robotics. This will change in the future for two reasons: on the one hand, most
robotic systems are \interestingly complex", i.e. they are more demanding than
academic toy examples but are not too extensive to handle. On the other hand, it
is commonly agreed that robots such as human power extenders [10] or intelligent
wheelchairs [2, 19, 20] should be treated as safety{critical systems.

However, up to now there are only a few research groups which concentrate
on the topic of using formal methods to ensure safety properties for (service)
robots.

At Lancaster University various approaches to safety analysis were examined.
In [24, 26] the concept of a \safety manager" was introduced. An autonomous
excavator serves as an application example in these papers. They focus on system
analysis topics (development of the hazard analysis method CLASH), and do not
cover the veri�cation and validation process [23, 25, 11].

Zhang employed a far more formal approach by developing a semantic model
for dynamical systems, the so-called \constraint nets" (cf. [30]). In addition, she
proposes a formal veri�cation concept.

The research group \Robots for Hazardous Environments" at Rice University
deals with fault{tolerant robot architectures (e.g., cf. [15]). This work aims at
improving the reliability of robots through software engineering methods such
as fault{tree analysis or risk analysis [6]. Formal veri�cation is not covered.

3 Requirements for Formal Methods in Robotics

Due to the complexity of robotic applications mentioned, the employed formal
methods should cover several di�erent problem domains.

Robotics applications are always hybrid real-time systems, e.g. industrial
robots have to control the angles of joints, mobile robots deal with speeds and
braking distances etc. Therefore, the employed formal methods for speci�cation,

3

validation, veri�cation and test have to cope with the combination of discrete
events and continuous values and their e�ects on each other. Furthermore, it
must be possible to specify and analyse hard real-time properties. Most tool-
supported formal methods used today are only capable of handling discrete sys-
tems.

Robots, like all reactive systems, are only able to operate correctly if the
environments they are operating in ful�l certain conditions. The speci�cations
of these conditions are the basis for the VVT phases. It is desirable that the
formal methods not only allow to take these requirements on the environment
into account but provide methods to deduce them during the speci�cation phase
of the system.

The complexity of robotics systems requires hierarchical methods which allow
the stepwise re�nement from abstract to more concrete properties. Otherwise it
would be almost impossible to check the completeness of speci�cations or cor-
rectness proofs. Furthermore, hierarchical methods are usually compositional.
This makes it possible to easily re-use parts of speci�cations for similiar prob-
lem domains. Since the high levels are only describing abstract properties of
robots in general without details about the speci�c hardware or the intended
implementation, their re-use reduces the necessary e�ort to argue about the
completeness of speci�cations for new projects. Besides, compositionality of the
speci�cation method might enable the partial re-use of proofs or proof scripts
for these developments.

In order to simplify the handling of the previous aspects it is essential to
support the applied formal methods by tools which cover the whole development
cycle. It should be possible to use the results of the speci�cation phase for the
whole VVT process without having to rewrite them in di�erent languages or
formalisms.

The formal approach applied in this paper focusses on the aspects of (interval
based) hard real-time properties, deduction of environment speci�cations and
compositionality/re-usability. The integration of general real-time requirements
as well as complete support for hybrid systems is part of our current work.

4 Fault{Tree Based Veri�cation in CSP | An Extended

Example

In the sequel, a new veri�cation method is introduced and instantiated by a
service robotics example. It is based on a fault tree documenting the result
of a structured hazard analysis. The fault tree speci�es threats the system is
exposed to and makes it possible to consistently de�ne safety requirements that
the operational system must never violate. By modelling the fault tree in CSP it
becomes the reference speci�cation of undesired behaviour the system is veri�ed
against. Veri�cation is accomplished by model checking to ensure that the top
hazard speci�ed within the fault tree hierarchy never occurs.

On the other hand, the same fault tree may serve as a basis for test evaluation
if an already implemented system is to be automatically tested. In this case, the

4

I/O behaviour of the system and the environment can be modelled as a sequence
of events, and thus becomes able to trigger the implemented fault tree leaves,
causing the propagation of faults through the hierarchy of hazards.

As the example presented below is part of a robotics application (the Bre-
men Autonomous Wheelchair, see [13]), another subtle advantage of the fault
tree based veri�cation is worth mentioning. In robotics, most research projects
con�ne themselves to do mere existence proofs, i.e. it is only shown that a certain
robot performs a speci�c task. In most cases, there is no detailed information
given with respect to the circumstances and the environmental conditions under
which the experiments were carried out. As indicated above, an additional out-
come of the veri�cation method described here is a detailed set of hypotheses
specifying the requirements the environment has to satisfy in order to allow the
robot to behave as intended.

Besides providing the bene�ts \one reference document for veri�cation and
automated testing (cf. section 5.2)" and \speci�cation of the environment", the
approach presented here may be easily adapted to various other problem domains
in which embedded controllers are developed.

4.1 Fault Tree Based Veri�cation

Fault tree analysis allows a hierarchically structured and complete derivation of
the hazards of a system that has to satisfy safety properties (cf. [28], [7]). It leads
to a fault tree that gradually links abstract to more speci�c threats. The leaves
of the tree describe the basic hazards that have to be taken into consideration
in system design.

In this paper a graphical representation of fault trees is used that is based
on the \alternative symbols" from [9]. Leaves or nodes which are on the same
level are a re�nement of the higher hazard. The higher hazard occurs if and
only if all lower hazards occur (logical AND) or if one of the lower hazards
occurs (logical OR), respectively. Note that the occurrence of a hazard does not
necessarily mean that the corresponding catastrophy happens, it only means that
it is possible to happen. In order to be able to refer to leaves (depicted as circles)
and nodes (depicted either as rectangles or as lozenges), they are hierarchically
numbered. Besides, we extended the fault tree symbols by a combination of
\triangle" and \lozenge" called \external hazard". It represents a hazard which
has to be averted by external safety mechanisms and thus does not have to be
considered in detail during the system design. The environment requirements
are deduced from the set of external hazards.

Consider the small example shown in Fig. 1. In this fault tree hazard A occurs
if and only if the lower hazards B or C occur. Accordingly, hazard B occurs
whenever basic hazard D or E occurs. Furthermore, hazard C occurs if and only if
the basic hazard F and G exist simultaneously, but hazard G is an external hazard
which is averted by the environment. This leads to an implementation where
the developed system may only operate correctly in environments providing the
necessary safety mechanisms to avoid the corresponding hazard G.

5

Hazard D
(Basic Hazard)

Hazard E
(Basic Hazard)

Hazard F
(Basic Hazard)

(External Hazard)

Hazard B

Hazard A
(Top Hazard)

Hazard C

1.2.1

Hazard G

1.1.1 1.1.2

1.1

1

1.2

1.2.2

Fig. 1. A simple fault tree example

Deriving Safety Requirements from Fault Trees. When using fault trees
as a decomposition of the threat space of a system, the usual procedure is to
derive safety requirements. These are simply negations of the basic hazards.
Ensuring that these safety requirements hold is equivalent to ensuring the non-
occurrence of the corresponding hazard. Note that it is suÆcient for AND{
connected hazards if only one of the safety requirements holds to prevent the
occurrence of the higher hazard. Besides, it may sometimes be possible to avert
higher level hazards and thus one does not has to bother with the more speci�c
hazards in these cases.

The next step is to develop safety mechanisms which ensure that the cor-
responding safety requirements always hold. This has to be realized by taking
into account the fault tree hierarchy. It is the task of the safety mechanisms to
prevent the environment and a naive realization of the system from performing
undesired sequences of events, i.e. it has to block those sequences that may lead
to a catastrophic system state. In the sequel, equipment under control (EUC)
is referred to as representing a simple implementation of the desired function-
ality without taking into consideration the safety requirements, whereas system
means the combination of EUC and safety mechanisms.

Since the development of the safety mechanisms cannot be done automati-
cally, it may be erroneous or incomplete. Therefore, a veri�cation is necessary to
guarantee that the safety mechanisms are correct with respect to the acceptable

6

faults1, i.e. to guarantee that the top hazard in the fault tree can never occur
(see Fig. 2). Our approach to perform this veri�cation is outlined in the following
section.

FAULT TREE

Verification

SAFETY REQUIREMENTS SAFETY MECHANISMS

Fig. 2. Dependencies between fault tree, safety requirements and safety mech-
anisms. The solid arrows represent a \is derived from"-relation. The process
for the derivation of safety mechanisms may be erroneus and therefore a veri-
�cation is needed.

It is worth mentioning that the approach chosen does not ensure necessarily
safety with respect to all possible hazards, but only with respect to those spec-
i�ed in the initial reference document. Here, this document is the fault tree. As
its development supports complete coverage of the threat space, it is an adequate
means to get the �rst speci�cation as complete as possible.

Veri�cation Approach. Since the fault tree describes the undesired system
behaviour it can be used to verify the correctness of the derived safety mecha-
nisms. It has to be guaranteed that the system can detect and/or treat the basic
hazards appropriately to avoid the occurrence of the top hazard in the fault tree.

The basic idea is to use an implementation of the fault tree that runs in
parallel with the system and the environment and observes their behaviour. Here,
implementation of the fault tree refers to a formal speci�cation of the fault tree
that can be symbolically executed during the veri�cation process. Whenever
a fault leads to a basic hazard it is propagated up the tree according to the
speci�ed hierarchy and logic connections between related leaves and nodes. If
the propagation continues up to the root the system failed.

In order to ensure that the system always behaves correctly it is necessary
to examine all possible interleavings of the system components and the environ-
ment. This can be done by using a model checker on a formal speci�cation of the
safety mechanisms, the environment and the fault tree. Alternatively, classical
veri�cation methods could be employed, but they lack the ability to completely
automate the veri�cation process.

Both the environment speci�cation and the safety mechanism speci�cations
can trigger exceptions which correspond to the occurrence of a basic hazard.

1 If hazards are AND{connected the occurrence of single faults can be accepted because
it does not lead to the higher level hazard.

7

These signals are called \arti�cial events" since they can often be provided by
the model of the environment only but not by the real environment. For example,
consider a sonar sensor: A model could nondeterministically decide to measure
a wrong distance and signal it to the fault tree but a real sensor has no means
of detecting it. Besides, it is possible that the safety mechanisms themselves are
incorrect. They might introduce new threats and therefore they, too, must be
able to trigger arti�cial events (see Fig. 3).

ENVIRONMENT

artificial
events

ENVIRONMENT

relevant
events

artificial
events

artificial
events

release/block
traces

FAULT TREE

SAFETY MECHANISMS

FAULT TREE

+ EUC

+ EUC

Fig. 3. The basic idea of the fault tree based veri�cation approach. The envi-
ronment, the equipment under control (EUC) and the safety mechanisms can
trigger arti�cial events which are observed by the fault tree. In the �gure, the
upper composition without safety mechanisms can be used to analyse the sys-
tem behaviour and to demonstrate that the safety mechanisms are necessary.
In contrast, the lower composition is employed to verify the non-occurrence of
the top hazard.

4.2 Fault Tree Implementation in CSP

When taking into account that the veri�cation of the safety properties men-
tioned above is carried out by model checking, it becomes obvious that a formal
speci�cation of the fault tree is needed. It is especially important to model the
propagation of fault{triggers from the leaves to the root of the tree. As this
inherently includes the modelling of communicating processes, the formal spec-
i�cation language CSP (cf. [8] and [21] for syntactic extensions) is used.

An additional reason to choose CSP was the model checking tool FDR (cf. [3])
which allows verifying various re�nement relations between speci�ed processes.
The template speci�cations of a leaf, an OR{node and an AND{node are rep-

8

resented in FDR syntax in Figs. 4, 5 and 6, respectively. Thus, it is possible to
directly re-use the depicted code segments in other applications.

The basic idea used here is a kind of discrete time slicing. It is assumed that
the system works in a loop lasting, say, t time units. During this period of time,
the environment and the system may cause faults, i.e. trigger those arti�cial
events the leaves of the fault tree engage in. Meanwhile, the implementation of
the fault tree merely observes, i.e. its leaves never refuse the arti�cial events trig-
gered by the system or the environment. This behaviour is absolutely essential,
because the fault tree is a \virtual observer" that must not have any inuence on
the system or the environment. The t time units period of system activity and
fault tree observation is followed by a period of fault tree activity. This period
lasts 0 time units, i.e. it happens in nonexisting time. Therefore, the modelled
system does not do anything during this period, since it does not exist in reality
but is only considered during the veri�cation by model checking.

By using this time slicing technique, it becomes possible to model AND{
nodes of the fault tree, because in this way the interval of time during which the
hazards exist can be expressed. Furthermore, this approach makes it possible to
reinitialize the state of the fault tree in a deterministic way. Usually, systems are
prone to cause certain faults only for a certain period of time. These faults either
occur within this certain period or they never occur. As the system considered
here runs in a loop, it is adequate to de�ne the time slice for the system as one
turnaround of the loop. In general, it has to be determined for each leaf how
long this particular threat lasts, but in the example presented in this paper the
global time slicing approach turned out to be suÆcient.

In the CSP implementations the time slicing is modelled by the timing events
begin and end as follows: The time between a begin and an end is the time of
system activity and fault tree observation. The time between an end and the
following begin is used by the fault tree implementation to propagate the faults
up the tree. Remember, this time period is nonexistent in reality.

In Fig. 4 a template of a leaf implementation in CSP is depicted. The pro-
cess LEAF N represents the nth leaf in the fault tree and waits for the timing
event begin to occur. This timing event is triggered by the system when it
starts a new loop. Together with the end timing event and the arti�cial events
triggered by the environment, it builds the synchronized interface between the
fault tree and the environment. After engaging in the begin event, the leaf ac-
cepts either an end event (no fault during this loop), or the arti�cial event
art event N that triggers leaf n (a fault happened). In case of a fault, the pro-
cess CONSUME art event Ns \consumes" further occurrences of the arti�cial
event until an end signals the end of system activity and beginning of fault
tree activity. This is very important because the environment must not be in-
uenced, especially it must not be blocked. Then, the leaf triggers the signal N
event which causes action in a node in an upper level in the fault tree. If no error
occured, the leaf is reset to its initial state. An example instantiation of a leaf
will be given in Fig. 10 on page 14.

9

LEAF N = begin ! (art event N ! CONSUME art event Ns

end ! LEAF N)

CONSUME art event Ns = end ! signal N ! LEAF N

art event N ! CONSUME art event Ns

Fig. 4. Template of a fault tree leaf.

As mentioned above, the upper levels of the fault tree consist of OR{nodes
or AND{nodes. The template implementation of an OR{node is depicted in
Fig. 5. After the initial begin has introduced the �rst turnaround of the system
loop, the process OR NODE N behaves as follows: It waits for the end timing
event signalling the start of fault tree activity. If the following event is a begin,
none of the lower nodes or leaves in the fault tree signalled an error and the
process waits for the subsequent end. If any of the events gathered in the set
failset NODE N happens, one of the lower nodes or leaves has signalled an
error. Thus OR NODE N itself signals the event signal N triggering a node
in an upper level of the fault tree. Again, a \consuming" process is needed in
order to cope with cases in which more than one lower node or leaf triggers
OR NODE N .

OR NODE N INIT = begin ! OR NODE N

OR NODE N = end !
(begin ! OR NODE N

i:failset NODE N

i ! signal N ! CONS FAILS NODE N)

CONS FAILS NODE N = begin ! OR NODE N

i:failset NODE N

i ! CONS FAILS NODE N

Fig. 5. Template of a fault tree OR{node.

The modelling of the AND{nodes (cf. Fig. 6) of the fault tree is slightly more
diÆcult than the one of an OR{node, as only the occurrence of all stimulating
events of the node (represented as set failset NODE N) causes it to trigger
the corresponding node on the higher level. Therefore, during the time period in
which the system is active, the AND{node process AND() must accept all stim-
ulating events in arbitrary order. If and only if each event of the initial failset
failset NODE N already occured (i.e. the remaining current failset failset is

10

empty), the upper level of the fault tree is triggered by the signal N event. Af-
ter that, any surplus events are \consumed" by the CONS FAILS NODE N

process until the timing event begin sets o� a new period of system activity and
fault tree observation.

If the current failset is not yet empty, AND() accepts any event of the ini-
tial failset. Afterwards, it behaves as if that special event had already occured
(cf. AND(failset� fig) in Fig. 6).

AND NODE N INIT = begin ! AND NODE N

AND NODE N = end ! AND(failset NODE N)

AND(failset) =
(card(failset) = 0) & (signal N ! CONS FAILS NODE N)
(card(failset) > 0) & (begin ! AND NODE N

i:failset NODE N

(i ! AND(failset� fig)))

CONS FAILS NODE N = begin ! AND NODE N

i:failset NODE N

(i ! CONS FAILS NODE N)

Fig. 6. Template of a fault tree AND{node.

Note that this technique of modelling and checking safety properties is more
powerful than simply deriving a linear temporal logic (LTL) statement from
the structure of the fault tree. The latter may only be used to specify static
invariants which have to be always ful�lled by the system while our approach
can deal with interval based real-time properties as well. When a leaf of the
fault tree is triggered it is activated for the period of one time slice. If a di�erent
AND-connected leaf at the same hierarchy level is activated later but during
the same time slice, the higher node will be triggered even if the �rst hazard
does not exist any longer. In this way it is possible to model and check higher-
level hazards which are based not only on the logical relations of hazards but
also on their time relations. Therefore, the well-known algorithms to verify LTL
statements (cf. for example [4]) are unsuitable to check that the highest node of
the fault tree can never be triggered, since the fault tree cannot be expressed by
an LTL formula.

4.3 Application: A Safety Layer for an Autonomous Wheelchair

The whole safety layer of the Bremen Autonomous Wheelchair has been devel-
oped using the approach described in this paper (cf. [12]). The complete fault
tree has about 170 nodes and leaves, the highest levels are shown in Fig. 7. An

11

interesting aspect is the decomposition of the hazard \Collision" (1.1) which
results in the distinction between active and passive collisions. The wheelchair
itself is only able to avoid active collisions, i.e. collisions caused by the move-
ments of the wheelchair. Passive collisions, e.g. caused by automatic doors which
hit the wheelchair, have to be avoided by external safety mechanisms of the en-
vironment (indicated by the external hazard symbol). Therefore, demanding to
avert this external hazard is one element of the set of requirements on the en-
vironment in which the wheelchair will operate safely. In this case, automatic
doors are assumed to be \intelligent" enough to open and close only if this cannot
cause a collision. The necessary safety mechanisms can also be designed with the
approach described in this paper. The additional fault tree for automatic doors
can be considered as part of the re�nement of the \passive collision" external
hazard.

Safety requirements

Active Collision

Safety requirements Violation of
of the control system

Collision
(at sensor level)

of the system not
satisfied

Passive
collision

1

1.1
Downfall

1.2 1.3

1.4 1.5

operational
parametersnot satsified

1.1.1

1.1.2

(not at sensor
level)

Crash

Fig. 7. The highest levels of the fault tree of the Bremen Autonomous
Wheelchair.

The high levels of the fault tree deal with common hazards that are easy to
adapt to other mobile robotics applications. As a consequence, the majority of
the veri�cation results might be re-usable as well.

As depicted in Fig. 8 the safety layer developed consist of a sensor/actuator
module, net modules and the sensors and actuators of the wheelchair. Since
many hardware devices used in robotics can only be used in combination with
standard operating systems, it has to take into account that not all components
can meet real time restrictions.

12

non-RT layer

RT safety layer

collision avoid.

net modulenet module

wheelchair

application hostbase host

sensors actuators

SAM module A navigate module B

Fig. 8. The system architecture: the sensor/actuator module (SAM) is the
interface to the real wheelchair. The net modules realize a real time commu-
nication between the hosts.

In the context of rehabilitation robotics, not only collisions with obstacles
have to be taken into account as a catastrophic system state but also the non-
availability of the system. For example, for a handicapped person it is essential
that an autonomous wheelchair performs the expected task. In case of an emer-
gency, a standstill cannot be considered as a safe system state since the user
might have to get to an exit or a telephone. Therefore, reliable communication
between basic system components becomes a safety{critical part. In contrast to
the collision hazard, the speci�cation of the communication protocol is con�ned
to discrete-value/real-time properties.

Since the safety mechanisms to avert the \active collision" hazard are based
on hybrid components and we are not yet able to handle the veri�cation of such
hybrid systems, the communication protocol will be analysed in detail in the
sequel.

Requirements of the Protocol. In order to guarantee upper time bounds
when using a mutli{computer system it is necessary to use a hard real time com-
munication protocol. On the other hand, it is preferable to use cheap standard
technology instead of specialized hardware. Therefore, the protocol is realized as
an additional layer on top of an ethernet network.

Because ethernet is based on a CSMA/CD protocol the new layer has to
avoid collisions on the network. This is realized by a time division multiple ac-
cess (TDMA) frame{protocol (cf. [29]) which ensures that at any time only one
computer can write to the bus. Besides, it is important that every host period-

13

ically has the opportunity to send data. The resulting fault tree segment and
its CSP speci�cation is presented in the next section, followed by the model of
the environment and a naive realization of the producer and consumer processes
(the EUC).

A Fault Tree Segment in CSP. The CSP speci�cation of the fault tree
segment for communication problems (see Fig. 9 for an extract) can be realized
by using the templates for leaves and nodes shown in section 4.2. The node
X represents an OR{node which has to agree on fault{triggers from the nodes
X.1 to X.3, i.e. the set failset NODE X contains the events signal X 1 to
signal X 3. Accordingly, the node X.1 has to be modelled as an AND{node
reacting to signal X 1 1 and signal X 1 2.

Com-
munication

problem due to
long-term com-

munication break-
down not
detected

Com-
munication

problem due to
long-term com-

munication break-
down not
detected

Data is
corrupted

during trans-
mission

Corruption
of data not
detected

cation error between

Consumer receives
corrupted data

Loss or delay of data
due to temporary
communication problem

system components

... (some more reasons, skipped)

Disastrous communi-

X.1.1 X.1.2 X.2.1

X.3

X.2X.1

X

Fig. 9. Extract of a fault tree segment dealing with communication problems.

In order to describe the instantiation of a leaf we focus on the basic hazard
X.2.1 | the delay of data might be caused by a collision on the network.
Therefore, the model of the network has to provide an arti�cial event that signals
a collision (see section 4.3). The resulting leaf is shown in Fig. 10.

The fault tree process FAULTTREE is composed of node and leaf processes
running in parallel. All of them have to agree on the time slicing events begin and
end, the di�erent levels are synchronized by the internal fault tree signals as well.
Finally, the whole process has to be synchronized with the system process and
the environment by the arti�cial events to allow the observation of the system

14

LEAF X 2 1 = begin ! (art event Coll ! CONSUME art event Cs

end ! LEAF X 2 1)

CONSUME art event Cs = end ! signal X 2 1 ! LEAF X 2 1

art event Coll ! CONSUME art event Cs

Fig. 10. Instance of a fault tree leaf in CSP for detecting collisions of data
packets on the network.

behaviour. In order to verify that the system is correct, it is suÆcient to show
that the highest fault tree node can never trigger the corresponding event (here:
signal X , see Fig. 11). This is done by a re�nement check in the trace model
against the process GOODSY S.

Modelling of the Environment. The speci�cation of the ethernet process
shown in Fig. 12 accepts data on the net send channel and passes it to the
net recv channel. The end transmit and end recv events model the time it takes
to send and receive messages, respectively. Whenever more than one net send
event occurs before all participating processes agree on the end transmit event,
a collision occurs. This is signalled to the fault tree process by triggering the arti-
�cial event art event Coll. After a collision has occured all subsequent net send
events are ignored.

A simple producer process (PROD in Fig. 13) nondeterministically decides
whether to put some data on the network or not. It ignores all activities during
the receive phase. Correspondingly, a consumer process always accepts transmis-
sions after the transmit phase has ended.

Drawbacks of a Simple Protocol. It should be pointed out that the environ-
ment introduced above is prone to behave maliciously, i.e. it may trigger one of
the arti�cial events that cause the propagation of faults in the fault{tree process
FAULTTREE and �nally generates the signal X event.

An environment consisting of two producers PROD(1) and PROD(2), a
consumer CONS and the underlying network NET behaves faulty if the two
producers simultaneously try to transmit data and thus cause a collision of
packets on the network. As expected, a trace re�nement proves that the sequence
of events depicted in Fig. 14 is possible and delivers the highest fault{signal of
the fault{tree (signal X).

The period of system activity starts with the timing event begin (cf. 14).
Then, each producer generates data and transmits it by engaging in the partic-
ular net send:x event. As shown, the second producer transmits its data before

15

FAULTTREE = ((((LEAF X 1 1
k

fbegin;endg
LEAF X 1 2)

k
fbegin;endg

LEAF X 2 1)

k
fbegin;endg

:::)

k
fsignal X 1 1;signal X 1 2;signal X 2 1;:::;begin;endg

((AND NODE X 1 INIT
k

fbegin;endg
OR NODE X 2 INIT)

k
fbegin;endg

OR NODE X 3 INIT))

k
fsignal X 1;signal X 2;signal X 3;begin;endg

OR NODE X INIT

FTSY S = ESY S k
fart event Coll;art event :::;begin;endg

FAULTTREE

GOODSY S = CHAOS(� � fsignal Xg)

Fig. 11. Construction of the fault tree system FTSY S. It can be used to verify
that the process ESY S (consisting of the system and its environment) cannot
perform traces which lead to the top hazard in the fault tree, i.e. to ensure
that the OR{node X never triggers the event signal X.

NET = begin ! (net send?data ! (end transmit
! net recv!data
! end recv

! end ! NET

net send?data
! art event Coll

! CONSUME SENDs; end recv
! end ! NET)

end transmit ! end recv ! end ! NET)

CONSUME SENDs = net send?data ! CONSUME SEND

end transmit ! SKIP

Fig. 12. The abstract speci�cation of the underlying ethernet network.

16

PROD(id) = (produce Item:id ! net send!id ! end transmit

! end recv ! PROD(id))
u

(end transmit ! end recv ! PROD(id))

CONS = end transmit ! (net recv?id sent ! end recv

! consume Item:id sent ! CONS

end recv ! CONS)

Fig. 13. Speci�cation of producer and consumer processes.

begin; produce Item:2; produce Item:1; net send:1; net send:2;
art event Coll; end transmit; end recv; end;

signal X 2 1; signal X 2; signal X

Fig. 14. Trace leading to the top hazard, indicated by event signal X

the data of producer 1 have been received. The resulting collision is signalled
by the NET process when issuing the arti�cial event art event Coll. After the
period of system activity ended (indicated by the end event), the leaf X.2.1 trig-
gers its fault{event. This is propagated up the fault tree until the occurrence of
the top hazard signal X is signalled.

In order to deal with this problem, the system has to be extended by safety
mechanisms, as described in the sequel.

Frame{Protocol with Smart Bu�ering. As indicated, collisions on the net-
work can be avoided by employing a time division approach, i.e. by strictly
assigning the permission to transmit data to only one host at a time. Thus,
each attempt to send data will succeed immediately and will not be delayed
by the CSMA/CD retransmission technique that is used in case of packet colli-
sions. The frame{protocol is controlled by a dedicated computer in the network,
the master. Periodically, it requests data of a speci�c ID by broadcasting. The
computer hosting the application that produces such data answers the request
by broadcasting the corresponding data to all hosts in the net. This procedure
works as long as the data IDs are unique, i.e. it must never happen that two
hosts feel responsible to answer the same request.

The applications on the hosts should not be allowed to access the net directly.
As, furthermore, it should not be taken for granted that these high level modules
meet hard real time restrictions, a double bu�ering policy is employed. Data
received by the net module implemented within the net interrupt is copied into
a net bu�er. During the so{called housekeeping period no net activity is allowed
and the data from the net bu�er is copied to an application bu�er which is

17

a piece of memory shared between all applications and the net module. Thus,
upper time bounds can be de�ned specifying how long it takes for the data sent
by an application to be received by another application on an arbitrary remote
host.

To avoid race conditions with regard to access to the shared memory area
between the net module and the applications, a procedure is needed to ensure
mutual exclusion. As the net module has to access the memory without delay
(hard real time conditions), simple locking algorithms fail. This problem is an
example for the necessity of iterative fault tree development, since the chosen
safety mechanism (bu�ering with simple locking techniques) causes a new threat
(memory access blocked) that has to be taken into consideration in the fault
tree. By introducing an arti�cial event that is triggered by the safety mechanism
whenever two applications try to access the same bu�er at the same time it can
be shown, by model checking, that an extended system including such simple
locked bu�ers fails.

In [12] a smart bu�ering concept has been developed that allows the net
module and all applications to access the shared memory area without delay. The
basic idea is to provide #readers+#writers times as much memory as usually
needed for a bu�er, i.e. each reading application accesses its own part of the
memory while the net module is able to write into another memory area. It has
been veri�ed that this approach ensures mutual exclusion and guarantees the
delivery of data within bounded time even if the applications do not meet the
real time requirements.

Eventually, it has been shown that the top hazard of the fault tree depicted
in Fig. 9 never occurs when employing the frame{protocol in combination with
the smart bu�ering technique.

4.4 Conclusive Remarks

An informal speci�cation of hazards is employed in order to formalize the un-
desired behaviour of a system and its environment in a hierachically structured
fault tree. The fault tree speci�cation is the only reference document required
to verify safety properties. It is shown that the chosen approach is an adequate
means to prove that a designed safety system can avert all relevant hazards. As
segments of the fault tree can be re-used for similar application domains this
method facilitates the re-use of veri�cation results.

We are convinced that the integration of informal requirements, the semi{
formal fault tree technique and the formal veri�cation using a model checker is
one of the strong points of this method. The stepwise increase of the level of
formalization makes it possible to describe the requirements in an appropriate
way at each stage of development. During the fault tree based hazard analysis it
might not be clear what certain informal descriptions exactly mean (How close
is \close"?). Nevertheless, the formal structure of the fault tree allows a thor-
ough reasoning about the completeness of the speci�cation. When formalizing
the hazards of the fault tree to safety requirements and later deriving safety
mechanisms, problems may occur resulting from ambigious speci�cations. The

18

resulting subsequent reiteration of the fault tree analysis often yields important
new design criteria, as shown in section 4.3.

5 Conclusion and Future Work

Providing a speci�cation of the environment is a major property demanded from
a formal method that is used to develop a safety controller for a robotic appli-
cation. The presented approach is well-suited to systematically derive environ-
ment requirements in combination with safety mechanisms for the developed
system. Furthermore, the veri�cation method described here is capable of han-
dling interval-based real-time speci�cations.

Nevertheless, it does not yet suit arbitrary problem domains, e.g. if hybrid
parts are involved. Thus, two extensions are proposed in order to further broaden
the applicability of the approach in the future.

5.1 Improved Fault Tree Semantics

The additional incorporation of a fault tree that not only uses a formal structure
but also has a formal semantics realized by formally speci�ed leaves, would ease
the following deduction of safety requirements signi�cantly (it should be possible
to automate this step). However, the informal description of hazards in the �rst
fault tree document should be retained, because it is an excellent base for the
communication between the software designer and the customer.

Often, it is desirable to express time dependencies of hazards in the fault tree
in a formal way, i.e. an extension of the fault tree syntax and semantics used here
that makes it possible to specify time relations between stimulating branches of
AND{nodes. Such a semantics would allow to enhance the implementation of
the fault tree by introducing a means to assign detailed time periods to speci�c
nodes instead of using a global time slicing in the form of begin and end events. A
similiar approach is presented in [5], where conventional fault trees are formalised
and analysed with the minimal cut set approach and with timed petri nets. We
will examine if this method can be incorporated into our CSP based veri�cation.

Moreover, facilities for expressing and validating/verifying/testing hybrid as-
pects of robotics applications are needed. Since the presented veri�cation ap-
proach is based on CSP, a compatible hybrid extension should be realized either
in Hybrid-CSP (cf. [31]) or with hybrid automata, which can be combined with
the CSP world (cf. [1]).

5.2 Robotics and Test Derivation

Many \real{world" applications turn out to be too large to make veri�cation of
safety properties possible. Here it is necessary to gain con�dence in the system by
performing tests. The test cases have to be chosen in a systematic way to ensure
that all relevant parts of the system are tested. Therefore, it is desirable to use a
test tool, such as RT-Tester (formerly called VVT-RT), that is based on formal

19

methods and selects the test cases so that the test coverage gradually converges
to completeness (cf. [17, 18]). One example of such a \real{world" application is
the safety layer for the autonomous wheelchair described above. Similar to the
veri�cation approach presented here, the fault tree can be used to evaluate its
behaviour. Furthermore, the fault tree speci�es the acceptable deviations from
the normal behaviour of the environment, e.g. the number of consecutive sensor
misreadings the system has to cope with. This information can be exploited
by the test tool to generate all relevant test cases. Moreover, RT-Tester can
already handle the automated test of general hard real-time properties speci�ed
in Timed-CSP and it can be used to check the behaviour of hybrid systems
(cf. [22]). Thus, the test tool RT-Tester supports all means necessary for the
formal testing of robotics applications.

References

1. Amthor, P.: A CSP Model for Hybrid Automata. Proceedings of the 3. BCS-FACS
Northern Formal Methods Workshop, Ilkley, UK (1998)

2. Bell, D. A., Levine, S. P., Koren, Y., Jaros, L. A., Borenstein, J.: Design Criteria
for Obstacle Avoidance in a Shared Control System. Proc. RESNA '94 Conference.
Nashville (1994)

3. Formal Systems Ltd.: Failures{Divergence Re�nement. FDR2 User Manual, Oxford
(1997)

4. Gerth, R. et al.: Simple On-the-y Automatic Veri�cation of Linear Temporal
Logic. Proc. of the Fifteenth International Symposium on Protocol Speci�cation,
Testing and Veri�cation, Warsaw (1995)

5. Gorski, J., Wardzinski, A.: Timing Aspects of Fault Tree Analysis of Safety Critical
Systems. Proc. of the 5th Safety{critical Systems Symposium. Brighton, England
(1997).

6. Hamilton, D. L., Visinsky, M. L., Bennett, J. K., Cavallaro, J. R., Walker, I.
D.: Fault-Tolerant Algorithms and Architectures for Robotics. Proc. 1994 IEEE
Mediterranean Electrotechnical Conference. Antalya, Turkey (1994).

7. Hansen, K. M.: Linking Safety Analysis to Safety Requirements. PhD Thesis, DTU
Technical University of Denmark (1996)

8. Hoare, C. A. R.: Communicating Sequential Processes. International Series in Com-
puter Science, Prentice Hall (1985)

9. International Electrotechnical Commission: International Standard IEC 1025 Fault
Tree Analysis (FTA). Geneva (1990)

10. Kazerooni, H.: Human Power Extender: An Example of HumanMachine Interac-
tion via the Transfer of Power and Information Signals. Proc. AMC 98 - 5th Int.
Workshop on Advanced Motion Control, Coimbra University Portugal (1998).

11. Kotonya, G., Sommerville, I.: Integrating Safety Analysis and Requirements Engi-
neering. Proc. Joint Asia Paci�c Software Engineering Conference (APSEC) and
International Computer Science Conference (ICSC) 1997. Hongkong

12. Lankenau, A., Meyer, O.: Der autonome Rollstuhl als sicheres
eingebettetes System. Masters Thesis, Universit�at Bremen (1997).
http://www.informatik.uni-bremen.de/~emm/DA/DA-Abstract.html

13. Lankenau, A., Meyer, O., Krieg{Br�uckner, B.: Safety in Robotics: the Bremen
Autonomous Wheelchair. Proc. 5th International Workshop on Advanced Motion
Control, Coimbra (1998)

20

14. Laprie, J.C.: Dependability, Basic Concepts and Terminology. Dependable Com-
puting and Fault-Tolerant Systems Vol.5, Springer (1992)

15. Leuschen, M.: Robot Reliability Through Fuzzy Markov Models (MSc Thesis).
Rice University, Texas, USA (1997).

16. Leveson, N.: Safeware: System Safety and Computers. Addison-Wesley, Reading,
MA (1995)

17. Peleska, J.: Formal Methods and the Development of Dependable Sys-
tems. Habilitationsschrift, Christian{Albrechts{Universit�at zu Kiel (1996).
http://www.informatik.uni-bremen.de/~jp/papers/habil.ps.gz

18. Peleska, J.: Testing Reactive Real-Time Systems. Tutorial, held at the FTRTFT
98. Denmark Technical University, Lyngby (1998).

19. Pires, G., Arajo, R., Nunes, U., de Almeida, A.T.: ROBCHAIR { A Powered
Wheelchair Using a Behaviour-Based Navigation. Proc. AMC 98 { 5th Int. Work-
shop on Advanced Motion Control, Coimbra University Portugal (1998).

20. R�ofer, T., Lankenau, A.: Architecture and Applications of the Bremen Autonomous
Wheelchair. Fourth Joint Conference on Information Systems. Research Triangle
Park, North Carolina, USA (1998)

21. Roscoe, A. W.: The Theory and Practice of Concurrency. International Series in
Computer Science, Prentice Hall (1998)

22. Schlinglo�, H., Meyer, O., H�ulsing, Th.: Correctness Analysis of an Embedded
Controller. Proceedings of the 10th DASIA Conference. Lisbon, Portugal (1999)
(to appear)

23. Seward, D. W., Bradley, A., Margrave, F. W.: Hazard Analysis Techniques for
Mobile Construction Robots. Proc. 11th Int. Symp. on Robotics in Construction.
Brighton, England (1994).

24. Seward, D. W., Margrave, F. W., Sommerville, I., Kotonya, G.: Safe Systems for
Mobile Robots { The Safe{SAM project. Achievement and Assurance of Safety.
Proc. Third Safety{critical Systems Symposium. Brighton, England (1995).

25. Seward, D. W., Margrave, F. W., Sommerville, I., Morrey, R.: LUCIE the Robot
Excavator { Design for System Safety. Proc. IEEE Int. Conference on Robotics
and Automation. Minneapolis, USA (1996).

26. Sommerville, I., Seward, D., Morrey, R., Quayle, S.: Safe Systems Architectures for
Autonomous Robots. Proc. Third Safety{critical Systems Symposium, Brighton,
England (1995).

27. Storey, N.: Safety{Critical Computer Systems. AddisonWesley (1996).
28. Vesely, W. E. et al.: Fault Tree Handbook. Nuclear Regulatory Commission, Of-

�ce of Nuclear Regulatory Research, Division of Systems and Reliability Research
(1981). ISBN 0-16-005582-2.

29. Tanenbaum, A. S.: Modern Operating Systems. Prentice Hall (1992)
30. Zhang, Y.: A Foundation for the Design and Analysis of Robotic Systems and

Behaviors (PhD Thesis). University of British Columbia, Kanada (1994).
31. Chaochen, Z., Ravn, A.P., Hansen, M.R.: An extended Duration Calculus for Hy-

brid Real-time Systems. In: R.L. Grossman, A. Nerode, A.P. Ravn and H. Rischel
(eds.): Hybrid Systems. Springer LNCS 763 (1993)

1

QualityWeek Europe ‘99

Formal Methods in Robotics:
Fault Tree Based Verification

Oliver Meyer
Axel Lankenau

University of Bremen, Germany
Bremen Institute of Safe Systems

QualityWeek Europe ‘99

Overview

Formal vs. Informal Methods (in Robotics)

Fault Tree Analysis

The Bremen Autonomous Wheelchair

Verification of Safety Requirements

Example

Conclusion

2

QualityWeek Europe ‘99

Definitions

(Informal) Validation
Check that First Design Document is Complete and
Consistent with Respect to Intended Purpose

(Formal) Verification
Mathematical Proof that Requirements are Preserved
During Design Steps

Test
Spot Check Analysis of the Behaviour of the Real
System, Steadily Increasing the Confidence

QualityWeek Europe ‘99

Formal Methods

Precise Description of Requirements
– Facilitates Unambiguous Contracts
– Allows Mathematical Treatment
– Indispensable for Verification
– Tool Support & Automation of Development

State of the Art for Safety-Critical Systems

Increasing Success in Industry

3

QualityWeek Europe ‘99

Informal Methods

Complement the Formal Description
– Ease the Discussion with Customers
– Sufficient for Non-Safety-Related Aspects

Computers cannot Grasp their Meaning

 Combination of Both Worlds

QualityWeek Europe ‘99

Formal Methods in Robotics

Ensure: No Catastrophic Behaviour

Rehabilitation Robotics
– No Collisions
– User Commands must be Executed if Possible

– Classical Safety + Availability + Reliability

4

QualityWeek Europe ‘99

Fault Tree Analysis

Structural Decomposition
of the Threat Space

Hazard Refinement

Fault Propagation

Hazard D
(Basic Hazard)

Hazard E
(Basic Hazard)

Hazard F
(Basic Hazard)

(External Hazard)

Hazard B

Hazard A
(Top Hazard)

Hazard C

1.2.1

Hazard G

1.1.1 1.1.2

1.1

1

1.2

1.2.2

QualityWeek Europe ‘99

Fault Trees in Robotics

Specification of Undesired Behaviour
– Requirements Imposed on Controller
– Requirements Imposed on Environment

Re-Use of High-Level Tree Fragments
– Similar Hazards in other Robotics Domains
– Generic Frameworks Inferable

5

QualityWeek Europe ‘99

Bremen Wheelchair “Rolland”

• Common Power-Wheelchair
with Extra Sensors and PC

• Increases the Mobility of
Handicapped People

• Safety Layer Averts Collisions
• Support for Difficult

Manoeuvres (Door Passage)
• Learning of Routes in Office

Buildings
• Shared-Control System

QualityWeek Europe ‘99

Fault Tree Example
Safety requirements

Active Collision

Safety requirements Violation of
of the control system

Collision
(at sensor level)

of the system not
satisfied

Passive
collision

1

1.1
Downfall

1.2 1.3

1.4 1.5

operational
parametersnot satsified

1.1.1

1.1.2

(not at sensor
level)

Crash

6

QualityWeek Europe ‘99

Fault Trees and Safety

Conventional Use of Fault Trees
– Derive Safety Requirements
– “Guess” Adequate Safety Mechanisms

Verification against Requirements needed

FAULT TREE

Verification

SAFETY REQUIREMENTS SAFETY MECHANISMS

QualityWeek Europe ‘99

Verification Approach

FAULT TREE ENVIRONMENT
+ EUC

Artificial
Events

FAULT TREE ENVIRONMENT
+ EUC

SAFETY
MECHANISMSArtificial

Events
Relevant
Events

Release

Artificial
Events

Reality

7

QualityWeek Europe ‘99

Animated Example
Comm Error

Corrupt Data
received

Data
corrupted

Corrupt.
not

detected
Simulated
Environment
+ EUC

Safety Mechanisms

Generate Data

? Corrupt Data ?

Detect Corruption

Trace Examples

Generate_Data
Snd_Corrupt_Data
Corruption_Sig
Start_FaultTree
Error-Propagation
End_FaultTree

Generate_Data
Snd_Corrupt_Data
Corruption_Sig
Corr_Detected_Sig
Start_FaultTree
Error-Propagation
End_FaultTree

QualityWeek Europe ‘99

Model Checking in CSP

Automated Verification Method
– Exhaustive Search of the State Space
– Allows to Check Freedom of Deadlocks and

Livelocks, Reachability and Refinements
– “Press Button” Approach

Communicating Sequential Processes
– Event Based Specification Language
– Model Checking Tool FDR

8

QualityWeek Europe ‘99

Fault Tree Leaf in CSP

Leaves and Nodes Modelled as Processes

Leaves Store Signals for one Cycle

Leaf Example in CSP:
LEAF = Start_FaultTree -> (Corruption_Sig -> CONSUME_CORR

 []

 End_FaultTree -> LEAF)

CONSUME_CORR = End_FaultTree -> Error_Prop_Sig -> LEAF

 []

 Corruption_Sig -> CONSUME_CORR

QualityWeek Europe ‘99

Verification Approach in CSP

• Fault Tree is Implemented by a Collection of
Leaves and Nodes Running in Parallel

• System and Fault Tree are Executed in Parallel

• Proof Obligation is Simplified to
“Top Hazard does not Occur”

9

QualityWeek Europe ‘99

Conclusion

Presented Approach Supports
– Stepwise Formalisation of Requirements
– Separation of Controller and Environment

Specifications
– Reasoning about Completeness

“Press Button” Verification

Case Study in Rehabilitation Robotics

QualityWeek Europe ‘99

Future Work

Complex Timing Conditions
– Formalisation of Timing Conditions
– Temporal Relations between FT Branches

Hybrid Specifications

Fault Tree Based Testing (RT-Tester)
– Environment Spec. for Test Generation
– Controller Spec. for Test Evaluation

Probabilistic Fault Trees

Test Automation in Telecommunications Software:
a Case Study on GPRS

R.DELMIGLIO
(1),A.MANINI

(1),G.BAZZANA
(2),G.RUMI

(2),F.BASILI
(2),E.BENDINELLI

(3),A.RAPPELLI
(3)

(1) Italtel Spa
Reti Mobili Research and Development (RM-RD) department
SS11, Km 158 – 20060 Cassina De Pecchi (Milan) – Italy
Web:http://www.italtel.it
Phone: +39-02-4388-6162
Fax: +39-02- 4388-6872

(2) ONION Spa
Communications, Technologies, Consulting
Via L. Gussalli, 9 – 25131 Brescia – Italy
Web:http://net.onion.it
Phone: +39-030-3581510
Fax: +39-030-3581525

(3) Spazio ZeroUno Spa
Via Grande, 21
20090 Vimodrone (Milan - Italy)
Web:http://www.spaziozerouno.it
Phone: +39-02-2650701
Fax: +39-02-2650740

ABSTRACT

This paper describes the test automation experiences performed at Italtel Reti Mobili –
Research and Development (RM-RD) department focusing on the adoption of specific
methods and tools for GPRS service.
The paper is organised around the following topics:

� a short company profile and a global description of the evolution of mobile telephony;

� the reference development process, the testing practices and the Software Process
Improvement (SPI) activities within which test automation activities have been
experienced;

� an overview about the GPRS service in terms of technical foundations and envisaged
business benefits;

� the test automation activities, including a technical description of the environment and a
quantitative effectiveness analysis of the benefits introduced by the adoption of the
selected practices and tools;

� a detailed technical description of the methods and tools internally designed and
developed by RM-RD department to drive the testing of the GPRS feature;

� a general appraisal of lessons learnt and future goals.

Test Automation in Telecommunicat ions Software: a Case Study on GPRS

3rd International Software Quality Week Europe

2

TABLE OF CONTENTS

ABSTRACT ..1

TABLE OF CONTENTS ...2

1 COMPANY PROFILE...3

2 EVOLUTION OF GSM AND MOBILE TELEPHONY ..4

2.1 THE STANDARDS..4
2.2 THE SYSTEMS..5

3 THE REFERENCE SOFTWARE DEVELOPMENT AND TESTING PROCESSES..............6

3.1 SOFTWARELIFE CYCLE...6
3.2 TESTINGACTIVITIES..8

4 TEST AUTOMATION IN THE CONTEXT OF SOFTWARE PROCESS IMPROVEMENT.......9

5 DATA TRANSMISSION ON MOBILE NETWORKS ..11

5.1 HSCSDAND GPRS...11
5.2 GPRS System Architecture...12

6 TEST AUTOMATION ENVIRONMENT FOR GPRS TESTING ...15

6.1 HATT (HOSTAUTOMATION TESTTOOL) ...16
6.2 LSU Plus (LINE SERVERUNIT PLUS) ..17
6.3 GTAS (GSM TESTAUTOMATION SYSTEM)..17
6.4 Abis Applications ...19

6.4.1 LabLog..19
6.4.2 LabRes ..19
6.4.3 Lgts Plus(LineServerUnitGSMBasedTrafficSimulatorPlus)...19

6.5 Gb Applications..22
6.5.1 GbLog ...22
6.5.2 GbSeq ...22
6.5.3 GbTraffic ..22

7 PRELIMINARY RESULTS AND THE WAY AHEAD...23

ACKNOWLEDGEMENTS ...24

REFERENCES ...24

Test Automation in Telecommunicat ions Software: a Case Study on GPRS

3rd International Software Quality Week Europe

3

1 COMPANY PROFILE

Italtel Spa, the largest Italian telecommunications manufacturer, is an European supplier of
telecommunication networks and systems, operating on the global market.

Italtel designs, manufactures, markets and installs systems and equipment for public and
private applications. In Italy and abroad it implements systems and networks on a turnkey
basis. The company is active, full-line, in every field of telecommunications.

Research and Development is crucial to Italtel’s competitiveness on the world markets; in the
last year Italtel’s commitment to R&D Activities has been intensive with investments
representing 13% of sales revenues.

The Mobile Network Business Unit has the following mission:

� to be a turn key mobile network supplier;
� to develop the business of mobile networks;
� to be the competence centre for the whole Italtel-Siemens group for Base Station

Subsystems used within cellular networks and wireless access systems;
� to support customers in all project implementation phases;

As of date April 1999, over 140.000 Italtel-Siemens TRX are operational world-wide in the
countries highlighted by the following figure.

RM

Argentina

Spain

Luxembourg

Germany

Austria

Italy

Croatia

Czech rep.

Poland

Estonia

Greece

Malta

Finland

Russia

Bulgaria
Ukraina

Armenia

China

Iran

Oman

India

Taiwan

Turkey

Indonesia Kenya

Senegal

Ivory Coast

Digital Mobile BSS Networks:
ÿþýüûúùø÷öùõýôýóòýñöðï÷ùîúõ

Siemens / Italtel Sales Records: BSS

USA

Zambia

Cambogia

Madagascar

Zimbabwe

Cape Verde

Norway

Burkina Faso

Thailand

Greenland

Venezuela

Niger

Sweden

Denmark

Portugal

Slovenia

Figure 1.1 – Siemens/ Italtel BSS installations

For more details on the company, the interested reader is referred to the Italtel WWW at the
URL http://www.italtel.it/

Test Automation in Telecommunicat ions Software: a Case Study on GPRS

3rd International Software Quality Week Europe

4

2 EVOLUTION OF GSM AND MOBILE TELEPHONY

2.1 THE STANDARDS

Originally, the GSM standard was intended as a comprehensive standard, to be used until the
standardisation of a 3rd generation follow-up technology. Early in late 80’s it became obvious
that it was not possible to freeze all the technical details and to fully standardise service
requirements. This resulted in the important decision to leave the GSM standard open and to
develop and work on it permanently instead. The evolutionary GSM concept thus provides
enough scope for technical evolutions and can be quickly adapted to the rapidly changing
market conditions. GSM developed in various phases, briefly sketched in the following.

GSM Phase 1

Agreed upon in 1990/1991, it includes all basic prerequisites for mobile and digital
transmission of information. Speech transfer plays an important role and data transmission
was defined with rates from 0,3 to 9,6 kbit/sec. In this phase only a few supplementary
services were defined such as:call forwarding (i.e. subscriber busy, un-reachable or does not
answer) andcall barring (i.e. all calls, international calls, incoming calls, etc.).

GSM Phase 2

Research on this phase was concluded in 1995. Supplementary services were specified,
includingSMS(short message service),calling/ connected line identity presentation(displays
calling party's directory number before/ after call connection),calling/connected line identity
restriction(restricts the display of the calling party's number at called party's side before/ after
call connection),call waiting (informs the user about a second incoming call and allows to
answer it),call hold (puts an active call on hold in order to answer or originate another call),
multiparty communication(conference calls),closed user group(establishment of groups with
limited access),advice of charge, unstructured supplementary services data(offers an open
communications link for use between network and user for operator-defined services),
operator-determined barring(restriction of different services, call types by the operator).
Of central importance was the agreement on downward compatibility, meaning that all
networks and terminal equipment of phase 2 were compatible to the networks and terminal
equipment of phase 1.

GSM Phase 2 plus

GSM phase 2 plus addresses evoluted requirements for mobile radio systems: improved
speech quality, granted by the introduction of a new speech code (Enhanced Full Rate
Speech), and worldwide availability, achieved through multi-mode terminal equipment
(satellite roaming).
Referring to the implementation of“mobile computing”/ Internet access, bearer services1 such
as High Speed Circuit Switched Data (HSCSD), and General Packet Radio Service (GPRS) are
standardised allowing for the adaptation of transmission rates to those of ISDN. The
importance of phase 2 plus lies also in the creation of a platform on which the GSM follow-up
standard UMTS (Universal Mobile Telecommunication Standard) will be based.

UMTS (UniversalMobile TelecommunicationStandard)

The 3rd mobile radio generation currently being standardised under the heading IMT-2000
(International Mobile Telecommunication) designates a global system of compatible standards

1
The Bearer Services are the basis of the safe data transmission between the interfaces of the terminal equipment

Test Automation in Telecommunicat ions Software: a Case Study on GPRS

3rd International Software Quality Week Europe

5

which indeed is able to meet the high demands placed on future mobile radio systems. The
general aim is to enable “communication with anyone, anywhere, anytime”.

In the framework of IMT-2000 guidelines ETSI is about to standardise a follow-up GSM
standard based on the experiences with and the success of GSM: the standard is known as
UMTS. UMTS is a downward-compatible GSM standard of the 3rd mobile radio generation; as
such it shall provide worldwide multimedia access at any point in time and cover all current
mobile radio applications. Data rates of 8 kbit/s up to a maximum of 2Mbit/s shall be
supported.

2.2 THE SYSTEMS

From the architectural point of view, a GSM system is quite a complex object, since it has to
deal with multi-services and with the peculiarities of cellular networks. Looking at the system
from the outside, GSM is in direct contact with users, with other telecommunications networks
and with the personnel of the service providers.

The internal GSM architecture distinguishes three parts (see fig 2.1): theBSS (BaseStation
Sub-System), that is in charge of providing and managing transmission paths, theNSS
(Network andSwitching SubSystem), that is in charge of managing the communications and
the OSS (OperationSubSystem) which provides the interface to the system for the network
operator.

Getting into details of the BSS, we can find the following Network Elements:

• a transmission equipment (BTS – Base Transceiver Station);
• a managing equipment (BSC – Base Station Controller);
• a speech encoding/decoding equipment (TRAU – Transcoder and Rate Adapter Unit)

RM

BTSBTS

BSCBSC

TRAUTRAU

CBCCBC

OMC-BOMC-B OMC-SOMC-S EIREIR

GCRGCR

(G)MSC(G)MSC VLRVLR

HLRHLR

AuCAuC

GSM Architecture

MS = Mobile Station
BTS = Base Transceiver Station
BSC = Base Station Controller
TRAU = Transcoder/Rate Adapter Unit
MSC = Mobile Switching Centre
(G)SMC = Gateway MSC

OSS= Operation Sub-System
NSS= Network & Switching Sub-System
BSS= Base Station Sub-System

VLR = Visitors Location Register
HLR = Home Location Register
AuC = Authentication Centre
EIR = Equipment Identity Register
GCR = Group Call Register
CBC = Cell Broadcast Centre
OMC = Operation & Maintenance Centre

Asub

Abis

O
F

A

C

IBSS

OSS

NSS

E
G

D

B

H

MSC VLR

To other NSS

MS

Um

Fig 2.1 – GSM System architecture

Test Automation in Telecommunicat ions Software: a Case Study on GPRS

3rd International Software Quality Week Europe

6

The following figure shows the achieved and planned Italtel BSS line development to cope
with the evolution of standards and services

RM

Micro - BTS
BS11

Dual Band
900/1800

Hierarchical
Cells Sinthesized

Frequency
Hopping

Italtel Market
products / Services Requirement

Smart
Antennas

High Capacity
BSC plus

TRAU plus

UMTS
Base Station
(FDD, TDD)

2001 - 2002

1999 - 2000

1998

Universal
Mobile
Communication

Capacity

Enhanced
Services

New
Business
Opportunities

BSC
250 Carriers

BTS plus

OMC plus

Micro-BTS plus
BS 24

New Speech
Services (ASCI)

High Speed
Data (HSCSD)

Location
Services

Dynamic
Frequency
Allocation

UMTS
Controller (RNC)
and Management

Pico -BTS Packet data
(GPRS)

Dual Band
900/1900

Italtel BSS Line Evolution

Fig 2.2 – Italtel BSS line evolution

3 THE REFERENCE SOFTWARE DEVELOPMENT AND TESTING PROCESSES

3.1 SOFTWARE L IFE CYCLE

The software development life cycle adopted at Italtel RM-RD can be summarized as follows
(see figure 3.1):

1. Analysis: the goal of this phase is to elicit and describe system requirements in order to
provide the best SW development within the system architecture. Impact analysis and
mapping of functions into the defined SW architecture is performed in this phase.

2. Design: the goal of this phase is to identify the complete SW behaviour for each
subsystem and the functions to be provided by each component. This level of refinement
must include enough details in order to allow the subsequent coding phase.

3. Implementation: this phase is structured in the following sub-phases:

3.1 Coding and module testing: with the goal to translate the design information into source code
files using the defined computer language and to check the syntax and the semantic
correctness of each source file.

3.2 Off-line testing, with the goal to execute module testing in a simulated environment for the
new/modified functions and to carry out non-regression testing for the unchanged functions
with respect to the previous release.

Test Automation in Telecommunicat ions Software: a Case Study on GPRS

3rd International Software Quality Week Europe

7

4. Test design and development, with the goal to define the testing strategy and
methodology, to design the tests and to prepare the environment for the relevant testing
phases.

5. Integration testing: the phase is structured in the following activities:

5.1 Entity testing, with the goal to carry out entity functional testing on target for the
new/modified functions and to carry out non-regression testing for the unchanged functions
with respect to the previous release.

5.2 Black Box - SBS Integration testing, with the goal to test on target environment the old and
new functions with all network elements (BTS, BSC, TRAU, MSC, OMC, SGSN).

6. System Test: the goal of this phase is: system validation (definition and execution of
system functional tests and verification of compliance with the project specifications) of
SBS base stations subsystems; design and execution of acceptance tests with designated
customers for GSM products; technical support to customer acceptance testing executed
by other organisational departments; technical support for designated networks and
continuos strengthening and widening of the internal know-how for the reference areas.

7. Maintenance: the goal of this phase is to perform the SW product modifications due to
correction of defects arisen after the product delivery or due to improvement performance
of the product. During this phase the SW product is installed in the real operational
environment, where the maintenance operations are performed through the delivery of
new SW Loads or, exceptionally, Object patches.

RM

Software development life cycle
P100 B600

ANALYSIS DESIGN
CODING

AND
DEBUGGING

OFF-
LINE

TESTING

ENTITY
TESTING

MAINTENANCE

SUPPORT
TO

SYSTEM
TEST

B500B400B300B200

IMPLEMENTATION INTEGRATION
TESTINGFeature

List

Feature
Request
Sheets

Feature
Sheets

FS1

FS2

Design
Specification

Interface
Specification

Source
Code

Test Plan

Checklist
Test Specification
Test Data and Test Code

Test Execution Report

Defect Reports

SW Qualification
Report

BBT AND
SBS

INTEGRATION

Sw Quality
Plan

Sw development
Plan

Patch Release
Document

Change Request Management

B500E

TESTING DESIGN
AND

DEVELOPMENT

Figure 3.1 – Software development life cycle

Test Automation in Telecommunicat ions Software: a Case Study on GPRS

3rd International Software Quality Week Europe

8

3.2 TESTING ACTIVITIES

Concerning testing, besides review activities performed during the development phases, the
validation of GSM systems involves several complex and effort-intensive tasks, that can be
summarized as follows:

• Module testing performed by developers with the aim to have a first informal Test of the
source code.

• Off-line (host) testing: performed by developers on stand-alone modules (or, when
applicable, groups of modules) in a simulated environment.

• Entity testing: performed by developers following a feature oriented approach. Each
feature chief with the support of the designers of the impacted functional areas verifies on
target environment the whole feature using formal checklists and test specifications.

• Black-Box - SBS Integration testing: verification and validation (V&V) of a complete
Network Element at the external interfaces in the target environment as well as
interworking of interconnected Network Elements in fully equipped configuration.

• System test: V&V of the global system in the final environment, with an end-user
perspective, including acceptance with customer.

At each step regression activities have to be performed with respect to features delivered in
previous releases, features delivered in previous loads of the release under development,
stability of the system after fixing of faults and/ or implementation ofChange Requests,
changes in hardware/ firmware / operating system/ configurations etc. As a consequence,
regression testing has to be thorough, requiring considerable effort. Moreover regression
testing is subjected to severe deadline pressures: testing is by definition on the critical path!
The following picture summarises test activities.

RM

Host

Test

White Box

Test

Black Box

SBS

Integration

Load/Stress

Test

SBS

Field Test

SBS

Verification

Acceptance

Test

System Test

Service/Custom

Development

TESTING ACTIVITIES

Figure 3.2 – Testing Activities

Test Automation in Telecommunicat ions Software: a Case Study on GPRS

3rd International Software Quality Week Europe

9

The test automation efforts described in the reminder of the paper focused especially on:

� Off line testing;
� Black Box - SBS Integration Testing.

4 TESTAUTOMATION IN THE CONTEXT OF SOFTWARE PROCESSIMPROVEMENT

The test automation experiences described in this paper are part of a larger Software Process
Improvement (SPI) program that Italtel Reti Mobili is undergoing since 1995, with the
following high-level goals [1]:

•••• to optimize the predictability of schedules;
•••• to further enhance product quality;
•••• to raise the availability and usability of documentation;
•••• to better the tool support;
•••• to keep/ increase productivity levels.

Italtel RM-RD is strongly committed to Software Process Improvement that is felt as a major
leverage to increase the company capabilities; this is motivated by: the high world-wide
competitiveness in the target domain, the increasing complexity of the software embedded in
the delivered products and systems, the fact that projects are developed on an international
multi-site basis and the increasing requirements from customers that are more and more
demanding on software process maturity and stability.

The SPI program started in May-June 1995 with a Software Process Assessment conducted by
Siemens Central Research, Application Centre Software. The assessment highlighted a good
maturity level for the software producing unit, given that SPI at Italtel RM-RD was already an
established practice. The SPI Program is intended as a continuos effort, handled with a
management-by-objective approach with milestones and quantitative results.

In order to ensure its success, the PI (Process Improvement) Project has been organized as
Figure 4.1 shows:

•••• a PI Steering Committee(referred in the following as “PISC”), chaired by the R&D
Director and including all the managers reporting to him. The aim of this board is to define
priorities, assign resources, solve problems and track the success of the initiative;

•••• a PI Project Office(called “PIPO” and equivalent to a SEPG), composed of a few experts,
having the goal of planning/ tracking the project, giving technical guidance and
harmonizing/ deploying the outcomes of the Working Groups; the PIPO has also the duty
to organize the so-called “accompanying actions”, namely: training, dissemination and
quantitative measurement.

•••• a number ofWorking Groups, composed of technical representatives from the various
projects involved and dealing with improvement actions.

Test Automation in Telecommunicat ions Software: a Case Study on GPRS

3rd International Software Quality Week Europe

10

RM

R&D Director
R&D Line Manager

Quality Manager

SW Development Manager
Process Improvement Experts

Quality Representative

WG1
Technologies

WG2
Project Planning & Estimation

WG3
Test Automation

WG4
Quality Management

WG5
BSC-LMT-TRAU Deployment

WG6
OMC - Deployment

WG7
BTS Deployment

PISC
Process Improvement
Steering Committee

PIPO
Process Improvement
Program Office

WG’s
Working Groups

Figure 4.1 – SPI Program Organigram

Working groups are subdivided in two areas: the former (WG1 to WG4) with the goal to
innovate that is to define/ enhance software engineering practices, the latter to deploy that is to
apply defined practices, into development projects. The Software Process Improvement goals
planned for 1999 as far as “innovative” WG’s are concerned are briefly summarised in the
following table.

1. To integrate Configuration Management Environment between geographically
dispersed development sites

2. To enhance Web interface for Project handling
3. Intranet services evolution
4. Trials for usage of formal specific languages

WG1

5. New technology watch for state-of-the-art technologies
1. To introduce new tools for effort trackingWG2
2. To build estimation models based on historical quantitative data
1. To fine tune proprietary test automation toolsWG3
2. To evolve the existing tools for GPRS needs
1. To spread usage of quality indicatorsWG4
2. To optimise SW development guidelines at R&D level

Activities described in the remainder of this paper are related to goal 2 of WG3
The whole Test Automation environment is described in [2].

Test Automation in Telecommunicat ions Software: a Case Study on GPRS

3rd International Software Quality Week Europe

11

5 DATA TRANSMISSION ON MOBILE NETWORKS

5.1 HSCSDAND GPRS

Although the GSM commercial service started in 1992 exclusively forVoice Services, it was
already fit for the purpose of meeting the increasing demand ofData Transmission Services.
The GSM network, working inCircuit Switched mode(the network gives the customer the
exclusive use of a certain amount of bandwidth for the duration of the call), allows to reach up
to 12 kbit/sec of net data rate using one radio channel of 9,6 kbit/sec data rate. The connection
is set up on demand and released when the caller hangs up.

Today, larger bandwidth is provided by combining more radio channels usingHSCSD(High
SpeedCircuit SwitchedData).

RM

Siemens

Siemens
Mobile DTE

Visited
MSC/VLR

4 x 14.4 kbit/s
(Rel. B)

BTS - Base Station HLR - Home Location Register
BSC - Base Station Controller VLR - Visitor Location Register
MS - Mobile Station

ISDN

PSTN

Internet
Intranet

PSPDN

BSCBSC

1 2 3 4 5 6 7 8
timeslots

4x 9,6 kbit/s
(Rel A)

MS 1
MS 2
MS 3
MS 4

HSCSD: a new data service in GSM

HSCSD - HIGH SPEED CIRCUIT SWITCHED DATA

B
T
S

B
T
S B

T
S

B
T
S

B
T
S

B
T
S

Figure 5.1 – HSCSD(High SpeedCircuit SwitchedData)

HSCSD is aconnection-orienteddata service (only point to point) for applications with high
bandwidth demands and continuos data stream, e.g. motion pictures or video telephony. The
higher bandwidth is achieved by combining 1 to 8 physical channels of one bearer frequency
for just one subscriber. Additionally, thecoding schemesallow a maximum of 14,4 kbit/sec
instead of 9,6 kbit/sec to be transmitted per physical channel. In this way, HSCSD
theoretically enables transmission rates up to 115,2 kbit/sec. In order to implement HSCSD,
merely the GSM-PLMN (Public Land Mobile Network) software must be modified. More
problematic is the high volume of resources needed.

If a particular user has nothing to send, which is typical of data communication, his/ her
resource is wasted because it is not available to any other user. As a consequence, Circuit
Switched connections do not provide an efficient mean to support data traffic, as they do not
match the bursty nature of data communication.

Test Automation in Telecommunicat ions Software: a Case Study on GPRS

3rd International Software Quality Week Europe

12

As a further evolution, the main objectives to be reached by implementing GPRS are the
following:

� to give support for bursty traffic;
� to use efficiently network and radio resources;
� to provide flexible services at relatively low costs;
� to allow high speed connectivity to the Internet;
� to provide fast access time;
� to have and support flexible co-existence with GSM voice.

As opposed to HSCSD, GPRS is apacked-orientedbearer service, meaning that the same
radio channels can be shared by different subscribers. GPRS is aresource-protective
procedure to implement applications with a short-term need for high data rates (e.g. surfing the
internet, E-mail, …). GPRS also enables broadcast transmission (point to multipoint) and
charging based on the actual amount of data transmitted instead of the duration of the call.

In order to meet these objectives GPRS uses a packet-mode technique to transfer data and
signalling in a cost-efficient manner over GSM radio networks and also optimizes the use of
radio and network resources. Still a strict separation between the radio and network
subsystems is maintained, in order to allow the network subsystems to be reused with other
radio access technologies.

New GPRS radio channels are also defined. The allocation of these channels is flexible,
ranging from one to eight radio interface timeslots per TDMA (Time Division Multiple
Access) frame, and they can be shared by active users. The introduction of new coding
schemes with transmission rates of up to 21,4 kbit/sec per physical channel enable theoretical
transmission rates up to 171,2 kbit/sec. With such bit rates, all types of transmissions can be
handled: from slow-speed short messages to the higher speeds needed e.g. when browsing
Web pages. GPRS will also allow the user to receive voice calls simultaneously when sending
or receiving data calls.

GPRS provides a seamless connection to the existing standard data services by using
interfaces to TCP/IP and X.25. GPRS will also provide fast reservation to begin transmission
of packets, typically from 0,5 to 1 second. This means that the data users will not have to wait
for the phone to dial, but instead they will get through immediately. For example the messages
will be delivered direct to the user’s phone, without the need for a full end-to-end connection.
When the user switches on his/ her phone, the messages are downloaded automatically.

5.2 GPRS System Architecture

GPRS introduces anoverlayingarchitecture on the existing one with the definition of new
entities and new interfaces as the Figure below shows.

These modifications concern:

� linking the BSS to the new Serving GPRS Support Nodes (SGSN) via Gb-interface, i.e.
setting-up a packet control unit PCU;

� transmission of thePDU (PacketDataUnit) via BSS;
� the new channel coding schemes, i.e. realising a GPRS Channel Codec Unit (CCU), as

well as
� the possibility of combining physical channels with a view to achieving high transmission

rates via the radio interface Um.

Test Automation in Telecommunicat ions Software: a Case Study on GPRS

3rd International Software Quality Week Europe

13

RM

Siemens

Siemens

Mobile DTE

Visited
MSC/VLR

Gateway
MSC

HLR

BTS - Base Station
BSC - Base Station Controller GSN - GPRS Support Node
HLR - Home Location Register PCU - Packet Control Unit
VLR - Visitor Location Register

ISDN

PSTN

Internet
Intranet

PSPDN

BSCBSC

Circuit
services
+SMS

Serving
GSN

Gateway
GSN

PCU

1 2 3 4 5 6 7 8
timeslots

GPRS: a new data service in GSM

GPRS - GENERAL PACKET RADIO SERVICE

B
T
S

B
T
S B

T
S

B
T
S

B
T
S

B
T
S

MS 1
MS 2
MS 3
MS 4

TRAU

OMC

BSS

NSS

Figure 5.2 – GPRS Reference Model

As far as the BSS is concerned, the GPRS functional units are theCCU located in the BTS
and thePCU located in the BSC.

Referring to theBase Station Controller(BSC) the network structure of the GPRS requires the
introduction of a new interface in the direction of the SGSN-GGSN. This is due to the packet-
oriented data transfer in the GPRS and the corresponding protocols, which now also need to be
handled in the formerly connection-oriented BSS. In the SBS, this interface is obtained by
extending the BSC with the packet control unit PCU. This is done by means of a modification
in the BSC hardware which consists in inserting PCU cards into the BSC rack.

Multi-vendor capabilities are guaranteed by a standard Gb interface, while the Abis transport
mechanism is a proprietary PCU-frame format. This is due to the fact that GSM has not
completely specified the Abis interface, so that each manufacturer may choose a PCU format
which is suitable to its own needs.

The figure below shows the protocol stack for GPRS network.

Test Automation in Telecommunicat ions Software: a Case Study on GPRS

3rd International Software Quality Week Europe

14

Figure 5.3- GPRS Protocol Stack

ThePCU is a functional unit within the BSC whose task is to provide resource allocation and
protocol conversion between BTS and SGSN. The PCU is responsible for:

� channel access control functions, e.g. access requests and grants;
� PDCH (Packet Data Channel) scheduling functions for uplink and downlink data transfer;
� radio Channel management functions, e.g. power control, congestion control, broadcast

control information, etc.
� functions such as buffering and retransmission of data block;
� packet data unit segmentation for down link transmission;
� packet data unit re-assembly for up link transmission;

The functions inside theCCU are:

� channel coding functions;
� radio channel measurement functions including received quality level, received signal

level and information related to timing advance.

PCU frame are transferred across the Abis interface.
The PCU acts as a BSC for statistical multiplexing and routing; in fact it receives RLC packets
from the Abis channel related to more than one mobile and it packs them into LLC frames;
these LLC frames are then routed, together with other LLC frames coming from other Abis
channel to the SGSN, and vice-versa

Gn
Interface

Applicat

IP/X.25

SNDCP

LLC

RLC

MAC

GSM/R

MS

GSM/RF PCU frame

BTS

RLC

MAC

PCU frame

BSS GP

Net. Ser

Frame Relay

BSC SGSN GGSN

RF
Interface

Abis
Interface

Gb
Interface

L1

L2

IP

UDP/TCP

GTP

IP/X.25

UDP/TCP

BSS GP

Net. Ser

Frame Relay

SNDCP

LLC

L1

L2

IP

GTP

relay

relay

Test Automation in Telecommunicat ions Software: a Case Study on GPRS

3rd International Software Quality Week Europe

15

6 TEST AUTOMATION ENVIRONMENT FOR GPRS TESTING

The rapid growth rate of the radio mobile market drives continuously to an equal evolution of
the network equipment needed to provide the radio mobile services and the techniques/ tools
for their development and testing. Using flexible tools, able to execute a great number of tests,
to provide all the services needed by the network elements, it is expected to reduce the test
effort/ schedules improving at the same time the reliability of release and product.

The set-up of the test Automation environment started with a feasibility study, which had the
goal to define the architecture of the overall environment and its components. Afterwards, a
market analysis was conducted to identify whether commercial tools existed to cover the needs
or an internal development had to take place.
This allowed to define a road-map for the Test Automation Project, including the development
of proprietary solutions, the set-up of the underpinning infrastructure, the procurement and
validation of most promising commercial tools and their piloting in case studies. In particular,
referring to the GPRS feature testing, an high level view of the Test Automation environment
is given in Figure 6.1

Besides the Network Elements, which are described in earlier parts of this document, the
following test tools are identified:

� HATT (HostAutomationTestTool): a proprietary tool dedicated to the host testing phase
that automatically executes a sequence of test drivers.

� LSU Plus (L ine ServerUnit plus): a multiprocessor system with HW and SW developed
ad hoc to satisfy the testing of complex telecommunications equipments such as the Base
Station Controller in Circuit Switched and GPRS modality.

� GTAS (GSM Test Automation System): a proprietary tool, based on client/server
architecture, which allows and supports automatic and synchronized test execution for a
set of GSM network tools.

� Abis Applications

1- LabLog: it is a monitor tool of the messages at the level of PCU frames.
2- LabRes: it allows the sending and the check of received packet telephonic procedure

messages driven by script files.
3- LGTS Plus: it allows to simulate a traffic scenario with both Circuit Switch (CS) and

GPRS mobile stations.

� Gb Applications

1. GbLog it is monitor tool of the messages at any level of protocol stack; Frame Relay
(FR), Network Services (NS) or BSSGP packet data unit (PDU) are decoded and
logged.

2. GbSeqallows the sending of messages interactively, driven by user or by file: the
interface is permitted at any level (FR, NS, BSSGP).

3. GbTraffic: it is a tool providing a loop path for the signaling and data traffic generated
and monitored by the Abis simulator on MS couples.

Test Automation in Telecommunicat ions Software: a Case Study on GPRS

3rd International Software Quality Week Europe

16

RM

BTS
BSC

SGSN

LSU+

K1297

Abis
Appl.

K1297

LSU+

Gb
Appl.

Abis

Gb

GTAS

HATT

TEMS

LMT

Test Automation Environment for GPRS Testing

RDR

Figure 6.1 –Test Automation environment for GPRS

� Commercial tools

1. K1297: it is a commercial Multiprocessor/ Multi-interface Tester for monitoring,
simulation/emulation and conformance tests.

2. TEMS (Test Equipment Mobile Station): a commercial tool that allows the
programming and control of phone calls.

3. RDR (Relay Driver): it is a server which can control (open/ close) electric circuits in
order to generate faults.

The following paragraphs describe the tools developed within the Test Automation Project.

6.1 HATT (H OST AUTOMATION TEST TOOL)

The HATT performs tests in automatic way on simulated environment, covering both
execution of tests and checking of their results. It interprets a simple language that allows:

� to send, receive and trace messages among tasks;
� to perform the function calls and the function results manipulation;
� to give some simple control structure;
� to check and update global variable values;
� to interact with the object of the operating system, for example semaphores.

HATT automatically executes a sequence of test drivers listed in a file (Test Chain File). In
every line of this file there is the name of another file (Test Script File) which contains a list of
commands used for:

� sending, receiving and checking messages;
� setting names of logfiles;
� accessing processor memory;
� interacting with stubs;
� etc…

Test Automation in Telecommunicat ions Software: a Case Study on GPRS

3rd International Software Quality Week Europe

17

These commands are interpreted and automatically executed. The result of the test depends on
the result of every command in the test script and it is automatically checked. When a test is
executed (successfully or unsuccessfully) the tool starts to interpret the next Test Script File in
the list of the Test Chain File unless there is an indication to execute an initialization test or
another test script. Message flows are traced and the message contents recorded in logfiles.

6.2 LSU Plus (LINE SERVER UNIT PLUS)

The LSU Plus is a multiprocessor system with HW and SW developed ad hoc to meet the test
requirements of complex telecommunications equipment such as the Base Station Controller
(BSC).

The LSU Plus can be connected to any of the various interfaces of a GSM network element
(i.e. Abis, Asub, A, O, Gb) through eight PCM E1/T1 lines and the support of up to 256 serial
channels (8-2048 Kb/s) that allow HDLC based signalling or others special frame formats
(PCU Frame, TRAU Frame, V.110). A typical connection for the GPRS testing is shown in
figure 6.2.

Figure 6.2 – A sample test line for GPRS

A switch matrix allows to set-up the connections between the time slots of the PCM lines and
the serial channels

Referring to the test of the GPRS feature, the LSU Plus is able to handle the protocol stack at
both the Abis (RLC/MAC, LLC …) and the Gb interface (Frame Relay, Network Service
BSSGP …).

Moreover the LSU Plus includes the LAPD and MTP protocol layers, satellite delay
simulation, as well as some special facilities for testing circuit switched speech and data
channels.

The single protocol layers can operate in monitor mode or as active peer. Concurrent logging
of multiple channels with different protocol in a single stream is supported.

The system is the base building block for developing simulators of network elements oriented
to the various stages of the software process development and to the system test.

6.3 GTAS (GSM TEST AUTOMATION SYSTEM)

GTAS is a proprietary tool, based on client/server architecture, which allows and supports
automatic and synchronized test execution for a set of GSM network elements.

The test environment is composed of several devices connected through a local area network
and communicating via Ethernet using TCP/IP protocol (Figure 6.3). GTAS station allows a
centralized access to such devices and manages the synchronized execution of commands and
retrieval of results. The role of the GTAS main process is to execute test scripts, constituted of
instructions for sending inputs and for checking of system reactions as well as to collect and
log test results, in order to allow subsequent evaluation of results themselves.

The GTAS main features are implemented by a set of functional modules:

BSC MSCLGTS Plus LSU Plus

GbTraffic

TRAU

Test Automation in Telecommunicat ions Software: a Case Study on GPRS

3rd International Software Quality Week Europe

18

� a GTAS main process, able to execute test programs and to log test results;
� a set of Agents, one for each server, possibly running on the device machine, which know

the specific characteristics of the device and act as remote executor for GTAS;

RM

GTAS
Station

Interpreter
local agents

LMT BSC
Server
agent

LMT Trau
Server
agent

LMT BTS
Server
agent

RDR
Server

TEMS
Server

LGTS
Server

LGTSTEMSCustom
Card

BSC
N.E.

Trau
N.E.

BTS
N.E.

Figure 6.3 – GTAS architecture

� an user interface module, which allows the user to start and stop the test, as well as to
verify the execution status of the test itself (considering that also the single script could be
long lasting);

� a Common Interprocess Communication Module(CICM), which supports the message
exchange between the above functional modules

GTAS functionalities are represented by suitable objects based on RTO (Real Time Object)
architecture:

� one object represents the test program interpreter;
� a set of objects (LocalAgents), one for each Agent, represent the connections with the

Agent themselves, holding the connection status and translating protocol messages into
internal messages and method invocation;

� one object manages the connection with the user interface process and translates external
messages into internal commands;

� one object manages the logging of commands and answers in a suitable file structure,
supplying a time stamp and a Agent identifier, in order to allow the retrieval and selection
of test events by time interval and source or destination;

� one object represents the overall status of the GTAS main process and of the test program
under execution, in order to supply to the user interface process all necessary information
to make the user aware about the test progress.

The GTAS user specifies the sequence of commands to be submitted to the actual devices by a
suitable high level language, allowing to send a command to the proper device and to

Test Automation in Telecommunicat ions Software: a Case Study on GPRS

3rd International Software Quality Week Europe

19

synchronize the execution of the subsequent command with the receipt of some particular
messages from the same or another device.

6.4 Abis Applications

6.4.1 LABL OG

It is a monitor tool of the messages at the level of PCU frames. It is able to test the correctness
of the PCU frames flowing through the interface linking the BSC and the BTS or its simulator;
it is also able to decode in clear text the in-band signaling messages on this interface on one or
more 16 Kbps channels and monitor them on the PC screen and/ or log them in a binary
formatted file.

6.4.2 LABRES

It is an application based on the LGTS (LSU- Based GSM Traffic simulator) software to
which some new high level definition language instructions and a GUI has been added.
The LSU Plus offer a pool of primitives to interface the RLC/MAC level to obtain the control
of all telephonic procedures and LLC frames sending which LabRes uses to debug one GPRS
procedure through user scripts and to generate concurrently CS traffic.
High definition language (HDL) is enhanced with the instructions needed to control, with a C-
like syntax, all type of GPRS procedures at a message level: variables and types definition,
expressions and flow control instructions are available.
A graphic application and the insertion of compiler and debugger functionality also improve
the user interface: displaying of HDL programs and user input commands.

6.4.3 LGTS PLUS(LINESERVERUNIT GSMBASEDTRAFFIC SIMULATOR PLUS)

The LGTS Plus is a programmable telephonic traffic simulator able to generate a pre-definite
traffic level on the Abis interface. The high level of programmability makes the LGTS Plus a
very flexible tool able to manage most of the BSC testing requirements. Given that at the time
being there does not exist a reference traffic model for GPRS, one of the main requirement for
testing is to study the BSC behaviour corresponding to:
� traffic changes models;
� traffic intensity corresponding to a fixed traffic model;
� cells configuration.

The LGTS Plus provides:

� a programming language useful to describe the Call processing procedures referring either
to the Circuit Switch mode or the GPRS mode;

� a language able to describe traffic scenarios (a traffic scenario is a set of Mobile Stations,
and Call Processing procedures with respective activation frequency);

� an integrated environment able to simulate at the same time the traditional MS+BTS
behaviour, the MS+BTS supporting the HSCSD behaviour and the MS+BTS that support
the GPRS behaviour;

� an appropriate report about the traffic level load at real time by the network
� a connection to the GTAS tool to automate test execution
� an appropriate logging of all the messages as well as a set of utilities for post-processing

useful to analyse how the test is evolving and to understand whether errors have occurred.

From a functional point of view, the LGTS Plus can be broken-down into the following
modules:

Test Automation in Telecommunicat ions Software: a Case Study on GPRS

3rd International Software Quality Week Europe

20

� User Interface(UI): it provides to the user all the commands needed to interact with the
simulator;

� Supervisor: it manages all the user commands;
� Translator: it translates the programs and the procedures described by the user in a low

level format, used by the Call processing sub simulator;
� Call Processing(CP) Simulator: it is the kernel of the LGTS Plus; it manages the Call

processing simulation using the scenarios described by the user and providing all the
functionalities needed to generate the run-time reports;

� Operation and Maintenance Simulator(O&M): it is able to simulate the alignment of the
BTS used in the test session, from a O&M point of view, providing to the CP simulator all
the BTS parameters needed to the CP simulation.

� Dispatcher and Sender(D&S): it manages the communication with the LSU Plus and
optionally with the GTAS tool via TCP/IP sockets.

Figure 6.4 shows a possible Call Processing scenario that can be simulated by the LGTS Plus.

Figure 6.4 – An example of Call Processing Scenario

GRPXY: it represents a MS’s group that shares the same behaviour (i.e. performs a Mobile
Originated Packet Data Transfer Procedure)

BTSX: is a BTS that represents a specific cell with appropriate parameters (i.e. a specified
number of TRX with a given number of signalling and traffic channels).

GRP01
GRP00

GRP02

BTS1 GRP04
GRP03

GRP05

BTS2

GRP07
GRP06

GRP8

BTS3 GRP10
GRP09

GRP11

BTS4

Subscriber mobility

MO/MT relation for GPRS

MO/MT relation for CS

MO/MT relation for HSCSD

Test Automation in Telecommunicat ions Software: a Case Study on GPRS

3rd International Software Quality Week Europe

21

The LGTS plus allows to describe and to simulate the subscriber activities and mobility as the
following tables shown.

Subscribers activity

CS Relation between Mobile Originated Call and Mobile Terminated Call
Mobile Originated, Mobile Terminated

HSCSD
Relation between Mobile Originated Call and Mobile Terminated Call
Transparent or not transparent Mobile Originated Call for every mobile multislot class
Transparent or not transparent Mobile Terminated Call for every mobile multislot class

GPRS Relation between Mobile Originated and Mobile Terminated Packet Data Transfer
Data quantity to transfer with a fixed QoS

Subscribers mobility

CS+HSCSD Location update
Handover

GPRS
Cell Updating
Routing area updating
Cell reselection

From a BSC point of view the traffic models that can be simulated by the LGTS Plus are
explained in the following:

TGPRSTHSCSDTCSTM ++=
Where:

dLUcHObMTCaMOCTCS +++= (with a connection timefixed)

+=+=+==� �= =

n

i j jijiji xMsClMTCHScxMsClMOCnTbxMsClMOCTaTHSCSD
1

19

1
)()()((

(with a connection timefixed)

� � �= = =
+====

n

i j k kjii xQoSxMsClxPDUsMOPDTaTGPRS
1

29

1

4

1
),,((

TM = Traffic Model MTCHS = Mobile Terminated Call (HSCSD)
TCS = Traffic model for Circuit Switch HOT= Handover referring to a Transparent call
THSCSD = Traffic model for HSCSD HOnT= Handover referring to a not Transparent call
TGPRS = Traffic model for GPRS MOPDT = Mobile Originated Packet Data Transfer
MOC = Mobile Originated Call MTPDT = Mobile Terminated Packet Data Transfer
MTC = Mobile Terminated Call CR = Cell Reselection
HO = Handover CU = Cell Updating
LU = Location Update RU = Routing Area updating
MOCT = Mobile Originated Call
Transparent (for HSCSD)

MsCl = Multislotclass

MOCnT = Mobile Originated Call not
Transparent (HSCSD)

PDUs= Packet Data Unit size;

))()(jiji xMsClHOnTexMsClHOTd =+=+

+===+===+),,(),,(kjiikjii xQoSxMsClxPDUsCRcxQoSxMsClxPDUsMTPDTb

)RUeCUd ii ++

Test Automation in Telecommunicat ions Software: a Case Study on GPRS

3rd International Software Quality Week Europe

22

6.5 Gb Applications

6.5.1 GBL OG

It is a monitor tool of the messages at any level of protocol stack; Frame Relay (FR), Network
Services (NS) or BSSGP packet data unit (PDU) are decoded and logged. It is able to decode
in clear text any message of the three levels of this interface and monitor them on the PC
screen and/ or log them in a binary formatted file with time stamp. The file, can be then post
processed and filtered to search for items of interest, basing on the protocol level and on some
predefined categories; another message flow can be produced on the screen or on another file.

6.5.2 GBSEQ

GbSeqallows the sending of messages interactively: the interface is allowed at any level (FR,
NS, BSSGP); it is a client applications of the LSU Plus, like theGbLog, but moreover it
allows to send messages on the Gb interface towards the BSC. It can be used to simulate, at
any level, the Gb protocol stack on the BSC (playing the network side role), handling different
links at different protocol layers and at different independent rates. The files of messages are
treated in different ways: to send a message at a time, all messages with specified delays in
between, restarted from the beginning.

6.5.3 GBTRAFFIC

The GbTraffic is a simulator able to simulate, from a BSC point of view, the SGSN behaviour.
It is based on the services provided by the LSU Plus and works in close co-operation with the
LGTS Plus. The GbTraffic is able to handle the signalling and data generated on Gb interface
from LGTS Plus traffic simulator.
The main features of the Gb traffic simulator are the following:
� to handle the relation between Mobile Originated and Mobile Terminated packet transfer

(MOC/MTC);
� to handle the packet data transfer between two related MS or between a MS and the

Network;
� to handle subscriber mobility;
� to provide an appropriate report on the simulation;
� to provide a language to configure the LSU Plus protocol layers

From a BSC testing point of view, both the subscriber mobility management and the MO/MT
relation management can be simplified, at configuration time, at some cells and the relation
MO/MT is fixed at configuration time. For example if an MS performs a cell reselection from
BTS1 to BTS2 (see figure 6.5) in the real network then the SGSN will page the MS in the new
cell after the procedure has been completed; in the simulated network the traffic simulator will
page the MS always in the same starting cell (also after the cell reselection).

Figure 6.5- Cell reselection

MS
BTS 1

BTS 2

Test Automation in Telecommunicat ions Software: a Case Study on GPRS

3rd International Software Quality Week Europe

23

7 PRELIMINARY RESULTS AND THE WAY AHEAD

Preliminary results show that, in the areas where test automation has already been deployed:
� test productivity has improved (Figure 7.1);
� fault density has improved (Figure 7.2).
This is boosting additional efforts on test automation.

RM

0

10

20

30

40

50

60

70

80

Host Test Black Box & SBSI test

Rel A

Rel B

Rel C

Test Automation
BSC - LMT - TRAU

Effectiveness analysis results
Tests/Person-month

Figure 7.1 - Test Automation Effectiveness

RM

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

R e l A R el B R el C R el D R el E

Faul D e ns ity
(FAU LTS /K D LO C)

Figure 7.2 – Fault density

Goal

Test Automation in Telecommunicat ions Software: a Case Study on GPRS

3rd International Software Quality Week Europe

24

The next steps on our roadmap foresee at the time being:

� Field fine-tuning of all the applications till now developed
� Full deployment of tools according to user requirements
� Deployment of various tools to other sections of the SBS projects

The first point is going to lead to an extensive use of GTAS with the addition of other
controlled tools. As it can be seen the future objectives are not only of technical nature, but
also involve organizational topics. This is important in order to extend the application area of
these techniques because previous analysis about test automation effectiveness [3] revealed
that a considerable return on investment can be achieved.
Of great importance is the database organization for the tests developed, in terms both of script
and environment description, so to ease the future reuse.
The quantitative tracking of software releases development of the whole project must be
continued to understand whether the improvement direction is kept and to maintain an updated
set of information useful for decision making.

ACKNOWLEDGEMENTS

Our thanks go to G. Cecchetto and S. Di Muro who supported and sponsored the initiative. The Test
Automation project has been made possible by the people taking part in the technical activities,
including: O. Cantoni, E. Colombo, D. Gurrieri, A. Ferrante, M. Mancini, C. Orlando, R. Palmer, G.
Regattin, C. Serrelli.

REFERENCES

[1] S. Di Muro, A. Lora, S. Scotto di Vettimo, G. Rumi -"SPI: an Experience Report from GSM
Development"- AQUIS 98 Conference - Venice, March 1998

[2] R. Delmiglio, G. Bazzana, L. Annoni, A. Manini, E.Parenti, C. Serrelli, C. Trevisson– “Test
Automation Experiences in Telecommunication Software”- EUROSTAR 97 - "5th European
Conference on Software Testing Analysis and review" - Edinburgh - November 1997

[3] G. Bazzana, R. Delmiglio, A. Lora, S. Finetti, O. Balestrini"Quantifying the benefits of
software testing: an Experience Report from the GSM Application Domain"- Proceedings of
Objective Software Quality Conference - Florence, May 1995

RM

Test Automation in Telecommunications Software:
a Case Study on GPRS

[1] Italtel SpA
Reti Mobili Research and Development department
SS11, Km 158
20060 Cassina De Pecchi (Milan) – Italy

[2] ONION SpA
Communications, Technologies, Consulting
Via L. Gussalli, 9
25131 Brescia – Italy

[3] SpazioZeroUno SpA
Via Grande, 21
20090 Vimodrone (Milan) - Italy

R. Delmiglio(1), A. Manini (1)

G. Bazzana(2) - G. Rumi(2) - F. Basili(2)

E. Bendinelli(3) - A. Rappelli (3)

3rd International Software Quality Week Europe3rd International Software Quality Week Europe

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

2

Contents of the Presentation

Company Profile

Evolution of GSM and Mobile Telephony

Software Development and Testing Processes

Test Automation in SPI context
Data Transmission on Mobile Networks

Test Automation for GPRS Testing

Preliminary Results and the way ahead

Company Profile

Evolution of GSM and Mobile Telephony

Software Development and Testing Processes

Test Automation in SPI context
Data Transmission on Mobile Networks

Test Automation for GPRS Testing

Preliminary Results and the way ahead

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

3

Italtel Company Profile
• Designs, manufactures, markets and installs systems and

 equipment for public and private applications;

• Main sector: Switching, Mobile Network, Transmission;

• Over 13% of sales invested in R&D.

Mobile Network Business Unit mission
• to be a turn key mobile network supplier;

• to develop the business of mobile networks;

• to be the competence centre for the whole Italtel-Siemens

 group for Base Station Subsystems;

• to support customers in all project implementation phases.

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

4

Siemens/ Italtel BSS installations as of April 99

Argentina

Spain

Luxembourg

Germany

Austria

Italy

Croatia

Czech rep.

Poland

Estonia

Greece Malta

Finland

Russia

Bulgaria
Ukraina

Armenia

China

Iran OmanIndia

Taiwan

Turkey

Indonesia Kenya

Senegal

Ivory Coast

Digital Mobile BSS Networks:
68 Operators / 43 Countries

USA

Zambia

Cambogia

Madagascar

Zimbabwe

Cape Verde

Norway

Burkina Faso

Thailand

Greenland

Venezuela

Niger

Sweden

Status: April ‘99

Denmark

Portugal

Slovenia

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

5

Company Profile

Evolution of GSM and Mobile Telephony

Software Development and Testing Processes

Test Automation in SPI context
Data Transmission on Mobile Networks

Test Automation for GPRS Testing

Preliminary Results and the way ahead

Evolution of GSM and Mobile Telephony

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

6

 BTS BTS

 BSC BSC

TRAUTRAU

CBCCBC

OMC-BOMC-B OMC-SOMC-S EIREIR

GCRGCR

(G)MSC(G)MSC VLRVLR

HLRHLR

AuCAuC

GSM Architecture

MS = Mobile Station
BTS = Base Transceiver Station
BSC = Base Station Controller
TRAU = Transcoder/Rate Adapter Unit
MSC = Mobile Switching Centre
(G)SMC = Gateway MSC

OSS = Operation Sub-System
NSS = Network & Switching Sub-System
BSS = Base Station Sub-System

VLR = Visitors Location Register
HLR = Home Location Register
AuC = Authentication Centre
EIR = Equipment Identity Register
GCR = Group Call Register
CBC = Cell Broadcast Centre
OMC = Operation & Maintenance Centre

Asub

Abis

O
F

A

C

IBSS

OSS

NSS

E
G

D

B

H

MSC VLR
To other NSS

MS

Um

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

7

Micro - BTS
BS11

Dual Band
900/1800 Hierarchical

Cells
Synthesised
Frequency
Hopping

Italtel Market
products / Services Requirement

Smart
Antennas

High Capacity
BSC plus

TRAU plus

UMTS
Base Station
(FDD, TDD)

200
1 - 2

002

199
9 - 2

000

199
8

Universal
Mobile
Communication

Capacity

Enhanced
Services

New
Business
Opportunities

BSC
250 Carriers

BTS plus

OMC plus

Micro-BTS plus
BS 24

New Speech
Services (ASCI)

High Speed
Data (HSCSD)

Location
Services

Dynamic
Frequency
Allocation

UMTS
Controller (RNC)
and Management

Pico -BTS Packet data
(GPRS)

Dual Band
900/1900

Italtel BSS Line Evolution

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

8

Company Profile

Evolution of GSM and Mobile Telephony

Software Development and Testing Processes

Test Automation in SPI context
Data Transmission on Mobile Networks

Test Automation for GPRS Testing

Preliminary Results and the way ahead

Software Development and Testing Processes

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

9

Software development life cycleSoftware development life cycle
P100 B600

ANALYSIS DESIGN
CODING

AND
DEBUGGING

OFF-
LINE

TESTING

ENTITY
TESTING

MAINTENANCE

SUPPORT
TO

SYSTEM
TEST

B500B400B300B200

IMPLEMENTATION INTEGRATION
TESTINGFeature

List

Feature
Request
Sheets

Feature
Sheets

FS1

FS2

Design
Specification

Interface
Specification

Source
Code

Test Plan

Checklist
Test Specification
Test Data and Test Code

Test Execution Report

Defect Reports

SW Qualification
Report

BBT AND
SBS

INTEGRATION

Sw Quality
Plan

Sw development
Plan

Patch Release
Document

Change Request Management

B500E

TESTING DESIGN
AND

DEVELOPMENT

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

10

System Test

Service/Custom

Development

Testing Activities

Host
Test

Entity
Test

Black Box
SBS

Integration

SBS
Verification

SBS
Field Test

Load/Stress
Test

Acceptance
Test

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

11

Company Profile

Evolution of GSM and Mobile Telephony

Software Development and Testing Processes

Test Automation in SPI context
Data Transmission on Mobile Networks

Test Automation for GPRS Testing

Preliminary Results and the way ahead

Test Automation in SPI context

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

12

R&D Director
R&D Line Manager

Quality Manager

SW Development Manager
Process Improvement Experts

Quality Representative

WG1
Technologies

WG2
Project Planning & Estimation

WG3
Test Automation

WG4
Quality Management

WG5
BSC-LMT-TRAU Deployment

WG6
OMC - Deployment

WG7
BTS Deployment

PISC
Process Improvement
Steering Committee

PIPO
Process Improvement
Program Office

WG’s
Working Groups

Software Process Improvement Initiative

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

13

Software Process Improvement goals for 1999

1. To integrate Configuration Management Environment between geographically
dispersed development sites

2. To enhance Web interface for Project handling
3. Intranet services evolution
4. Trials for usage of formal specific languages

WG1

5. New technology watch for state-of-the-art technologies
1. To introduce new tools for effort trackingWG2
2. To build estimation models based on historical quantitative data
1. To fine tune proprietary test automation toolsWG3
2. To evolve the existing tools for GPRS needs
1. To spread usage of quality indicatorsWG4
2. To optimise SW development guidelines at R&D level

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

14

Company Profile

Evolution of GSM and Mobile Telephony

Software Development and Testing Processes

Test Automation in SPI context
Data Transmission on Mobile Networks

Test Automation for GPRS Testing

Preliminary Results and the way ahead

Data Transmission on Mobile Networks

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

15

Siemens

Siemens
Mobile DTE

Visited
MSC/VLR

4 x 14.4 kbit/s
(Rel. B)

BTS - Base Station HLR - Home Location Register
BSC - Base Station Controller VLR - Visitor Location Register
MS - Mobile Station

ISDN

PSTN

Internet
Intranet

PSPDN

BSCBSC

 1 2 3 4 5 6 7 8
 timeslots

4x 9,6 kbit/s
(Rel. A)

MS 1
MS 2
MS 3
MS 4

HSCSD: a new data service in GSM

HSCSD - HIGH SPEED CIRCUIT SWITCHED DATA

B
T
S

B
T
S B

T
S

B
T
S

B
T
S

B
T
S

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

16

Siemens

Siemens

Mobile DTE

Visited
MSC/VLR

Gateway
MSC

HLR

BTS - Base Station
BSC - Base Station Controller GSN - GPRS Support Node
HLR - Home Location Register PCU - Packet Control Unit
VLR - Visitor Location Register

ISDN

PSTN

Internet
Intranet

PSPDN

BSCBSC

Circuit
services
+SMS

Serving
GSN

Gateway
GSN

PCU

 1 2 3 4 5 6 7 8
 timeslots

GPRS: a new data service in GSM

GPRS - GENERAL PACKET RADIO SERVICE

B
T
S

B
T
S B

T
S

B
T
S

B
T
S

B
T
S

MS 1
MS 2
MS 3
MS 4

TRAU

OMC

BSS

NSS

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

17

Company Profile

Evolution of GSM and Mobile Telephony

Software Development and Testing Processes

Test Automation in SPI context
Data Transmission on Mobile Networks

Test Automation for GPRS Testing

Preliminary Results and the way ahead

Test Automation for GPRS Testing

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

18

BTS
BSC

SGSN

LSU+

K1297

Abis
Appl.

K1297

LSU+

Gb
Appl.

Abis

Gb

GTAS

HATT

TEMS

LMT

Test Automation Environment for GPRS Testing

RDR

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

19

HATT (Host Automation Test Tool)

The HATT performs tests in automatic way on simulated environment.

A simple language allows:

 • to send, receive and trace messages among tasks;
 • to perform the function calls and the function results manipulation;
 • to give some simple control structure;
 • to check and update global variable values;
 • to interact with the object of the operating system, for example semaphores.

HATT automatically executes a sequence of test drivers listed in a file (Test Chain File).

In every line of this file there is the name of another file (Test Script File)

which contains a list of commands used for sending, receiving and checking messages,

setting names of logfiles, accessing processor memory etc..

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

20

LSU Plus (Line Server Unit Plus)
• Multiprocessor system with HW and SW developed ad hoc to satisfy the
 testing of complex telecommunications equipments such as the BSC
 in Circuit Switched and GPRS modality;
• handling of GSM lower layer protocols as support of Network
 element simulation: LAPD, MTP, TRAU FRAME, MAC/ RLC,
 Frame Relay, Network Service, BSSGP;
• Logging of signaling/ data channels;
• Special features for GSM traffic channels
 (TRAU frames, PCU frames, V.110, HSCSD);
• Static and dynamic configuration management;
• Router and remote access TCP/IP server;
• GPRS User data traffic generator;
• Satellite delay;
• etc..

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

21

GTAS (GSM Test Automation Tool)

• System oriented for target testing based
 on a client/server architecture where the
 central station acts as a client interacting
 and controlling execution of a set
 of servers tools;
• Communication based on TCP/IP over LAN;
• GTAS station works by a interpreting
 test scripts that describe the actions to
 be executed on the remote devices and
 controls the results;
• Centralized execution and result
 checking is a significant step towards
 test automation.

GTAS
Station

Interpreter
local agents

LMT BSC
Server
agent

LMT Trau
Server
agent

LMT BTS
Server
agent

RDR
Server

TEMS
Server

LGTS
Server

LGTSTEMSCustom
Card

BSC
N.E.

Trau
N.E.

BTS
N.E.

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

22

A simulated test scenario

BSC

LSU Plus
LSU PlusLGTS Plus

Gb Traffic

MSC

BTSBTS
SGSN

Trau

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

23

Abis Applications

LGTS Plus
it allows to simulate a traffic scenario with both
Circuit Switch (CS) and GPRS mobile stations.

LabLog
it is a monitor tool of the messages at the level
of PCU frames.

LabRes
it allows the sending and checking of received packets
telephonic procedure messages driven by script files.

Siemens

Siemens
BSCBSC

PCU

B
T
S

B
T
S

B
T
S

B
T
S

B
T
S

B
T
S

Abis
interface

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

24

MSCMSCBSCBSC

Gb
interface

Gb Applications

Gb Traffic
it’s a tool providing a loop path for the signaling
and data traffic generated and monitored by the Abis
simulator on MS couples.

GbLog
it is monitor tool of the messages at any level of
protocol stack.

GbSeq
it allows the sending of messages interactively,
driven by user or by file: the interface is permitted
at any level (FR, NS, BSSGP).

PCU

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

25

Company Profile

Evolution of GSM and Mobile Telephony

Software Development and Testing Processes

Test Automation in SPI context
Data Transmission on Mobile Networks

Test Automation for GPRS Testing

Preliminary Results and the way aheadPreliminary Results and the way ahead

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

26

In the areas where test automation has
already been deployed:

• test productivity has improved;
• fault density has improved.

Preliminary results

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

27

0

10

20

30

40

50

60

70

80

Ho s t T e s t B lac k B o x & S B S I te s t

R e l A
R e l B
R e l C

Test Automation Effectiveness analysis results
T

e
st

s/
P

er
so

n-
m

on
th

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

28

Our roadmap foresee at the time being:

• field fine-tuning of all the applications till now developed;

• full deployment of tools according to user requirements;

• deployment of various tools to other sections

 of the SBS projects.

The way ahead

© Copyright 1999 by Italtel SpA. All Rights Reserved 3rd International Software Quality Week Europe

RM

29

Thank you

1

AUTOMATED TEST REUSE FOR PRODUCT FAMILIES

Mika Salmela, Jukka Korhonen, Jarmo Kalaoja
VTT Electronics, Kaitoväylä 1, P.O.Box 1100, FIN-90571, Oulu, Finland
Tel. +358 8 5512111, Fax. +358 8 5512320, E-mail: Mika.Salmela@ele.vtt.fi

Abstract This paper proposes a testing method applicable for validating configured
software products. The configuring of test material in this particular method is
based on software configuration. This kind of approach calls for a formal
software production process, which uses product features or requirements. The
method proposes links between product features and tests. The key issues of
test configuration and management are discussed. These include test
componentisation, test suite structuring, and tool support. The approach is
demonstrated and evaluated by means of an example system.

Keywords Software testing, reuse of tests, configured systems, feature-based software

1 Introduction

New efficient software production techniques are important for improving the time-to-market of
software products. One example of such advanced techniques is the so-called feature-based software
production [Kalaoja et al. 97], which uses high-level requirements or features to help finding and
selecting reusable software components for building a new product. The technique is based on a
feature model representing the distinct features of a software product family, and also providing
means for application configuration.

Though that kind of model-driven software development has shortened the production time, the
validation of configured products still remains a bottleneck. A typical, straighforward solution is to
use regression testing.

In general, regression testing is initiated by a new requirement, which is why the program and its
documentation have been modified and need to be tested. The goal of regression testing is to
convince the maintainer that the program still performs correctly with respect to its requirements.
However, the term regression testing is just a common name for a re-testing process for modified
software. It does not instruct us how to create reusable test cases, how to configure test suites from
existing test material, nor does it say if it is reasonable at all to strive towards reusable tests. To
begin regression testing, the test organisation and personnel involved need to decide on the outline
of the test procedure, or create a new one [von Mayrhauser et al. 94]. In this matter, little help can be
drawn from literature.

An effort to apply regression testing techniques to configured software products shows that they are
not well suited to meeting the new testing challenges. Along with the feature-based development
paradigm, the production of new software is rapid, and we do not want to slow down the process
with any inefficient validation procedures. Somehow, the production of test suites, including the
testing itself, has to be brought to the same level with the production of software.

2

To solve the problem, we could try to apply the idea of componentisation from feature-based
production to testing. This implies that we would have a set of reusable test components, which
could be configured to cover the characteristics of the product being tested.

This basic idea brings out many questions. If we decided to apply the idea, what kind of
requirements would then be set on testing, testing process and test case design? What would the
implications be for test automation and tool support? Could similar benefits be gained in feature-
based testing as in feature-based software production? These, and other related testing issues, are
discussed and evaluated in this paper.

2 FEATURE-BASED SOFTWARE PRODUCTION

The purpose of feature-based software development is to meet the stringent requirements of system
production today, which has to be able to satisfy the needs of the customer in a rapid and profitable
way. The list below defines the characteristics required from system production:

• time-based competition
• quick response
• fragmented markets
• proliferating variety
• increased customisation
• continual improvement
• shortening product life cycles
• cycle time reduction

Feature-controlled product configuration is targeted to addressing most of these requirements.

SW platform

Feature model

Software components

SW Component
Design and
Implementation

SW Platform
Management

Product Feature
Modelling

R

&

D

New customer needsCustomer
needs

Orders

Delivery

Marketing

Software
Delivery
Management

Relations

Figure 1. Feature controlled software development and delivery process [Kalaoja et al. 97].

The figure shows how the feature-based software production process has two main sections;
software delivery and software development. Marketing and delivery management use the domain

3

models developed and maintained by software development. The essential model in the reuse and
production of software is the feature model, which describes all available features for the product.

Marketing specifies the product that the customer wants by creating a feature model occurrence. The
feature model provides assistance by presenting the existing features, which are re-used to the
greatest possible extent. At best, the new product can be configured entirely by combining some of
the individual features of previous deliveries. If this is the case, the software product can be
assembled simply by integrating existing software components on top of a standard software
platform.

The feature-based production process seems to offer an excellent platform for applying regression
testing principles. The feature model defines the features for the domain, thus providing a solid basis
against which system level testing can be conducted. Considering the goals of testing, one might
propose an ad-hoc concept by asking why not create a testing model similar to the feature model,
where test cases could be selected as features from a feature model. The applicability of this and
other ideas are discussed in the following chapters.

3 FEATURE-BASED TESTING

The Feature-based testing approach proposes a testing method tailored to configured software
products. The approach provides means for building tests and test environments efficiently. For the
term feature-based testing we will use the following definition.

Definition 1. Feature-based testing is a method for testing product families. It uses test
components and product feature descriptions for modifying and
configuring tests.

Considering the previous definition, and the potential of feature-based development, the method
should be able to answer the following questions:

• How to take the application domain knowledge into consideration in test design?

• How the features of the software product can be used for selecting proper test material?

• How the information of the feature model can be used to adapt tests to a desired software
configuration?

• How to take mutually dependent features into consideration in the test suite structure and test
implementation?

• How the identified test material is developed into executable tests?

3.1 Linking test material with the feature model

Linking test material with the feature model is easier if the material has been systematically
arranged. Various criteria can be employed in organising the test material; e.g.,

4

• test type (e.g. these tests are intended for system testing);

• features or requirements linked to the test (e.g. this test is associated with the Display
Refresh feature); or

• types of features or requirements linked to the test (e.g. these tests are intended for the
performance testing of the Display Refresh feature).

Functional structuring can also be applied as a basis for the classification, meaning that the
functional descriptions of product features are used for structuring the tests.

Since there are several ways of organising the test material, test methods and tools should have only
few limitations as regards to defining the organisation and linking test data. As Figure 2 proposes,
the user may find it necessary to link test plans with the feature model, or with the test environment
configuration data. Free building of links should be made possible by the support system.

Tests for Feature X.

Tests for Feature B.
Tests for Feature A.

A link list to the test material
that is needed to validate
Feature A.

The list contains links to
- relevant, existing test plan
 components
- test case identifications (opt.)
- test case parametrization data
- test result file identifications
- test environment
 configuration data

Feature A.
Feature B.
...
Feature N.
 Feature N.1
 Feature N.2
 ...
Feature X.

Feature Model Occurrence or
List of Requirements

Test material

Figure 2. Linking the test material with the feature model or the requirements.

The features and other objects associated with the tests are subject to continual change. This leads to
changes in the application itself, and therefore also those in test plans, test cases, scripts and data.
This maintenance burden can be eased if the supporting system is capable of generating reports
presenting the test material that may be affected by the changes. Updating links and adding new
material should likewise be easy.

3.2 Processing the test material

The test material, now structured and linked with the feature model (or with other suitable objects,
e.g. requirements), has to be developed further for generating executable tests. There are, in fact,
several choices for processing the test material further, depending on the test execution environment.
It may well be that there are no such test facilities available that could utilise executable tests. In this
case, the support for the testers is a list of relevant tests and other test material. The testers will then
manually execute the necessary tests.

5

If the processing of test material is taken a bit further the test supporting system could, for instance,
provide modified test scripts and test environment configuration data for the testers. This could be
called a partly automated solution.

The most advanced case involves a test environment capable of executing the tests. In this case, the
test material has been automatically configured in such a manner that the features of the product are
taken into account by the tests and that the tests can be executed without any additional manual
processing.

3.2.1 Mutual dependencies

For automating the test execution, it is necessary to consider the implications that a feature model
has concerning the test material. It may well be that features have, for instance, mutual
dependencies, and therefore a solution in which a single static test suite is used for testing one
feature is not reasonable. The feature model occurrence has to be used for selecting and modifying
the test suites for the product.

Definition 2. Features are mutually dependent if the selection of one feature changes the
behaviour of the other feature.

Let us assume that we have included feature F1 along with some other features in a product
configuration and the resulting product needs to be validated. Test scripts S1... Sn and corresponding
result files R1... Rn have been developed for the domain. Domain analysis has revealed that feature
F1 changes its behaviour depending on the feature combination. In a test design, this would appear
as follows:

• If F1 is selected, then script S1 is run for testing F1, and results defined by R1 are expected.

• If both F1 and F2 are selected, then script S1 is run for F1, but the expected results are now
defined by R2.

• If both F1 and F3 are selected, then script S2 is run for F1, and R3 is expected.

The point is that the testing of a feature may require several alternative test scripts and test result
files. The selection of appropriate tests depends on feature configuration, like F2 and F3 in the
example above. The implementation of test material structure and test configuration has to be able to
handle the conditions described above.

3.2.2 Test componentisation

Feature-based software production offers certain advantage to test development compared to other
software models. Domain analysis in the software process is a must, in which you "carefully bound
the domain being considered, consider the ways the system in the domain are alike (which suggests
required characteristics) and the ways they differ (which suggests optional characteristics), organise
an understanding of the relationships between various elements in the domain, and represent this
understanding in a useful way" [Nilson et al. 94]. The next step is domain modelling, which

6

"provides a description of the problem space in the domain that is addressed by software" [Krut,
Zalman 96]. The results of these tasks are applicable to test design as well, especially for identifying
examples of reusable test components. The models define the user’s point of view to the product,
while in some cases the test components can be directly extracted from Use Case descriptions. In
fact, a commonality analysis of Use Cases may have already been done during the definition of
requirements. The analysis examines and identifies the common parts of Use Cases as use case
steps. If this information is available, common parts are already known, and test componentisation
will be simple and straightforward. If Use Case descriptions do not exist, it is reasonable to start by
creating the descriptions and proceeding with the componentisation from that point on.

Figure 3 illustrates how test cases are extracted from a use case. For each action in the use case there
is a corresponding test step. Common actions (e.g. related to hardware or software environment) can
be hidden in preambles, postambles, or other test components. These actions are needed for bringing
the system to a desired state, to initiate or to end the actual test. Specific, feature related actions are
separated in their own test steps or components.

Action Pre

Action A

Action B

Action
Post

If feature A

If feature B

Preamble test
step

Test step
Postamble test

step

Figure 3. Abstracting test steps from a use case.

Use Case descriptions are good in modelling human user sequences. However, systems have various
types of interfaces and they are seldom stimulated only by the human users. The communicating
device could be a sensor or another system. In simple cases, the external device can be modelled
using a static input-file, while devices with complicated behaviour need executable, dynamic
models. These input-files and even system models can be handled like other test components; they
can be parameterised and included in the test configuration when needed [Haapanen et al.97].

Test components can be structured as presented in Figure 4. The purpose is to hide the numerous test
steps in test specifications and to make test planning easier. The specification (i.e. test controlling
script) defines one Use Case step, but does not contain the actual test script, which is located in the
component implementations. The alternative implementations are called by the specification
component, which uses feature selections to determine the right implementation. Direct calls to
implementations are not recommended, as they may lead to a loss of component reusability and thus
increase the maintenance load. This solution is similar to the "information hiding" principle, which
conceals unnecessary details from the user.

7

Spesification

Implementation Implementation Implementation

selects an implementation by
using feature configuration

implementation components,
which contain actual test scripts

Feature configuration

Test parameters

Figure 4. Test case componentation hierarchy.

The figure presents only one level in the test suite hierarchy. Test structuring can be continued as
deep as needed, applying the principle of sub-scripting.

The selection of a test component implementation, i.e. test script, is defined in the specification
using if-then clauses. The most general configuration is put into the last if-block, and the most
infrequently used on top of the list. When the if -clause is used in this way, a new feature can be
added into the system as a new speciality, while the old mappings/expressions remain the same. :

If (most specific feature configuration) then
 select script file 4
else if (specific feature configuration) then
 select script file 3
else if (common feature configuration) then
 select script file 2
else if (most common feature configuration) then
 select script file 1
else
 select default script file component
endif

Example 1. Selecting a proper test implementation.

3.2.3 Generating tests

The need for generating tests is related to test stopping criteria. If the system is simple, or the test set
reduced, testing is typically stopped, when all the tests have been successfully executed. Sometimes
static test sets are out of the question, for instance when there is a statistical requirement on test
stopping. In this case test specifications can be enhanced to dynamic user models. Usage profiles, or
other coverage criteria for implementing the dynamic control in test specifications can be applied.

8

Usage modelling can also be employed in test generation, by means of Markov chains or Finite State
Machines, for instance. These approaches can be used for generating numerous stochastic tests,
imitating the way a real user would use the system. Figure 5 shows an example of a Markov-type
usage model. The graphic model can, if done by using a suitable description method, be compiled or
executed as such. It is easy to notice that Markov models are very similar to use case descriptions,
with the exception of the probabilities being included in the graphs. Thus use cases can easily be
enhanced to Markov diagrams (Figure 3 and Figure 5). The model can be used as a top-level test
controller. Probability conditions can also be manually coded in the test specification (see Example
2).

Figure 5. A usage model with probabilities.

The label 0,65 on the arrow means that the probability for the transition is 0,65 if the optional
feature has been selected. The implementation of probabilities is easily accomplished by using a
random generator with even distribution between [0, 1].

4 SUPPORT FOR A FEATURE-BASED TESTING APPROACH

Feature-based testing imposes specific requirements on supporting tools. At present, testing tools
have few or no properties at all for supporting feature-based testing. Scripting language and
component management are the key issues.

4.1 Script development

A script can be described as a sequential set of commands which mimics the normal controlling
input to the application. Thus a script could be a reproduction of a keying sequence by the user for
screen manipulation.

To implement hierarchical and modifiable test suites, a script language has to support

• logical condition constructions,

• data manipulation,

• external file input/output commands, and

• procedure calls with parameters.

start of
session

cash
payment

end of
session

card
payment

0,35

0,65

mandatory feature

optional feature

9

As most script languages simply adapt to existing languages, e.g. C or Visual Basic, the
requirements mentioned above are not hard to meet.

4.2 Test development and execution

Test development denotes the task of converting test scripts into executable tests. Test development
has to support (note that we have the automated solution in mind)

• linking of test scripts to features; and

• sequenced running of test scripts from a test controlling script.

A test controlling script is usually necessary, e.g. for controlling the execution order of scripts. Some
test execution tools support this requirement. However, commercial tools offer no support for
implementing the first requirement.

4.3 Test storage and management

Test execution tools have usually no support for normal configuration management features.
Thinking of real-life applications, this issue should be brought into the implementation. If no support
for configuration management exists, a possible solution might be found in integrating the test tool
with a configuration management system.

Efficient test storage and management calls for

• a version management system, which takes care of the test repository maintenance and
linkage control;

• facilities for browsing test cases and searching test cases using different search methods; and

• capacity of modifying and rearranging retrieved tests using a suite manager.

5 A CASE STUDY

The case study shortly presents how the testing approaches mentioned above were put into practice.
The demonstration system is based on two real embedded systems. The system employs several
features, which have been linked with the test suite repository. KataSystems is an imaginary betting
slot machine, consisting of a keyboard, a display and some external interfaces for various purposes,
e.g. for checking the validity of a credit card. The system resembles teller machines. The
KataSystems demo environment (Figure 6) consists of three components: the betting slot machine
itself, a tester and a configurator. The configurator is used for modifying the outlook and behaviour
of slot machine products. When the user configures a slot machine, the tester is loaded with tests
needed to validate the selected features. The tester is used for executing and monitoring the selected
test.

10

Betting slot machine

Tester Configurator

Test input System
configuration

Selected tests

Figure 6. KataSystems demo environment.

Variations in the slot machine are modelled by using a feature model. For instance, the slot machine
automatically accepts cash payment, with an option of credit card payment. The credit card payment
has an additional option of payment correction, i.e. the bet can be changed. In addition there are
options on display types and language.

The feature model is converted to a feature selector, which is implemented using check boxes and
radio buttons. After the user has configured the system, the tester is loaded with tests corresponding
to selected features. The tester chooses only those tests needed for testing the configured product.

Figure 7 presents the layout of the configurator. Mutual dependencies are shown as arrows referring
to other features. The user or system configurer can create different kinds of systems by clicking the
desired features, and then pressing the OK button.

Figure 7. Feature configurator for the demo system.

11

The selected features are imported into the test script as an include-statement. The control of testing
correct features is gained by using the data of the feature_model.h file in conditional statements.
Test data is stored in files, where it is read by using special routines. Note the implementation of a
usage profile using a random generator (see also Figure 5).

/* The feature configuration of the application */
#include "feature_model.h"

/* Test parameters */
get_test_params(PAYMENT_TESTING, number_of_tests, *bet_sums);

/* Test execution */
for (i=0; i < number_of_tests; i++)

{
/* Preamble */
start_user_session;
enter_bet(*bet_sum, i);

/* Feature configuration controls test selection */
/* If both features included, apply usage profile */
if (CARD_PAYMENT && (uniform_distribution(0,1) <= 0,65))

{ card_payment; }
else

{ cash_payment; }
/* Postamble */
enter_keycode(STOP_PAYMENT_SESSION);
}

}

Example 2. A part of the main test controller for the bet placing feature.

In the demo system we used the C programming language as a test scripting language. The C
language has the capacity of creating reusable test components or functions. It also allows passing
parameters to test components, which was one of the main requirements for the script language.

Feature Test suite

Payment payment_test

Cash cash_pay_test

Correction payment_correction_test

DisplayTube display_test

AG_Flat ag_flat_test

feature list continues...

Table 1. Test suite correspondence to features.

The test suite hierarchy of the demo follows the structure of the feature model. On the left side of
Table 1 there is a list containing all the features and on the right the corresponding test suites.

A simple way to implement links between test material and feature model is to use a test index file.
The index file maintains links from features / functions / issues to test files, e.g. test specifications
and scripts. When the user makes selections on the feature selector, necessary tests are searched in

12

the test index file. The test index file represents 'a small database' maintaining links between features
and tests.

Card payment

Card payment

Maintenance

Maintenance

Test spec

card_and_pin.inrec

Test spec

select_report.inrec

Test file

Test file

Test file

Test file

Test indexesFeature model

Card payment

Maintenance

xxxx

Figure 8. Test index file.

6 DISCUSSION

Reuse has generally been connected with software development and production, and it has relied on
software componentisation. In software testing, reuse seems to be more of an ad hoc nature, inspired
by practical considerations. More formal reuse procedures can be found in telecommunications,
where standards give generic advice for reusable test design.

The feature-based testing method is mainly aimed at systems that apply features for defining their
properties. This approach lines out the essential characteristics of test reuse. Among these issues are,
for instance, test suite structuring, test script design and test material management. Some of the ideas
have been presented earlier, though perhaps not implemented and evaluated. This paper integrates
relevant ideas and examines the requirements for a test environment to support the feature-based
approach.

The key issue of the approach is the structuring of tests into test components. The components have
to be configured in a manner that corresponds to the features of the product. A test domain analysis,
which can clearly make use of the feature domain analysis, has to be carried out prior to test
structuring. The analysis identifies the test components.

Empirical evaluation of the results is essential, especially in this approach, which has a strong
practical orientation. For this purpose, a demonstration system was constructed, so as to implement
the substantial features and ideas presented in this paper. It was also equally important to evaluate
the functionality and relevance of the proposed techniques and solutions. The designing of tests for
the demonstration system was straightforward and uncomplicated and the configuration of tests
revealed no major problems in the approach. The next step is to select a real software product family
for testing the ideas generated through the process.

13

References

ETR 141. Methods for testing and specification (MTS) Protocol and profile conformance testing
Specifications: The Tree and Tabular Combined Notation (TTCN) style guide. 1994.

EWOS/TA. Methods for testing and specification (MTS) partial & multi-part abstract test suites
(ATS), rules for the context-dependent reuse of ATSs. EWSO/ETG 057. 1995.

Haapanen, P., Pulkkinen, U., Korhonen, J. Usage models in reliability assessment of software-based
systems. Special report. STUK-YTO-TR. 1997.

Jeon, T., von Mayrhauser, A. A knowledge-based approach to regression testing. First Asia-Pacific
Software Engineering Conference. IEEE Comput. Soc. Press, 1994.

Kalaoja, J., Toivanen, J., Okkonen, A., Niemelä, E., Ihme, T. Configurable feature-based application
software. KOMPPI-project report. VTT Electronics. 1997.

Krut, R., Zalman, N. Domain analysis workshop report for the automated prompt and response
system domain. Special report. CMU/SEI-96-SR-001. May 1996.

Nilson, R., Kotgut, P., Jackelen, G. Component provider's and tool developer's handbook central
archive for reusable defence software (CARDS). (STARS-VC-B017/001/00). Reston, VA:
Unisys Corporation. 1994.

von Mayrhauser, A., Mraz, R., Walls, J., Ocken, P. Domain based testing: Increasing test case reuse.
Proceedings IEEE International Conference on Computer Design: VLSI in Computers and
Processors. 1994.

V T T E L E C T R O N I C S 1

Automated test reuse for product families

Mika Salmela

Jukka Korhonen

Jarmo Kalaoja

V T T E L E C T R O N I C S 2

Objectives

• Develop testing method applicable for validating configured
software products in product families.

• Apply the idea of componentisation from feature-based
production to testing in order to improve reusability and
configuration of tests.

• Establish requirements for testing tools.

V T T E L E C T R O N I C S 3

Feature based testing

• How to take the application domain knowledge into
consideration in test design?

• How the information of the feature model can be used to adapt
tests to a desired software configuration?

• How the features of the software product can be used for
selecting proper test material?

• How to take mutually dependent features into consideration in
the test suite structure and test implementation?

V T T E L E C T R O N I C S 4

Feature based testing

• Feature is any distinctive or unusual aspect in a system.
Features are differentiates products in the product family.

• Feature-based testing is a method for testing product
families. It uses test components and product feature
descriptions for modifying and configuring tests.

V T T E L E C T R O N I C S 5

Feature based softaware production

SW platform

Feature model

Software components

SW Component
Design and
Implementation

SW Platform
Management

Product Feature
Modelling

R

&

D

New customer needsCustomer
needs

Orders

Delivery

Marketing

Software
Delivery
Management

Relations

V T T E L E C T R O N I C S 6

Linking test material with feature model

• Test material should be
systematically arranged

• Items in feature model
are linked with tests and
further with other test
material

• Free building of links
should be made possible
by the support system

Tests for Feature X.

Tests for Feature B.
Tests for Feature A.

A l ink l ist to the test material
that is needed to val idate
Feature A.

The l ist contains l inks to
- relevant, exist ing test plan
 components
- test case identi f icat ions (opt.)
- test case parametr izat ion data
- test result f i le identif ications
- test environment
 conf igurat ion data

Feature A.
Feature B.
...
Feature N.
 Feature N.1
 Feature N.2
 ...
Feature X.

Feature Model Occurrence or
List of Requirements

Test material

V T T E L E C T R O N I C S 7

Linking test material with feature model

• Test material processing can be
– manual

– partly automated

– fully automatic

• Features are mutually dependant if the selection of one feature
changes the behaviour of the other feature.

V T T E L E C T R O N I C S 8

Componenting use case to test steps
• Use case description are used to identify instances of reusable

test components

• For each action in the use case there is a correspondive test step

• Feature variation points are handled with test componentitation

Action Pre

Action A

Action B

Action
Post

I f feature A

If feature B

Action Pre
test step

Test step Action Post
test step

V T T E L E C T R O N I C S 9

Test case componentation

• One specification for each action

• Selection mechanism is defined in specification component

• The test designer calls spesification components as reusable components

• Hides numerous implementation options

Spesification

Implementation Implementation Implementation

Feature
configuration

Parameters

V T T E L E C T R O N I C S 10

Script and tool requirements

• Logical condition constructions

• Data manipulation

• External file input/output commands

• Procedure calls with parameters

• Ability to define links between objects

• Version and repository management for test objects

1

Multiple navigational graphs can be obtained as the result of
the design stage of a hypermedia-based artifact. The only way
to know which one adapts better to the user navigational
metaphor is by mean of usability testing. This technique is
expensive in terms of the number of human resources needed
to perform it, and it isn't able to record spontaneous user
behavior. It also introduces external noise because users could
feel nervousness or confusion while they are under
observation.

The use of automatic testing tools is an interesting and cheap
alternative that avoids the problems commented. We designed
and developed our own automatic navigability testing system
(ANTS), which can be used with any kind of hypermedia
device including web sites.

I. THE HYPERMEDIA DEVELOPMENT PROCESS

Hypertext documents are one of the most popular
communication channels nowadays. Thanks to the World
Wide Web, this kind of document is used by millions of
people all around the globe. Due to its popularity, the
working of hypertext information systems is well known
even by novices. The concepts of node, anchor and link are
quite good implanted in the computing community. As user
training is almost not required, hypertext documents can be
cheaply introduced in educational environments (such as
high schools and universities) where their use has been
highly increased in the last years. In the mentioned
educational environment, hypertext is a powerful and
flexible source of information that is employed for both
reference and knowledge transmission.

The arrival of multimedia improved the way hypertext
worked providing it new data such as sound, video, virtual
reality and so on, which help to teach concepts which were
almost impossible to explain using only text. We are talking
now of hypermedia. But this wonderful teaching tool only
seems to work when the information provided by its nodes
is well structured (see Nielsen 1993, Usability and
Navigation , 125-143).

A. The Analysis Stage

The first task to do when building a teaching tool based on
hypermedia is to clearly define the subject to be described
and the academic goals to be reached. Designers must know
from the just beginning what is going to be taught and what
is the minimum amount of information the pupils must be
learn in order to reach the expected educational success.
This task is commonly known by some methodologies as
the analysis stage.

Once the knowledge to be explained by the hypertext
artifact has been selected and its goals have been
completely defined, the first task to be done in order to
build a high quality product is to perform a deep research of
the subject matter. This will provide useful information
about the knowledge to be explained and its structure.
During this process, all relevant information must be
compiled and organized into well-structured categories.

B. The Design Stage

The following task –commonly called design stage by some
designing methods– is the most delicate in order to get a
hypermedia product fully compliant with the idea of a
cognitive artifact, that is, an artifact designed for the nature
of human cognition. Applying more humanness to the
design can brand the different between a successfully or a
unsuccessfully product in terms of educational and
cognitive goals, so it must be done quite carefully.

The main objective of this task is to structure the whole
knowledge to be transmitted into smaller didactic units,
following a divide and conquer strategy. Every didactical
unit will represent a conceptual node in the resulting
hypermedia system.

At the beginning of the design stage, the knowledge base
fits in only one didactic unit, which must be divided by
designers into different and simpler units. Every one of
these units can be divided too, structuring the resulting
knowledge in a linear narrative fashion (figure 1), a
hierarchical one (figure 2) or a combination of both.

This is a recursive process that will provide the full list of
nodes of the hypermedia artifact as result. Every node will
represent the smallest knowledge unit possible and will be

 Automatic Usability Testing for Hypermedia
Navigational Graphs

Martín González Rodríguez

2

considered as an autonomous source of information (see
Nielsen 1993, Nodes and Links, 101-106). Once the user
arrives to one these nodes in the final product, he or she
should be able to obtain full information about the subject
represented by it, knowing that the information will not be
replicated or complemented by any other node inside the
scope of the hypertext artifact.

Figure 1

The resulting nodes are linked each other by hyperlinks,
creating a directed graph structure generally called
navigation model, using the terminology of some
hypermedia design methods such as the Object Oriented
Hypermedia Design Method (OOHDM) (see Schwabe and
Rossi 95). The importance of this structure becomes
obvious. It will determine how the user moves around the
nodes and –even more important– how he or she retrieves
knowledge from them and from the whole hypermedia
product. It is clear that an adequate design of this graph
structure is fundamental in order to reach the educational
goals previously defined.

Figure 2

The design stage is not only the most important of the
whole hypermedia development process but also the most
difficult to perform. It is common to end this task with
multiple resulting graphs depending on the different
approaches used to explain the knowledge to be transmitted
(Gonzalez 1999). For example, in a hypermedia tool for
teaching history we could try to explain the subject at least
from a temporal or from an entity point of view. If we
follow the first approach, after an initial designing process,
we might divide the history knowledge into historical ages,
such as Prehistory, Ancient Age, Medieval Age and so on.
On the contrary, if we follow the second approach, we
could end this process with nodes labeled such as The
Roman Empire or The World War II . This is the approach
used by Yahoo, the popular internet hypertext based
searcher (http://www.yahoo.com).

The complexity level increases even more if we consider
that the resulting graphs may depend not only of the
knowledge to be transmitted but also of the kind of user
who will receive the information (see Olsina 1998). In the
mentioned example of a hypermedia kiosk for a history
museum, it is clear that designers don’t affront the same

problem when designing the hypermedia model for teaching
history to children that when they do it to teach history to
adults. In this example, the age of the user represents the
category that determines the kind of user, but it other cases
it could be any other, such as for example the experience of
the user. In this later situation, it would not be the same to
teach history to the casual museum visitor that to teach it to
an archaeologist. The expectation and interests of both
kinds of user are quite different.

The nature of certain kind of hypermedia products such as
hypermedia kiosks or web sites, implies the necessity of
designing them to comply with the expectation of more than
one kind of user (see Olsina 1997). For example, the
navigational graph of a hypermedia kiosk intended to be
used in a museum, should be easy enough to introduce
novice visitors into the exhibition theme and at the same
time, it should be complex enough to satisfy the curiosity of
expert visitors.

In many cases both goals are so opposed that they can not
be satisfied by a single navigational graph, so more than
one is required. In this case, some kind of cognitive analysis
must be performed on the input given by users in order to
promote them to another navigational graph (see González
1999). This promotion can be done by a single direct test or
by observing the kind of information the user is retrieving
from the hypertext system. Some hypermedia design
methods such as OOHDM allows the design of different
graphs from a unique knowledge-base (see Schwabe 1995),
This goal is reached by the design of different navigational
graphs depending on the different kind of final user.

Figure 3 shows how the knowledge base identified during
the analysis stage could be splited in two (or more)
different nodes during the design stage. Although the
knowledge base is the same for both nodes (novice and
expert), the amount of information provided by every one
isn’t the same. While novice users may be happy with
general concepts, expert users normally require a high
amount of detailed information. However, this isn’t a static
model as users are able to change their status by mean of
evaluation. Intelligent hypermedia systems should be able
to track the level of knowledge of every single user in order
to promote him or her into a higher navigational graph.

Even when a simple graph can be used to satisfy the
knowledge necessities of more than one kind of user, the
contents of every single node can be designed with different
approaches depending on the target user. The different
designs for the same node are generally related with the
language used (formal, informal, for adults, for children,
etc.) and cognitive factors related with universal access to
the interface for people who have a physical disability that
requires additional access methods. People in this group of
users mainly have difficulty with computer input devices
such as the mouse or keyboard so a proper user interface
must be provided to the final view of this kind of nodes (see
Apple 1992).

3

Figure 3

Another important application of this multiple view of a
single node is the localization of its contents to different
cultural values. In this case, every single node will have as
many views as many different cultural values the hypertext
system must support.

Figure 4

Figures 4 and 5 show possible navigational graphs for the
same hypermedia application. Navigation on graph I start
with node A and finishes with node D. In the example,
users intended to use graph 2 don’t need the information
contained in node A; however they might need an
additional node (E), not present in graph 1. The contents of
a single node for both navigational graphs shouldn’t be the
same, so node B in graph 1 may not have the same content
as node B in graph 2. Entry nodes for the navigational
graphs neither are the same (Node A for graph 1 and node
B for graph 2).

Figure 5

C. The Testing Stage

Once the design stage has finished, it is time to convert the
navigational graphs into a fully working educational tool
such as a web site, a hypermedia application or a
multimedia kiosk. The developing stage is the most
expensive one, so it is necessary to assure the quality of the
navigational graphs before translating them to code.

Unfortunately, during the design stage there is not a clearly
way of knowing whether the behavior of the final user will
match what it was expected. Once the different navigational
graphs have been designed, how can designers decide
which of their designs will match user requirements?

The best way to measure how useful a navigational graph
will be to the target audience is by exposing it to the
scrutiny of users. This exposure can be done by
prototyping. Under this approach, the developing of
preliminary versions of the navigational graph is required to
verify its workability (see Apple 1992, 41). Once the
prototype is ready, it can be verified by usability testing,
watching and listening carefully to users as they work with
the prototype when they are encouraged to perform certain
tasks.

The main goal to be reached during the testing stage is to
get as much information as possible about how the final
user moves around the set of different navigational graphs
proposed. The information required consists usually of the
following items:

• The list of the most visited nodes.
• When these nodes are visited.
• Time of user arrival/departure to/from a node.
• How long user remains in a single node before moving

to another one (how long user takes to obtain the
information he or she was looking for)

• Which are the most popular destinations (links) from a
single node.

• The set of visited nodes during a single user session
(including its order).

All data collected provide quite valuable information in
order to determine the cognitive model of the user and
allows designers to make accurate predictions of the user
navigability behavior. This information should be
contrasted with what designers expected in order to
measure the quality of the design.

Usability testing is a really useful technique in order to
improve the behavior of the user interface of many devices
and software applications. It also was revealed as a
powerful technique for revealing hidden user behavior, and
for discovering internal user-generated metaphors when
dealing with the user interface of some machines (see
Shulz, Van Alphen and Rasnake 1997). However its use to
perform validations on navigational graphs has some

4

disadvantages which can make it a slow and expensive
process.

Classic usability testing requires permanent observation of
the user. As the information to be obtained requires high
precision (time of arrival and departure, time expended on a
single node, navigational path, etc.) each user needs at least
one observer. As navigation thorough the graph is not a
simple task, long time of observation will be required.

Another important disadvantage of using usability testing
for this kind of validation is that users who participate in the
experiment know that they are being observed. This
situation may add external factors to the testing such as
nervousness, confusion, timidity and son on, which could
influence user behavior when navigating through the
hypermedia artifact. The sole presence of a camera
(sometimes needed to record user behavior) modifies
perceptively people’s attitude, so it needs to be hidden.

When testing user interface, users need some kind of
training such as explaining them how to think loud during
observation, saying what comes to mind as they work.
Although thinking loud is not extremely necessary when
evaluating navigational graphs, some kind of training is
required too.

We mustn’t forget that users are dedicating an important
part of their free time to our experiment, so it must show a
clear purpose or users could think that they are working for
nothing. Observers must inform users about the purpose of
the experiment and should give them a set of tasks to be
performed with the prototype. The knowledge about the
experiment can influence navigability, because user can
know or at least guess, what is expected from them,
adapting their own internal navigational metaphors to the
navigational model of the prototype provided.

Both factors (being observed and knowledge about the
experiment) have the negative effect of destroying part of
the spontaneous user behavior, which is just what the
designers are looking for when testing navigational graphs.

Another interesting handicap of human conducted usability
testing is that it is quite difficult to discover new kind of –
not already identified– users, as participants selected for
testing have to match the same demographic background
and experience level as typical users in target audience. It
might happen that a completely different audience could
use the final product, as it is the common case of
hypermedia kiosks.

Summarizing, although usability testing is a powerful tool
for evaluating user interface and user behavior in
hypermedia environments, it is a mechanism too expensive
and slow to be applied to the validation of navigational
graphs where quite special data must be obtained quickly.
This tool can also modify user behavior, obtaining wrong
data values as result.

II. ANTS: AN AUTOMATIC NAVIGABILITY TESTING
SYSTEM

If designers want to avoid subjective influence during
usability testing, they should never bring volunteers to the
laboratory. The ideal condition to validate prototypes will
be to test them under the same conditions that the final
product will be used, that is, testing it in the user-computing
environment. When testing navigational graphs under this
approach, users should never know anything about the
experiment, even the role they are playing. Observers must
change their behavior too, as they can not be present during
user navigation due to obvious reasons.

Under this ideal situation, users feel free to explore the
navigational graphs provided, so external factors will not be
added to the results obtained. Obviously, experimentation
using this technique needs a completely new approach and
additional tools to support usability testing in situations not
under observer's control.

In order to reach this goal, we have developed an automatic
navigability-testing tool, which we have called ANTS
(Automatic Navigability Testing System). The aim of this
tool is to observe users while they navigate through any
kind of hypermedia artifacts, registering their navigability
behavior on a database for a post hoc analysis.

As the current implementation of ANTS was coded using
Java technology, it can run in almost every computing
platform, including Macintosh, Unix or Windows. Java is
also supported by a healthy collection of Internet browsers
(such as Microsoft Explorer or Netscape Communicator),
so ANTS can be used for testing navigational graphs of
both, platform dependent hypermedia applications and web
sites on Internet.

Another quite important advantage of using Java for the
implementation of this kind of systems, is the great
versatility of its communication libraries and the variety of
communication frameworks provided, such as sockets, RMI
or CORBA. Also, the servlets technology included with the
Java 1.2 release might allow ANTS to test user navigability
through nodes dynamically created in the domain of
adaptive hypermedia.

A. The Anthill Metaphor

The design of ANTS is based on the client-server paradigm,
following a metaphor based on the life of a community of
ants. In this metaphor, the ants (very small agents) go out
the anthill (a central server) looking for food (the
information) in every picnic available (a single user
navigability session). Once the ant gets its food, it comes
back to the anthill and stores it carefully in one of the
anthill's warehouses.

5

When testing, the ants that serve as agents must be included
in every node of every navigational graph. This task can
be performed automatically by some Hypermedia
developing tools based on Java (such as the European
Project JEDI, see Transtools 1998). Once the ants have
been included, the testing version of the product is ready to
be distributed among the volunteers who participate in the
usability test.

Once the user has arrived to a single node during a
navigation session, the ant inside the node is downloaded
from the anthill (the server). When the ant arrives to the
user machine, it establishes a connection with the server,
which is used to send the data collected. In the current
version of this system, the ant sends a complete
identification of the node visited, along with the specific
instant of time of arrival.

If the security manager of the Java Virtual Machine allows
it, the ant might collects information about the user too (see
Weber 1997). User identification depends on the kind of
prototype being tested. For web sites, a combination of the
Internet Protocol Address (IP) and the host name of the user
machine may be enough. For hypermedia applications, the
agents could complement this identification with the user
account ID, the product license number or even better, with
a specific code provided to the user by the designers.

Our ants also report other events, such as for example, the
time when the user abandons a single node. This task is
performed even when the user moves to a different
application, a common practice detected in multitask
environments.

Figure 6

Figure 6 show an example of a navigational graph
monitored by ANTS. Every single node has its own ant (the
gray star) but the only one who broadcast information to the
server is the ant owned by node B, as it is the node who is
being visited by the user.

Future extensions of the ant agent class would allow the
creation of even more elaborated reports. They could
include the set of components selected by users, the list of
the window locations clicked by them or the collection of
components that are visible or hidden during scroll tasks.
The kind of information provided by the little ants will
depend on the information required by designers in order to
improve the quality of their products.

B. Configuring an Ant

The information received by the anthill (the server) is
compiled and organized depending on the navigational
graph that is being tested. The multi-threaded nature of the
server’s design allows the concurrent testing of more than
one navigational graph. In fact, there are no limits to the
number of multimedia projects that can be tested
concurrently by ANTS.

In order to know where to store the information received
from an ant, this little agent must notify the server about the
project that it is monitoring. To perform this task, an
identification code must be assigned by designers to every
navigational graph under testing. The parameters needed to
setup a right configuration for an ant agent include that
identification code and also another identification code for
the node the single ant is controlling. Both codes must be
unique and can be easily assigned by a hypermedia
development tool.

The piece of html code below shows how easy an ant agent
can be configured for testing a web site. Parameter SITE
indicates the code assigned to the navigational graph (in this
case a web site called EDIWeb) while parameter ID shows
the code assigned to the node (the web page EDIEval/c-
intro.html inside the EDIWeb site), which gives a clearly
indication of the node visited by the user. Other parameters
are implementation dependent and indicate the socket
connection port and the host where the server is running.

<applet
 code="uniovi.cognition.lure.Ant10APP.class"
 codebase = "../../ServiWeb/BinJava"
 width=10
 height=10>
 <param name="HOST" value="polar.uniovi.es">
 <param name="PORT" value="1932">
 <param name="SITE" value="EDIWeb">
 <param name="ID" value="EDIEval/c-intro.html">
</applet>

The Java code below shows the equivalent ant
configuration for the node’s constructor of a desktop-based
hypermedia application. Identification for the node and its
navigational graph must be provided as part of the
constructor’s parameters.

/**
a constructor for the node

@param theGraphID the graph identification
@param theNodeID an identification for the node
*/

public node (String theGraphID, String theNodeID)
{

// setup for the ant agent
ant = new Ant (polar.uniovi.es, 1932, theGraphID,
theNodeID);

// Other actions to be performed by the constructor
...

}

6

C. Testing Navigability using ANTS

Once the designers have finished the prototype to be tested,
it can be distributed among the volunteers, as it would be
done with the beta version of the final product. For those
users without Internet access a version of the server must be
provided in order to capture the data generated by the
usability test. In this case, the server should start when the
users run the prototype and stop when they quit the
application. If the hypermedia artifact to be tested is a web
site, the only action to be done is to install it in a host acting
as web server. If the usability testing is going to be
performed on a multimedia kiosk, the prototype should be
installed under the same conditions under the final product
will run.

Because users don't know that they are being observed,
users will work with the product, as they would do under
normal circumstances. Using this approach, navigation
through the hypertext system will not be altered by the
external factors mentioned before such, as nervousness or
confusion. Only when the experiment finishes, volunteers
will be informed about the technique used.

Notice that volunteers are informed, from the just beginning
of the experiment, that they are participating in a usability
testing. The only fact they ignore is the observation
technique used by researchers. This is a common practice in
merchandising, where researchers observe customer
behaviour through hidden video cameras (Masson and
Wellhoff, 1990).

This approach not only eradicates irrelevant noise from the
experimentation process but makes it also cheaper a more
efficient too. By mean of automatic testing tools, the data
collected flows freely from the source to the server storage
system, where it can be analyzed off-line. Testers are
liberated from the boring task of capturing data, so they can
focus their efforts in analyzing the results obtained, in order
to improve the navigation of their hypermedia designs. As
there is no need to assign human resources for conducting
user observation, the whole process of usability testing is
cheaper. This way, many more volunteers can be observed
using limited human resources.

The following report was obtained using ANTS when
testing user behavior for the navigational graph of a web
site. User identification corresponds to the IP Address
(159.55.11.111) and the host name of the machine
(pinon.uniovi.es) used by the user to navigate to the web
site. The arrival was at 17:50:45 Hrs. (server local time)
from a computer located inside the scope of the ECT time
zone. User movement along the web site was also
registered. Time expended in every single node and in the
whole site is also computed from this data.

DATE: January 16Th 1999 (Saturday)
TIME: 17H50' GMT+00:00

IP ADDRESS: 195.55.11.111 (pinon.uniovi.es)
TIME ZONE: ECT (-2)

LOGS: (All dates are local to server)

17:50:45 -> Log in.
17:50:46 -> User arrives to site.
17:51:08 -> User moved to <Computing/InXena>.
17:52:01 -> User abandons site.
17:52:12 -> User moved to <Agenda>.
17:53:23 -> User leaves site definitively.
17:53:23 -> Log out.

User was here about 00:02:35 seconds.

When compiling data about every navigational session in a
site, important information can be obtained, such as which
are the most visited nodes, which are the links more suitable
to be chosen by the average user, and so on. With all this
information, testers are able to contrast the average time
spent by user in each node, with the expected values
calculated during the design stage. This information is quite
useful in order to know whether the design of the
navigational graph is realistic or not.

The accurate, reliable and quickly collected information
provided by automatic usability testing tools allow this kind
of researches, monitoring real user behavior in the fastest
and cheapest possible way.

III. ACKNOWLEDGEMENTS

Thanks are especially due also Agueda Vidau Navarro.
ANTS-based technologies are supported by the Oviedo3
project.

IV. REFERENCES

[1] Apple Computer Inc; (1992): Macintosh Human Interface
Guidelines. Adison-Wesley Publishing Company. ISBN 0-201-
62216-562216

[2] González Rodríguez, Martin; (1999) A Hypermedia
Development Process for Jedi-Leia. Cuadernos de Investigación
Ingeniería Informática (2). Editorial Servitec, Oviedo.

[3] Masson, J. E.; Wellhoff, A.; (1990) El Merchandising:
rentabilidad y gestión del punto de venta. Deusto, Madrid. ISBN
8423405117.

[4] Nielsen, Jakob; (1993) Hypertext and Hypermedia. Academic
Press, Cambridge. ISBN 0-12-5118410-7.

[5] Olsina, Luis Antonio; (1997) Process Model in the Hypermedia
Development. (1997) Conferences at EUITIO, University of Oviedo.
http://www15.uniovi.es

[6] Olsina, Luis Antonio; (1998) Cognitive criteria in the
development of Hypermedia Applications Conferences at EUITIO,
University of Oviedo. http://www15.uniovi.es

[7] Schwabe, Daniel; (1995) Summary of OOHDM.
http://www.cs.tufts.edu/~isabel/schwabe/fig1.html

[8] Schwabe, Daniel; Rossi, Gustavo; (1995) Abstraction,
Composition and Lay-Out Definition Mechanism in OOHDM.
Proceedings of the ACM Workshop on Effective Abstractions in
Multimedia. San Francisco, California .
http://www.cs.tufts.edu/~isabel/schwabe/MainPage.html

[9] Shulz, Erin; Van Alphen Maarten, Rasnake William (1997);
Discovering user-generated metaphors through usability Testing.
Proceedings of the Second International Conference on Cognitive
Technology. Aizu , Japan.

[10] Transtools; (1998) JEDI: Java Enabled Database over
Internet. ESPRIT Project (EP24231).
http://www.transtools.com/jedi.

[11] Weber, Joseph; (1997) Special Edition Using Java 1.1; Third
Edition. ISBN 0-7897-1094-3

Martín González Rodríguez

ANTS: An Automatic Navigability Testing
System 1

Automatic Usability Testing forAutomatic Usability Testing for
Hypermedia Navigation MapsHypermedia Navigation Maps

Martín González Rodríguez
University of Oviedo

Developing Hypermedia (HDP)Developing Hypermedia (HDP)

z I- Analysis Stage.
z II- Design Stage.
z III- Testing Stage.
z IV- Developing Stage.

Martín González Rodríguez

ANTS: An Automatic Navigability Testing
System 2

Testing Stage (1)Testing Stage (1)

z There is not a clear way to predict how
users will navigate along the hypermedia
device.

z There are too many cognitive factors
involved.

z How can designers decide which
Navigation Map adapts better to user
behaviour?

Time and Web http://www.soc.staffs.ac.uk/seminars/web97/
For more information...

Testing Stage (2)Testing Stage (2)

z A possible answer is by Prototyping .
z Once a prototype is ready, it can be

verified by Usability Testing .
z Goal : To get information about how users

move around the set of Navigation maps
provided.

z Information should be contrasted with
what was expected during the design
stage in order to measure design’s quality.

Martín González Rodríguez

ANTS: An Automatic Navigability Testing
System 3

Testing Stage (3)Testing Stage (3)

z Information required include –but it is not
limited to– the following items:
– The list of the most visited nodes.
– When these nodes are visited.
– Time of user arrival/departure to/from a node.
– How long users remain in a single node.
– Which are the most popular destinations

(links) from a single node.
– The set of visited nodes during a single user

session.

Usability Testing AdvantagesUsability Testing Advantages

z Quite useful technique to improve the user
interface of many devices and software
applications.

z It can be used for revealing hidden user
behaviour when dealing with the user
interface of some machines.

z Usability testing revealed as a powerful
technique for discovering internal user-
generated metaphors.

Martín González Rodríguez

ANTS: An Automatic Navigability Testing
System 4

Usability Testing DisadvantagesUsability Testing Disadvantages
(1)(1)
z Requires permanent observation.
z Each volunteer needs at least one

observer.
z It is an expensive and slow process.
z Prototyping requires quick evaluation in

order to improve prototype’s quality.
z Testing quality diminishes as samples are

generally small due to economical
reasons.

Usability Testing DisadvantagesUsability Testing Disadvantages
(2)(2)
z It is quite difficult to discover a new kind

of –not already identified– users.
z Volunteers know they are under

observation:
– Add external factors to the navigability

testing.
– Knowledge about the experiment might

influence navigability.
– Destruction of spontaneous behaviour (user

own navigational metaphor).

Martín González Rodríguez

ANTS: An Automatic Navigability Testing
System 5

Ideal Situation for TestingIdeal Situation for Testing

z Volunteers should never know the role
they are playing during the experimental
process.

z Designers should never bring volunteers
to the laboratory.

z Usability testing restricted to the same
conditions under which, the final product
will be used (Remote Testing).

Advantages of the Ideal SituationAdvantages of the Ideal Situation

z User will feel free to explore the
Navigational Maps provided.

z Testing is not affected by External
Factors.

z Simplifies the process of detecting new
navigational metaphors.

z Information about how the user-
computing environment affects navigation
can also be observed.

Martín González Rodríguez

ANTS: An Automatic Navigability Testing
System 6

Remote Testing TechniquesRemote Testing Techniques

z As observers have no direct contact with
the volunteers, testing under this Ideal
Situation will require:
– A new technique of experimentation where

users aren’t asked to perform predefined
tasks.

– Tools for supporting remote Usability Testing
in situations not under observer's control.

z ANTS : An Automatic Navigability-Testing
System (for Hypermedia).

Goals of ANTS (1)Goals of ANTS (1)

z ANTS must support Navigability Testing
under the Ideal Situation described.

z Observe users while they navigate
through hypermedia artefacts.

z Record user navigability behaviour for
post-hoc analysis.

z Observation independent of hypermedia
device location.

Martín González Rodríguez

ANTS: An Automatic Navigability Testing
System 7

Goals of ANTS (2)Goals of ANTS (2)

z Silent Recording : Users shouldn’t notice
the way in which they are being observed.

z Moderate communication loads are
expected.

z ANTS must monitor both large and small
Navigation Maps without difficulty.

z Simultaneous Remote Testing of multiple
Navigational Maps or prototypes.

Goals of ANTS (3)Goals of ANTS (3)

z ANTS must smoothly run in every kind of
hypermedia device available:
– Stand-alone Multimedia Applications.
– Multimedia Kiosk
– Web Sites.

z Easy integration between Automatic
Remote Testing and prototypes.

Martín González Rodríguez

ANTS: An Automatic Navigability Testing
System 8

ANTS Development Platform (1)ANTS Development Platform (1)

z Java Technology is one of the best for
developing a system such as ANTS, due
to its many advantages.

z Java’s Virtual Machine allows the use of
ANTS with:
– Desktop multimedia applications in almost

every computing platform (Macintosh,
Windows, Solaris,...).

– Hypermedia Web sites (Netscape Navigator,
Microsoft Explorer, ...).

ANTS Development Platform (2)ANTS Development Platform (2)

z Java incorporates many important
communication frameworks such as:
– Sockets.
– RMI.
– CORBA.
– Servlets.

z Servlets might allow ANTS to test dynamic
Navigation Maps in future releases (for
UIMS and Adaptive Hypermedia).

Martín González Rodríguez

ANTS: An Automatic Navigability Testing
System 9

The Anthill Metaphor (1)The Anthill Metaphor (1)

z Based on the client-server paradigm.
z Design metaphor: A community of ants.

– ants = agents.
– anthill = server.
– food = information, user behaviour.
– picnic = user navigation session.
– anthill warehouse = databases or files.

The Anthill Metaphor (2)The Anthill Metaphor (2)

z For testing, an ANT must be included in
every node of the Navigation Map to be
tested.

z When the user arrives to a single node,
the associated ant is downloaded from the
anthill.

z Once the ANT arrives, it starts to capture
data, which is sent to the anthill for post-
hoc analysis.

Martín González Rodríguez

ANTS: An Automatic Navigability Testing
System 10

The Anthill Metaphor (3a)The Anthill Metaphor (3a)

$$ &&%%

''
6(59(5

8VHU

The Anthill Metaphor (3b)The Anthill Metaphor (3b)

$$ &&%%

''
6(59(5

8VHU

Martín González Rodríguez

ANTS: An Automatic Navigability Testing
System 11

Information Collected (1)Information Collected (1)

z Complete identification of the node visited
by the user.

z Time of arrival.
z Time of departure (time-delay navigation

strategies).
z If the SM of the JVM allows it:

– User ID.
– Platform used.
– OS Version...

Information Collected (2)Information Collected (2)

z Depending on the information required by
designers, the model can be extended to
test HF too:
– Set of components selected by the user.
– Window locations clicked on.
– Visible and hidden components during scroll

tasks.
– User typing skill.

z This information might be automatically
processed by UIMS.

Martín González Rodríguez

ANTS: An Automatic Navigability Testing
System 12

Testing using ANTS (1)Testing using ANTS (1)

z Distribute the prototype among volunteers
(as it would be a classic Beta version).

z Volunteers will try it at their user-
computing environment.

z When testing a Web Site:
– Testers must install the prototype in the web

server.

z When Testing a Multimedia Kiosk:
– Testers must install the prototype under the

same circumstances the final version will run.

Testing using ANTS (2)Testing using ANTS (2)

z Notice that:
– Volunteers know they are participating in an

Usability Testing.
– The only fact they ignore is the observation

technique used.
– The technique used will be revealed to users

once the experiment will have concluded.

Martín González Rodríguez

ANTS: An Automatic Navigability Testing
System 13

Testing using ANTS (3)Testing using ANTS (3)

DATE: January 16 Th 1999 (Saturday)
TIME: 17H50' GMT+00:00

IP ADDRESS: 195.55.11.111 (pinon.uniovi.es)
TIME ZONE: ECT (-2)

LOGS: (All dates are local to server)

17:50:45 -> Log in.
17:50:46 -> User arrives to site.
17:51:08 -> User moved to <Computing/InXena>.
17:52:01 -> User abandons site.
17:52:12 -> User moved to <Agenda>.
17:53:23 -> User leaves site definitively.
17:53:23 -> Log out.

User was here about 00:02:35 seconds

Advantages or this Approach (1)Advantages or this Approach (1)

z Navigation behaviour is not altered by
external factors.

z Data collected automatically flows from
the source to the storage system.

z Testers can focus their efforts into
analysing the data obtained.

z There is no need to assign human
resources to conduct user observation.

Martín González Rodríguez

ANTS: An Automatic Navigability Testing
System 14

Advantages of this Approach (2)Advantages of this Approach (2)

z Navigation takes place in the user-
computing environment.

z There is no need to assign laboratory
resources to Navigability Testing.

z The whole process is cheaper.
z More Navigation Sessions can be

observed using limited human resources.
z Testing quality improves as it is cheaper

to increase the size of the samples.

Advantages of this Approach (3)Advantages of this Approach (3)

z Testing Stage can be extended to the
whole product lifetime.

z Support for Adaptive Hypermedia and
UIMS.

z ANTS may act as a kind of GPS for
hypermedia tools.

Martín González Rodríguez

ANTS: An Automatic Navigability Testing
System 15

ANTS may act as a ANTS may act as a GPSGPS

For more information...For more information...

z martin@lsi.uniovi.es

Project TIRSUS:
www.uniovi.es/~oviedo3/martin

www.uniovi.es/~oviedo3

AUTOMATED TESTING OF COM SOFTWARE IN A RAD

ENVIRONMENT.

Hugh Newsam

Abstract
This paper describes the results of an investigation into the use of automated software testing methods
to validate Component-based software applications. It reviews the unique challenges of such testing
and identifies the practical lessons learned concerning the efficient use of these techniques and tools.

1. Summary

Pi Technology is a design-engineering consultancy providing safety-related embedded software
applications and supporting tools to the automotive industry. This paper describes the result of the
PiVOT project, an ESSI Process Improvement Experiment with the goal of improving Pi Technology’s
software process through the use of automated testing tools for testing Windows-based software
applications (i.e. support tools).

The paper discusses the application of automated software testing to applications developed using an
iterative (RAD) methodology and based upon components which are shared amongst several
applications, each with their own special requirements and at different stages in the development
lifecycle.

The paper considers some of the special difficulties posed by this environment in the application of
automated testing tools and how these were overcome. By working with an existing but rapidly
developing application, the paper shows how metrics taken at the beginning of the project indicated that
the test coverage that could be obtained economically was quite low. During the PIE, the team
demonstrated that this can be greatly improved through the use of automated tools but that in order to
make their implementation successful, there are many other areas of the process which also need
improvement, particularly configuration management.

Finally, the paper reports the quantitative improvement gained and compares the effort required with
the testing improvement which would have been gained if that effort had simply been directed at more
exhaustive testing of the application using conventional means.

2. Background

Testing software is difficult. Testing software that is being developed under tight commercial pressures
and in an environment that is changing rapidly is very difficult. This is the situation faced by many

software engineers developing large applications today in the Microsoft Windows environment and is
repeated in many other areas (such as Java-based enterprise-wide implementations).

In order to understand the testing problem, it is necessary to review the trends in software development
(for an excellent introductory overview of software development techniques, see for example [1]).
Traditional software development techniques have involved a linear process such as the “Waterfall” in
which software is developed in distinct stages beginning with requirements, specification, design, code
and test. Later variations on this scheme have involved associating testing specification with
corresponding stages on the development process; this is normally referred to as the V-Model. For
instance, system test is defined at the same time as the functional specification that it is validating.

These methodologies have many drawbacks. They work well for projects in a defined environment, in
which all the issues are clearly understood at the outset and where the customer is clear as to what is
required. Rarely does modern software conform to this ideal. Instead, the customer has a general idea of
what they want to achieve but the best means of implementation cannot be determined without some
experiment. This is particularly true when the underlying technology is new or constantly evolving. All
of these make complete specification at the outset difficult and attempts to do so often result in the
application not meeting the customers (subsequent) needs or projects which miss deadlines due to
excessive rework.

Using iterative development techniques such as the “Spiral” model or Rapid Application Development
(RAD) can reduce this problem. Applications are developed by defining and creating the framework of
a program and then through a process or successive implementation and evaluation, more detailed
functionality is added until the desired result is achieved. The attraction of this approach is that changes
in direction are highlighted early on in the development process before too much work has been wasted
and at each intermediate release there exists a consistent (if restricted) application rather than an
unusable portion of the final desired application.

The corollary of this approach is that there will be a larger number of intermediate software releases.
Unless changes to the software can be localised, this will result in a massive increase in the testing
load, effectively needing a full system test at each stage. In practise, the time for such a system test
using manual means may exceed the release interval, undermining the point of using RAD techniques.
Instead, software needs to be frequently tested using a combination of regression testing and a much
reduced system test or MAT (Minimum Acceptance Test). Nevertheless, for applications which are not
rigidly segmented, such testing schemes inevitably mean that intermediate releases have a relative low
level of testing leading to problems in the field (sometimes characterised by a feeling that a new release
corrected one problem and introduced two more).

More recently, the topic of software reuse has received a good deal of attention and in particular the
creation of software as “Components”. These are software objects that have defined interfaces and
functionality and can be dynamically linked with applications. Components are only loosely bound to
an application and may be shared by many applications simultaneously. In principle, this provides
flexibility by which a Component can have its functionality extended without changing the applications
that depend on that component. Components are therefore frequently created into libraries that are
shared across applications. As long as all existing interfaces and functionality continue to be supported,
libraries can be updated without changing the original applications, this is important as co-ordinating
updates across different applications is difficult.

Components are created at many levels in the application from very small functions to large blocks of
code which are themselves made up of many components. An application such as AutoCal will
comprise many hundred distinct components.

Implicit in the component architecture is a much higher testing requirement. When a new component is
released, in principle not only does that component need to be tested, but also any application which
uses that component. Because the components are bound at runtime, if a computer is running two
applications A and B, each of which use version X of a component, simply installing an upgrade to
application A which includes a newer release of component X will implicitly cause application B to be
upgraded. This is a serious problem. A customer who has validated a mission-critical application B to
work in their environment will not want that application changing without their knowledge simply
because another application has been installed which uses an updated version of a particular shared
component. In an extreme case, for instance if the component is a 3-D graph which is distributed as part
of a graphical toolkit, re-testing of all the dependent applications is not feasible and one must rely
solely on testing the component itself. This implies that components require rigorous component-level
tests in order to ensure backwards compatibility.

One of the principal concerns with automated testing is that as the application changes, so large
quantities of test code may also be invalidated. For instance, if an application were being tested by
checking the visual appearance on the screen, changing the background colour could make all of the
tests fail. If this were to be a regular occurrence, the effort needed to automate software testing would
not be worthwhile. Fortunately, the rules of COM come to our aid at this point. They state that all
existing interfaces shall be maintained and that a component may only be extended. Therefore, any
future version of component X (call it X’) must support all the functionality of component X. As a
result, creating an automated test for components which act as a validation suite is a very desirable
undertaking. These test suites simply need to be extended to include support for the new features of the
component as they are developed and no test code should need to be thrown away. It also allows a
whole component library to be tested against the validation suite at regular intervals.

This is similar to module testing but takes on a new and increased significance in a component
architecture (in this context a module is normally a component which comprises one or more smaller
components to implement a logically consistent piece of functionality). In addition, it is necessary to
provide a system / integration test of an application to validate its overall operation.

3. Objectives of the PiVOT project

The software to be used as the target for the PiVOT project was AutoCal, a tool for calibrating engines
usually in an automotive context. It is a large application built around Microsoft’s implementation of
component technology and was developed using RAD techniques by which there were incremental
releases at short intervals (8-10 weeks). These releases provide incremental functionality and rectify
problems found in earlier releases. All the Auto-xxx applications are based heavily on Microsoft
component technology using DCOM (Distributed Component Object Model). This is constructed as a
library of shared components known as ATOM (Automotive Tools Object Model) developed by Pi
Technology, which is used by each application to provide core functionality.

Traditional techniques for testing AutoCal used prior to the experiment, comprised of module level
testing followed by system testing using a formal system test plan. A full system test takes several
weeks to work through and so, only partial testing was done at each intermediate release. This led to a
higher than desired level of bugs finding their way into the intermediate releases and a lengthy period
between alpha release and full customer release to allow for the complete system test process. We
wanted to determine to what extent we could usefully automate testing for the whole application and
the trade-offs between:

• The time taken to create the automated tests;

• The savings in subsequent testing time and improvements in code coverage;

• The code quality which resulted.

We also needed to identify the tools and methodologies for improving and automating testing.

AutoCal is being developed as a core technology from which a number of specific implementations are
derived for particular customers. Each of those implementations is likely to require changes to the core
components and will be operating on different development lifecycles. This is handled by a
configuration management system that allows components to be checked out, modified and returned to
the core library. In order to ensure that these components will continue to support all the legacy
functionality, we wished to determine whether automated testing could be used to validate components
before they were checked into the main tree. In this way, the main tree is “valid” at all times and at any
point a full customer release based on the current iteration of components can be made.

Finally, we wanted to develop an extension to our present software development process, which would
ensure that components and applications would be adequately tested. We wanted to provide guidelines
to developers that would help them write applications in a way that made them amenable to subsequent
automated testing.

4. Tools to achieve objectives

To achieve the objectives tools are required. An automated testing tool is needed so there is some platform on
which to develop automated test scenarios. Secondly, a coverage tool is required so that the effectiveness of the
baseline and then the automated testing can be quantified.

4.1. Selection of the automated test tools

Automated test tools work by allowing the user to emulate operations such as keystrokes and mouse-
clicks using a scripting language. Scripts can then, once produced be used over and over again. The
testing tool will generally offer the service of producing these scripts based on the input to some sort of
macro recorder. Testing tools also incorporate the ability to retrieve and validate information to
determine whether the application has reached a particular state. There are several techniques offered
by the testing tool to retrieve information from the application under test. All of these techniques
require that the information of interest is identified and then retrieved, that information can then be
compared with the expected result to generate a pass/fail condition. Gathering information such as text

from edit boxes and list controls is not too difficult, although there are some issues involved in finding
the appropriate control in the first place. Other information such as bitmap displays is not so easy to
validate and the tools provided by the testing tool for doing so are generally less than satisfactory.

The requirements of a tool to test components (which may not have a user interface) and an overall
system are somewhat at variance. However, for consistency it was desired to have a tool that would
support both.

A key requirement is that the tool can manipulate the application under test. In the case of the system
test, recording simple user interface commands in the form of a script and validating application output
can do this. With component technology it is possible to interrogate the properties of the user interface
components themselves. This provides a much more robust means of validating the state of the
application as these tests are now insensitive to system-wide changes such as screen resolution. Before
this could be done in the AutoCal system test, it was necessary to extend the “container” application
that holds the AutoCal components so that it would provide an automation interface and permit
inspection and manipulation of the properties and methods of the components. This was a significant
and unexpected undertaking and took several weeks.

Testing the components themselves is slightly different since many do not have a user interface. As a
result, it is necessary to write a simple “wrapper” application (for instance using Visual Basic) to
provide access to the component itself. This wrapper becomes part of the test suite and is maintained
with the code.

As the company has already had experience with the Rational range of automated testing tools it was
decided that we would evaluate their Visual Test package and their SQA Suite. Taking into account
that the latter is approximately five times more expensive.

The environment in which the testing needs to be done required that there be a strong degree of
programmability behind the testing tool. For example, if the test involved manipulating variables
represented in a tree control, there may be one thousand leaves in the tree control. Each of these leaves
must be dragged and dropped onto another control somewhere else in turn. It is of course possible to do
this using a ‘macro recorder’ style method but would become very tedious when a ‘for…next’ loop
would have done the job. There are many situations in testing this particular type of application where
this type of recursive or repetitive action is required.

Decision-making is also important, if we take the example of the tree control once again then it may be
required that leaves of certain types be dragged to one place and other types to another place. Had these
actions been carried out using the macro recorder style method of generating test scripts it would be
very difficult to go back and change the script if something had changed, e.g. maybe the way the types
in the tree are described has changed. This point is made because the two tools really take one or the
other approach. Both tools will let the user enter code and both will serve as an advanced macro
recorder / validation tool, but neither are good at both.

It was decided that we should use Visual Test because it offered more flexibility in allowing the user to write
scripts rather than record them. For the types of reasons outlined in the previous paragraph writing scripts rather
than recording them was very important. SQA Suite was far superior when it came to recording scripts using the
Robot application supplied, but as we were not going to use this tool extensively, the extra cost of SQA could
not be justified when the programmability was no better if not worse than that of Visual Test.

4.2. Selection of the code coverage tool

There are three main types of coverage metrics considered during this experiment. Firstly, line
coverage, this simply tells the user what proportion of the total lines of code have been executed.
Secondly, function coverage, this is very similar to line coverage and shows the user the proportion of
the total functions in the application that have been executed. Once again the user can usually view the
specific functions covered or not covered during execution. The third type of coverage differs from the
other two. Branch coverage, this requires the analyses the structure of the application or module and the
total number of paths through the code. The tool then measures how many of those paths have been
taken during execution.

The actual decision as to which tool to use was limited by both cost and convenience. Both coverage
tools we looked at offered only line and function coverage. No tools offering branch coverage were
investigated as such tools were beyond the scope of the project’s budget. As both tools offer the same
in coverage information the only real issue in choosing one boiled down to convenience. We wanted a
tool that we could use on a debug build of our application with a minimum of effort required in getting
the tool to function correctly. Also we needed to be able to integrate this tool with the automated testing
tool we had already chosen. It was for these reasons that we chose to use Rational’s Visual Pure
Coverage. The tool requires that no ‘special’ build of the application is made and so meant no changes
to our extensive, current build procedure. Secondly the ability to turn the coverage tool on and off from
the testing environment made the tool more attractive.

5. Baseline

5.1. Coverage

In the starting scenario, components were not tested individually but only by implication as part of a
MAT. This comprised two elements: a minimum acceptance test that is undertaken frequently and a full
system test that is only undertaken at major releases. These tests are fully manual (though defined in a
test plan and therefore repeatable) and the code coverage obtained when running through these tests is
shown in Figure 1.

Number of modules within coverage bands 10% wide

0

1

2

3

4

5

6

7

8

9

10

0 to 10 >10 to 20 >20 to 30 >30 to 40 >40 to 50 >50 to 60 >60 to 70

% coverage bands

N
u

m
b

er
 o

f
m

o
d

u
le

s

Figure 1

Overall the average function coverage was 25.4%. Figure 1 shows the number of modules within
coverage bands 10% wide. We obviously need to look at the parts of the system with the lowest
coverage and for those areas identify the modules in greatest need of attention.

As can be seen from the data, the overall code coverage is low. This is because most test paths execute
largely the same overall code and it is very difficult at the system level to obtain significant coverage of
the individual components.

There are eight modules in the application with coverage of 20% or less. It is clear that these are more
likely to contain undetected bugs. One of these modules in fact is also one of the largest in the
application, containing almost 1/3 of all the application code. It is clear that our attention should be
turned towards this module.

For the purpose of this experiment we concentrated on the one large module. As this module was at the
heart of the application the quality of the product would gain from the improved bug detection. The
module is large enough to provide us with enough data to go away and make some predictions based on
the results.

5.2. Analysis of code quality

By analysing the change requests, it should be possible to create a metric for overall code quality. This
is a qualitative measure only and its relevance is restricted to the application in question i.e. it is
possible to use the metric to indicate whether the code quality is improving but it would not be possible
to compare directly the metrics between two dissimilar applications.

The change request tool used on this project does not make the collection of CR data very easy. Data
about which particular module the bug appeared in is not stored in the database. Because we have
concentrated on a single module during the experiment this is a major drawback, although rate of CR
generation is available for the application overall this is influenced by so many factors outside the
experiment the data becomes irrelevant.

6. Implementation

6.1. Component-level testing

Initial testing at the component level is undertaken as follows: A representative selection of
components was selected, ranging from those with a high graphical content to those that simply
manipulate data. For each component, a suitable test harness was written and some automated scripting
developed. Such testing was successful and the code coverage of the testing rose dramatically as a
result of these individual tests. However, it did highlight some points:

Generally the automated testing tools do not provide very clean interfaces to the COM objects within
the AutoCal package, especially the non-visual components. Visual Basic provides a very clean
interface to COM objects from the developers’ point of view. Although idea of abstraction at the COM
interface level may not add to the effectiveness of the testing it is useful in reducing the time spent on
changing the test should the interface change.

In order to test components in this way, a complete and relatively formal specification of the interfaces
and functionality of the component is needed as well as an overall design documentation which
describes in detail the relationship between these components in the end application. For a software
application that is made up purely of an interlocking mesh of software components, particularly if it is
developed under time pressure, this degree of definition is not always provided. Therefore, a much
higher level of design documentation is necessary in order that those creating or subsequently
maintaining the tests are able to create representative scripts.

The result of this phase of the testing was to re-define the software process such that all components are
treated as applications in their own right with a formalised specification and design documentation. The
development process has been extended so that the original developer is now responsible for delivering
not just the component software but also a suitable wrapper application and the automated test code
which both tests the functionality and meets the desired code coverage metrics. This represents a major
shift in attitude in the company by which the developer is responsible for the entire lifecycle of a
component and not just the design and implementation phase.

6.2. System level testing

At a simplistic level, system testing is a straightforward process. A test plan is written and then
executed manually while the test tool records the actions. These actions can then be played back in the
future to re-run the test. However, AutoCal is a core technology that is provided in customised form to
several customers. Each customer has different requirements and a different release schedule and will

need extensions to the core AutoCal library. Therefore, the base AutoCal is a constantly moving target
and this makes it difficult to create meaningful experiments in this environment.

AutoCal is kept in a configuration management system. Normally a build of AutoCal is made from the
“tip” of the build tree, i.e. the most recent version of each of the components. For the PIE, a line was
drawn through the AutoCal configuration system which defined the “master build” of the software and
so fixed the state of the software at one particular time. The AutoCal application would continue to be
developed but it would not affect the master build. Once a baseline system test has been created, the
line representing the master build can be moved progressively, taking in more and more recent versions
of components. In this way, the testing is grown incrementally and in a controlled way, which was the
intention of the project.

The component-level procedure described above was used to create criteria for when a component
could be merged back into the master build. In this way, the probability of the introduction of a
modified component “breaking” the master build was minimised.

Rather than creating the system level test as a single monolithic entity, it is attractive to make it follow
more closely the structure of the application itself with a series of quasi-independent scriptlets. These
are then built into a library of tests that can be mixed and matched depending on the composition of the
final application.

7. Results

7.1. Coverage data

The results of the testing are shown below. The individual tests on the components improved the code
coverage dramatically, providing a basis for future validation of enhanced versions of the components.
The overall coverage at the system level also improved. The change request data is less clear cut.

During the experiment we concentrated our efforts on a single module at the heart of the application.
This module constitutes approximately 1/3 of the total application code and so is large enough to
produce some meaningful results.

The histogram in Figure 2 shows line coverage data for the individual source files constituting the
single module used in this experiment. The histogram shows the number of source files in the module
falling within evenly spaced coverage bands. The before values represent the coverage this module
received during manual testing before the implementation of the automated testing. The after values
represent the coverage received using the automated test scripts developed during this experiment.

Line coverage for source files in selected module.

0

10

20

30

40

50

60

70

0
to

 1
0

>1
0

to
 2

0

>2
0

to
 3

0

>3
0

to
 4

0

>4
0

to
 5

0

>5
0

to
 6

0

>6
0

to
 7

0

>7
0

to
 8

0

>8
0

to
 9

0

>9
0

to
 1

00

Coverage bands

N
u

m
b

er
 o

f
so

u
rc

e
fi

le
s

Before

After

Figure 2

Figure 3 shows a plot of baseline coverage against the proportional improvement after automated
testing for the source files in the module used. The baseline coverage value is the line coverage
achieved during manual testing before the automated testing was introduced. The proportional
improvement is the factor by which the coverage has increased after implementing the automated
testing.

Baseline coverage vs. proportional increase in coverage.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0 0.2 0.4 0.6 0.8 1 1.2

Baseline coverage

P
ro

p
o

rt
io

n
al

 im
p

ro
ve

m
en

t

Figure 3

This plot shows that if the initial coverage is low then applying some amount of effort is going to have
a large impact on the coverage of the code. As the baseline coverage gets better it becomes is
increasingly difficult to improve the coverage any further.

Given this information it would be beneficial if while trying to improve coverage of an application the
coverage were increased in stages. Aim to take one module and increase its coverage level to some
value still below the final desired level and then move on to the next module. Once all modules with
coverage below the first stage have been addressed increase the target level and go around the loop
again. This way the effort in the beginning is going into dramatically improving the coverage of the
application in all areas of need quickly. If each module were to be brought up to 80% coverage before
moving onto the next then much time would be spent on the later development of the testing of the first
module and in this time the coverage of the rest of the application would still be very low. This could
be thought of as a kind of RAD approach to testing.

Figure 4 shows a plot of the baseline coverage against the coverage after the implementation of the
automated tests. The many data points at the origin of the y-axis represent the source files in the chosen
module, which received no coverage before the implementation of the automated testing.

Baseline coverage vs. coverage after implementing automated
testing.

y = 0.5238x + 47.593

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Baseline coverage

C
o

ve
ra

g
e

af
te

r

Figure 4

Given the data in Figure 4 we can use the trend line to predict the level of coverage that could be
achieved if a similar process is applied to all other modules in the application. Because the module used
in the experiment is so large it gives us a reasonable number of source files with a ranging level of
coverage from which to perform our extrapolation.

Figure 5 is a histogram showing the results of the extrapolation performed using the data presented in
Figure 4. The before values in Figure 5 represent the number of modules in evenly spaced bands of
coverage at the baseline. This data is the same as that shown in Figure 1. The after values shown in
Figure 5 are the predicted values for all the modules in the application if a similar process is applied to
those modules as was applied to the module used in the experiment.

Comparison of coverage at the baseline and extrapolated coverage.

0

2

4

6

8

10

12

14

0
to

 1
0

>1
0

to
 2

0

>2
0

to
 3

0

>3
0

to
 4

0

>4
0

to
 5

0

>5
0

to
 6

0

>6
0

to
 7

0

>7
0

to
 8

0

>8
0

to
 9

0

N
u

m
b

er
 o

f
m

o
d

u
le

s

Before

After

Figure 5

7.2. Comparison with conventional techniques

If the resource used to develop the automated tests were put into developing manual tests and
performing these tests at each release then initially the testing would be improved. However automating
these tests has provided a means of continuing these levels of coverage after the effort has been put into
their development. Certainly the initial improvements in the testing would also be greater than these
final results but again this improvement would be temporary. Once the effort is removed the testing
falls back to where it was (as there is no time to perform the testing manually with no additional
resource – the original problem). A lot less effort will be required once the tests are developed
maintaining the tests than would be required continually performing the full testing manually.

8. Conclusions & Recommendations

8.1. Technical impact

The impact of the project has been greater and more wide-ranging than had initially been anticipated.
The need to be able to test in an automated manner has caused a re-evaluation of the whole software
development process. In particular, it had highlighted some of the problems with component based
software development (at least as defined by Microsoft) and caused us to take very seriously the issues
it raises.

The immediate result has been:

• A much clearer definition of the structure of the test application. Object models are now defined
more rigorously with object oriented modelling tools such as Rational Rose from Rational
Software.

• Much more concentration on the importance of good configuration management

• Much more attention to abiding to the rules of COM, never destroying existing interface but only
extending them in order not only to preserve legacy functionality but also to continue to support
older automated test cases.

• Developers of new components are more considerate of the testability of the objects they produce
since they may now have also to deliver wrapper applications and test scripts with the software. An
example of this is the need to make the internal data available through an interface to enable
testability.

• If automated tests are developed alongside components this may lead to more testable components
being produced and provide a mechanism for integrating components into the master build.

• Structuring the tests into a library of “scriptlets” which are aligned to the structure of the application
being tested helps to minimise the rework needed to the test scripts when applications change.

• More rigorous regression testing forces developers to take more care to document as they design
(and therefore potentially catch problems earlier) rather than fire-fighting at a later point.

8.2. Key Lessons

The main lessons have been:

• You cannot just system test and expect to get reasonable coverage. Module tests must also be done
at the component level. This puts a greater onus on the system architect to define the project in
detail at this level.

• Configuration management is essential; otherwise you are always building on sand. Similarly, the
way in which components are extended needs to follow strict rules if previously developed tests are
not to be invalidated.

• Testing metrics are very difficult to gather. A different testing process changes many variables at
one go – time, coverage, location in the cycle etc. It is therefore difficult to perform a controlled
experiment to show quantitatively the benefit. However, subjectively, such testing techniques are
regarded within the company as essential for component-based software development.

• To test software using automated testing tools the software has to be designed in a testable fashion.
Much of the work of developing automated tests would have been avoided if the software had been
written with more consideration for automated testing.

• Automated testing is still difficult when it comes to validating visual aspects of an application. It is
possible to test that the internal values have changed in a visual component but it is much more
difficult to check the image has actually been updated on the screen. This is left to Bitmap
comparisons with current testing software but the results from these comparisons are usually less
than satisfactory.

• Component technology is a powerful tool but not a panacea. In particular, the cost of managing a
project based on components is significant and has to be weighed against the savings that arise from
reuse of development effort.

• The automated testing forces a greater degree of documentation of the software. This
documentation can then be used effectively in the marketing process to develop new business.

• The change management tool used on this project in limited in the way bugs are reported. Not
enough information is entered into the database to describe where in the development process the
bug was introduced and where it was detected. The tool also provides no information as to which
module the bug appeared in, this information needs to be available in a field in the database so it
can be filtered on. The quality of the information the change request system was very poor and an
ongoing effort is being made to improve this so better analysis can be carried out in the future.

8.3. Conclusions

The experiment has had a more fundamental impact than had initially been expected. Not only did it
highlight the issues of testing but it also demonstrated a very high dependency on detailed specification
and configuration management. The automated testing procedures have been instrumental in the
creation of a process to manage a core library of components, which is being developed simultaneously
with the dependent applications. In addition, it has resulted in a significant improvement in the overall
development process.

The use of such techniques places challenges on the overall software development process and is likely
to be successful only in an environment in which the overall software process is well defined and
controlled.

9. References

[1] McConnell, Steve; Rapid Application Development, Microsoft Press 1996

1

PiVOT
Automated Testing of COM

Software in a RAD Environment

Background

■ Pi Technology.

■ Automotive tools and controllers.

■ Embedded programming environment.
– Customer understands requirements;

– Safety critical so 100% test coverage.

■ Windows programming environment.
– Customer is unsure of requirements;

– RAD development environment.

2

AutoCal

Project Inspiration

■ Customer unsure of requirement so product
requirements change frequently.

■ RAD development so releases were
happening regularly (every 8-10 weeks).

■ Developer resources are limited.

■ System lacked in depth testing at each
release.

■ ESSI funding was available.

3

Project Goals

■ Improve the level of testing that can be
obtained at incremental releases.

■ Reduce the requirement for developer
resources in the long term.

■ Try to this by automating testing.

■ Gather information useful to other projects.

■ Disseminate any information gathered by
the project.

Tools Needed —
Automated Testing Tools 1
■ What do they offer?

– Manipulation of Windows based applications;

– A means of logging results;

– A script language for generating test scenarios;

– Script generation tools.

4

Tools Needed -
Automated Testing Tools 2
■ What Choice was there for us ?

- Rational Visual Test

- Rational SQA Suite

■ Factors influencing decision.
- Cost, effectiveness, programmability.

Rational Visual Test

5

Tools Needed —
Coverage Tools
■ What do they offer?

– Branch coverage;

– Function coverage;

– Line coverage.

■ What choice was there?
– Rational Visual Pure Coverage;

– NuMega True Coverage.

■ Factors influencing decision.

Problems Faced

■ Limitations imposed by testing tools.

■ Effect of these limitations on the software
under test.

■ Problems with coverage tools.
– Primarily integration into the build process.

■ Invalidation of test scripts.

6

Issues Arising from Automation
of Testing
■ COM interface publishing rules allow for

effective regression testing.

■ Test environment COM support.

■ Wrapper applications required.

■ Identification of windows and controls.

■ Support for automated testing from the
application.

Test Harnesses

7

Results of the Testing

■ The following are the results of the
improvement of testing.

■ Baseline coverage.

■ Improvements for parameter.dll

■ Extrapolation of results over the whole
project.

Results of the Testing —
Baseline Coverage

Number of modules within coverage bands 10% wide

0

1

2

3

4

5

6

7

8

9

10

0 to 10 >10 to 20 >20 to 30 >30 to 40 >40 to 50 >50 to 60 >60 to 70

% coverage bands

N
um

be
r o

f m
od

ul
es

8

Results of Testing —
Coverage for parameter.dll

Line coverage for source files in selected module.

0

10

20

30

40

50

60

70

0
to

 1
0

>10
 to

 20

>20
 to

 30

>30
 to

 40

>40
 to

 50

>50
 to

 60

>60
 to

 70

>70
 to

 80

>80
 to

 90

>90
 to

 10
0

Coverage bands

N
um

be
r

of
 s

ou
rc

e
fil

es

Before

After

Results of Testing —
Proportional Increases

Baseline coverage vs. proportional increase in coverage.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0 0.2 0.4 0.6 0.8 1 1.2

Baseline coverage

P
ro

po
rti

on
al

 im
pr

ov
em

en
t

9

Results of Testing —
Extrapolation Data

Baseline coverage vs. coverage after implementing
automated testing.

y = 0.5238x + 47.593

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Baseline coverage

C
ov

er
ag

e
af

te
r

Results of Testing —
Projected Results

Comparison of coverage at the baseline and extrapolated
coverage.

0

2

4

6

8

10

12

14

0
to

10

>1
0

to
20

>2
0

to
30

>3
0

to
40

>4
0

to
50

>5
0

to
60

>6
0

to
70

>7
0

to
80

>8
0

to
90

N
um

be
r o

f m
od

ul
es

Before

After

10

Technical Impact

■ More effective regression testing forces
more care on the part of the developer.

■ The importance of configuration
management.

■ Rules of COM interface publishing are now
even more important.

Technical Impact

■ Developers concern with testability.

■ Parallel development of modules and test
scripts is now desired.

■ Reduction in size of individual test scripts.

■ Just as Microsoft have been doing now for
years, we now build and test almost every
night.

11

Lessons

■ Rules of COM interface publication impact
more widely than originally thought.

■ To perform good automated testing
software needs to be developed with this in
mind.

■ By applying the above good code coverage
can be achieved.

Lessons

■ Validating visual aspects of an application
still remains a problem - resource intensive.

■ The change management tool used on this
project proved to be inadequate.

■ Automated regression testing is valuable.

■ This is the way forward

12

Actions

■ Project Quality Plans all updated to promote
use of test harnesses / testability.

■ Test Bed consisting of 5 PC’s has been set
up. Engineers can access these directly or
remotely by PCAnyWhere

■ Vacation Student hired to Automate ALL
AutoCal MAT and System Tests. Looking
for Full Time testers.

Example New Test Harness

13

Any Questions ?

© 1999 IPL Information Processing Ltd Testing C++
Why It’s Hard and How To Do It Well

Testing C++
Why It’s Hard and How To Do It Well

Misha Dorman

IPL Information Processing Limited
Eveleigh House

Grove Street
BATH BA1 5LR

mishad@iplbath.com http://www.iplbath.com

Abstract
Object-oriented technologies, and the C++ language in particular, have enjoyed great popularity in
recent years. Proponents have promised many benefits, including reduced lifecycle costs, increased
reliability and improved maintainability. Unfortunately, not all of these benefits have been fully
realised. One area where OO methods are relatively immature is testability and testing.

The naïve application of traditional testing techniques to object-oriented C++ software has not been
completely successful. Isolation testing – a technique successfully used to “divide and conquer”
traditional testing problems – becomes unmanageable when applied to OO software systems.

This paper explores the problems from a practical point of view, and discusses an improved
integration testing approach based on an extension to the widely used source code instrumentation
technique. This approach provides many of the advantages of isolation testing without forcing the
tester to laboriously write simulated code (“stubs”) for the rest of the system.

Measuring test effectiveness of OO software using traditional coverage and complexity metrics can be
unreliable and misleading. This paper discusses some metrics which provide more insight into the
static and dynamic complexity of the software under test. In particular, they attempt to measure the
complexity of the interactions between classes and the extent to which the polymorphic features of the
software have been exercised. In addition, modifications are proposed to the traditional coverage
metrics, to make them more appropriate to C++ software.

By combining the enhanced integration testing techniques and new metrics described in this paper,
together with appropriate tool support, C++ testing will be more efficient and more effective.

© 1999 IPL Information Processing Ltd Testing C++
Why It’s Hard and How To Do It Well

1. Testing As We Know It
A vast amount of experience has been gained in the testing of software systems. Most of this
experience applies to software written using procedural languages (C, Ada83), using top-
down design methods.

Typically, the focus of testing is dynamic testing – the software under test is executed, and the
actual behaviour compared with the expected behaviour. A dynamic test harness is used to
drive and control the test: it sets up the input data required for the test, invokes the software
under test, and compares the resulting output data with the expected values. Dynamic testing
is performed at all levels from unit, through integration, to system-level testing.

During unit testing, isolation techniques are often used to “divide and conquer” large testing
problems. Through the use of stubs, individual units (typically functions) are tested in
isolation from the rest of the system. Isolation testing allows units to be tested before they are
integrated with the rest of the system1. When units are subsequently integration tested, test
effort can be concentrated on the correct operation of the interfaces between units. The use of
stubs (which form part of the test harness) also has benefits during maintenance: re-testing at
the unit level is limited to those units which have actually changed. It is not necessary to re-
test all the code which depends on the changed units.

At all levels of testing, but particularly at the unit and integration levels, structural coverage
analysis methods are used to measure the quality of the test. During unit testing, statement,
decision and condition coverage metrics are used to ensure that all parts of the code have been
exercised. During integration testing, entry-point and call-pair coverage metrics are used to
ensure that the interactions between units have been fully exercised.

It is an unfortunate fact of life that there is never enough time to do everything. This applies
to testing – we often simply cannot afford to test every single component. Static structural
complexity metrics are calculated and used to estimate defect density as well as coding,
testing and maintenance effort. These estimates are then used to focus the available testing
effort where it will produce the most benefit. This process can be formalised, based on an
ongoing metrics collection and calibration process, or informal, using the complexity data to
identify “outliers” which are worthy of further investigation.

2. Why Is Testing C++ Harder?
The C++ language is considered by many to be “merely” an extension to the C language.
Some practitioners have claimed that testing C++ is no different from testing C - simply
redefine the unit from function to class and carry on as normal. It is true that the traditional
approaches to test case design (error guessing, domain coverage, state-based testing and
others) are still useful and valid. However, attempts to apply traditional testing approaches to
C++ software have encountered significant difficulties. Some of these difficulties stem from
the use of object-oriented design methods; others from intrinsic features of the C++ language.

2.1 Too Many Dependencies
Typical object-oriented designs consist of a large number of interacting components, each
relatively small by itself. This is an important strength of OOD – it provides the power to
break down large, complex problems into smaller ones.

1 even before the rest of the system is written. This allows much greater flexibility in the allocation of work; it is
not necessary to complete coding before unit testing begins.

© 1999 IPL Information Processing Ltd Testing C++
Why It’s Hard and How To Do It Well

An unavoidable consequence of such designs is a massive increase in the number of
dependencies between units. These dependencies include containment, inheritance, reference,
parameters, and return values.

Attempting to use isolation techniques during unit testing of most OO systems is bound to
fail. The overhead involved in the creation of test stubs for every dependency is simply too
great.

As if these problems were not enough, features of the C++ language create even more
dependencies. Class implementation details are exposed in header files. Although clients are
prevented from taking advantage of this, it causes significant problems during isolation
testing.

In order to stub a constructor for a class, it is necessary to provide initialisation values for all
data members of the class2 - including the private ones3. However, the stub is not part of the
class (it is part of the test for some other class), and as such should have no knowledge of, nor
access to, the implementation details.

Remember, one of the reasons for isolation testing was to reduce the re-testing effort during
maintenance. When constructors are stubbed, this benefit is lost: changes to thousands of
stubs, in the unit tests for hundreds of different classes, may be required whenever the
implementation of a class is changed. Even if the class didn’t have any problematic data
members when first written, they could be added at any time during maintenance.

Clearly, this situation is unacceptable – we have been forced to forego data hiding and
abstraction. With them goes one of the main benefits of OO, the ability to change the
implementation of a unit without requiring changes to its clients.

2.2 Integration Testing
We have seen above that isolation testing is inappropriate for most OOD/C++ systems. The
alternative to isolation testing is bottom-up testing. First the lowest level units are tested
(those that have no dependencies on other units, and therefore do not require isolation). Then,
the units which directly depend on the lowest level units are tested in integration with the
already tested units. In this manner, testing proceeds up the dependency hierarchy, until the
complete system has been integrated and tested.

At each level of bottom-up testing, the test harness must target both the low-level structural
faults normally associated with a unit-level isolation test, and the interaction faults normally
targeted by an integration test. This combination makes bottom-up testing more complex than
either unit or integration testing alone.

The increased size of the “lump” which is the software under test makes it difficult to exercise
all parts of the unit’s code. The influence that the test harness has over the software under test
is limited to defining an execution environment and passing in parameters. As testing
proceeds to higher levels, the “already tested” units start to get in the way of the unit testing of
the highest level units – sanitising the input environment and making it impossible to test
obscure cases or error handling code.

In typical C++ systems, these problems are exacerbated by the use of data hiding and the
presence of circular dependencies between units. Data hiding makes it even more difficult for

2 More accurately, all the data members which are of class type, and which do not have default constructors.
There is often at least one such member - and as we shall see, even one is too many.
3 Of course, usually all the data members are private.

© 1999 IPL Information Processing Ltd Testing C++
Why It’s Hard and How To Do It Well

the test harness to force the execution of “difficult” cases: it is prevented from setting the
private data, or calling the private member functions, of the class under test. Circular
dependencies force units to be integrated in groups instead of individually, making effective
unit testing even harder to achieve.

2.3 Re-use
Much of the hype surrounding object-oriented development has focused on “re-use”. This
overloaded term can apply to the re-use of code, designs, or architectures; here we are
concerned primarily with the re-use of code.

Code re-use predates OOD, of course. Every time a programmer uses a library function, they
are “re-using” code. Such re-use is limited, however, to that which is available in libraries.
What is different about re-use in OO systems is that code is re-used in a way that provides
different or additional functionality, without duplicating the common functionality. This
provides the flexibility which enables large-scale re-use of components. In C++, re-use is
provided through inheritance and template instantiation.

When a class inherits a member function from its base class, it is re-used in a new context.
The behaviour of the inherited member can change, for example if it calls a virtual member
function which has been overridden in the derived class.

When a template is instantiated on a new type, it is also being re-used in a new context. The
behaviour of the template can change because its use of the operation “+”, for example, means
different things when applied to different types.

Re-use through inheritance is a dynamic, run-time feature. The behaviour of the inherited
member function depends on the actual (dynamic) type of the object to which it is applied.
Re-use through template instantiation, on the other hand, is a compile-time feature4. The
behaviour of the template depends on the static (compile-time) type on which it is instantiated.

In both cases, the behaviour of the re-used code is (potentially) different in each new context.
In [Harrold], criteria were defined for the re-testing of re-used software. In essence, re-testing
is necessary if the behaviour of the re-used component is changed5 in the new context.

Every time code is re-used instead of written from scratch, effort is saved. However, testing
may account for 30-50% of development effort. If a new test script is required whenever the
unit is re-used in a new context, then the savings obtained through re-use of code will be
significantly reduced.

2.4 Coverage
Typical OO systems consist of a large number of relatively small member functions.
Applying traditional coverage metrics to these systems is certainly possible, and necessary.
However, achieving 100% decision and condition coverage during a class test is usually easier
than achieving the same level of coverage on the equivalent system written in a procedural
language,

In an object-oriented system, an important part of the control flow arises from polymorphism
(virtual functions in C++). In an equivalent procedural system, this control flow would
probably have been written as explicit if or switch decisions - and would be targeted by

4 In typical C++ implementations, re-use via templates results in duplication of object code. However, this is
purely a compiler issue - the important thing is that the source code is re-used, unchanged, and automatically.
5 Or potentially changed.

© 1999 IPL Information Processing Ltd Testing C++
Why It’s Hard and How To Do It Well

traditional structural coverage techniques. In the OO system, this control flow is hidden from
the coverage analysis – because the definitions of the coverage metrics are too restrictive.

As well as “missing” polymorphic control flow, traditional coverage metrics fail to take
advantage of design information made explicit in OOD which can enable more advanced
coverage analysis. In particular, many classes can be modelled as state machines. The
potential states in which an object can be, are as important a structural characteristic as the
potential branches that can be taken in a member function, and as such should be measured as
part of coverage analysis.

Clearly, new coverage metrics are required if we are to benefit from structural coverage
analysis techniques.

2.5 Complexity
Just as traditional structural coverage metrics are insufficient to measure the dynamic
complexity of C++ software, traditional structural complexity metrics are insufficient to
measure its static complexity. The complexity of the interactions between classes, including
the inheritance and polymorphic relationships, is clearly an important factor in the readability
and comprehensibility of C++ software – and can therefore be expected to have an impact on
defect density as well as coding, testing and maintenance effort.

3. Solutions
Now that we know the problems we face - what can we do about them? The techniques
described below tackle each problem in turn.

3.1 Design For Testability
The first problem is the inappropriateness of isolation testing for C++ systems. Remember,
this is due to an increase in the number of stubs required (making isolation more expensive),
and problems with stubbing constructors (making isolation impossible without breaking
encapsulation). The increase in the number of dependencies is in many cases an unavoidable
result of OO design. However, consideration of dependencies during design can help avoid an
unnecessary increase in the dependencies between components – thus reducing testing effort
(see [Lakos] for more details).

To solve the isolation problem, consider what sorts of classes could be stubbed: classes with
no (private) data members. Abstract Base Classes (ABCs) are a perfect example of stubbable
classes.

ABCs and their partners, Concrete Implementation Classes (CICs) form a technique for
completely separating the class interface from its implementation. Normally, a C++ class
declaration defines both the interface (the public part) and some features of the
implementation (the private part) in a single place. As we have seen, this causes problems
when we attempt to stub these classes. In the ABC/CIC technique, the class is split into two
classes:

1. the ABC which defines the (public) interface to the class (as pure virtual member
functions);

2. the CIC which inherits (publicly) from the ABC, and provides the implementation
of the class6.

6 By implementing (overriding) the pure virtual functions declared in the ABC.

© 1999 IPL Information Processing Ltd Testing C++
Why It’s Hard and How To Do It Well

Clients of the class depend only on the abstract base class, not on the implementation class.
To stub the class, we retain the ABC, but provide an alternative (stub) implementation class.

Consider the following small sub-system (arrows indicate a dependency):

Software
Under Test

External Class A

External Class C

External Class D

External Class B

Attempting to isolate the software under test would involve stubbing all the external classes –
which we have seen is difficult or impossible.

Now consider what happens if we use ABCs to separate the interface and implementation for
each of the external classes:

Software
Under Test

External Class B
(interface)

External Class B
(implementation)

External Class A
(interface)

External Class A
(implementation)

External Class C
(interface)

External Class C
(implementation)

External Class D
(interface)

External Class D
(implementation)

On the surface, this design looks more complex – after all there are more classes! But
consider how we would test the class with this design. We can stub the external classes A and
B, and external classes C and D can then be omitted from the test altogether (they are only
depended on by the implementations of A and B, which have been stubbed):

© 1999 IPL Information Processing Ltd Testing C++
Why It’s Hard and How To Do It Well

Software
Under Test

External Class B
(interface)

Stub for B

External Class A
(interface)

Stub for A

Note that in this example we have omitted the details of how objects are created. Clearly, the
code which creates the object will depend on the implementation class (whereas code which
only uses the object depends only on the interface class). The usual technique for managing
these dependencies is to apply the “Factory Method” pattern.

This technique looks to be the answer to our isolation testing problems.7 Unfortunately, it is
not.

There is an overhead in the use of the virtual member functions – each virtual member
function call involves an additional indirect memory access8. This overhead would be
unacceptable in many systems, if applied throughout. There is a trade-off to be made between
the goals of efficiency, testability and maintainability.9

In addition, as testers we are often not able to influence the design of the system. The testing
phase is considered by some to start after design is complete, rather than as an essential part of
the complete software development process.

In the real world, the most we can hope for is that ABCs are used to isolate significant sub-
systems. Within those subsystems, though, we shall still be restricted to bottom-up
integration testing techniques.

3.2 Instrumentation for Testing
We have resigned ourselves to using bottom-up integration testing, for at least some of our
class (unit-level) testing. Some sub-systems will be stubbed, but we will be integrating with a
number of (already tested) units.

It is difficult to perform unit-level testing during an integration test, for the reasons described
above. Since we will be concentrating much more on integration testing, we want to make it
as painless as possible.

The problems we expect during bottom-up testing are due to the data and behaviour of the
software under test being hidden from the test harness – either by the data hiding features of
the language, or by the processing performed by the other units which are linked with the test.

7 It also has re-use and maintenance benefits: new implementation classes can be added to the system without
changing client code. See [Martin] for more on this.
8 Virtual function calls have also been shown to reduce the effectiveness of modern super-pipelined CPUs,
further impacting performance.
9 An alternative solution is to hide implementation data behind a void* pointer_to_impl_data (rather than behind
an abstract class interface). This approach suffers from the same efficiency and overhead problems as the use of
ABCs.

© 1999 IPL Information Processing Ltd Testing C++
Why It’s Hard and How To Do It Well

The first stage towards making integration testing easier is to allow the test harness access to
the implementation details of the class under test, through a friend declaration. This allows
the test harness to:

1. verify the correct implementation of the class by examination of its private data;

2. call private (helper) functions of the class to ensure that they are fully tested;

3. initialise private data of the class to force particular execution paths.

The second stage is to allow the test harness access to the calls made from the class under test
to the other linked-in units. This is achieved through “call interface instrumentation”, an
extension to the commonly used source code instrumentation technique used for coverage
analysis.

Call-back functions are called immediately before and after the original call; the call-backs
“wrap” the original call:

S U T
External
Class/

Rout ine

"before"

"after"

Cal l , passing parameters

Return, or throw except ion

Ver i fy parameters

Change return value,
or throw except ion

Change parameters

Wrapping gives the test harness access to:

1. the order that calls are made;

2. the parameters passed to each call;

3. the return value from the linked-in function.

In addition, the test harness is able (through the call-back mechanism) to:

1. modify the return value passed back to the software under test;

2. throw an exception instead of returning a value;

3. modify any “output” parameters that are passed back to the software under test;

4. modify any other parameters before they are passed to the linked-in function.

Wrapping makes it easy to force “special cases”, such as error conditions, in order to test all
parts of the class under test. For example, to verify that the software under test correctly
handles the possibility of an exception thrown by a 3rd party database access library might be
impossible using normal bottom-up testing techniques – how would we force the library to
throw the exception?

Using wrapping, such as test is simple to implement. The appropriate call to the library is
wrapped, and the call-back functions cause an exception to be thrown. This exception is then
propagated to the software under test, as if it came directly from the database library.

© 1999 IPL Information Processing Ltd Testing C++
Why It’s Hard and How To Do It Well

Call interface instrumentation is in many ways similar to coverage instrumentation. Both
techniques are implemented using source code instrumentation, whereby instrumentation code
is added to the source code to provide the test harness with information about the execution of
the software under test which would normally be hidden.

Coverage instrumentation provides the test harness with information on the proportion of
functions, statements, decisions and conditions which have been exercised during the test.
The instrumentation code records the execution of each statement (or decision, condition etc.)
as it happens.

Call interface instrumentation provides the test harness with information on the exact calls
which have been made, the order in which they occurred, and the parameters passed to each
call. The instrumentation code records the calls made, and the parameters passed.

Wrapping, in combination with a bottom-up test strategy, provides many of the benefits of
isolation testing, with increased flexibility, and without the scalability and maintenance
problems which are associated with stubbing C++ classes. The following table compares the
features of isolation testing and wrapping:

Isolation Testing Wrapping

Check call order ü
i

ü (optional)

Check parameters ü (optional) ü (optional)

Call original function û
ii

ü

Set return value ü ü (optional)

Throw exception ü (optional) ü (optional)

Change output parameters ü (optional) ü (optional)

Call original function with modified
parameters

û ü

Use with system calls û
iii

ü

Use selectively (based on call-site, as well as
function called)

û ü

Original function is linked with test û ü

i Because a stub must always provide a return value, and cannot call the original function, it must always know “where we are in the test” in
order to create the correct return value.

ii A stub function is simply a replacement implementation for the original function. The two cannot be linked together in the same test
harness, since they have exactly the same linkage name.

iii In general, isolation testing cannot be used with system calls. Consider a test harness which stubbed the exit() function: how would it
terminate?

3.3 Re-use of test cases
Whenever we re-use a software component in a context which requires re-testing, we should
also re-use the corresponding test cases. This re-use will be done not just at the test planning
level, but through direct re-use of the test case code. Designing and implementing re-usable
test cases will require more effort to make them re-usable, in the same way that creating re-
usable components is harder than creating single-purpose components. In both cases, the pay-
off for the initial investment comes later, when the component is re-used, either elsewhere in
the system, or in other systems.

© 1999 IPL Information Processing Ltd Testing C++
Why It’s Hard and How To Do It Well

3.3.1 When to Re-use?
The usual example of re-use in C++ is through the inheritance mechanism. In particular, the
use of public inheritance implies the existence of an “isA” relationship between the classes.
Of course, the compiler cannot enforce the rule that public inheritance is used only when there
is an “isA” relationship – the compiler has no knowledge of the semantics of the classes.
However, using public inheritance when there is no such relationship is asking for trouble.
Any function which is declared with a Base& (or const Base&) parameter may in fact be
passed a reference to a Derived object. If Derived “is-not-A” Base, then the function is likely
to behave unexpectedly (i.e. wrongly).

By re-using the base class test cases when testing the derived class(es), we can verify that the
“isA” relationship holds true, and that the derived class correctly implements the interface
defined by the base class. This approach can even be used for abstract base classes: test cases
can be written which verify the correct implementation of the interface provided by the
abstract base.

The above applies equally to re-use through template instantiation. Each template makes
certain assumptions about the types on which it will be instantiated: that they are copyable,
assignable, have an equality operation etc. These assumptions are both syntactic (obj1 ==
obj2 is legal) and semantic (== defines an equivalence relation). Unfortunately, there is no
way to make these assumptions explicit in the C++ language10. To verify that the assumptions
have not been violated, write a set of re-usable test cases for the template, and use those test
cases to test each instantiation.

Re-usable test cases will in general be behavioural tests, based on the externally visible
functionality of the class under test. It is also possible to re-use structural test cases, where the
code in question has not been replaced (i.e. for inherited members, or templates for which no
specialisation has been defined).

3.3.2 Factory Classes
Writing a re-usable test case is, in most respects the same as writing a normal test case. Extra
care is needed to ensure that no unwarranted assumptions are made about the types of objects.

For inheritance re-use, the test script must use references or pointers instead of simple objects.
For template re-use, the test script itself is a template, parameterised by the same types as the
template under test.

Most test cases create one or more objects, in preparation for the test proper. How can a re-
usable test script create objects, without knowing the type of the objects being tested. The
solution, again, is to use the Factory Method pattern.

The test case is passed a Factory object as a parameter, and uses the factory to create objects
as needed. A different Factory class is written for each class which is to be tested. Whenever
the test case is used to test a class, it is passed the corresponding Factory object.11

To ensure that different Factory objects can be substituted as necessary, the Factory classes
form an inheritance hierarchy of their own, which precisely mirrors that of the classes to be

10 c.f. the constrained genericity and design-by-contract ideas described in [Meyer] and supported by the Eiffel
language.
11 The approach described here is of the more general form, where the test and factory classes are distinct. In
many common cases (including most unit-level tests) the test class creates objects of only one type. In such cases
the test and factory classes can be combined into a single class.

© 1999 IPL Information Processing Ltd Testing C++
Why It’s Hard and How To Do It Well

tested. This parallel inheritance hierarchy means that if a Circle “isA” Shape , then a
CircleFactory “isA” ShapeFactory .

In the following diagram, Shape is an abstract class, and Circle is derived (publicly) from
Shape . ShapeTest contains the test cases which test for “Shape -ness”. CircleTest
contains the test cases which test for “Circle -ness”. Both consist of re-usable test cases,
and CircleTest automatically runs the ShapeTest test cases on Circle s, to ensure that
Circle s are indeed Shapes.

ShapeTest needs to create Shapes before it can test them; it uses a Shape-Factory
(passed as a reference parameter) to do this. Similarly, CircleTest needs to create
Circle s, for which it uses a CircleFactory .

ShapeFactory is an abstract class, since it can’t actually create any Shapes. The purpose
of ShapeFactory is to define an interface for shape-creation which the derived factory
classes (like CircleFactory) must implement.

CircleFactory implements the interface by creating Circles (remember that a
Circle isA Shape , so this fulfils the ShapeFactory requirements). A hypothetical
SquareFactory would implement the same interface by creating Square s.
CircleFactory also defines an additional interface specifically for creating Circle s.

When CircleTest runs the ShapeTest test cases, it passes it the CircleFactory
object. This is used by the ShapeTest test cases, which test that the Circles so created
are valid Shapes.

In this section we have seen how to use re-usable test cases to keep testing effort for re-usable
components within reasonable bounds. But how do we ensure that a component has been
tested in all necessary contexts? This question, of coverage, is addressed in the next section.

3.4 Inheritance Context Coverage
Whenever a member function is inherited, it can be re-used in a new context – acting on a
Derived class object instead of a Base class object. As discussed above, we need to re-test
such member functions in each new context (preferably using re-usable test cases).

To ensure that the member function has been thoroughly tested in each context, it is necessary
to extend the definition of existing structural coverage metrics to take into account the
inheritance context. For each metric, coverage is measured separately for each context. The
current context is the (dynamic) type of the object on which the member function is acting.

The traditional coverage metrics can be calculated from the inheritance context coverage data
by aggregating the coverage achieved across all contexts.

Shape
(abstract)

Circle Square

Shape
Test

Circle
Test

Square
Test

Shape Factory
(abstract)

Circle
Factory

Square
Factory

used to

create Shapes

used to
create Circles

© 1999 IPL Information Processing Ltd Testing C++
Why It’s Hard and How To Do It Well

When calculated for a specific inheritance context, function entry-point coverage provides a
basic verification that each function has been calculated in the specified context. Typical
recommended coverage requirements are:

1. once-full context coverage: 100% (statement, decision) coverage in at least one
context, 100% entry-point coverage in all contexts

2. strict context coverage: 100% (statement, decision) coverage in all contexts

Use of inheritance context coverage metrics can be used to ensure that re-used code has been
tested in all necessary contexts.

3.5 State Coverage
When testing a class whose behaviour is modelled by a state machine, we will naturally use
our knowledge of the possible states, and the transitions between them, to help design suitable
test cases.12 To ensure that we have not missed any cases, enhanced coverage metrics can be
used to measure coverage separately for each possible state.

For example, consider a bounded_stack class. It will have states empty , normal and
full . To ensure that the class’s behaviour in each state has been tested, coverage is
measured separately for each state.

The user must provide a function which determines the “current state”. In all other respects,
state coverage is very similar to inheritance context coverage: coverage is measured separately
for each state/context, and coverage metrics can be calculated for a specific context, or across
all contexts.

Typical recommended coverage requirements are:

1. once-full state coverage: 100% (statement, decision) coverage in at least one state,
100% entry-point coverage in all states

2. strict state coverage: 100% (statement, decision) coverage in all states

Astute readers will have realised that achieving strict state coverage will often be infeasible.
If the class is to behave differently in each state, then there must be some code which is
executed differently, depending on the state. For example, in the bounded_stack class, the
push() member function is likely to include a decision of the form if (empty()) .
Clearly, this decision will only branch true in the empty state, and will only branch false in
the normal or full states.

A structural coverage metric for which 100% coverage is infeasible is almost useless as a
measure of testedness since it is impossible to know what “75% coverage” means: “the 3
feasible cases have all been covered” or “9 of the 11 feasible cases have been covered”.

To counter this problem, the enhanced coverage metrics are further modified to allow the
tester to define particular coverage items (e.g. decision branches) as being infeasible in a
particular state. Coverage metrics can then be calculated based on the feasible cases only: in
the example above the results would be “100%” and “82%” coverage respectively – making
the difference clear.13

In the inheritance context case, achieving full coverage usually is feasible. Inherited member
functions should behave (mostly) the same when applied to a derived class as they do in the

12 See [Binder] for a description of one such approach.
13 To ensure that “cheating” is not possible, the raw coverage metric is also reported.

© 1999 IPL Information Processing Ltd Testing C++
Why It’s Hard and How To Do It Well

base class; any differences should be encapsulated as virtual member functions which are
overridden. Thus, most member functions do not contain decisions based on the actual type
of the underlying object. However, in those rare cases (involving the dynamic_cast
operator) where there is a problem, the same approach can be applied.

3.6 Object-Oriented Complexity Metrics
A number of Object-Oriented static complexity metrics have been proposed, including those
described in [Chidamber], [Abreu], [Martin] and [Bansiya]. The proposed metrics attempt to
measure the important features specific to object-oriented software systems. These include
the use of encapsulation and data hiding, the use of polymorphism, the use of abstract
interfaces and the “size” of the system in terms of its classes and interactions between them.

Although some validation work has been done on these metrics, further investigation is
required to identify those which are most useful as indicators of defect density and coding,
testing and maintenance effort. Of course, for the necessary, large-scale, validation studies to
be feasible a tool to automate the collection of the metrics under consideration must be
available. In the absence of definitive validation results, these metrics are still useful as an aid
to practitioners’ engineering intuition in determining the likely defect and effort “hot-spots”.

4. Summary
We have seen that testing C++ software presents a number of new challenges. Increased
numbers of dependencies, combined with the exposition of class implementation details in
header files, make isolation testing infeasible in most cases. The resulting switch to bottom-
up testing forces us to perform unit-level testing on larger and larger integrations of units.
The re-use of components, through inheritance and instantiation, forces us to consider the re-
use of test cases. New coverage and complexity metrics are required to maintain the value of
structural coverage analysis for test case design.

This paper has presented solutions to all these problems. The use of tools implementing and
supporting these solutions, such as IPL’s Cantata++ V2 [IPL], will result in more efficient
and more effective C++ testing.

© 1999 IPL Information Processing Ltd Testing C++
Why It’s Hard and How To Do It Well

5. References
[Abreu] Abreu F B and Melo W (1996). “Evaluating the impact of object-oriented design on
software quality”, in Proc. 4th International Software Metrics symposium, IEEE Computer
Society Press, 1996 (available at http://www.cs.umd.edu/users/melo/papers/CS-TR-
3536.html).

[Bansiya] Bansiya J and Davis C (1997). An Object-Oriented Design Quality Assessment
Model, IEEE Transactions of Software Engineering, August 1997 (available at
http://indus.cs.uah.edu/research/qmood++/bansiya.htm).

[Binder] Binder R. The FREE Approach to Testing Object-Oriented Software,
(http://www.rbsc.com/pages/FREE.html).

[Chidamber] Chidamber S R and Kemerer C F (1991). Towards a metrics suite for object-
oriented design, in Proc. 6th OOPSLA Conference, ACM 1991, pp.197-211.

[Harrold] Harrold M J, McGregor J D and Fitzpatrick K J (1992). Incremental Testing of
Object-Oriented Class Structures, Proceedings of the Fourteenth International Conference on
Software Engineering, 1992, pp. 68 - 80.

[IPL] Cantata++ product information at http://www.iplbath.com.

[Lakos] Lakos J (1996). Large Scale C++ Software Design, C++ Report, June 1996 onwards.

[Martin] Martin R C (1996). The Dependency Inversion Principle, C++ Report, May 1996
(also available at http://www.oma.com).

[Meyer] Meyer B (1997). Object-Oriented Software Construction (2ed), Prentice Hall, ISBN
0-13-629155-4.

1

1

Testing C++: Why It’s Hard And How To Do It Well
© 1999 IPL Information Processing Ltd

Traditional Dynamic Testin g
l Test software by running it

– Unit testing and Integration testing
– Set inputs; call SUT; check outputs

– Automated scripts for repeatability

– Re-run tests when software changes

l Test as soon as possible
– Find faults earlier (cheaper)
– Test before dependencies are done

l Provide a “stub”
– Stub is part of the test
– Stub has same interface as real dependency
– Stub provides test-specific implementation

+ same header (.h) file but different code (.c) file

Test Script

SUT

Set Inputs

Call SUT

Check
Outputs

Dependency

Stub

2

Testing C++: Why It’s Hard And How To Do It Well
© 1999 IPL Information Processing Ltd

Traditional Code/Test Analysis
l Have we tested everything?

– Every function/source line/statement/decision/boolean?
– Use Structural Coverage metrics

+ collect data during dynamic test run

+ identify areas not covered and add test cases to test them

l Too expensive to test everything?
– Calculate Static Code Size and Complexity metrics
– Estimate test effort

+ number of decisions; number of calls

– Estimate defect density
+ lines of code (!); number of decisions

– Aim to maximise benefit for minimum cost

l Avoid dangerous constructs; keep complexity low

2

3

Testing C++: Why It’s Hard And How To Do It Well
© 1999 IPL Information Processing Ltd

C++ Problems
l Data hiding prevents access to private data

– Difficult to force desired behaviour
+ set private data or call private methods directly

– Difficult to check result state

lWant to use isolation testing during unit testing
– OOD => many small, interacting components
– Interfaces involve additional objects (parameters/returns)
– Must stub all methods of a class, not just one
– C++ header (.h) is not just the interface

+ also contains private data declarations
+ which might be class types with their own private data

– Even more stubs to write!
– Isolation Testing is more difficult than with C

4

Testing C++: Why It’s Hard And How To Do It Well
© 1999 IPL Information Processing Ltd

More C++ Problems
l Ever tried writing a stub for a constructor?

• Keyboard has a (private) Port member
• Port has no default constructor
class Port { class Keyboard {

public: ...

Port(int portnum); private:

... Port port;

}; };

• We’re testing a client of Keyboard so we want to stub it

• Stub for Keyboard::Keyboard() must initialise port
// test_client.cc

...

Keyboard::Keyboard() : port(STUB_KEYB_PORTNUM){ ... }

3

5

Testing C++: Why It’s Hard And How To Do It Well
© 1999 IPL Information Processing Ltd

Why Is This Bad?
l The stub is part of the test for the client

• The client doesn’t care about Ports

• The test shouldn’t have to either
• Encapsulation has been broken

l This will apply to every client of Keyboard
• Maintenance nightmare!

• What if Keyboard changes to use FasterPort ...
• Every test for every client will need to be updated

l Encapsulation aims to protect from changes
l Isolation testing aims to protect from changes
l Both have failed

6

Testing C++: Why It’s Hard And How To Do It Well
© 1999 IPL Information Processing Ltd

C++ Forces Inte gration Testin g
l Isolation Testing is

– Always difficult
+ hard work writing tests through public interface only

– Often expensive
+ sheer number of stubs is daunting

– Sometimes impossible
+ stubbing constructors causes more problems than it solves

l No isolation => bottom-up integration test
– Need to test for both unit and integration faults
– Difficult to force desired behaviour

+ the rest of the system “gets in the way” especially for unit-level
testing

+ can’t use stubs to “inject” data to force behaviour

– Information hiding still prevents access to private data

4

7

Testing C++: Why It’s Hard And How To Do It Well
© 1999 IPL Information Processing Ltd

C++ Problems: Re-use of Code
lOOD “marketing” promotes re-use
l Re-use of code => effort saved

– Extra design effort initially

– Save effort every time we re-use

lM.J.Harrold claimed re-test necessary when re-used
in new context

– e.g. inherited method used in derived class
or instantiation of a template

– Any virtual methods may have changed semantics

l Re-test without re-use of test cases => extra effort
– Test effort might be 20%-50% of development
– Re-test effort negates savings from code re-use

8

Testing C++: Why It’s Hard And How To Do It Well
© 1999 IPL Information Processing Ltd

Code Covera ge and Complexity
l Achieving 100% decision coverage is (too) easy

+ individual methods are small
+ design complexity is in object interactions/polymorphic dispatch

+ common metrics don’t even attempt to measure how well this
complexity has been tested

l Defect estimation
+ bugs more likely in interactions between classes

+ lines of code probably still a reasonable guess!

l Test effort estimation
+ Test effort depends on interactions between classes

+ Methods score low on (traditional) complexity

+ Polymorphic calls more important than decisions

l New metrics are required

5

9

Testing C++: Why It’s Hard And How To Do It Well
© 1999 IPL Information Processing Ltd

Test Classes As Friends
l Each class in the SUT has a corresponding test class
lMake the test class a friend of the SUT class

– The test class has access to private data and methods

l Allows us to write White-Box test cases
– Call private methods directly

+ easier to test them thoroughly (achieve coverage)

– Set private data directly
+ easier to test boundary cases

– Check private data directly
+ more likely to find obscure implementation faults
+ e.g. deep versus shallow copy constructor

or other pointer corruption

+ need complicated test case to find the fault in a black-box test

10

Testing C++: Why It’s Hard And How To Do It Well
© 1999 IPL Information Processing Ltd

(Re-) Design For Testability
l Separate interface and implementation classes

– Clients use interface; use factories to create implementations
– Test can use a separate “stub” implementation class
– Test size and complexity reduced
– More flexible design but slower and more source code

SUT SUT SUT

i/face i/face

i/face i/face

i/face

impl impl

impl

impl

stub

i/face

stub

factory

factory

6

11

Testing C++: Why It’s Hard And How To Do It Well
© 1999 IPL Information Processing Ltd

Call Interface Instrumentation
lWe’re doing bottom-up testing

– Trying to achieve unit-level testing during integration test
– Need to give test script access to implementation

+ private data and methods

+ calls made within the SUT

+ calls to external classes/routines

l Call-backs made before and
after the original call

– Call-backs “wrap” original call
– Wrapping gives access to

+ call order; parameters; return value

– Allows test script to
+ check calls made; change return or parameters; throw

exception

SUT

before after

change
parameters

verify
parameters

change return value,
throw exception

ca
ll,

 p
as

si
ng

 p
ar

am
et

e
rs

return, or throw
 exception

12

Testing C++: Why It’s Hard And How To Do It Well
© 1999 IPL Information Processing Ltd

Comparison With Stubbin g
lWrapping occurs around (selected) normal calls
l Stubbing completely replaces (all) normal calls
l Stub and wrapper both considered part of test script

Stubbing

SUT

Dependency

Wrapping

stub

SUT

Dependency

“Before”
wrapper

“After”
wrapper

Selective Wrapping

SUT

Dependency

“Before”
wrapper

“After”
wrapper

wrapped call non-wrapped
call

7

13

Testing C++: Why It’s Hard And How To Do It Well
© 1999 IPL Information Processing Ltd

Uses Of Wrappin g
l Force error conditions for specific test cases

– e.g device errors, out-of-memory, file not found
+ wrap selected calls; modify wrappers to force error condition

l Achieve effective isolation without stubbing
– Don’t want “real” called functions to be invoked
– Want to force specific paths
– Modify generated wrappers to REPLACE original function

+ check call order; check parameters; set return value

l Record calls made
– Debugging/tracing/profiling or verify UML sequence diagrams

+ wrap important calls

+ modify generated wrapper function to log results

l All possible without changing project source code

14

Testing C++: Why It’s Hard And How To Do It Well
© 1999 IPL Information Processing Ltd

Re-use of Test Cases
l Re-using test cases verifies that a derived class has

the same semantics as its base
– public inheritance means “isA”
– re-using test cases verifies that the “isA” holds true

l For methods which are overridden
– re-use black-box test cases

– can write BB test cases for abstract classes, just for re-use
– also applies to templates which are specialised

l For methods which are inherited
– re-use black- and white-box test cases
– also applies to templates which are instantiated

8

15

Testing C++: Why It’s Hard And How To Do It Well
© 1999 IPL Information Processing Ltd

Parallel Inheritance Hierarchies
l Test for derived class inherits from test for base class

– Derived test class calls base test class’s test cases
– Write tests even for abstract classes so they can be re-used
– SUT classes and test classes form parallel inheritance

hierarchies

– Use a “Factory Method” to create objects for the test
– Factory method for abstract class is a pure virtual method

<<abstract>>

Shape

Circle Square

<<abstract>>

ShapeTest

SquareTest

test_case()
shapeFactory()

test_case()
shapeFactory()
squareFactory()

CircleTest
test_case()
shapeFactory()
circleFactory()

16

Testing C++: Why It’s Hard And How To Do It Well
© 1999 IPL Information Processing Ltd

Object-Oriented Covera ge
l A method can be called in more than one context

– On base class or derived class objects
+ behaviour can change because of virtual members

– Many classes are inherently state-based
+ behaviour is different in each state

+ e.g. bounded_stack class has states empty, normal and full.

lMeasure coverage separately in each context
– For each function, statement, decision, expression
– Contexts correspond to derived classes or to states
– Typical coverage requirements

+ strict: 100% statements, decisions in all contexts

+ once-full: 100% statements, decisions in at least one context, all
functions entered in all contexts

+ minimal: 100% statements, decisions (sum across all contexts)

9

17

Testing C++: Why It’s Hard And How To Do It Well
© 1999 IPL Information Processing Ltd

Object-Oriented Complexity
l Dependencies between classes

+ Robert Martin’s Dependency metrics
+ MOOSE (“Sloan School”)

+ MOOD

+ QMOOD

l Use of public/protected/private
virtual/static methods and data

+ MOOD

+ QMOOD

+ lots more raw counts

l Complexity of individual methods
+ cyclomatic complexity, Halstead

+ line and statement counts

Kiv ia t P lo t

MOOSE_DIT

MOOSE_LCOM96

MOOSE_RFC

QMOOD_NOA

MOOD_AHF

MOOD_MHF

Client

ClientProxy

Server

Transaction

W indow

18

Testing C++: Why It’s Hard And How To Do It Well
© 1999 IPL Information Processing Ltd

How Much Testin g?
l Estimation

– How long to isolation test? (Cyc.Complexity, RFC, MHF)
– How long to integration test? (CBO)

lWhere should we concentrate our testing?
– More complex code is more likely to be wrong (RFC)
– Bigger code is more likely to contain defects (LOC, #STMTS)
– Code which is re-used is more important to get right (NOD)
– What makes an object-oriented design good?

+ minimisation of dependencies (AHF)

+ separation of interfaces (Martin metrics, LCOM, CAM)

+ maintainability (DIT, NOC, Hierarchy Quality)

– Combine with coverage data from previous testing
+ identify “hot-spots” with high complexity and low coverage

10

19

Testing C++: Why It’s Hard And How To Do It Well
© 1999 IPL Information Processing Ltd

Cantata++ v2
l IPL’s Cantata++ v2 supports all these solutions

– see www.iplbath.com for more information
Static Analysis
(OO and traditional
complexity metrics)

Wrapping
(easier
integration
testing)

Friends
(white-box
testing)

Stubbing
(isolation
testing)

Coverage
(OO and
traditional
metrics)

20

Testing C++: Why It’s Hard And How To Do It Well
© 1999 IPL Information Processing Ltd

Conclusion
l Testing C++ presents many challenges
l Solutions

• Friends
• Design for Testability
• Instrumentation for Testing

• Re-use of Test Cases

• Enhanced (context-specific) Coverage
• Object-Oriented Complexity Metrics
• IPL’s Cantata++ v2

 1999 Gitek nv page 1 of 6

TESPRA

A practical and integrated method for Test Control, Reporting and Estimation

Johan Swinnen

Gitek nv - interaction through software

St. Pietersvliet 3, B-2000, Antwerpen, Belgium

Tel: +32 3 231 12 90 - Fax: +32 3 226 10 83

E-mail: JS@gitek .be

1 Introduction

1.1 General

This paper is about TESPRA, a practical and integrated method for Test Control, Reporting and Estimation.
TESPRA was originally developed by Corné de Koning, IQUIP Informatica B.V., The Netherlands.

This method is used during (test) projects at Janssen Research Foundation (JRF), a division of Janssen
Pharmaceutica N.V. (a Johnson & Johnson Company), Beerse, Belgium. For JRF, TESPRA has been
extended by Johan Swinnen, GiTek n.v., Antwerp, Belgium.

The first part of the paper will give an overview of TESPRA. The second part shows an example of
TESPRA at JRF.

1.2 Janssen Research Foundation (JRF)

Janssen Research Foundation is a division of Janssen Pharmaceutica, which was founded in 1953. It has 5
products on the WHO list of Essential Drugs (~200). Janssen Pharmaceutica currently produces over 80
pharmaceutical products.

Since 1961 JRF belongs, as a pivot pharmaceutical research company, to Johnson & Johnson. J&J stands for
188 companies in 52 countries with more than 93.000 employees and is active in the consumer, professional
and pharmaceutical sector. Of the annual sales, approximately 10% is dedicated to Research and
Development. In Belgium the research department is grouped in the Janssen Research Foundation.

Gitek started working in projects at JRF in 1998. The first project was ENDO, an application for
registration and analysis of blood samples. Secondly, there was ISIS, where we tested a registration
application for molecular structures. We just finished CAVAS, a system that is used in the laboratories
during experiments on Beagle Dogs. Due to the results of ENDO and ISIS, and based on FPA1, TPA®2 and
TESPRA, CAVAS was a fixed price / fixed date project.

At this moment Gitek is involved in two projects:
• DSM, a management and retrieval application for DNA samples. This is also a fixed price project.
• A-Lims: Advanced Laboratory Information Management System.

1 FPA = Function Point Analysis

2 TPA® = Test Point Analysis

TESPRA

4 november 1999

 1999 Gitek nv page 2 of 6

2 Purpose

The main goals of TESPRA are:
• gaining control over your test project;
• giving detailed and useful reports on the test project;
• making experience-based estimations on future test projects.

If you want information about a test project, you need to do measurements. Keeping measurements costs
time and money.

With this in mind, TESPRA was developed with the following characteristics:
• a limited set of metrics;
• specified information and detailed reporting;
• not time consuming (80/20-rule).

3 When to use TESPRA?

TESPRA is developed for test projects and is a method to be used during test projects where you have full
responsibility for the test activities.

TESPRA can give you information at all levels of the project, from test engineer (e.g. defects) to test
manager (e.g. estimation and progress).

4 What is TESPRA?

TESPRA supports Test Management in controlling the test project, reporting about the test project and
estimating future projects.

To obtain these goals TESPRA is based on 4 pillars:

Figure 1

TESPRA

4 november 1999

 1999 Gitek nv page 3 of 6

As figure 1 shows, we need to do measurements of workload, defects and deliverables. The results of these
measurements are combined in the metrics pillar.

In the next chapters, each pillar will be explained. The pillars are developed in such a way that they can be
used on their own. However, the metrics pillars requires information from the other pillars.

4.1 Workload

The test manager as well as the project manager wants to know the status of the hours spent on the project.
The test manager wants to control the test budget, the project manager wants to have an overview of the
entire project, and therefore needs information about the test project.

In order to get this information, each test team member has to keep a detailed list of the hours spent during
the test project.

The more detailed information you gather, the better an analysis can be made. Of course, the characteristics
of the project determine the level of detail.

TESPRA requires at least the following items:
• Name;
• Project;
• Date;
• Activity;
• Number of hours;
• Description;
• Test phase.

The pillar workload is used for monitoring and controlling the test process. For instance : every time you
gather the information from the test team members, you can determine the project progress and compare it
with the budget.

For reporting you can plot graphics and create reports of this progress. At JRF we use the test management
approach TMap®, which is the standard used by IQUIP Informatica B.V. and Gitek n.v. in the Benelux. See
figure 2.

Figure 2: cumulative hours

An important remark is that recording the workload requires discipline. You can’t remember in detail what
you’ve done two weeks ago. Moreover, if you have the discipline to record it daily, that makes it cost little
time.

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Week

#
 o

f
h

o
u

rs

4 Completion

3 Test Execution

2 Specif ication

1 Preparation

0 Planning & Control

TESPRA

4 november 1999

 1999 Gitek nv page 4 of 6

4.2 Defect Tracker

In the first place defect tracking is meant to monitor and control the defects.

The following items are required for TESPRA:
• ID;
• Date;
• Finder;
• Severity;
• Cause;
• Status;
• Test script;
• Test case;
• Quality attributes;
• Description.

For reporting you can make a progress report where you can compare status versus severity, severity versus
cause and cause versus status. You have an overview of the number of open defects per status and the
number of days per status that a defect stays unsolved. See figure 3.

Figure 3: Progress Report on Defects

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Week

o

f
d

ef
ec

ts

Solved

Continued

Cancelled

Retest

In Repair

Reported

New

TESPRA

4 november 1999

 1999 Gitek nv page 5 of 6

4.3 Deliverables

As deliverables we consider the formal testware.

The required items are:
• Project;
• Directory;
• Subdirectory;
• Name;
• Extension;
• Source;
• Test phase;
• Size;
• Date of delivery;

Depending on the type of deliverable:
• # of pages;
• # of test cases;
• # of entities;
• # of attributes.

The item “source” states whether the document has to be delivered to the test team (by the developers), or
by the test team (to the project leader)..

4.4 Metrics

As figure 1 shows, the three basic pillars can be combined into the fourth pillar.

In the first part of the metrics pillar we gather information from the other pillars, and add other project
characteristics, such as name, start and end date. This results in an enormous treasure of information.
Because reporting all is ineffective, you have to pick the items to report in relation to the message you want
to bring.

The added value of the metrics pillar is the productivity numbers, based on the gathered information. For
instance:
• Workload versus Defects gives the number of defects per hour execution.
• Defects versus Deliverables gives the number of defects per test case.
• Workload versus Deliverables gives the number of the hours spent per deliverable.

Of course this list can be extended and adjusted according to the project characteristics.

The second part contains statistical information: averages, minima, maxima and standard deviations.

5 The Advantages

The best measurable advantage is that TESPRA requires little time. As mentioned before, recording
workload takes almost no time. Defect tracking is daily practice in every test project.

TESPRA enables the test manager to give well-funded advice and detailed reporting to the project leader so
that both are at any time aware of the status of the test project.

The test manager is able to control his test project and the required budget.

The information in the metric pillar is a basis for estimation on future projects, e.g. workload, productivity.

TESPRA

4 november 1999

 1999 Gitek nv page 6 of 6

6 TESPRA at Janssen Research Foundation

This paragraph explains how we used TESPRA to estimate the CAVAS project.

6.1 Estimating Workload

As mentioned before we use TMap® as the approach for our test projects. We used the information on
workload for an estimation as in the next table:

ENDO ISIS CAVAS

Planning and control 36% 24% 21%

Preparation 13% 19% 23%

Specification 27% 23% 29%

Execution 16% 28% 22%

Completion 8% 6% 5%

We estimated a higher percentage for the preparation and specification phase because of the difficulty of the
subject.

According to the FPA and TPA count, 1400 hours were required for the test project.

6.2 Estimating Productivity

ENDO ISIS CAVAS

defects / hour execution 2.12 0.63 1.3

defects / test case 0.24 0.49 0.44

hours specification / deliverable 1.7 1.8 2.2

Also due to the difficulty of the subject, we estimated a lower productivity.

7 Conclusion

In this paper I explained that TESPRA is a method that provides specified information, with a small set of
metrics at little cost.

At the moment TESPRA is being used in several projects in companies in Belgium.

For more information, please don’t hesitate to contact me.

1

TESPRA, nr. 1

TESPRA

November 4th, 1999

Johan Swinnen
Gitek n.v., Antwerp, Belgium

TESPRA, nr. 2

Contents

• Introduction
– History

– Janssen Research Foundation

• TESPRA
– Purpose

– Pillars

• Example at Janssen Research Foundation

• Conclusion

2

TESPRA, nr. 3

Introduction

• Initial setup at ABP, The Netherlands
• Method developed during first projects at JRF

• Janssen Research Foundation (JRF)
– 2.698 employees worldwide

– 1.481 in Beerse, Belgium

– Development of over 80 new

compounds

TESPRA, nr. 4

Introduction

• Janssen Pharmaceutica
– Founded in 1953

– 17.484 employees

– 5 products on WHO list essential drugs

• Johnson & Johnson
– 188 companies

– 52 countries

– 93.100 employees

3

TESPRA, nr. 5

Definition

TESPRA is a practical and integrated method for:

– Test Control
– Test Reporting
– Test Estimation

TESPRA, nr. 6

Purpose

The purpose of TESPRA is

to provide specified information,
with a small set of metrics,
at little cost.

• Use during Test Projects
• Information for all levels

4

TESPRA, nr. 7

Pillars

TESPRA, nr. 8

Workload

Required items:

• Name, Project, Date
• Activity
• Number of Hours
• Description
• Test Phase

5

TESPRA, nr. 9

Workload : Example

Test Execution 16%
Test Scripts 16%
Communication 9%
Logical Specification 6%
Physical Specification 5%
Defect Tracking 5%
… ...

TESPRA, nr. 10

Workload : Example Continued

TMap-Phases

Planning &

Control
24%

Completion
6%

Execution
23%

Preparation
19%

Specification
28%

6

TESPRA, nr. 11

Workload : Example Continued

Tester Date Project Subproject Activity Hours Description Tmap-phase

JSW 29-06-99 02 ISIS 022 RETEST script 2.0 Completion test script 2 Specification

JSW 29-06-99 02 ISIS 022 RETEST execution 1.0 Execution open defects 3 Execution

JSW 29-06-99 02 ISIS 022 RETEST defects 1.0 Update defect tracker 3 Execution

JSW 29-06-99 02 ISIS 022 RETEST execution 2.0 Syntactic Test 3 Execution

JSW 29-06-99 02 ISIS 022 RETEST execution 2.0 Semantic Test 3 Execution

Total 8.0

TESPRA, nr. 12

Defect Tracker

Required items:
• ID, Date, Finder
• Severity
• Cause
• Status
• Test Script, Test Case
• Quality Attribute
• Description

7

TESPRA, nr. 13

Defect Tracker : Example

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Week

of

 d
ef

ec
ts

Solved

Continued

Cancelled

Retest

In Repair

Reported

New

TESPRA, nr. 14

Deliverables

Required items:

• Project
• Directory
• Name, Extension
• Date of Delivery
• Source
• Test Phase
• Size

8

TESPRA, nr. 15

Deliverables

Depending on type of deliverable :

• # of pages
• # of testcases
• # of entities
• # of attributes
• # lines of code

TESPRA, nr. 16

Metrics

• Numbers on productivity

– Workload <=> Defects
• # defects / hour execution

• ...

– Defect <=> Deliverables
• # defects / testcase

• ...

– Workload <=> Deliverables
• # hours specification / deliverable

• ...

9

TESPRA, nr. 17

Metrics

• Project Characteristics

• Statistical Information
– Averages

– Minima, Maxima

– Standard Deviations

TESPRA, nr. 18

TESPRA

Workload
Defect Tracker
Deliverables

Metrics

Control

Reporting

Estimation

10

TESPRA, nr. 19

Estimation at JRF : Workload

ENDO ISIS CAVAS

Planning & Control 36% 24% 21%
Preparation 13% 19% 23%
Specification 27% 23% 29%
Execution 16% 28% 22%
Completion 8% 6% 5%

TESPRA, nr. 20

Estimation at JRF : Productivity

ENDO ISIS CAVAS

defects / hour 2.12 0.63 1.3
defects / testcase 0.24 0.49 0.44
hours specification 1.7 1.8 2.2

/ deliverable

11

TESPRA, nr. 21

Conclusion

TESTPRA is a method

that provides specified information,
with a small set of metrics,
at little cost.

TESPRA, nr. 22

Questions ?

Gitek n.v.

interaction through software

Sint-Pietersvliet

B - 2000 Antwerp

Belgium

JS@gitek.be

1

Extreme Quality:
 What Can We Learn from the

Computer and Video Games Industry?

Thomas A. Drake
Quality Architect, Quality Advocate

Enterprise Management and Information Technology Consulting

Coastal Research & Technology, Inc.

(CRTI)
5063 Beatrice Way

Columbia, Maryland 21044
United States of America

http://www.coastalresearch.com
E-mail: tadrake@earthlink.net

Abstract:

What can we learn from the computer and video games industry that is relevant for quality and
points to the growing necessity for sustained high quality software development? What does the
fascinating and ever exciting world of computer and video games hold out for the future of quality
in our increasingly software-centric information technology systems and services? An industry
survey and analysis of this interesting and highly dynamic segment of the business provides some
perspective on where both testing and quality are heading in a business where “game play” is
everything for both the development house and the customer who “plays” the game.

Key words:

Extreme quality, testing, quality assurance, video games, computer games, console games, lessons
learned, quality centered development methods, software development, creative software product
development and process practice, entertainment technology, software engineering

© Copyright 1999 by Thomas Drake. All Rights Reserved

2

The Computer and Video Game Industry

The computer and video console game industry is making it big today. In 1998, United States video
game revenues grew to some $6.3 billion dollars. This figure is just short of the 1998 U.S box
office sales for movies of $6.95 billion dollars. Last year, some181 million games were sold in the
United States. This number equates to almost two games for every household in the United States
alone.

Sony has reportedly sold some 60 million units of its Playstation video game console worldwide
since its debut in 1995 and is set to introduce its high end Playstation 2 DVD machine next year.
The Nintendo 64 has also sold tens of millions of its own video console machines and is
developing a new high end “4th generation” DVD system – a 256-bit 400 Mhz IBM PowerPC chip
based super console code-named the Dolphin and set to come to market in the year 2000. Sega
recently debuted its “3rd generation” Dreamcast console in the United States on 9 September 1999
and took in approximately 98 million dollars in revenue the very first day. Even the portable 8-bit
Nintendo Game Boy with its low single digit Mhz plus processor has sold over 80 million units
since its 1989 release.

If you think videogames are child’s play think again. The Nintendo 64 game called Zelda: Ocarina
of Time has grossed nearly $140 million by itself since its release. Sony’s game division
contributed some 40 percent of Sony’s total corporate profits. Some analysts are predicting that
computer and videogame revenues for 1999 will top $8 billion and could actually exceed movie
revenues for the first time in history.

Any visit to your local computer or electronic department store will reveal shelf upon shelf of
games that one can buy and play for their computer or video game machine. Many of the computer
games are tuned for the very latest in 3-D hardware cards and high-speed graphic chips. It is now
big business and many, many people now earn their livelihood in this sector of the entertainment
industry.

Examining the employment classified sections of the computer game trade journals and related
industry publications reveals requirements for software engineers, programmers, developers,
interactive media production specialists, game “level” designers, musicians, content providers,
project producers, digital artists, 3D modeling technique artists, tools and technologies
programmers, project managers and test and quality assurance specialists.

It now takes entire teams composed of managers, artists, musicians, interface design specialists,
system architects, developers, test engineers and quality assurance specialists to produce a game
which increasingly looks like a movie production in scope, scale, and enterprise. Many of the most
popular games are developed with multi-million dollar budgets and 12-18 month development life
cycles or longer. Recalls are just not practical, especially for the console side of the industry with
its solid state cartridges and fixed CD-ROM technologies.

And for those of you who remember PacMan or even played the arcade game, the world’s first
perfect score was achieved on PacMan in New Hampshire in the United States earlier in 1999.
Taking nearly six hours to accomplish the feat—on one quarter—Billy Mitchell, 33, a Fort
Lauderdale, Florida U.S. hot sauce manufacturer visiting the famous Funspot Family Fun Center in
Weirs Beach, New Hampshire in the U.S. scored 3,333,360 points—the maximum possible points
allowed by the game. The results will go into the 1999 edition of the Twin Galaxies Official Video
Game & Pinball Book of World Records—which is the official record book for the world of video

3

game and pinball playing. To achieve a perfect game on PacMan, the player has to eat every dot,
every energizer, every blue man and every fruit up to and including board 256, where the game
ends with a split screen.

So what can computer and video games development reveal about software quality? Could we
actually learn something from PacMan? By examining what quality development and testing
means in the context of the computer and video games entertainment industry we may learn
something outside of what we already know or think we know about quality and testing on our side
of the industry in information technology and software development.

Some of the findings may surprise us when we more closely examine how this fascinating segment
of the industry actually performs quality and conducts testing under rather interesting market
conditions and shifting consumer tastes and preferences and ever more powerful game consoles,
CPUs, computers, and 3-D video cards.

Even in the mass-market world of computer and video game software, a lot of successful game
development companies do not write detailed requirements and specifications, many do not freeze
their designs early in development, and many do not even follow a traditional life-cycle. So how do
they build quality in?

It turns out that the best developers and publishers in the computer and video game industry are
using engineering discipline on a wide scale with dramatic results. They are creating and applying
processes in the development of game software with the explicit goal of improving the quality, the
maintainability, stability, extensibility, understandability and visibility of the software. The ability
to consistently deliver on these particular engineering elements and still produce a great game is the
key difference between the average and the superior game development companies.

The primary mission of most developers is to ship a “cool” game and make money and have the
creative and emotional satisfaction in knowing that someone if not thousands or even tens of
thousands of people are playing your game. The desirable shipping date for most games is dictated
by the realities of the retail market and promotions.

In general most game software is not written to be maintainable. The primary goal is getting the
code finished “enough” in order to ship it as a commercial product. Even many game developers
still believe that documentation and coding standards come at the expense of getting the game out
the door sooner. This mindset has worked for some time when teams were relatively small and time
to market was one of the more important issues. But times have changed and it is the high quality
computer and video game companies who have seen the light and run with it.

Why? The software development methods as employed by some of the game publishers and
developers were simply not working very well. Product life cycles have increased dramatically and
maintenance costs have become prohibitive. Most games are not financially successful, most even
miss at least their announced shipping dates and many have significant bugs and a lot require
multiple patches and upgrades.

So the high end game publishers are employing risk management and engineering discipline in an
environment that is constantly changing due to consumer tastes, changing operating systems,
competitive products, and marketing management fiat.

The paper will examine some of the key foundational elements and characteristics that make a good
game succeed. Much of the background and research for this paper is based on industry analysis,
numerous informal discussions with game developers and industry contacts, and my own software

4

and information technology process and product development experience and enjoyment derived
from actual “playing” computer and video games.

Game Play

So what is this “thing” called “game play” and is there an adequate way of defining it let alone
describing it? One of the keys for producing a high quality video console or computer game is
understanding the intent and outcome of the final results first and then designing and building the
game to provide those results. It all comes down to what the game player can see and experience as
part of the “game play” experience. If they cannot tell it is happening, then it might as well not
exist.

Many people in the computer and video game industry have different definitions for “game play.”
Some will use the word playability. Others will list some of the more common attributes generally
assigned to recognized or successful games like “addictive,” “easy to learn” but harder to master,
“customizable,” “fun,” “engaging,” “enthralling,” has multiple “replay” value and more.

But a good game probably has a great sense of timing, and the creation of an atmosphere and
presence for the gamer where imagination can become bigger than the game itself. Others have
described “game play” as an essentially unknown quantity that is apparently realized when a game
sells well and consumers rave about it.

Ultimately the final responsibility for the quality of the game and the game play itself lies in the
hands of the producer with the designer having a major part in the computer and video game
equation. It is the designer that is usually the most concerned about “playability” even before the
first line of code is ever written. But the designer and the producer in these days of multi-million
dollar game development budgets are usually not the same person. Games can be tweaked,
enhanced, and changed during the testing phase but if the basic design of the game is flawed it is
probably too late or there will be significant delays in the release of the game.

Game Design Overview

Again, a good design is fundamental for the development of a high quality game. Some game
developers have even been known to build the player attributes into a table structure and then give
the testers access to the same table when checking out various characters and character attributes.
This type of approach allows for the testers to “feed” their improved attribute combinations and
play experience to the developers who in turn can concentrate on bug tracking and fixing and
performance tweaks and enhancements.

Game algorithms are not just neural networks and learning systems and complex mathematical
structures, but are primarily centered on creating an environment and the appearance of “thought”
from software units. Game play at the code level is much more about replicating behavioral models
rather than scientific “reality” and this focus may reveal some lessons for software engineering and
quality at large.

5

Game State Machines and Impact on Design

Interestingly enough, the best video and computer game development companies use state
machines for building much of their “product.” Finite state machines are natural for any type of
computer program and understanding how to use them effectively to create a computer game is
usually dependent on the level of understanding of the system you are trying to represent, which is
as detailed or as simple as you make it. There are many purposes for using finite state machines in
games but one of the more intricate ones involves modeling unit-level behavior since trying to
simulate human beings is arguably one of the toughest simulations around.

While some other types of systems are designed to more accurately model the way humans think
and learn, sometimes you cannot exceed the simplicity of having a choice, weighing the factors and
deciding, as a human, which one you would make given that choice. Therefore, game design
becomes critical based on the intended outcome.

When it comes to high quality computer or video game design the best “solution” is sometimes the
simplest and not usually the most scientifically accurate. In many cases, clever routines and
interesting algorithms such as neural networks and genetic algorithms are not necessarily the best
solutions if they will not give better results. Choices are often based on what is needed to obtain the
end result and the gaming “experience,” instead of just mimicking the latest trends. The more of
these details that are anticipated through planning and testing for the game, the more immersive the
environment and experience for the game player during game play.

So how does one begin to produce a game? Even in the computer and video games industry
software development is not easy, but there is a lot more work done in the design phase of a game
than in the coding phase.

Creating a Computer or Video Game

It is possible to make a game quickly. It is also possible to make a game cheaply. It is even possible
to make a game that is great. But even in the computer and video game industry you can only pick
two of them. To make a great game quickly will cost a lot of money. A large and experienced
development team will cost money. To make a game cheaply is possible but may take some time to
find bargains on people and technology. A cheap game made quickly will probably flop in the
volatile consumer marketplace.

Computer and video game development is really a marriage of creativity and technology and the
combination of these two elements add a high degree of uncertainty when planning the budget and
schedule for the project. Risks include the following:

• Creative game programmers and designers will suffer from “writer’s block” and artistic and
emotional temperament changes so productivity is affected from time to time

• Skilled developers and designers are in great demand and there are many opportunities in the
computer and video game industry. Sometimes they move on.

• Technology changes very rapidly in this industry and it is frequently necessary to make
unanticipated course corrections during the life of the development effort and particularly in the
middle of the development effort

6

• Developers and programmers are often asked to invent new algorithms or techniques during the
course of the project and it can be difficult to accurately predict, let alone always plan for new
innovations and technology updates

Even in the computer and video gaming industry there are still many business people who cannot
understand why experienced developers cannot make games on time and on schedule. And many
experienced developers do! Developing games is no longer a hobby, it is big business and getting
bigger. Many game publishers and developers are adopting many high quality software production
techniques and practices combined with the necessary process discipline for high quality
development plus some very ingenious state based genetic algorithms and behavioral models.

Legacy Issues in Game Development

Due to market cycle time and game product shelf lifecycles many computer and video game
publishers and developers will understandably rely on legacy code, legacy engines, and legacy
functionality. However, due to the relentless march of technology many of the legacy programming
assumptions can cause more problems during future development. CPU speeds, graphic processors,
3D hardware, 3D algorithms, and 3D engines are evolving so rapidly that there is a real danger of
carrying the assumptions and techniques from the current product into the next. Programmers and
game publishers will naturally feel more comfortable with techniques and tricks that are already
mastered but developing for leading edge technology is a delicate balance of functionality,
performance, design and workflow, so doing better with less in a better way is the new rule for
optimization and performance.

High quality game developers continually fight code entropy – the process by which code becomes
static and unwieldy and full of patches and modifications. If a new fundamental assumption comes
along then the associated code must be thrown away and rewritten. Incremental patching and
updating may seem easier at first but in the end the associated game software becomes much more
difficult and usually results in the production of less robust, more error prone, and inferior code in
the long run.

High quality computer and video game development methodology increasingly recognizes that it
may seem safer to modify existing code that works but the nastiest and most pernicious of bugs
almost always show up in patched up code and NOT in code designed from the ground up. It is
hard work to do the upfront design but in the end it is worth it because the code is simple, elegant,
and just plain right the first time – not the 10th or 11th time!

High Quality Game Development – It Really Is All in the Design!

The first critical stage in game development is working out the design and writing it down. Starting
to code right away might seem like the quickest solution but sooner or later you are going to hit
design and programming snags. Why? Because it very important to completely think through the
game ideas. For extreme quality game development, designing and coding are two separate tasks
that deserve equal attention.

Like a cook preparing ingredients, a good designer lines up the details of the graphics, sounds, and
music that are typically needed during the design phase. Creating a game requires a lot of non-

7

code items. And the development team needs to have a good idea of what those will be and how
they will acquire or create them.

This is also where quality really begins in game development. Many producers in the game
industry still think that quality assurance and testing is something that is done before they go to
beta release. In this mindset testing begins somewhere between the alpha and the beta release. The
basic misconception is that testing and QA are only done after the product is testable. In truth,
testing and QA as practiced by the successful game development companies are an indispensable
and even crucial part of the complete game development cycle from design to release and it begins
with design.

The design is the blueprint for the game product. And guess what? A good QA engineer can take a
well thought out and considered design and create test scripts, automated tests, and all kinds of ad
hoc and user based scenarios necessary to shake down the game. A design for a game can be as
simple as a single end to end event driven thread or involve the complexity of a “state” map with
all of its possible outcomes.

The design usually takes operational form as a running set of sketches, short essays and notes in the
form of the storyline and the interface. Game designers are constantly adding to it until a nearly
complete picture of what the game will be begins to emerge, always being careful not to do too
much.

Beginning designers and novice game development teams often complain that a detailed design is a
waste of time and effort. Experienced teams do not. An experienced team recognizes that it is
always more efficient to think through what’s necessary before you actually program the game
rather than thinking about it afterward, when the thinking is influenced by what was programmed.
A good design document will answer the question posed eight months later by someone asking
about what is needed in a particular section of the game.

The design document also gives the designer the “authority” to promote team interaction while
retaining creative control. The design document requires participation from the programmers, the
artists, the content creators and other team members and any additions or modifications are
incorporated into the design document as part of the peer review process. Anyone that wants to
make a change needs to coordinate with the designer who is in the position to incorporate the
approved changes in a logical and consistent manner while maintaining the integrity of the player
interface, game concept and that all important game play.

The design phase includes all of the key game project team members but the designer(s) retain
“concept leadership” in order to prevent the loss of focus and maintain the integrity of a consistent
design. A consistent design which “holds” the game framework together is usually superior to the
far greater risk of including a random and chaotic set of personal preferences.

Most design documents in high quality computer and game development have a “middle” period.
This period usually revolves around finishing the design document and maintaining the design
document and the design concept. But in the end, the most important thing to consider when
developing games is to finish them. A finished game with less flash and dazzle is better than no
game at all.

A high quality game will usually succeed if it is unique either by storyline, game dynamics, or even
graphics. In order to have any chance of success a game usually must provide a discernible

8

difference from everything else out there. Remaking a clone of Asteroids is not a good way to go
unless you are into “retro” or classic gaming!

Even with a solid design not every game is a best seller given the level of sophistication, polish,
and uniqueness that such a product requires combined with the buying vagaries of the consuming
public. Even if a game is not up to these standards there are many outlets beyond the retail realm
for showcasing and receiving credit and recognition. Uniqueness is one way. Being unique is a
general code word for simply offering the consumer of your game a specific reason to choose that
game when they compare it to others. Design is fundamental in this equation.

Fundamentals of Game Design

So what happens once coding does begin for a game? All of the steps in the design stage apply to
coding plus a few more. A typical mistake made by many game programmers is not commenting
the code. Game programming requires a lot of clever work arounds, much more so than other
forms of programming, and requires serious optimization many times late in the development
cycle. This means commenting is even more important for games. Creating code that can be
applied to other games later demands well-commented and very open ended and modular code.

Everyone has ideas that need development. Games are perhaps one of the most creative mediums
ever. They require music, sound, art, storytelling, writing, programming, and more. This requires a
lot of brainstorming. Every creative person needs to come up with ideas, and with games even
more so, as this medium has perhaps the most fickle, demanding, and even unforgiving customers
in the marketplace. The key is to be very open and write down whatever comes to mind. Most
game designers and developers try to focus on different things, such as adventures they have had,
non-game things they like, movies they have seen, and books they have read. Many developers are
comparison developers and are constantly in stores reading the backs of the game boxes, evaluating
demos, and just playing other games.

In a creative medium like this, borrowing someone else’s ideas is how a lot of them create. When a
new game is written, it attempts to incorporate (rip off) all of the current ideas out there and then
move beyond them, only to create new features which themselves are incorporated into other
games. This is how games evolve. Many developers also spend a lot of time reading non-technical
materials. A high quality programmer of games is in many respects a renaissance person. They
must have an understanding of many different elements involving the arts, technology, and the
general world around them. How can one write a game about geopolitics if they haven’t read about
or understand the world around them?

So just what is game design? Game design concerns one thing above all else and that is interaction.
What separates games from similar creative mediums like art, movies, music, and books, is that the
player interacts with the medium. You don’t stare at, or just listen to a game. You control and
interact with the game. Therefore game designers and producers have the challenge of creating a
product which entices people to play, and at the same time, provide the storyline, the emotional
feel, the realistic tone, and the other qualities all other creative mediums give us. It is clearly a tall
order, but this is what makes creating games so much fun for most game developers.

Playing means making decisions. Therefore the design of most games demands the creation of
situations and scenarios where the game player decides what to do and performs that action. This
can be as simple as PacMan where the player has to decide whether to go UP, DOWN, LEFT, or

9

RIGHT using their joystick or keyboard or as complex as Civilization II juggling the myriad of
variables in establishing a nation or country as the leader.

This is what makes games so appealing – a set of decisions which the player controls and, based on
their skill and intelligence, by which they ultimately decide the outcome of their game. The game
designer tries to provide an easy way for the player to make decisions during the course of the
game, and then provide interesting outcomes that in turn lead to new situations and the whole
process starts over.

Most high quality game designers and programmers try to keep the following things in mind in the
creation and development of a game.

• Is there interaction?

• Does my design create a decision dilemma for the player or not?

• Are clear situations provided to the player?

• Is there enough information in the game (graphical/sound/text) to illustrate to the player what
situation they are in?

• Are they provided with the proper information to make decisions?

• Is the interface by which the player commands the game clear and easy to use?

• Does it provide the proper information to them to help them input desired actions?

• Do the outcomes of the player’s decisions end or continue the game?

• Does the skill and intelligence of the player produce the outcome? Random outcomes not based
on the skills of the player’s decisions are not games. Players must know they are controlling the
outcome.

• Is it entertaining? If it isn’t fun, they won’t play it.

In short, the best game developers concentrate on providing interaction, creating player control of
their outcomes based on their skills and intelligence and make it fun.

Game Coding

So how does a game developer turn ideas into finished games and finished games into products that
can be sold in the consumer marketplace? The dominant language of game development is C and
C++. Almost every game you see is written in these languages. C and C++ are also good languages
to write in because it is relatively easy to port the C or C++ code from one platform to another.
Even though “easier” hybrid languages exist, C and C++ are still the dominant game development
languages. Many sophisticated but integrated development environments have served to make it
even easier.

What about the use of Assembly language? Since it is the fastest language, some Assembly
language is used in game development. Assembly is usually used to create subroutines to call from
C or C++ for sections requiring intensive speed. Assembly language is the most difficult to
understand. The general law of computing languages states: The lower the level of the language,
the faster it is, and the harder it is to program in it. With its portability and easier learning curve, C

10

and C++ are much easier than Assembly. However, no one said programming in C or C++ was
easy either, just easier than Assembly and some game developers even work with Visual Basic and
even other languages and scripts. With the advent of the Internet and online gaming, much of the
multimedia content and game applications are increasingly written in Java, JavaScript or Visual
Basic and even variants of LISP!

So what are some of the programming basics and design fundamentals for high quality computer
and video game development? Part of what is fundamentally necessary beyond graphics, core
programming, and animation creation centers on artificial intelligence. Artificial intelligence
centers on the creation of intelligent reactions by the game of the situation and the decisions and is
most commonly used to create computer opponent assessment and decision logic trees. It is not an
arcane art and game programmers have developed many established methods.

TESTING and QA

So how do the game developers and producers test and ensure the appropriate level of quality
assurance? A buggy game released to early to market is very risky and the gamer will quickly
spread the negative word around. Before the game developer shows the world their game they need
to make sure there are no bugs or problems. Even moderate beta testing will let the developer know
if there are any problems prior to releasing it in order to make sure it runs properly.

Testing is a huge and vital part of the computer and video game development process. In fact, most
games now fully credit the entire development team and most game development efforts have
dedicated quality assurance and testers. In conversations that I have had with video and computer
game developers all of them without fail emphasized the critical and indispensable role that QA
and test plays in getting it right before it goes out the door. So how do video and computer game
producers and developers “play” test their code?

It is usually done in one of two ways. The first is through the use of actual consumers and
observing them in a usability lab or room or by sending out “beta” copies of the game and
soliciting feedback in the form of e-mail, a questionnaire or via a hot-line phone number. Some of
the more innovative producers and developers have even been known to use Internet Relay Chat
(IRC) to obtain feedback! There is also something called “focus” testing which is usually
conducted by the marketing team and usually involves showing an early release or demonstration
version of the game or game concept to a targeted group and getting feedback. But by far it is “in
house” testing and quality assurance combined with temporary play testers that bear the brunt of
play testing. This type of testing usually requires much more formal observation and recording of
the results.

What are the different types of testing? Many of these are quite familiar to those on the information
technology software development side of our industry, including unit testing, component testing,
white box versus black box testing and even gray box testing, system testing, and integration
testing. So what is different about how testing is conducted for computer and video games
development?

First is compatibility testing. Most game publishers and developers save for the very largest cannot
afford to have all of the hardware platforms around for testing and many contract out. It is a bit
easier with the console systems with their single architectures. It is also usually the case that the
entire development team has been working on a high-end machine. This does permit faster and

11

more rapid development, but then the game has to run on a minimum configuration even if a
maximum is recommended.

Chipsets are also another issue in testing. Does the game rely heavily on 3D technology? What
about sound drivers? Music formats? What about multiple drivers for certain types and kinds of
cards? Bugs found early during this testing are less likely to end up as features later.

High quality game publishers also practice extensive functional and automated testing. This works
best for those games just after alpha release where the game is predictable and the functionality is
essentially locked. Regression testing each internal release provides for an integrity check of the
design and any code changes or additions that were made since the last baseline. Stress and load
testing is also used for uncovering various types of resource bugs and memory leaks.

There is also ad hoc testing. This usually takes the form of version play testing. Testers can try
different things that the developer or designer had not considered. Many undocumented features
have been discovered using this type of testing. A form of ad hoc testing is dirty testing. The intent
of dirty testing is to break the software. This usually involves revealing holes in the interface,
things the designer or the programmer had not considered and attempts to simply crash the game
and uncover “show stopper” logic faults.

Many games today are built with scripting engines. But as is usually the case, the script changes.
Depending on the particular scripting engine, adding some extra functionality can break the script.
The way the functionality is called can break the script during modifications later. A good QA and
test team will test the engine by deriving test cases directly from the scripting engine.

Play Testing – The Heart and Core of Computer and Video Game Testing

The biggest difference between computer and video game testing and traditional software testing is
probably in “play testing.” The timing for conducting play testing is very important. The game
must be stable enough (sound familiar?) so the QA or play tester does not have to spend too much
time noting all of the instruction level or operational bugs, yet immature enough to allow for those
design and logic changes that can still be made in time.

Initial play testing usually involves setting the game to the shortest interval if that is possible. If it
is a graphically oriented adventure game then several different scenarios or environments are
executed. In addition, “coverage” play testing is critical and this includes full end to end event
triggered functionality. If there are bonus or non-linear environments, shortcuts are usually
provided so that these environments are also fully tested. Not testing all the event-triggered paths
can result in games that do not behave correctly. For example, a game called “Impossible Mission”
was released back in the 1980s for the Atari 7800 game machine and it was literally impossible to
finish as the logic for the final mission was not provided as part of the live executable.

But what if the testers at this point in the development cycle find that the game is not up to par?
This is the time that QA usually calls a strategy meeting with the production, design, and test
groups and they all review the “usability” results and analysis. Some of the questions that are
examined would include the following:

• Are the testers complaining about the same things that earlier testers complained about?

12

• Are there still bugs and problems in the game? If so, these bugs will come back to haunt the
team in the form of the very public product reviews in the trade magazines and on-line chat and
newsgroups!

• How long does it take before the play testers are bored with the game? A good testing schedule
in the video and computer game industry involves a dinner break every 4 hours and 15 minute
to half an hour breaks every 2 hours or so. After a week of play testing a formal group session
with all the critical personnel is typically held to discuss the outcome. Of course there are many
informal sessions in between.

So what does play testing really provide as value and as a benefit? Play testing should provide the
producer with as much information and data as possible for making all of the necessary game
tweaks and adjustments. This type of testing is designed to provide much more information than
just lockup and crash problems. Bug reports typically are categorized by severity but also include
an area for subjective feedback and opinion or comments. Why? It is the test department that is
playing the games as their livelihood. They are paid to sit and play the games all day! When a
significant number of play testers are literally begging to take a copy home or are staying and
playing for hours on end there is probably a good game to market.

The Critical Role of QA

So what is the real role “played” by QA in the development of a computer or video game? The
primary objective of QA is in really making sure that the right “mix” of testing talent is available.
They are also the binary no/go gates for that all important release quality. They also ensure that the
vital information and feedback loops are running at or near full bandwidth on the project and are
constantly pulsing the project in order to make sure it meets its goals.

It turns out that turnover for testers is fairly high in the industry so QA must be able to identify and
hire and retain skilled testers. What are some of the necessary attributes for a qualified tester? They
include excellent oral and written communication skills. These people side skills are fundamental
and the “glue” that makes all the difference. If you hire someone who cannot write understandable
bug reports then communication is disabled. A qualified tester should also possess a variety of
video and computer gaming experience and domain knowledge. Game genres include sports games
as well as simulations and puzzle games and educational games. However, testers with less
experience in these areas are still valuable as they can concentrate on the interface and playability
issues that many game experts might just take for granted or even overlook. The producer and
QA’s biggest task is taking all of the bug reports and “play” reports and figuring out what will
make the most impact on the game with the least disruption upon the design and the game’s release
schedule.

What kind of environment is ideal for game play testers and QA game engineers for the most
successful of the game development companies? Testers and QA personnel are taught to stick to
their opinions and feedback. This is true even if the producers due to marketing pressure or
schedule constraints attempt to prevent them from logging bug reports or “negative” feedback.
Some producers have been known to go to great lengths to get their game through testing and it is
testing and QA’s job to report ALL of the issues that are important. But testers and QA cannot
become hostile either with the programmers and developers, even when sticking to their guns. If a

13

tester is perceived as something other than thoughtful or considerate they may get very little if any
cooperation from the developers.

Testers should give both the negative and the positive feedback without having to worry about how
the producers or the developers will react or feel about it. The whole team is ultimately responsible
for the quality of the game but it is QA and the testers who are accountable for that quality during
development. Testing is designed to find errors in game play, the functional logic sequences, and in
the interfaces and this information and feedback is vital in the managing of the game development
and game production life cycle.

So what does a typical test group look like in the computer and video game industry? Generally,
testing teams consist of one lead, an assistant lead and 3-8 full-time testers depending on the type
and complexity of the game. There is usually a testing lab and they are usually located in an area
that encourages and facilitates communication and information exchange among and between
themselves. Note that many game testers are not actually trained in formal software testing
methodologies and most of their test training is acquired on the job. Again, does this sound
familiar?!

The assignment and location of testers and QA personnel with the project developers is generally
not encouraged as it often hinders objective feedback. But the testers do need to communicate with
the developers and to understand the fundamental architecture and game play requirements in order
to discover and identify the bugs. The ideal testing environment for a computer or video game in
this industry is a combination of intense game play, communication, and discussion dedicated to
eliciting and soliciting game play oriented comments and feedback.

The Importance of Teams

What was once the province of one or two people is now the province of 25, 30 or even more for
the number of full-time people working on a game project. Development times are now 1 –1.5
years for arcade style games, while much more complex games can take from 18 months to 2.5
years or even more. Game development is much more like film and TV production and the
development teams are composed of many different specialists. The mission of the team is to create
a great product. The team’s management has the job of creating and maintaining the team. Based
on informal interviews and research conducted by the author some key high quality management
process practices characteristic of teams in the computer and video game industry have emerged as
follows:

• Bottom up approach/top down design – Team members are asked what they can do for a
schedule instead of telling them what to do.

• A planning phase takes place before one line of code is ever written.

• The design is completely shared with the team. The designer(s) listens and questions as the
functional specifications are created. All team members are represented in these meetings.

• All team members know what they are supposed to be doing from day one, every day.

• There is a built-in and managed QA feedback loop, not just for after delivery but throughout the
development lifecycle so problems can be caught while there is still time to fix them.

• Writing down and recording all the things the project team agrees on

14

The Importance of Engineering Process and Practice Discipline

High quality game development and delivery is fundamentally centered on engineering discipline
both at the management level and the technical level and still providing for the necessary freedom
to create. Some of the keys are programming standards, peer reviews, and process working groups.

The importance of programming standards cannot be easily overlooked. They fundamentally make
sure that poor coding practices are not showing up in new games. The payoff is in maintenance and
improvements.

Peer reviews permit the removal of defects from the software product early and more efficiently. A
side effect of peer reviews is creating a better understanding of the game product elements and the
defects that might actually be prevented. Peer reviews are fundamentally a mechanism for
development level process improvement. The primary value of peer reviews permits the discovery
of problems and potential problems before they are found in the testing stage. A less visible but
very important alternative benefit is that all the participants in a peer review process learn to avoid
both common and subtle errors in their own work.

Peer reviews are never part of the personnel review process. The high end game publishers have
discovered that peer reviews are finding important problems that have traditionally defied other
debugging and testing methods. As people gain experience with the peer review process many find
that they are uncovering problems earlier and earlier in the development process and uncovering
bugs that had traditionally taken many weeks during beta testing.

Another key process activity that the high end game publishers have adopted is process working
groups focused on game concept, requirements definition, design, interface and implementation,
and maintenance. All of these processes have feedback mechanisms designed for continual
improvement.

Software testing plans are initially created in the design phase of the process and then completed in
the implementation phase. High quality software test plans describe both the methodology and the
elements that make up the actual tests for the games based on the requirements and the game play.

What are game publishers finding as real and lasting benefits from this process? One of the biggest
is morale. One of the more important benefits is having all the project baseline requirements
written down and agreed to by all key team personnel. When a requirement change occurs, the QA
team can document the change and inform all parties concerning the impact of the change. It also
permits informed cost and schedule tradeoffs and reduces the chaoticness of feature creep. Even
thinking about the requirements and the associated specifications heads off problems down the
road.

When the development team has a full conceptual design that is documented, prototyping
technology available, and a full tracking of all tasks plus the full creative input from the graphics,
content, scripting engine, sound, music, and development engineers and QA, then the management
of all the combined resources is much more complete and effective, with much fewer variables, and
less subject to surprises.

The key for quality is ultimately reducing the time it takes to find bugs. By completely planning the
product prior to implementation, through the use of peer reviews, and implementing release go/no
go gates then the computer and video games industry will continue to raise the bar of quality.

15

One of the real benefits of this process has allowed many game developers to experience a normal
day instead of grueling 16 hours days or longer ending up in a project death march. Team members
now have the opportunity to contribute in many other ways because the environment and the time
support it.

And finally the cowboy coder mentality is no longer necessary or even desirable. The entire team
works together for a common purpose without the need for last minute heroics. It takes much of the
chaos, vagaries, variabilities, and uncertainties out of the picture and allows the team to really focus
on producing a game that satisfies the game player, generates revenue and creates great game play.

Conclusion

The world of computer games is as competitive a business as there is these days. Working 60-80
hour weeks, for as long as two years or more is no longer unusual. That is the norm in any
extremely competitive business. Since getting an advance is tough to do, a typical developer puts
in a lot of hours. Just a few years ago, people could make it in this business without making that
kind of sacrifice, but that is not possible any longer in most cases.

Developing a high quality game that receives critical acclaim and makes money can be brutal given
the seriousness of the business and the time it takes and the competition. Game development,
unlike a lot of other programming, is at the forefront of the technology curve. That is why you see
games pushing the hardware limits of computer and video console games more than the typical
word processor. So much of what we see done today was figured out by someone only yesterday.

The bottom line in computer and video game quality is centered on achieving the best results, not
necessarily having the most fashionable routines. The game developer mantra is, “If it looks right,
it is right.” Computer and video games are never perfect replicas of reality. Given the extreme
nature of developing computer and video console games in this industry the trick is drawing a line
for “good enough” and then making that “good enough” reality. The best in breed in the computer
and video games industry depend very heavily on QA and test to make sure that the game really is
“good enough.”

16

Additional References

Books

Caputo, Kim. CMM Implementation Guide: Choreographing Software Process Improvement.
Addison Wesley, 1998.

Yourdon, Edward. Death March: The Complete Software Developer’s Guide to Surviving “Mission
 PTR Prentice Hall, 1997.

Maguire, Steve. Debugging the Development Process: Practical Strategies for Staying Focused,
Hitting Ship Dates, and Building Solid Teams. Microsoft Press, 1994.

McConnell, Steve. Software Project Survival Guide. Microsoft Press. 1997.

McConnell, Steve. Code Complete: A Practical Handbook of Software Construction. Microsoft
Press, 1993.

McConnell, Steve. Rapid Development: Taming Wild Software Schedules. Microsoft Press, 1996.

Bennatan. E.M. On Time, Within Budget: Software Project Management Practices and Techniques.
John Wiley & Sons, 1995.

Magazines

Game Developer, Miller Freeman, Inc. http://www.gdmag.com

Newsweek, “Who’s Got Game?” 6 September 1999. http://www.newsweek.com

Next Generation, Imagine Media, Inc. http://www.next-generation.com

PC Gamer, Imagine Media, Inc. http://www.pcgamer.com

Wired, http://www.wired.com/wired/current.html

Industry

Classic Gaming Expo ’99. Informal/Non-Attribution Interviews and Discussions with various
computer and video game developers and publishers. Las Vegas, Nevada, 14-15 August 1999.

Slide 1

Thomas DrakeThomas Drake 11Quality - Software Engineering’s Middle NameQuality - Software Engineering’s Middle Name

Extreme Quality - What Can We Learn from the Computer And Video Games Industry?Extreme Quality - What Can We Learn from the Computer And Video Games Industry?

 EXTREME QUALITY:
What Can We Learn from the

Computer and Video Games
Industry?

 EXTREME QUALITYEXTREME QUALITY::
What Can We Learn from theWhat Can We Learn from the

Computer and Video GamesComputer and Video Games
Industry?Industry?

Thomas Drake
Quality Architect/Software Archaeologist

Enterprise Management and Information Technology Consulting
Coastal Research & Technology, Inc.

Quality Week Europe 1999
tadrake@earthlink.net

© Copyright 1999 by Thomas Drake. All Rights Reserved

Thomas DrakeThomas Drake
Quality Architect/Software ArchaeologistQuality Architect/Software Archaeologist

Enterprise Management and Information Technology ConsultingEnterprise Management and Information Technology Consulting
Coastal Research & Technology, Inc.Coastal Research & Technology, Inc.

Quality Week Europe 1999Quality Week Europe 1999
tadrake@earthlink.nettadrake@earthlink.net

© Copyright 1999 by Thomas Drake. All Rights Reserved© Copyright 1999 by Thomas Drake. All Rights Reserved

Slide 2

Thomas DrakeThomas Drake 22Quality - Software Engineering’s Middle NameQuality - Software Engineering’s Middle Name

Extreme Quality - What Can We Learn from the Computer And Video Games Industry?Extreme Quality - What Can We Learn from the Computer And Video Games Industry?

The Computer and Video Games
Industry

The Computer and Video GamesThe Computer and Video Games
IndustryIndustry

þ Big business and getting bigger!
þ Projected revenues in the U.S. of $8 billion for 1999
þSony, Nintendo, Sega, Macs, PCs, handhelds
þ Incredible technology - creating the envelope
þ Remember PacMan?!
þWhat can we learn from this industry for quality?

þþ Big business and getting bigger!Big business and getting bigger!
þþ Projected revenues in the U.S. of $8 billion for 1999Projected revenues in the U.S. of $8 billion for 1999
þþ Sony, Nintendo, Sega, Macs, PCs, handheldsSony, Nintendo, Sega, Macs, PCs, handhelds
þþ Incredible technology - creating the envelopeIncredible technology - creating the envelope
þþ Remember PacMan?!Remember PacMan?!
þþWhat can we learn from this industry for quality?What can we learn from this industry for quality?

Slide 3

Thomas DrakeThomas Drake 33Quality - Software Engineering’s Middle NameQuality - Software Engineering’s Middle Name

Extreme Quality - What Can We Learn from the Computer And Video Games Industry?Extreme Quality - What Can We Learn from the Computer And Video Games Industry?

An Example of Moore’s Law in
Action!

An Example of Moore’s Law inAn Example of Moore’s Law in
Action!Action!

Slide 4

Thomas DrakeThomas Drake 44Quality - Software Engineering’s Middle NameQuality - Software Engineering’s Middle Name

Extreme Quality - What Can We Learn from the Computer And Video Games Industry?Extreme Quality - What Can We Learn from the Computer And Video Games Industry?

Game PlayGame PlayGame Play

þ The heart of the game
þ All about intent and outcome
þ Attributes for a good game
þ Importance of design

þþ The heart of the gameThe heart of the game
þþ All about intent and outcomeAll about intent and outcome
þþ Attributes for a good gameAttributes for a good game
þþ Importance of designImportance of design

Slide 5

Thomas DrakeThomas Drake 55Quality - Software Engineering’s Middle NameQuality - Software Engineering’s Middle Name

Extreme Quality - What Can We Learn from the Computer And Video Games Industry?Extreme Quality - What Can We Learn from the Computer And Video Games Industry?

Game Design OverviewGame Design OverviewGame Design Overview

þ Design is fundamental!
þ Game algorithms
þ Behavioral modeling
þ Attributes - The key for testing

þþ Design is fundamental!Design is fundamental!
þþ Game algorithmsGame algorithms
þþ Behavioral modelingBehavioral modeling
þþ Attributes - The key for testingAttributes - The key for testing

Slide 6

Thomas DrakeThomas Drake 66Quality - Software Engineering’s Middle NameQuality - Software Engineering’s Middle Name

Extreme Quality - What Can We Learn from the Computer And Video Games Industry?Extreme Quality - What Can We Learn from the Computer And Video Games Industry?

Game State Machines and Impact
on Design

Game State Machines and ImpactGame State Machines and Impact
on Designon Design

þ State is everything
þ Contribute to the gaming experience
þ The greater the details, the greater the experience
þ Best solutions are the simplest - not necessarily the

most scientifically accurate

þþ State is everythingState is everything
þþ Contribute to the gaming experienceContribute to the gaming experience
þþ The greater the details, the greater the experienceThe greater the details, the greater the experience
þþ Best solutions are the simplest - not necessarily theBest solutions are the simplest - not necessarily the

most scientifically accuratemost scientifically accurate

Slide 7

Thomas DrakeThomas Drake 77Quality - Software Engineering’s Middle NameQuality - Software Engineering’s Middle Name

Extreme Quality - What Can We Learn from the Computer And Video Games Industry?Extreme Quality - What Can We Learn from the Computer And Video Games Industry?

Creating a Computer or Video GameCreating a Computer or Video GameCreating a Computer or Video Game

þ Pick two!
ä Quickly, cheaply, great (fast, cheap, quality)

þ A marriage of creativity and technology (risk)
• Creative game programmers and designers will suffer from “writer’s block”

and artistic and emotional temperament changes so productivity is affected
from time to time

• Skilled developers and designers are in great demand and there are many
opportunities in the computer and video game industry. Sometimes they move
on.

• Technology changes very rapidly in this industry and it is frequently
necessary to make unanticipated course corrections during the life of the
development effort and particularly in the middle of the development effort

• Developers and programmers are often asked to invent new algorithms or
techniques during the course of the project and it can be difficult to
accurately predict, let alone always plan for new innovations and technology
updates

þþ Pick two!Pick two!
ää Quickly, cheaply, great (fast, cheap, quality)Quickly, cheaply, great (fast, cheap, quality)

þþ A marriage of creativity and technology (risk)A marriage of creativity and technology (risk)
•• Creative game programmers and designers will suffer from Creative game programmers and designers will suffer from ““writerwriter’’s blocks block””

and artistic and emotional temperament changes so productivity is affectedand artistic and emotional temperament changes so productivity is affected
from time to timefrom time to time

•• Skilled developers and designers are in great demand and there are manySkilled developers and designers are in great demand and there are many
opportunities in the computer and video game industry. Sometimes they moveopportunities in the computer and video game industry. Sometimes they move
on.on.

•• Technology changes very rapidly in this industry and it is frequentlyTechnology changes very rapidly in this industry and it is frequently
necessary to make unanticipated course corrections during the life of thenecessary to make unanticipated course corrections during the life of the
development effort and particularly in the middle of the development effortdevelopment effort and particularly in the middle of the development effort

•• Developers and programmers are often asked to invent new algorithms orDevelopers and programmers are often asked to invent new algorithms or
techniques during the course of the project and it can be difficult totechniques during the course of the project and it can be difficult to
accurately predict, let alone always plan for new innovations and technologyaccurately predict, let alone always plan for new innovations and technology
updatesupdates

Slide 8

Thomas DrakeThomas Drake 88Quality - Software Engineering’s Middle NameQuality - Software Engineering’s Middle Name

Extreme Quality - What Can We Learn from the Computer And Video Games Industry?Extreme Quality - What Can We Learn from the Computer And Video Games Industry?

Legacy Issues in Game DevelopmentLegacy Issues in Game DevelopmentLegacy Issues in Game Development

þ Issue of market cycle time and shelf life
þ Problem of code entropy
þ Impact of incremental patching and upgrading
þ Doing it right the first time - design is everything
þ Simple elegant solutions - stand the test of time and

the marketplace

þþ Issue of market cycle time and shelf lifeIssue of market cycle time and shelf life
þþ Problem of code entropyProblem of code entropy
þþ Impact of incremental patching and upgradingImpact of incremental patching and upgrading
þþ Doing it right the first time - design is everythingDoing it right the first time - design is everything
þþ Simple elegant solutions - stand the test of time andSimple elegant solutions - stand the test of time and

the marketplacethe marketplace

Slide 9

Thomas DrakeThomas Drake 99Quality - Software Engineering’s Middle NameQuality - Software Engineering’s Middle Name

Extreme Qual ity - What Can We Learn from the Computer And Video Games Industry?Extreme Qual ity - What Can We Learn from the Computer And Video Games Industry?

High Quality Game Development -
It Really is A ll in the Design!

H igh Quality Game Development -H igh Quality Game Development -
It Really is A ll in the Design!It Really is A ll in the Design!

þ Writing it down
þ Ingredients
þ Becomes the master blueprint
þ QA role - creation of test scripts, automated tests,

ad hoc and user based “play” scenarios
þ Operational form of design - sketches, short

essays/stories, notes, interface details
þ Promotes team interaction/creative control
þ Concept leadership and focus

þþ Writing it downWriting it down
þþ IngredientsIngredients
þþ Becomes the master blueprintBecomes the master blueprint
þþ QA role - creation of test scripts, automated tests,QA role - creation of test scripts, automated tests,

ad hoc and user based “play” scenariosad hoc and user based “play” scenarios
þþ Operational form of design - sketches, shortOperational form of design - sketches, short

essays/stories, notes, interface detailsessays/stories, notes, interface details
þþ Promotes team interaction/creative controlPromotes team interaction/creative control
þþ Concept leadership and focusConcept leadership and focus

Slide 10

Thomas DrakeThomas Drake 1010Quality - Software Engineering’s Middle NameQuality - Software Engineering’s Middle Name

Extreme Quality - What Can We Learn from the Computer And Video Games Industry?Extreme Quality - What Can We Learn from the Computer And Video Games Industry?

Fundamentals of Game Design (1)Fundamentals of Game Design (1)Fundamentals of Game Design (1)

þComments and feedback
þ Interaction, interaction, interaction
þDecision situations and scenarios (PacMan/Civilization)
þSome desirable design considerations

• Is there interaction?
• Does my design create a decision dilemma for the player or not?
• Are clear situations provided to the player?
• Is there enough information in the game (graphical/sound/text)

to illustrate to the player what situation they are in?
• Are they provided with the proper information to make decisions?

þþ Comments and feedbackComments and feedback
þþ Interaction, interaction, interactionInteraction, interaction, interaction
þþDecision situations and scenarios (PacMan/Civilization)Decision situations and scenarios (PacMan/Civilization)
þþ Some desirable design considerationsSome desirable design considerations

•• Is there interaction?Is there interaction?
•• Does my design create a decision dilemma for the player or not?Does my design create a decision dilemma for the player or not?
•• Are clear situations provided to the player?Are clear situations provided to the player?
•• Is there enough information in the game (graphical/sound/text)Is there enough information in the game (graphical/sound/text)

to illustrate to the player what situation they are in?to illustrate to the player what situation they are in?
•• Are they provided with the proper information to make decisions?Are they provided with the proper information to make decisions?

Slide 11

Thomas DrakeThomas Drake 1111Quality - Software Engineering’s Middle NameQuality - Software Engineering’s Middle Name

Extreme Quality - What Can We Learn from the Computer And Video Games Industry?Extreme Quality - What Can We Learn from the Computer And Video Games Industry?

Fundamentals of Game Design (2)Fundamentals of Game Design (2)Fundamentals of Game Design (2)

• Is the interface by which the player commands the game clear
and easy to use?

• Does it provide the proper information to them to help them
input desired actions?

• Do the outcomes of the player’s decisions end or continue the
game?

• Does the skill and intelligence of the player produce the
outcome? Random outcomes not based on the skills of the
player’s decisions are not games. NOTE: Players must know they
are controlling the outcome.

• Is it entertaining? If it isn’t fun or engaging, they won’t play it!

þ In short, the best game developers concentrate on
providing interaction, creating player control of their
outcomes based on their skills and intelligence and
make it fun.

•• Is the interface by which the player commands the game clearIs the interface by which the player commands the game clear
and easy to use?and easy to use?

•• Does it provide the proper information to them to help themDoes it provide the proper information to them to help them
input desired actions?input desired actions?

•• Do the outcomes of the playerDo the outcomes of the player’’s decisions end or continue thes decisions end or continue the
game?game?

•• Does the skill and intelligence of the player produce theDoes the skill and intelligence of the player produce the
outcome? Random outcomes not based on the skills of theoutcome? Random outcomes not based on the skills of the
playerplayer’’s decisions are not games. NOTE: Players must know theys decisions are not games. NOTE: Players must know they
are controlling the outcome.are controlling the outcome.

•• Is it entertaining? If it isnIs it entertaining? If it isn’’t fun or engaging, they wont fun or engaging, they won’’t play it!t play it!

þþ In short, the best game developers concentrate onIn short, the best game developers concentrate on
providing interaction, creating player control of theirproviding interaction, creating player control of their
outcomes based on their skills and intelligence andoutcomes based on their skills and intelligence and
make it fun.make it fun.

Slide 12

Thomas DrakeThomas Drake 1212Quality - Software Engineering’s Middle NameQuality - Software Engineering’s Middle Name

Extreme Quality - What Can We Learn from the Computer And Video Games Industry?Extreme Quality - What Can We Learn from the Computer And Video Games Industry?

Game CodingGame CodingGame Coding

þ C and C++
þ Integrated development kits
þWant speed with spectacular? - use Assembly!
þ The general law of computing languages states: The

lower the level of the language, the faster it is, and
the harder it is to program in it

þ Online gaming - Java, Javascript, Visual Basic, LISP
þ AI - Decision Logic Trees/Assessment Tables

þþ C and C++C and C++
þþ Integrated development kitsIntegrated development kits
þþWant speed with spectacular? - use Assembly!Want speed with spectacular? - use Assembly!
þþ The general law of computing languages states:The general law of computing languages states: TheThe

lower the level of the language, the faster it is, andlower the level of the language, the faster it is, and
the harder it is to program in itthe harder it is to program in it

þþ Online gaming - Java, Javascript, Visual Basic, LISPOnline gaming - Java, Javascript, Visual Basic, LISP
þþ AI - Decision Logic Trees/Assessment TablesAI - Decision Logic Trees/Assessment Tables

Slide 13

Thomas DrakeThomas Drake 1313Quality - Software Engineering’s Middle NameQuality - Software Engineering’s Middle Name

Extreme Quality - What Can We Learn from the Computer And Video Games Industry?Extreme Quality - What Can We Learn from the Computer And Video Games Industry?

Testing and QATesting and QATesting and QA

þ Get the bugs out!
þ Indispensable for high quality development/delivery
þ Usability labs/focus testing
þ In house testing - unit, component, white and black

box with gray, integration, system, compatibility,
chipsets, functional, automated, regression, ad hoc,
dirty testing (break the software), stress and load
testing (resource constraints/bugs and memory leaks)

þ Deriving test cases from the scripting engine

þþ Get the bugs out!Get the bugs out!
þþ Indispensable for high quality development/deliveryIndispensable for high quality development/delivery
þþ Usability labs/focus testingUsability labs/focus testing
þþ In house testingIn house testing -- unit, component, white and black unit, component, white and black

box with gray, integration, system, box with gray, integration, system, compatibilitycompatibility,,
chipsets, functional, automated, regression, ad hoc,chipsets, functional, automated, regression, ad hoc,
dirtydirty testing (break the software), stress and load testing (break the software), stress and load
testing (resource constraints/bugs and memory leaks)testing (resource constraints/bugs and memory leaks)

þþ Deriving test cases from the scripting engineDeriving test cases from the scripting engine

Slide 14

Thomas DrakeThomas Drake 1414Quality - Software Engineering’s Middle NameQuality - Software Engineering’s Middle Name

Extreme Quality - What Can We Learn from the Computer And Video Games Industry?Extreme Quality - What Can We Learn from the Computer And Video Games Industry?

Play Testing - The Heart and Core
of Video Game Testing

Play TestingPlay Testing - The Heart and Core - The Heart and Core
of Video Game Testingof Video Game Testing

þ THE most important testing -
ä The game must be stable enough (sound familiar?) so the QA or play

tester does not have to spend too much time noting all of the
instruction level or operational bugs, yet immature enough to allow
for those design and logic changes that can still be made in time.

• Are the testers complaining about the same things that earlier testers
complained about?

• Are there still bugs and problems in the game? If so, these bugs will come back
to haunt the team in the form of the very public product reviews in the trade
magazines and on-line chat and newsgroups!

• How long does it take before the play testers are bored with the game?

þþ THE most important testing -THE most important testing -
ää The game must be stable enough (sound familiar?) so the QA or playThe game must be stable enough (sound familiar?) so the QA or play

tester does not have to spend too much time noting all of thetester does not have to spend too much time noting all of the
instruction level or operational bugs, yet immature enough to allowinstruction level or operational bugs, yet immature enough to allow
for those design and logic changes that can still be made in time.for those design and logic changes that can still be made in time.

•• Are the testers complaining about the same things that earlier testersAre the testers complaining about the same things that earlier testers
complained about?complained about?

•• Are there still bugs and problems in the game? If so, these bugs will come backAre there still bugs and problems in the game? If so, these bugs will come back
to haunt the team in the form of the very public product reviews in the tradeto haunt the team in the form of the very public product reviews in the trade
magazines and on-line chat and newsgroups!magazines and on-line chat and newsgroups!

•• How long does it take before the play testers are bored with the game?How long does it take before the play testers are bored with the game?

Slide 15

Thomas DrakeThomas Drake 1515Quality - Software Engineering’s Middle NameQuality - Software Engineering’s Middle Name

Extreme Quality - What Can We Learn from the Computer And Video Games Industry?Extreme Quality - What Can We Learn from the Computer And Video Games Industry?

The Critical Role of QAThe Critical Role of QAThe Critical Role of QA

þ The primary objective of QA is in really making sure
that the right “mix” of testing talent is available and
that the right amount of quality is present

þ They are also the binary no/go gates for that all
important release quality.

þ They also ensure that the vital information and
feedback loops are running at or near full bandwidth
on the project and are constantly pulsing the project
in order to make sure it meets its goals.

þþ The primary objective of QA is in really making sureThe primary objective of QA is in really making sure
that the right that the right ““mixmix”” of testing talent is available and of testing talent is available and
that the right amount of quality is presentthat the right amount of quality is present

þþ They are also the binary no/go gates for that allThey are also the binary no/go gates for that all
important release quality.important release quality.

þþ They also ensure that the vital information andThey also ensure that the vital information and
feedback loops are running at or near full bandwidthfeedback loops are running at or near full bandwidth
on the project and are constantly pulsing the projecton the project and are constantly pulsing the project
in order to make sure it meets its goals.in order to make sure it meets its goals.

Slide 16

Thomas DrakeThomas Drake 1616Quality - Software Engineering’s Middle NameQuality - Software Engineering’s Middle Name

Extreme Quality - What Can We Learn from the Computer And Video Games Industry?Extreme Quality - What Can We Learn from the Computer And Video Games Industry?

The Importance of TeamsThe Importance of TeamsThe Importance of Teams

þ High Quality Practices
• Bottom up approach/top down design – Team members are asked

what they can do for a schedule instead of telling them what to do.
• A planning phase takes place before one line of code is ever written.
• The design is completely shared with the team. The designer(s)

listens and questions as the functional specifications are created. All
team members are represented in these meetings.

• All team members know what they are supposed to be doing from
day one, every day.

• There is a built-in and managed QA feedback loop, not just for
after delivery but throughout the development lifecycle so problems
can be caught while there is still time to fix them.

• Writing down and recording all the things the project team agrees on

þþ High Quality PracticesHigh Quality Practices
•• Bottom up approach/top down design Bottom up approach/top down design –– Team members are asked Team members are asked

what they can do for a schedule instead of telling them what to do.what they can do for a schedule instead of telling them what to do.
•• A planning phase takes place before one line of code is ever written.A planning phase takes place before one line of code is ever written.
•• The design is completely shared with the team. The designer(s)The design is completely shared with the team. The designer(s)

listens and questions as the functional specifications are created. Alllistens and questions as the functional specifications are created. All
team members are represented in these meetings.team members are represented in these meetings.

•• All team members know what they are supposed to be doing fromAll team members know what they are supposed to be doing from
day one, every day.day one, every day.

•• There is a built-in and managed QA feedback loop, not just forThere is a built-in and managed QA feedback loop, not just for
after delivery but throughout the development lifecycle so problemsafter delivery but throughout the development lifecycle so problems
can be caught while there is still time to fix them.can be caught while there is still time to fix them.

•• Writing down and recording all the things the project team agrees onWriting down and recording all the things the project team agrees on

Slide 17

Thomas DrakeThomas Drake 1717Quality - Software Engineering’s Middle NameQuality - Software Engineering’s Middle Name

Extreme Quality - What Can We Learn from the Computer And Video Games Industry?Extreme Quality - What Can We Learn from the Computer And Video Games Industry?

The Importance of Engineering
Process and Practice Discipline (1)
The Importance of EngineeringThe Importance of Engineering

Process and Practice Discipline (1)Process and Practice Discipline (1)
þ Programming Standards/Coding Standards

þ Peer Reviews
ä Permit the removal of defects from the software product

early and more efficiently.
ä Better understanding of the game product elements and the

defects that might actually be prevented
ä The discovery of problems and potential problems before they

are found in the testing stage
ä All the participants in a peer review process learn to avoid

both common and subtle errors in their own work
ä The high end game publishers have discovered that peer

reviews are finding important problems that have traditionally
defied other debugging and testing methods

þþ Programming Standards/Coding StandardsProgramming Standards/Coding Standards

þþ Peer ReviewsPeer Reviews
ää Permit the removal of defects from the software productPermit the removal of defects from the software product

early and more efficiently.early and more efficiently.
ää Better understanding of the game product elements and theBetter understanding of the game product elements and the

defects that might actually be preventeddefects that might actually be prevented
ää The discovery of problems and potential problems before theyThe discovery of problems and potential problems before they

are found in the testing stageare found in the testing stage
ää All the participants in a peer review process learn to avoidAll the participants in a peer review process learn to avoid

both common and subtle errors in their own workboth common and subtle errors in their own work
ää The high end game publishers have discovered that peerThe high end game publishers have discovered that peer

reviews are finding important problems that have traditionallyreviews are finding important problems that have traditionally
defied other debugging and testing methodsdefied other debugging and testing methods

Slide 18

Thomas DrakeThomas Drake 1818Quality - Software Engineering’s Middle NameQuality - Software Engineering’s Middle Name

Extreme Quality - What Can We Learn from the Computer And Video Games Industry?Extreme Quality - What Can We Learn from the Computer And Video Games Industry?

The Importance of Engineering
Process and Practice Discipline (2)
The Importance of EngineeringThe Importance of Engineering

Process and Practice Discipline (2)Process and Practice Discipline (2)
þ Process working groups -

ä Game concept
ä Requirements definition
ä Design
ä Interface and implementation
ä Maintenance/support

þ All of these processes have feedback mechanisms
designed for continual improvement.

þ Software testing plans are initially created in the
design phase of the process, completed in the
implementation phase
ä High quality software test plans describe both the methodology and

the elements that make up the actual tests for the games based
on the requirements and the game play.

þþ Process working groups -Process working groups -
ää Game conceptGame concept
ää Requirements definitionRequirements definition
ää DesignDesign
ää Interface and implementationInterface and implementation
ää Maintenance/supportMaintenance/support

þþ All of these processes have feedback mechanismsAll of these processes have feedback mechanisms
designed for continual improvement.designed for continual improvement.

þþ Software testing plans are initially created in theSoftware testing plans are initially created in the
design phase of the process, completed in thedesign phase of the process, completed in the
implementation phaseimplementation phase
ää High quality software test plans describe both the methodology andHigh quality software test plans describe both the methodology and

the elements that make up the actual tests for the games basedthe elements that make up the actual tests for the games based
on the requirements and the game play.on the requirements and the game play.

Slide 19

Thomas DrakeThomas Drake 1919Quality - Software Engineering’s Middle NameQuality - Software Engineering’s Middle Name

Extreme Quality - What Can We Learn from the Computer And Video Games Industry?Extreme Quality - What Can We Learn from the Computer And Video Games Industry?

Conclusion/Final Thoughts
Have Fun Playing! (1)

Conclusion/Final ThoughtsConclusion/Final Thoughts
Have Fun Playing! (1)Have Fun Playing! (1)

þ Developing a high quality game that receives critical acclaim and
makes money can be brutal

þ Game development, unlike a lot of other programming, is at the
forefront of the technology curve

þ So much of what we see done today was figured out by someone
only yesterday

þ The bottom line in computer and video game quality is centered
on achieving the best results through creative game play

þþ Developing a high quality game that receives critical acclaim andDeveloping a high quality game that receives critical acclaim and
makes money can be brutalmakes money can be brutal

þþ Game development, unlike a lot of other programming, is at theGame development, unlike a lot of other programming, is at the
forefront of the technology curveforefront of the technology curve

þþ So much of what we see done today was figured out by someoneSo much of what we see done today was figured out by someone
only yesterdayonly yesterday

þþ The bottom line in computer and video game quality is centeredThe bottom line in computer and video game quality is centered
on achieving the best results through creative game playon achieving the best results through creative game play

Slide 20

Thomas DrakeThomas Drake 2020Quality - Software Engineering’s Middle NameQuality - Software Engineering’s Middle Name

Extreme Quality - What Can We Learn from the Computer And Video Games Industry?Extreme Quality - What Can We Learn from the Computer And Video Games Industry?

Conclusion/Final Thoughts
Have Fun Playing! (2)

Conclusion/Final ThoughtsConclusion/Final Thoughts
Have Fun Playing! (2)Have Fun Playing! (2)

þ The game developer mantra is, “If it looks right, it is right.”

þ Computer and video games are never perfect replicas of reality

þ Given the extreme nature of developing computer and video
console games in this industry the trick is drawing a line for
“good enough” and then making that “good enough” reality

þ The best in breed in the computer and video games industry
depend very heavily on QA and test to make sure that the game
really is “good enough.”

þþ The game developer mantra is, The game developer mantra is, ““If it looks right, it is right.If it looks right, it is right.””

þþ Computer and video games are never perfect replicas of realityComputer and video games are never perfect replicas of reality

þþ Given the extreme nature of developing computer and videoGiven the extreme nature of developing computer and video
console games in this industry the trick is drawing a line forconsole games in this industry the trick is drawing a line for
““good enoughgood enough”” and then making that and then making that ““good enoughgood enough”” reality reality

þþ The best in breed in the computer and video games industryThe best in breed in the computer and video games industry
depend very heavily on QA and test to make sure that the gamedepend very heavily on QA and test to make sure that the game
really is really is ““good enough.good enough.””

Improving Quality in the Software Development Process
on the Basis of UML

 Arthur Görges, Minsheng Liu
 Hüngsberg AG
 Lilienthalsraße 2
 D-85399 Hallbergmoos, Germany

Abstract
This paper represents the result of the execution of the project funded by the European Systems
and Software Initiative (OFTPIVE.PIE). In the project the object-oriented method with UML and
a new paradigm approach have been introduced to the application environment of the software
development and to improving the process of the software development. With the aid of the UML
the weaknesses in the process of our software development have been recognised and the process
has carefully been redefined in detail and improved. The quality of each step in the software
development process has been controlled. It is shown that the introduction of the UML, CASE
tool and a new paradigm is beneficial to the software development process.

1. Introduction:

Hüngsberg AG is an international company in the field of information and communication
technology based on the Organisation for Data Exchange for Tele Transmission in Europe
(ODETTE). In the past the company has developed, manufactured and marketed a wide range of
hardware and software products in the ISDN area for the European automotive industry. We
emphasised the importance of servicing for the customers and meeting customer's requirement,
however we did not pay much attention to develop the methodology of our software product; we
concentrated on the constructive improvement of software products and on the measurement of
the intermediate products and end products, but we did not take much notice of the quality of the
software development process, by which the quality of a software product is affected. As the
complexity of products is increasing and customer's requirements are not constant, we realised
that a permanent improvement method of a software development is urgently required and the
quality of improving the software development process is important for the end products, if we
want to provide our customers with better service and high quality products.

The goal of this project is to improve the software development process and to reduce the errors
of analysis, design and implementation in the process of software development by using object-
oriented methods in our application environment. So we are able to provide quickly new
products responding to customer requirements with high quality and with the best cost-to-benefit
ratio. In this paper the project of OFTPIVE.PIE is firstly described in brief, then we report the
results about the improvement of the software development process by introducing the UML,
CASE tool and the new paradigm approach.

2. Description of the Experiment

This section describes briefly the baseline project and presents the definition and the plan of the
OFTPIVE.PIE project.

2.1. The baseline project:

In the European automotive industry file transfer based on ODETTE File Transfer protocol uses
simple point to point links on ISDN, today. There is a number of file exchange systems between
different manufactures and suppliers. As the CAD transfer volume is increasing , these systems
can no more match the customer’s needs. The application of electronic communication for file
transfer is necessary and important for the automotive industry.

On the basis of the international networks and Corporate Networks the baseline project [3] has
been developed for the file transfer in the automotive industry. The ODETTE file Transfer
Protocol takes an interface function for a standardised and efficient communication over the
network as shown in Fig. 1.

 Fig.1: File transfer through TCP/IP in the baseline project.

The software product of the baseline project is based on logical connections between product
providers and manufactures, so the software product provides our customers with much efficient
service. In the experiment two server modules were designed in the conventional way using
Microsoft C++ and Micro FoxPro as programming language. One transmission protocol is
subject to the test-wise re-implementation by making use of object-oriented modelling and
programming.

2.2. Definition of the OFTPIVE.PIE project:

The OFTPIVE.PIE project is proposed to evaluate a new software development method,
namely, object-oriented method by using UML (Unified Modelling Language) and a CASE
Tool for the software development process in automotive industry. The programming language
JAVA is employed for the support environment.

In the PIE project we implement four modules of the OFTPIVE system in the baseline project.
The experiment consists of the following components: Sender and receiver process, Logging
activities, Interprocess communication and Data security considerations as shown in Fig.1.

Data exchange with ODETTE on the basis of TCP/IP

Layer Model OFTP/ANX

2.3. Execution of the OFTPIVE.PIE project

In order to achieve the goals we have adopted the following activities:
• Organising an experiment team,
• training program for team members;

 Fig. 2: Composition of the PIE experiment and iteration and increment process.

• reviewing and selecting a CASE Tool,
• executing the experiment of four modules,
• measurement and evaluation of the results.

3. Improvement Activities

The UML is a synthesis of earlier object design languages. It includes a set of consistent
diagrams, which are used to describe and communicate a software system’s requirements,
designs, and code. In this project we used the object oriented method with the UML for the
project management and project development process. In order to achieve the goals of the PIE
project we have performed the following activities:

• Selection of a CASE tool

A development environment consists of all the hardware and software required to develop the
products efficiently. It includes choice of workstations, design tools, editors, compilers etc .

In the last time JAVA and its development environment have been rapidly improved. It is
especially fit to apply for networking programming. With the aid of the review [4] we
determined to purchase “JBuilder 3.0 Entprise” from the company Inprise for the PIE project.

There are different CASE tools existing in European market. In order to choose to a suitable
tool for the project, we reviewed firstly the various tool; then considering the requirements of
the project, two CASE tools: Rational Rose and Together, were chosen for further test by
using the modules of the PIE project.

 When checking these two CASE Tools the following factors are considered:
User-Interface: A CASE tool is designed to assist in software development, and it should be
logical and easy to use by designers without long training periods. A tool should support
familiar GUI elements and UML, and integrate other applications such as Microsoft word,
etc.

Workflow: Because of the weakness in the process of the analysis and the design phase, we
regarded workflow as an important factor. A CASE Tool is able to model workflow of a new
system in the field of the new system and to represent the software development process.

Code generation: On the basis of logical diagram a CASE tool must generate proper code in
an appropriate format which implements the product model.

Reverse Engineering: Reverse engineering is the process of creating a model by analysing
source code. As a software supplier, we offer our customers various products. It is often that
we are asked to satisfy some special requirements by customers. A CASE tool has to allow to
modify easily from analysis to design and to implement, and back to analysis again. The
iterative style of development allows designers to begin with a set of known requirements,
then evolve as project parameters change or new requirements are added and the project
modelling is modified. The reverse Engineering and forward engineering are very important
features for the dynamic development process, so that we alter the implement, assess the
changes and incorporate them in the design.

The result of the test show that Rational Rose was the suitable tool for the PIE project and the
application environment in Huengsberg AG [6].

• Analysis and definition of the software development process

The existing process of the software development consists of the definition, plan, function
pattern, prototype, beta and series phase. This process orientates the requirements of the
customers. We focused on checking and measuring the end products; we did not pay much
attention to a permanent development methodology and the quality of the

Fig. 3. The examples of the new defined development process. Left: the view of new defined
roles in the development process; Right: the improved process of the software development.

development process. Moreover the requirements of the customers may be inadequate at the
beginning of the project, and unstable during the process of the software development.
Sometimes the customer’s needs may change. In order to be successful in executing the
project, the current process of the software development is not avail and must be improved,
new tools should be employed for the process of the software development on the basis of the
UML.

With the aid of a consulting company the current application environment is firstly analysed by
using the new method kit. Some weak areas in the software development process have been
discovered. Combining the existing environment with object-oriented development method, the
process of the software development is defined carefully again and completed in detail.

The Fig. 3 shows the examples of roles in the software development process and the improved
process of the software development.

Roles are defined as a set of related tasks of a person. In the process of the software development
the six roles are defined. Each role has the responsibility to achieve the predefined objectives.

The improved process is made up of analysis, design, implementation, test and etc., 8 phases,
which are based on the V-model; spiral model and current development environment.

The Tab. 1 presents the view of results of the definition of the development process for
documents, roles, phases and methods.

Tab. 1: The view of the definition of the documents, Roles, phases, and methods.

• Training activities

The team of the PIE project consists of the project leader, a software engineer and one
contributor who assist in the development of special functions and programming in part time.
In order to execute the PIE project an intensive program was scheduled for training team
members.

Software developers took part in the seminars about the object-oriented software
development, unified modelling language, design patterns and OO-programming and software
metrics. They gained a lot of knowledge in the object-oriented analysis, design,
implementing and metrics.

• Execution of the experiment

The UML consists of nine diagrams. In this project the Use Case diagram, Class and
package diagrams, Sequence diagrams, Activity diagrams and Component diagrams have

been used for managing the project and for the process of the analysis, design and
implementation. The following examples illustrate the application of the UML for the
analysis, design and implementation.

Documenting the behaviour and requirements with UML: The first step in the development
of a software products is to achieve a understanding of the problems and define the behaviour
of the products. This begins with the assessment and documentation of the product
requirements. In this project the use case model is used in documenting the behaviour and
requirements of the project. The use case model illustrates the system’s intended functions
(use case), its surroundings (actors) and relationships between the use case and actors (use
case diagrams). It provides a view of the system structure and one starting point for design.
Fig. 4 shows the actors in the project and the use case diagram of the PIE project. It provides
a detailed view of the project for the communication between the development team members
and customers.

Fig. 4: The actors in the project and the use case diagram of the sender and receiver
process, Logging activities and interprocess communication. This presents a view of the
functions of the TCP/IP subsystem.

Software design with UML: A good software design must support the below abilities:
Comprehensibility, maintainability and extensibility. In this project we employed the class
and package diagram, sequence diagram, activity diagram and component diagram for the
design. The Fig. 5 and Fig. 6 as instances display the class diagram and the sequence diagram.

 The class diagram of three components in the project is shown in Fig. 5. The class diagram
provides a static view of the classes in the logical view of the design , which illustrate how the
classes relate. The class diagrams are also the foundation for code generation.

Sender

Odette

Receiver

establishingConnection

writingLogBook

sendingToMore

receivingFromMore
closingConnection

TCP_IP System

Fig. 5: Class diagram of the project components: sender and receiver process, logging
activities and interprocess communication. It presents the view of the classes in the model
and the interactions among them.

Class diagram and package diagrams are static. They are not adequate to determine whether the
design is adequate to meet the requirements. From the class diagrams we cannot learn about the
behaviours of the system. Sequence diagram can meet this need. The elements of sequence
diagrams are objects and messages. The Fig. 6 shows the sequence diagram of the project DAX
2000 as example, where the boxes with underlying dashed line indicate objects.

Fig. 6: Sequence diagram of process of the incoming file in DaxENGdat of the project
DAX 2000. It shows the object interactions arranged in time sequence.

Sequence diagrams are derived from the development of use cases; they present the objects,
messages and object interactions arranged in time sequence.

4. Results and further Aspects

In the project the object-oriented methods with UML are used for project development. During
the execution of the experiment, we gathered the following information:

beginning :
checking_engin

looking_engin :
checking_engin

copyingRoutingDir :
copyingFile1

writingSe_protoc :
copyingFile1

getting_engin :
processingAnalysed

copy_file :
processingAnalysed

prot_rout :
processingAnalysed

deleting_engin :
processingAnalysed

1: checking in eng_in

2: copyingRoutingDir

3: writing in se_protoc

6: copy_file()

5: gettingParameters

7: prot_routing()

8: deletingSentences in eng_in

9: return(no), all usefuleFile

LogBook

writing()

TracingBook

writing()

ErrorBook

writing()

interToMore

N_Canal : int
TCP_address : String[]
Nun_Port : int []

establishingConnection()

sendingProcess

InterLargeFile

File_Length : int
N_Canal : int
N_Number

establishingConnection2()

sendingReceivingProcess

File_Name : String
Num_TCP : String

sendingFile()
getingFile()

interProcess

Num_Canal : int
File_Length : int
File_Name : String

verbindung()

writingLogBook
BuchName : String
File_Name : FILE

openBook()
closeBook()

interMoreCanal

N_canal : int
DataFile[] : FILE

establishingConnection1()

• The UML is a very useful language for modelling a software development process and
enables developers easy to communicate with users of products and members in a
development team. With the aid of UML and proper CASE tool, the software development
process can flexibly and quickly be modified according to the new requirements of
customers.

• By using the UML each step in the software development process can be represented in
detail, so the quality of the development process can be easily examined and controlled.

• The object-oriented thinking is a foundation for a developer to use a UML properly and
smoothly.

• After introducing the UML and CASE tool, the code of class level can be generated by class
diagrams, the development period of the modules in the project is reduced.

• The CASE Tool „Rational Rose“ is especially suitable for modelling software development
process. The generation of source code works properly and the reverse engineering has good
functions. The iteration and increment development process can be more easily implemented
by using the round-trip engineering.

• Consistency checking must be performed throughout the iteration and increment process and
the life cycle of a project, because several views of the system are under development in
parallel and care must be taken to ensure that models stay in synch.

• Combining UML with the new paradigm used to manage the software development, the
software development process can be analysed and administered in a proper and efficient
manner. Especially the weak areas of the software process in our company have been
recognised, this is a basis for further improvement.

• The generated code consists of the class definitions. It is not the complete executable code.
This must be implemented by hand, and so it is necessary to generate clear and concise code
type for further programming.

• All of the diagrams in the UML presents the same model in varied views on the basis of
different detailed aspects. Some diagrams are excessive diversity. The connection and
dependence among diagrams have been neglected.

5. Conclusion

In this report we present the results of the OFTPIVE.PIE project. It is indicated that the
introduction of UML and CASE Tool results in positive impact in software development process.
Especially the UML is suitable to apply for modelling the software development process and for
representing the analysis and design phases. This method has been used in modelling the project
DAX 2000 in the process of our software development. We will continue applying this method for
the process of other software product developments.

6. References

1. H. Balzert: “Lehrbuch der Software-Technik”, Spektrum Akademischer Verlag Heidelberg,
Berlin Berlin, 1988.

2. A.Barthel, B. Hindel : “The Method Kit: A new Paradigm for Process Definition”,
CONQUEST’ 98, pp.192-200, Sept. 1998 in Nuernberg, Germany.

3. W. Huengsberg: “ Ein Extranet im Internet für die Unternehmenskommunikationn in der
Automobilindustrie”, Sonderdruck des Beuth Verlags aus edi-change, No. 2 1997.

4. R. Gema: “ Gruppenbild, Java-Entwicklungsumgebungen im Praxisvergleich”, Magazin
für computer technik, pp. 180-189, No. 5 1999.

5 B. Oestereich: “Objekt-orientierte Softwareentwicklung”, R. Oldenbourg Verlag München
Wien, 4. Auflage, 1998.

6. A. Goerges, M. Liu: “Tool Selection Review Report”, the report of the ESSI project, July
1999.

6. M. Cantor: “Object-oriented Project Management with UML”, Wiley Computer Publishing
 Toronto 1998.

Autors:

Arthur Görges is Chief Operating Officer Research & Development at Huengsberg AG. Since
1983 he has been working on computer technology, networking and electronic communication.
His main areas of interest: project management of software development and the application of
ISDN, internet technology for electronic communication in the automotive industry.

Minsheng Liu received the Ph.D in applied Physics at the University of Frankfurt am Main in
1998. He is working as a software developer at Huengsberg AG. His main interests are: object-
oriented programming with JAVA; UML, CASE Tool, TCP/IP and the application for software
development process.

1

HUNGSBERG AG
the company

Improving Quality in the Software Development
Process on the Basis of UML

Arthur Görges and Minsheng Liu

A. Görges, M. Liu Hüngsberg AG
 http://www.daxware.com

HUNGSBERG AG
the company

In the PIE project the object-oriented method with UML and a new paradigm
approach have been introduced to the application environment of our software
development to improve the process of software development:

❒ Facilitating project management in proper and efficient manner,
❒ Discovering the weaknesses of the software development, redefining the
 process in detail and improving it; controlling the quality of each phase
❒ The number of the code with JAVA in components was reduced by 25 %
 compared to the number of C code.
❒ The automatic code generation can reduces the development time of the
 implementation of the project development.

Conclusion: Positive impact on and beneficial for the software development.

A. Görges, M. Liu Hüngsberg AG
 http://www.daxware.com

1. Executive
 Summary

2

HUNGSBERG AG
the company

A. Görges, M. Liu Hüngsberg AG
 http://www.daxware.com

The most important motivation of the PIE project:

 ❒ Improving product quality by reducing errors in analysis, design
 and implementation.

 ❒ Reducing the period of product development by employing
 efficient management and introducing new software
 development methods.

 ❒ Developing new products and improving the position in the
 market.

2. Business
Motivation :

HUNGSBERG AG
the company

3. Description of
the Experiment

A. Görges, M. Liu Hüngsberg AG
 http://www.daxware.com

❒ Background: File transfer based on ODETTE: Point to point links on ISDN,
 this can no longer match customer’s needs, as CAD file volume is increasing.

T o d a y :

E D I C A D O N L I N E E - M A I L

M a n u f a c tu r e r 1 M a n u f a c tu r e r 2 M a n u f a c tu r e r 3 M a n u f a c tu r e r . .

S u p p l i e rS u p p l i e rS u p p l i e rS u p p l i e r

S u p p l i e r S u p p l i e rS u p p l i e r S u p p l i e r S u p p l i e r S u p p l i e r S u p p l i e r

S u p p l i e r S u p p l i e r S u p p l i e r S u p p l i e r S u p p l i e r S u p p l i e r S u p p l i e r S u p p l i e r S u p p l i e rS u p p l i e r

E l e c t ro n i c C o m m u n i c a t io n N o n e E le c t r o n ic C o m m u n ic a t i o n

3

HUNGSBERG AG
the company

A. Görges, M. Liu Hüngsberg AG
 http://www.daxware.com

❒ Aims and approach: network for file transfer as follows:

3. Description of
the Experiment

ANX
Amerika

Manufacturer 1

Manufacturer 2 Manufacturer 3
Manufacturer 4

Supplier 1
Supplier 3...Supplier 2

Supplier 4

HUNGSBERG AG
the company

A. Görges, M. Liu Hüngsberg AG
 http://www.daxware.com

Iteration and increment development
 process of the PIE project:

In the PIE project the object-oriented method with UML and the new paradigm
approach have been used to realize four modules as follows:

3. Description of
the Experiment

4

HUNGSBERG AG
the company

4.Implementation
 Main Activities:

❏ Selection of the CASE Tool

❏ Improvement of the Software Development
 Process

❏ Training Activities

❏ Execution of the Experiment

A. Görges, M. Liu Hüngsberg AG
 http://www.daxware.com

Main Activities:

HUNGSBERG AG
the company

Sender

Odette

Receiver

establishingConnection

writingLogBook

sendingToMore

receivingFromMore
closingConnection

TCP_IP System

A. Görges, M. Liu Hüngsberg AG
 http://www.daxware.com

The actors in the PIE project and the use case diagram of the modules.

4.Implementation
 Main Activities:

 Execution of the Experiment: use case diagram as an example

5

HUNGSBERG AG
the company

A. Görges, M. Liu Hüngsberg AG
 http://www.daxware.com

 Source code
module

Analysis Phase

Use Case Diagram
Class Diagram
Sequence Diagram
Activity Diagram

…

Class Diagram
Sequence Diagram
Activity Diagram
component Diagram

Design Phase

Implementation

Code unit test

Original Requirements

Derived Requirements:1

Derived Requirements: 2

Derived Requirements:3

Class Diagram

SW-system
 design

Source code
module

PureCoverage

SW design
component

Reverse EngineeringSW design
component

Source code
modul test

The impact degree of the UML
on the software development
process: the darker the color,
the greater the impact .

5. Result and
 further Aspects

HUNGSBERG AG
the company

Durin g the execution of the experiment, we gathered the following information:

❒ The UML is a very useful language for modeling a software development process and enables developers
 easy to communicate with users of products and members in a development team.
❒ By using the UML each step in the software development process can be represented in detail, so the
 quality of the development process can be easily examined and controlled. The iterative and
incremental
 development process can be more easily implemented flexibly and quickly be modified by using
the
 round-trip engineering with new requirements of customers.
❒ The object-oriented thinking is a foundation for a developer to use a UML properly and smoothly.
❒ After introducing the UML and CASE tool, the code of class level can be generated by class diagrams,
 the development period of modules in the project can be reduced.
❒ Combining UML with the new paradigm used to manage the software development, the
software
 development process can be analyzed and administered in a proper and efficient manner.
Especially the
 weak areas of the software process in our company have been recognized, this is a basis for
further
 improvement.
❒ The generated code consists of the class definitions. It is not the complete executable
code.This must be
 implemented by hand, and so it is necessary to generate clear and concise code type for

5. Result and
 further Aspects

A. Görges, M. Liu Hüngsberg AG
 http://www.daxware.com

1

A Practical Approach to Validating and Testing
Software Systems Using Scenarios

Johannes Ryser Martin Glinz
Department of Computer Science

University of Zurich
Winterthurerstrasse 190

CH-8057 Zurich, Switzerland
{ryser, glinz}@ifi.unizh.ch

Abstract. Scenarios (Use cases) are a means to capture a system’s functionality and be-
havior in a user-centered perspective. Thus they are used in most modern object-
oriented software development methods to help elicit and document user requirements.
Scenarios also form a kind of abstract level test cases for the system under development.
Yet they are seldom used to derive concrete system test cases. In this paper we present a
procedure to use scenarios in a defined way to systematically derive test cases for sys-
tem test. This is done by formalization of natural language scenarios into statecharts,
annotation of statecharts with helpful information for test case creation/generation and
by path traversal in the statecharts to determine concrete test cases.

1. Introduction
In developing a software system, validation and verification are recognized as vital activities. They
are especially valuable when applied early in the development process, as errors found during the
specification and design phase are much cheaper to correct then errors found in consequent phases
[5]. Early validation and verification thus greatly reduce error fixing and fault cost.
Testing plays an important role in validating and verifying systems. Yet test preparation and the de-
velopment of test cases is often done only just before testing starts, at the end of the development
process, even though analysis as well as design would greatly profit from the insight gained by de-
velopers in creating test cases and preparing tests. Moreover, testing is often done in an ad-hoc man-
ner, and test cases are quite often developed in an unstructured, non-systematic way. This is mainly
due to the reality of commercial software development (only limited resources are available and only
sparse resources are allocated to testing) and less to lack in available methods or lacking problem
understanding. Any testing strategy has to address this practical issue if it is to be successfully ap-
plied. To improve testing in practice, systematic test case development and integration of test devel-
opment methods with ‘normal’ system development methods is central. Test cases are only devel-
oped in a systematic way if clearly defined methods are applied. Test development methods will only
be used if they are easy to apply, blend into existing development methods and do not impose an in-
appropriate overhead or intolerable cost.

Many strategies and approaches to testing exist. Besides established techniques like control and data
flow testing or boundary analysis/domain testing [4, 17], formal languages for specification and spe-
cialized testing languages are gaining increased attention. Yet a gap is opening between the state of
the art and the state of practice. The gap in-between what theoretically could be done and what really
is done in practice, is mainly due to the following reasons (the list is not intended to be complete):
- Lack in planning / time and cost pressure: In real-world projects tests are conducted under

immense time and cost pressure, as often the project at the end of the development process is be-
hind schedule and over budget already. Detecting faults causes additional delays. As a conse-
quence, both test preparation and execution are frequently performed only superficially. Cost and

2

time needed for testing are hard to be estimated with reasonable accuracy. Moreover, testing is
often insufficiently planned for and not enough time and resources are allocated for testing.

- Lacking (test) documentation: Tests are not properly prepared, no test plans are developed and
tests are not documented [29].

- Drudgery: Testing and test case development are tedious, wearisome, repetitious, error-prone
and time-consuming activities which prompt fatigue and inattentive work, even if sound testing
strategies and methods are applied.

- Lacking tool support: For this reason, testing has to be supported by tools. But only limited tool
support does exist. Extended tool support and more especially automatic test case generation is
restricted to systems which are formally specified. Even if automatic test case generation may be
applied in a formally defined system, the resulting test suites are of immense size and generally
only poor coverage is reached.

- Formal languages /specific testing languages required: Many test methods use formal specifi-
cation languages or specific testing languages (thus requiring special training and education).
Their application is extremely costly, they are difficult to apply and/or can only be applied to
limited problems or very specific domains.

- Lacking measures, measurements and data to quantify testing and evaluate test quality: In
most projects only little testing data (error statistics, coverage measurements, and so on) is col-
lected during testing or available from other projects. Because of missing data only little can be
said about the benefits and economics of testing, different approaches can not be compared and
processes can hardly be improved. The quality of tests, and thus to some extent of the product, is
often not assessed. Furthermore, the missing data further aggravates the problem of accurate test
planning and allocation of the necessary resources.

The issues mentioned above may be addressed by various approaches. The problems of documenta-
tion and planning, for example, may be alleviated by improvements to the testing process, by use of
and adherence to appropriate methods and clear definition of testing criteria, by testing strategies, or
by a list of documents and deliverables that have to be produced during development of the system.
Formal languages or specialized testing languages may allow for better automation of the testing
process and for better tool support; closer integration of testing with established development meth-
ods may reduce cost and the need for special purpose languages, and (re)using software artifacts cre-
ated in the analysis, specification and design phase may improve efficiency in test design and reduce
drudgery and time pressure.
The strategy last mentioned above is the one pursued in our approach: To help bridge the gap be-
tween the state of the art and the state of practice, we propose the use of scenarios, not solely for re-
quirements elicitation and specification (as done in leading object-oriented development methods),
but for system testing, too, formalizing narrative natural language scenarios into more formal state-
charts and deriving test cases from statecharts. We thus allow for – and enforce (in parts) – a system-
atic test case development. In designing the method, we try to utilize synergies between the phases of
system analysis & specification and system test.

The rest of the paper is organized as follows: Section 2 serves as an introductory chapter to define
and present the problem and shortly sketch the proposed solution. In section 3 we present the basic
concepts and principles of the SCENT method, and describe the individual steps in the procedure of
scenario creation, formalization and test case generation. In section 4 the method presented in this
paper is compared to related work and in section 5 we present some conclusions.

3

2. Problem Disposition and Solution Strategy
In this section we take another look at some of the problems in testing and testing methodologies.
Then we present the key concepts of the SCENT method and shortly introduce the notion of scenar-
ios and use cases.

2.1. The Problem
To deliver a software product of high quality, an efficient, reliable quality process has to be imple-
mented and sound (engineering) principles have to be followed and adhered to. And after all that can
be done to construct quality products, testing as an analytical means to software quality has to be per-
formed in a timely and systematic manner.
But in many projects, testing is done as a last minute effort to show the application to be functional
and functioning, much more than to uncover errors and show its compliance to requirements. This is
- at least partially - due to the following facts:

1. Testing is done in the last phase of the development only: Developers start the development of
test cases only after most of the system development has been done. But testing can (and should)
be started with as soon as the specification has been written. By developing test cases early in the
development process, many errors, omissions, inconsistencies and even over-specifications may
be found in the analysis or design phase still. It’s cheaper to remove errors in the early phases.

2. Testing methods are not integrated with (software) development methods. Testing hardly
uses any artifacts of earlier phases directly, but much work is needed to create test cases from the
requirements specification and design models. It’s easy to leave testing to be done at the end of
the development, as testing and test preparation is not enforced earlier by the development meth-
ods.

3. Test cases are not created/generated in a systematic manner. Test cases are chosen randomly,
by experience, according to some rules of thumb or according to insufficient criteria (statement
coverage, input coverage, …). Testers are left with no definite procedure on how to derive test
cases.

These concerns can be reduced by extended tool support. But as mentioned before, testing is not a
simple task that can be easily automated. It is not possible at the time being to automate the whole
testing process and achieve acceptable test coverage in given time for projects relying on natural lan-
guage specifications [23, 26]. Therefore, proper tool support helps to alleviate the problems men-
tioned above. It does not, however, solve them.

2.2. A Proposal to Solve the Problem: The SCENT Approach
We propose a practice-oriented scenario-based approach to support systematic test case develop-
ment, that utilizes early artifacts of the development process in later phases again, in order to realize
synergies between the closely related phases of system analysis and system test. We call our ap-
proach the SCENT method - A Method for SCENario-Based Validation and Test of Software.
In SCENT, we aim at providing a method that is – or easily can be – integrated with software devel-
opment methods, a method that helps developers create test cases and think about testing early on in
the development process and that supports systematic generation of test cases. SCENT enables sce-
nario-based test case development for system test of software systems, taking, as is appropriate for
system test, a functional testing strategy.

The key ideas in our approach are:

1. Use natural language scenarios not only to elicit and document requirements, to describe a
system’s functionality and specify a system’s behavior, but also to validate the system under de-
velopment while it is being developed,

4

2. Uncover ambiguities, contradictions, omissions, impreciseness and vagueness in natural lan-
guage descriptions (as scenarios in SCENT are at first) by formalizing the narrative scenarios in
statecharts [10],

3. Annotate the narrative scenarios and/or the statecharts where needed with pre- and post-
conditions, data ranges and data values, and non-functional requirements, especially performance
requirements, to supply all the information needed for testing and to make the statecharts suitable
for the derivation of actual, concrete test cases,

4. Systematically derive test cases for system test by traversing paths in the statecharts and docu-
menting the test cases.

These key concepts need to be supported by and integrated with the development method used to de-
velop the application or the system, respectively. Most object-oriented methods support use cases
and statecharts or comparable state-transition diagrams. Thus, the basic integration of the proposed
method in any one of those methodologies is quite simple and straightforward.
In section 3 we describe the method in more detail.

2.3. Scenarios
Scenarios play an important role in our approach. But even though scenarios are nowadays ubiqui-
tous and have long been used in human-computer-interaction, strategic planning and requirements
engineering, a single, formal, agreed upon definition what a scenario is, does not exist.

We define scenarios informally to be any form of description or capture of user-system interaction
sequences. The terms scenario, use case and actor are defined as follows:

Scenario – An ordered set of interactions between partners, usually between a
system and a set of actors external to the system. May comprise a concrete se-
quence of interaction steps (instance scenario) or a set of possible interaction
steps (type scenario).
Use case [13] – A sequence of interactions between an actor (or actors) and a
system triggered by a specific actor, which produces a result for an actor. A type
scenario.
Actor – A role played by a user or an external system interacting with the system
to be specified.

3. Basic Principles of the SCENT- Method
By creating scenarios during requirements specification and system analysis, the requirements engi-
neer produces a first set of abstract test cases. In SCENT, we reuse scenarios that were created dur-
ing the analysis phase in test case development. The idea of using scenarios/use cases in testing is not
new, however. Jacobson in his book and articles mentioned that use cases are well suited to be used
as test cases for integration testing [13, 14]. Others have taken up, formalized and extended the no-
tion of using scenarios to test a system (see for example [11] and [7]). In section 4 of this paper, a
more detailed description of related work is given. But despite the ubiquity of scenario approaches, a
practical method supporting testers in developing test cases from scenarios has not emerged yet [27].
The approach as presented in this paper represents ongoing research. The ideas presented are vali-
dated by application of the method in practice (see section 5).

The SCENT method comprises three main parts: Scenario creation, scenario formalization and test
case derivation. All three are described in more detail in the following sections.

5

3.1. Scenario Creation
Many scenario processes are lacking a step procedure – a cookbook – for the creation and use of sce-
narios. In SCENT we define a procedure to elicit requirements and document them in scenarios. In
this procedure we use a scenario template to format scenarios according to a common layout and
structure. This template is not described in detail in this paper. A description of the template may be
found in [24], the template itself may be downloaded from http://www.ifi.unizh.ch/groups/req/ftp/
SCENT/ScenarioTemplate.pdf.

3.1.1. A Step Procedure for Scenario Creation
To create scenarios, first a list of all the persons and systems who interact with the system under con-
sideration is created (or more precisely: a list of the roles these persons and systems play). All system
in- and outputs are specified and all external events are listed. All the actors, the events and all sys-
tem in- and outputs are uniquely named and a glossary of terms is created.
Having determined the actors, coarse scenarios are created capturing the main uses of the system.
Ask questions like: “How does every actor interact with the system?”, “How does the system react to
every external event?” in order to create short natural language descriptions of system usage.
These first scenarios might be on a type or on an instance level: They may describe interaction as
seen by a distinct user (e.g. Fred Brown pushes the button) or on the more abstract level of roles (e.g.
Fred Brown is an operator, thus: The operator pushes the button).

Table 1: Scenario Elicitation, Creation and Structuring

Step Description Results

1 Find all actors interacting with the system List of actors

2 Find all (relevant system-external) events List of events (triggers)

3 Determine results and output of the system System output

4 Determine system boundaries System boundaries

5 Create coarse overview scenarios (instance or type scenarios on
business process or task level)

List of scenarios

6 Prioritize scenarios according to their importance and assure that
the scenarios cover all system functionality

 List of prioritized scenarios
 Links scenarios – actors

7 Transform instance to type scenarios. Create a step-by-step de-
scription of events and actions for each scenario (task level)

Coarse grained flow of actions in sce-
narios

8 Create an overview diagram Overview Diagram

9 Have users review and comment on the scenarios and diagrams Comments and annotations to scenarios

10 Extend the scenarios by refining the description of the normal
flow of actions, break down tasks to single working steps

Description normal flow of actions
Hints on test case derivation

11 Model alternative flows of actions, specify exceptions and how to
react on exceptions. Include hints on test case derivation

Alternative flows of actions, exception
handling in scenarios

12 Factor out abstract scenarios Abstract scenarios

13 Include performance/ non-functional rqmts./ qualities in scenarios Scenarios, annotated with qualities

14 Revise the overview diagram Revised overview diagram

15 Have users check and validate the scenarios (Formal reviews) Validated scenarios

6

In the following steps, instance scenarios are transformed into type scenarios. The scenarios are re-
fined by defining a step description for every scenario, and the scenarios are validated with the cus-
tomer and/or the user. Alternative flows are modeled and abstract scenarios (sequences of interac-
tions that appear in more than one scenario) are factored out.
Non-functional requirements and qualities are documented in natural language or with other appro-
priate means (formulas, timing constraints, pictures, graphics, screenshots, sketches, …) in a special
section of the scenario description. Abstract test cases are determined and information helpful to test
case development is captured in the scenario descriptions (e.g. reminders what not to forget or what
specifically to test for, values of particular interest, results of activities and computations that serve
as an oracle in testing, …).

Figure 1: Scenario Elicitation, Scenario Creation and Structuring

Define main and subordinate scena-
rios, prioritize scenarios and assure
function coverage

Create coarse preliminary
scenarios

Have users review scenarios

Refine scenarios, include alterna-
tive flows, exception handling

Define all actors

Define all system external events Define all in- and outputs

Define system boundaries

Create overview diagramCreate detailed scenario
description

Include non-functional
requirements

Review scenarios with
user/customer

Factor out abstract scenarios Correct errors

Structure scenarios according
to template Error correction

(Joint development sessions)

Preliminary work: Starting point
for scenario determination

Approved scenariosChange management,
keep scenarios up to date

7

Table 1 gives an overview of the 15 steps of the scenario creation process as defined in our method,
and the purpose and results or deliverables of each step are listed.

Even though the procedure is presented as a sequence of steps, it is in reality highly iterative. Figure
1 shows the order of the activities in the scenario creation process. User involvement is depicted by
shading: Darker shading indicates heavier user involvement.

3.1.2. An Example
As an example we choose the well-known and familiar automated teller machine (ATM). A short
specification is given below (Figure 2).

At an ATM the customer may inquire the balance of his/her account or withdraw money
up to a certain amount and at given piecing (only multiples of CHF 20 up to the per-
sonal limit may be dispensed). The customer needs a card and a personal identification
number (PIN) to get access to the system and perform the mentioned banking transac-
tions. The system interacts with a central bank system to get customer and account
information and to inquire and update account balances. No receipts are issued.

Figure 2: The ATM machine specification

Because of space limitations only a short, partial description of the ATM example is given; the steps
of the procedure are only touched upon to illustrate the procedure.
Below, excerpts of the scenario creation process for the ATM are presented. Numbers are relating to
steps in the scenario creation procedure of Table 1.

1. Identify actors: In the example we identify four actors: the “Customer”, the “Service Personnel”, the “Operator” and
the “Banking system”.

2. Identify external events: Customer inserting card, entering PIN-code, choosing action, entering amount, taking back
card, taking cash; operator filling bills; service personnel servicing machine.

3. Determine system input, results and output of the system. System input: Cards, PINs, choices for actions, amounts,
bills. System output/results: Cards, balance info, cash/bills.

4. Determine system boundaries: All persons and the banking system belong to the environment. Customer and account
information are kept in the bank system.

5. Create coarse scenarios (instance or type scenarios on business process or task level): (1)Inquire Balance,
(2)Withdraw cash, (3)Service ATM, (4)Reload bills

6. Prioritization of scenarios: First priority (1), (2), (4), secondary: (3). Assure that the scenarios cover all system func-
tionality.

We further develop only one scenario. We choose scenario (2)Withdraw cash: A customer with-
drawing money at the teller machine.
7. Create a step-by-step scenario description:

Scenario 2: Withdraw cash
The customer withdraws money

Actor: Customer

Flow of actions:
1. The customer inserts the card
2. The system checks the card’s validity
3. The system displays the “Enter PIN” Dialog
4. The customer enters his PIN
5. The system checks the PIN
6. The system displays the main menu
7. The customer chooses “Cash Withdrawal” from the main menu
8. The system displays the cash withdrawal dialog
9. The customer enters the desired amount

8

10. The system returns the card
11. The system dispenses the money
12. The system displays the welcome screen

8. The overview diagram is omitted to keep the example short. It is a “standard” use case diagram in UML notation.

9. Scenario validation: Have users review and comment on the scenarios and the overview diagram. Validation of the
narrative scenarios in a first step is done by walking customers and users through the scenarios. Later on formal user
reviews are scheduled and conducted (Step 15).

10. Scenario refinement: The steps in the coarse-grained scenario are refined to single, in the context “atomic” actions.
The first step does not have to be clarified as it presents a single action by the customer. The second step may well
be refined:

2.1 The system reads the card number and transfers the card number to the bank system to be validated

2.2 The bank system checks the card number and returns a validation code: Code 1: Card is valid, Code 0: Card not
valid, return card to customer, Code –1: Card missing or reported as stolen, withdraw card

3. The system displays the “Enter PIN” Dialog

4.1 The customer pushes a numeric key

4.2 The system displays a masking character (echo key) in the input field on the screen

4.3 The customer pushes a numeric key

4.4 …

11. Model alternative flows of actions, specify exceptions and how to react to them. In SCENT, exceptional flows are
separated from the normal flow of actions. By doing so, the developer of a scenario is forced to consciously think
about alternatives and exceptions that could happen in any and every single scenario step. Moreover the normal flow
of actions thus remains uncluttered by alternatives.

In the example above, step 1

1. The customer inserts the card

may have the exception that the card can not be entered (e.g. the slot is obstructed). The corresponding entry in the
alternatives section of the scenario description may read:

1a. The slot is obstructed

1a.1The customer informs a human teller or calls and informs the service department.

1a.2 If a human teller was informed: The teller informs the service department

1a.3The service department repairs the machine. Goto scenario (4)Service ATM

12. Factoring out abstract scenarios: Certain sequences in a scenario might be reused in other scenarios. In the example,
the authentication procedure is factored out:

1. The customer inserts the card

2. The system checks the card’s validity

3. The system displays the “Enter PIN” Dialog

4. The customer enters his PIN

5. The system checks the PIN

6. The system displays the main menu

13. Include non-functional requirements in scenarios: Performance requirements are included in the scenarios, qualities
are appended to the scenarios. As an example, we assume that the validity-check of a card that has been inserted at
the ATM must be performed in less than two seconds. Moreover, the color red is only to be used for error messages.
The second step in the scenario description is correspondingly changed to read:

1. The customer inserts the card

2. The system checks the card’s validity. This operation must take less than two seconds

3. The system …

and the requirement on the use of the color red is appended to the scenario:

9

…

12. The system displays the welcome screen

Non-functional Requirements: The color red is to be used for error messages only

14. Revise the overview diagram: Abstract scenarios, newly found scenarios and scenarios that have been divided or
joined have to be updated in the overview diagram. The diagram and the scenario descriptions have to be kept con-
sistent.

15. Scenario validation: Have users check and validate the refined scenarios (Reviews). Scenarios are altered and up-
dated according to errors and problems found (Iterate through steps 10 to 15 of the procedure).

3.2. Scenario Formalization
Scenarios are validated by users and customers throughout the scenario creation process by reviews
(inspections) and walkthroughs (see Section 3.1.). Scenarios prove valuable in validating require-
ments: As (functional) requirements are captured in the form of interaction descriptions, the user
does not have to read and validate an enumeration of required features, abstract functions and quali-
ties that are pulled out of usage context (as they are in traditional specifications). Requirements are
captured in descriptions of the flow of actions. Thus, scenarios ‘naturally’ bundle requirements that
belong together. They do so longitudinally, that is from the start of a transaction to the end of trans-
action. Dependencies between requirements and the interactions between features are at least par-
tially described in scenarios as well.
Yet natural language scenarios, as they have been created in the scenario creation process so far, suf-
fer from the problem of all natural language specifications: Natural language is not precise, definite
and unequivocal (as is shown by this very sentence: Does the negation of ‘not precise’ also extend to
‘definite’ and ‘unequivocal’, or is the scope of the negation limited to the adjective directly following
it?). Narrative scenarios may be ambiguous, inconsistent and incomplete. Reviews by users may find
some of these problems, but many inconsistencies and omissions might slip by undetected.
Formalization helps in finding and avoiding these problems. Formal languages allow for formal rea-
soning, (strong) verification and proof of correctness. But formal languages have their own short-
comings, too: They require knowledge of a special language, are hard to understand and their appli-
cation may be error-prone.
In SCENT we take an intermediate way by converting natural language scenarios into semiformal
statecharts. This formalization helps to find many omissions, ambiguities and inconsistencies, yet the
graphical representation of scenarios can well be understood by users, given some guidance by the
developers. Thus, the formalization is a very helpful fault-finding procedure and can be seen as a part
of static testing.

3.2.1. The Formalization Step
In the formalization step, structured natural language scenarios are transformed into statecharts. This
step is in SCENT informal itself. In fact, the mapping of scenarios to statecharts is a creative model-
ing step that can not be formalized. The statecharts created from scenarios by one developer might
significantly differ from statecharts developed from the same scenarios by another developer.

We define some heuristics to support developers in the transformation step. The heuristics are:
- As soon as first scenarios have been developed (step 5 and 7 in the scenario creation procedure),

create statecharts to match the scenarios.
- Create a statechart for each scenario. The normal flow, all exceptional flows and all alternatives

of a given scenario are captured in one statechart.
- The statecharts are refined along with the scenarios, thus providing for a continuous validation

and ongoing check for inconsistencies, omissions and ambiguities in the narrative scenarios. As
the coarse overview scenarios are refined to reflect the interactions on task level, new states are

10

introduced in the statecharts, states are expanded to comprise substates, and parallelism may be
caught in parallel states, as appropriate.

- Model the normal flow of a scenario first. Integrate the alternative flows later on. Check if alter-
natives are missing. This can be done by investigating which events may occur in a given state. If
an event could occur that has not been modeled, a transition is missing and usually an action or
an alternative flow in a scenario is missing as well.

- Represent abstract scenarios as hierarchical statecharts.
- A single step in a scenario usually translates into a state or a transition in a statechart1. As the

steps are mapped to either states or transitions, missing states and transitions will emerge and
need to be added. Superfluous states (and transitions, if any) need to be deleted or merged with
needed states (or transitions).

- External and internal events are mapped to state transitions, the triggering event is the state tran-
sition to the initial state.

- At first, statecharts are not integrated. These partial models help to enable traceability (from de-
sign and tests to requirements and vice versa). Statecharts may be integrated later on to create a
model of the full system [8].

- Check the statecharts for internal completeness and consistency. Are all the necessary states
specified? Are all the states in a statechart connected? Has every statechart an entry and an exit
node? Are there no dangling links? Can every state be entered and left (except the final state)?
Are all the necessary transitions specified? On what events will a state be entered, on what events
can a state be left? Check the event list created for scenario elicitation to see if all relevant events
are handled. Ask questions like: “The system being in this state, what will happen if the user does
this or that?” “Are states and events named expressively and consistently, following some
scheme?”

- Cross-check statecharts. Do states, transitions and events appearing in more than one scenario
have the same names?

Creation of scenarios and of statecharts is an iterative process. Statecharts have to be validated with
the user either by inspection or review, or by paraphrasing and recounting them to the customer (end
user, procurer) in a narrative style. All (important) paths are traversed; the developer guides the cus-
tomer through the flows. This validation activity works hand in hand with the phase of test case deri-
vation: The paths traversed with the customer to validate the statecharts are test cases that need to be
tested in system test. Again it has to be emphasized that the process is not a sequential one, many of
the activities may – at least partially – be done in parallel; they profit one from another and make use
of the same artifacts.

The statecharts developed at first pass may be integrated to a full system model in a following step
(as desired. It is not mandatory in the method, but might help in design as the integration of all state-
charts represents a full system model).

3.2.2. Statechart Annotation
Statecharts describe the behavior of a system (how does a system behave in response to events and
given conditions, ...), but let out other important information as data, performance and qualities.
Nevertheless, this additional information is important for testing: Many errors are data-related and
may only be found by test cases that can not be directly derived from statecharts (The sample bug

1 If a working step in a scenario does not map to a state or transition, but needs to be modeled in more than one state or
transition, respectively, this usually indicates that the step should be refined (broken down into substeps, its components).
This will not normally be the case, as states can be created at various levels of abstraction and at various granularity lev-
els - to the modelers will. But states at quite different abstraction levels in one statechart are an indication for insuffi-
ciently subdivided and refined scenario steps.

11

statistics in [3] show that this kind of bugs might well account for up to one third of all errors).
Moreover, concrete test data, that is input values and expected output, can only partially be derived
from statecharts directly.
For this reason, we extend the statecharts notation to include information important for testing. In
particular, the additional testing information may comprise the following:
- Preconditions (and postconditions as needed)
- Data: Input, expected output and ranges
- Nonfunctional requirements.
The information is captured in annotations as shown in Figure 4.

Figure 3: A statechart representing the Figure 4: ‘Authentication’-Statechart
‘Authentication’ scenario with alternative flows and annotations

Preconditions are captured in banner-like notes. Data is annotated to states and – if applicable – to
transitions alike: Ranges are specified in square brackets (or alternatively in curly braces, if square
brackets are used for other purposes – see Figure 4 for an example). Expected results can be speci-
fied for key-values. Descriptions of expected data formats and restrictions may be specified in the
statechart and/or references to the specification may be inserted. If desirable (for readability or un-
derstandability of the model, for example, or if paralleled in the domain), specific states for data
validation may be modeled.
Performance requirements are annotated in square brackets as well. Performance requirements span-
ning more than one state or transition are specified by attaching the (timing) constraint to a dashed
line connected to the affected states/transitions.

UC 002: Authentication v0.1

Customer
inserts card

System
checks PIN

System checks
the card’s validity

Customer
enters PIN

Card
entered

PIN
entered

PIN valid
Display main menu

Card valid
Display ‘Enter PIN’ Dialog

UC 002: Authentication v0.4

Eject card

Customer
inserts card

System checks
the card’s validity

Retain card

Customer
enters PIN

System
checks PIN

Card valid

Display ‘Enter
PIN’ Dialog

Invalid PIN
Display

retry msg

PIN
entered

Card
retained

Display
msg

Card
ejected
Reset Card

inserted

PIN valid
Display main menu

Third
invalid PIN

Timeout
Display

welcome
screen

Display
error msg

Card invalid

Card can’t
be read

Display
error msg

Card can’t fully
be inserted

Display
error message

Precondition: ATM is operational, card is being inserted

Annotations PIN consists of more than 3 and less than 7 numerals
The color to be used for error messages onlyred

[<2s]

[<0.05s]

{PIN [0..9] }�
6
4

12

3.2.3. An Example
As an example of the formalization process, we consider the abstract scenario “Authentication” of
the ATM example introduced in section 3.1.2, step 12.
At first the normal flow of actions is modeled in a statechart (see Figure 3).
Then the alternative flows are modeled (see Figure 4).
Once a scenario is modeled in a statechart, the statechart is annotated as needed. Preconditions and
data annotations are included in the statecharts. In the example, valid and invalid PINs are distin-
guished by state transitions, but no indication as to what an invalid PIN is, is made. So a data anno-
tation may specify the ranges and the form of a PIN (see Figure 4). Furthermore, two performance
constraints have been specified in the example: The verification of the card’s validity shall not take
more than two seconds (assuming the network connection in-between ATM and banking system to
be sufficiently fast) and the validation of the PIN shall not take more then five hundredth of a second
(assuming the PIN can be validated algorithmically, just knowing the PIN and an encryption key
read in from the card).

3.3. Test Case Derivation
Test case derivation in the SCENT method comprises three steps:

Step 1 (mandatory). Test case derivation from statecharts.

Step 2 (mandatory). Testing dependencies among scenarios and additional tests (e.g. testing for spe-
cific qualities).

Step 3 (optional). Statechart integration and test case derivation from the integrated statechart

In this paper, only the first step is described in more detail. To support the second step, we define a
new diagram type called dependency charts in SCENT. In dependency charts, timing, logical and
causal dependencies between scenarios are captured and depicted. Thus, testing dependencies among
scenarios is supported by test case derivation from dependency charts. For a detailed description of
dependency charts see [24]. Additional test cases are developed using special testing information
supplied in the scenarios: The notes taken during scenario creation and refinement now are used to
enhance the initial test suite.

3.3.1. Test Case Derivation from Statecharts
In SCENT, test cases are derived by path traversal in statecharts. First, the normal flow of actions
represented in the statechart is followed, then the paths representing the alternative flows of actions
and the exceptions are traversed. In the method, we cover all nodes and all links in the graph, that is:
all states and all transitions are covered by at least one test case. If desired, a more elaborate cover-
age could be chosen (e.g. switch or n-switch coverage [6, 9, 18]). Most states and many transitions
are traversed more than once as annotations are used to refine test cases. Abstract scenarios are inte-
grated in the calling scenarios, to allow for thorough tests of single scenarios. The statecharts are not
integrated, though. The partial character of scenarios is thereby preserved, enabling traceability from
test cases to requirements and vice versa. Furthermore, the user-oriented view of scenarios is thus
promoted into testing, scenario prioritization may be utilized to determine test priorities, and finally
the state-space of the (partial) solutions is thereby limited to prevent a combinatorial state/transition
explosion. The incremental development procedure as encouraged by the use of scenarios is sup-
ported by not integrating the statecharts: Changes in a scenario (=changes in system usage) are usu-
ally confined to changes in one statechart and changes to test cases derived from the one statechart.

Annotations in the statecharts are taken into account in developing tests: Preconditions to statecharts
define test preparation that has to be done before test cases derived from the statechart can be exe-
cuted – the testing setup is determined by the preconditions.

13

The data specified in the scenarios and annotated in the statecharts help develop boundary value tests
– tests that traverse the same path in the statecharts for every boundary value of data ranges as well
as for a data value just above and/or below the boundary, as is done in boundary-value analysis. Do-
main testing techniques and data flow testing can be applied to derive further test cases ([3, 4, 17]).
Furthermore, as path traversal in statecharts will only generate tests for valid sequences of events, the
tester has to ensure inclusion of invalid event sequences in the test. These tests are constructed by
evoking or generating events while the machine is in a state where it should not respond to the gen-
erated events. Thus, exception testing can be improved and systematized and a better test coverage
can be achieved.
Notes on performance and nonfunctional requirements in the scenarios help to formulate test cases to
test these properties.

3.3.2. Test Case Derivation in the Example
To illustrate test case derivation from statecharts, we present some test cases as created by path tra-
versal of the statechart depicted in Figure 4. The first test case follows the normal flow of actions:
The card can be inserted and the card as well as the PIN are valid. The next test case considers the
exception of an incorrect PIN entered. Next an invalid PIN is entered (PIN too short; this test case
takes into account the data annotations specified in the statechart). Finally, a third invalid PIN is en-
tered to provoke another validation failure and traverse the Third invalid PIN link (see Table 2).

In the statechart, the paths that have been traversed are marked. If the developer/tester encounters a
data annotation, be it on a link or in a state, he/she creates a test case for every boundary value/one
above/one below. This means that in the example, the tester has to develop a test case using a key
that is too short (three numerals), a key that is four and six numerals long, respectively, and a key
that is too long (seven numerals). If a character key was used, the tester would test for keys using in-
admissible characters. In this example it is obvious that state-transition tests are not sufficient: Even
though the state-machine will differentiate between valid and invalid PINs, it does not indicate why a
key is invalid. Is it because the PIN does not meet required syntactical or formal attributes (length,
only admissible characters), or is it because the user has entered a PIN that is syntactically correct
but not valid as it is not the user’s PIN? And even if this difference is modeled by distinct transitions
(incorrect PIN vs. invalid PIN), still the tester has to test for all kinds of (syntactically) incorrect en-
tries, e.g. key to long, key to short, key has inadmissible character, key does not include at least one
non-alphanumerical character, and so on.
Annotations of performance requirements are tested for in like manner.

Table 2: Test Cases for the ATM Example

Test preparation: ATM operational, card and PIN (1234) have been issued, card is being inserted

ID State Input/User actions/ Conditions Expected output

1.1 Card sensed Card can be read, card valid, valid PIN (1234)
entered in time

Main menu displayed

1.2 Card sensed
Card can be read, card valid, invalid PIN (1245)
entered in time (first try)

Retry message displayed

1.3 Retry msg Invalid PIN (123) entered in time, second try Retry message displayed

1.4 Retry msg Invalid PIN (1234567) entered in time, third try Card retained, user informed

… … … …

14

The test cases in Table 2 might well be refined to reflect more details in requirements: The normal
flow of actions captured in test case 1.1 in Table 2 above can be broken down to single steps as il-
lustrated in Table 3. The decision on the level of abstraction in testing (to what detail shall be tested)
depends on the kind of test (unit level, integration, system) to be run and on the testing that has been
performed before (full tests on a system level can not be done because of the resulting test suite size
or at least is not economical to do so).

Table 3: Refined Test Cases for the ATM Example

Test preparation: ATM operational, card and PIN (1234) have been issued, card is being inserted

ID State Input/Actions/ Conditions Expected output

1.1 Card sensed Card is taken in
Card inserted, validation
screen displayed

1.2 Card inserted Validate Card
Card is valid, ‘Enter PIN’-
dialog displayed

1.3 Card valid Customer enters PIN PIN (1234) entered in time,
validation screen displayed

1.4 PIN entered Validate PIN
PIN is valid, main menu
displayed

… … … …

4. Related Work
Even though literature on scenarios abounds, test case derivation from scenarios is yet in its infancy.
Scenarios are used in most object-oriented development methods, notably also in the UML (Unified
Modeling Language), and many different approaches have been developed over the last couple of
years. Yet, in the area of testing, only few scenario-based approaches exist. In the following, we re-
view some approaches with regard to use case creation, scenario formalization and support for test-
ing activities:
- Jacobson’s Use Case Approach [13-15] was one of the first to disseminate the use of scenarios

and propagate a user-centered requirements capture and specification. The approach does not,
however, propose any defined procedure on how to create scenarios, nor on how to us scenarios
in testing. Scenarios are not formalized in the approach. No specific description format or tem-
plate is advocated. Furthermore, use cases – as groupings or collections of functionalities and re-
quirements – are rarely truly independent in practice. But in Jacobson’s work only very limited
support for modeling dependencies between scenarios is given (uses and extends relations).
However, to derive tests from scenarios the dependencies between scenarios have to be known,
else crucial parts of the system will/may not be tested for.

- Hsia et al. [11] have proposed and described a more formalized approach to scenario creation and
validation, constructing scenario trees. Their approach is based on regular grammars and equiva-
lent (conceptual) state machines. Scenario creation and formalization are core-parts of the ap-
proach. The use of scenarios to derive test cases however is only shortly sketched and no further
procedure has been specified. Their main use of scenarios in testing is for acceptance test. Our
approach is close to the one proposed by Hsia in many respects. It differs though in central is-
sues:
- Scenario elicitation is conducted via scenario trees in the Hsia approach. In our approach we

define an iterative step-by-step procedure to create scenarios in structured natural language.

15

- Scenario trees are formalized into regular grammars in the Hsia approach. These grammars
describe a conceptual state machine, defining a formal abstract model. One model for each
user view is created. The definition, use and maintenance of these grammars is labor-
intensive and requires special training and skills on the side of the developers. Furthermore
the grammars are not intelligible to customers and users. Changes to scenarios reflected in the
grammars are quite cumbersome.
In contrast we formalize scenarios into statecharts, every statechart representing one scenario.
Statecharts need not be (but may be!) integrated. The notation is expressive and understand-
able to users, and changes in scenarios are easily reflected in the statechart representation.

- In the SCENT method a definite procedure for test case derivation from statecharts is speci-
fied, creating concrete test cases (defining the settings/environment and the input values
needed for test execution). In the Hsia approach, basis paths are used to generate scenarios
from the conceptual state machine, these scenarios are used as input for acceptance testing.
No concrete test cases are created.

- In our approach, statecharts are annotated with preconditions, data and nonfunctional re-
quirements to enhance the creation of test cases. No equivalent concept has been defined in
the Hsia approach.

- Dependencies and relationships among scenarios may in SCENT be modeled in dependency
charts [24] and dependencies may be tested for accordingly. In their approach, Hsia et al. do
not propose any way to handle inter-scenario dependencies.

- Firesmith [7] extends the scenario approach to model scenario lifecycles and the relationship
between different scenarios. The benefit of scenarios in testing is only hinted at, the development
of test cases is not addressed at all.

- Regnell et al. [20, 21] in their approach aim at overcoming the problem of lacking synthesis of
single scenarios to reach a full picture of the whole system by formalizing and integrating the use
cases of a system. Testing is touched upon, but no strategy to test case selection is defined. The
main aim of [20] is to present improvements to the OOSE/Use Case Driven Analysis UCDA ap-
proach of Jacobson [13] by identifying weaknesses and problems in UCDA and defining a possi-
ble solution. [21] focuses on the representation, extending the former approach to include a hier-
archical structured representation. Testing and the derivation of test cases is not an issue in the
approach.

- Potts et al. [19] describe a scenario analysis approach with an emphasis on an inquiry-based pro-
cedure in the analysis process. They define a process for capturing and describing reasoning and
discussion about requirements. In their approach, they take changing requirements and the rea-
soning process into account, supplying a model for scenario evolution. Testing as such is not an
issue in their work.

- Lee et al. [16] use Petri nets for the analysis and integration of use cases. They emphasize the
importance of incremental specification of partial system behavior and of consistency and com-
pleteness checks for requirements engineering techniques. Then they argue that an extended Petri
net approach satisfies these demands. They define Constraints-based Modular Petri Nets
(CMPNs), introduce Petri net slices to analyze system behavior, present a procedure to create
CMPNs from scenarios and show how the model can be checked for consistency and complete-
ness. As some of the approaches mentioned above, this approach tries to integrate and analyze
use cases. However, it does not define a procedure for test case derivation from scenarios. No
scenario creation procedure is specified either; scenario descriptions are input to the method.

- Message sequence charts MSCs were used in different approaches to formalize scenarios or to
capture requirements of systems (see [1] for an example). Yet MSCs suffer from the disadvan-
tage that they are getting overloaded fast when all exceptions and alternatives of a scenario are to

16

be integrated in one chart. On the other hand, they miss an abstraction mechanism to decompose
complex system descriptions.

5. Conclusions
In this paper we have presented the SCENT method, a scenario-based approach to support the tester
of a software system in systematically developing test cases. This is done by eliciting and docu-
menting requirements in natural language scenarios, using a template to structure the scenarios. Sce-
narios then are formalized into statecharts. Finally, test cases are derived by path traversal in state-
charts.
The method introduced in this paper has been applied in practice to two projects at the ABB Re-
search Center in Baden/Switzerland. First experiences are quite promising as the main goal of the
method, namely to supply test developers with a practical and systematical way to derive a first set of
test cases, has been reached. The projects in which the method was applied were applications to re-
mote monitoring of embedded systems [12].
The use of scenarios was perceived by the developers as helpful and valuable in modeling user inter-
action with the system. Developers especially appreciated the integration of the users and the direct
feedback they received in creating and refining scenarios.
Not surprising, the creation of coarse overview scenarios and the iterative refinement of scenarios
down to sequences of atomic actions proved to be valuable and was very much appreciated by users
and developers.

The application of the method (and of scenario approaches in general) was not without difficulties,
however. Some of the problems that surfaced in applying the methods were:
- Contrary to the positive experience in modeling user interaction in scenarios, it was troublesome

to model system internal interaction and the interaction with other systems in scenarios as well.
Instead of using scenarios, the developers preferred to create state machines and/or other models
directly.

- Developers did not want to specify scenarios down to the level needed for test case design. Sce-
narios were used to model user interaction with the system at an abstract level, then refined to
cover all the systems tasks. At this point it was not easy to convince the developers that further
refinement and specification was needed, if scenarios were to be used for test case generation.

- Scenario management was considered a major problem throughout the development. As the pri-
mary scenarios created in SCENT are natural language descriptions and as they interrelate with
many of the other artifacts produced in the software engineering process, there is threefold to
manage: Keep scenarios consistent in themselves (as one specific scenario may exist in many
versions and representations, e.g. as a natural language scenario and as a statechart, and as differ-
ent scenarios may be related one to another), keep scenarios and other documents and artifacts
consistent (e.g. all the links between scenarios and models derived from scenarios like class and
behavioral models, and more especially the links between scenarios and other parts of the speci-
fication), and finally keep scenarios up-to-date when requirements, the environment and the de-
velopers’ understanding of the problem are changing.

The formalization process posed some specific problems, as the mapping of scenario actions to states
or transitions is not definite and clear-cut. A scenario transformed into a statechart by one developer
may differ significantly from a statechart developed from the same scenario by another developer.
Scenario formalization is not free, some extra work is needed; in fact, the development of statecharts
might take quite some time and bind some resources. However, the extra work put into scenario for-
malization pays back in many ways:

17

1. As mentioned before, the transformation of structured-text scenarios into a semiformal statechart
representation helps in verifying and validating narrative scenarios. Omissions, inconsistencies
and ambiguities are found. The specification is thus improved.

2. Developers gain a deeper understanding of the domain and the system to be built because they
have to understand the details to formalize the scenarios.

3. The statecharts created in the transformation may well be used and reused in design and imple-
mentation.

4. The formalized scenarios are (re)used in testing. Test case preparation and expenses are moved
from the testing phase late in the development process to earlier activities, thus alleviating the
problem of testing poorly done under time pressure. By using a systematical way to develop test
cases, test coverage is improved.

The cost of developing the statecharts is justified by the benefits of an improved specification and
enhanced testing.
Test case creation on the other hand was unproblematic (as expected).
Future work will be done in the direction of defining a coverage criterion for requirements captured
in scenarios or in other natural language documents and descriptions, and measuring/quantifying the
improvement in coverage gained by applying the SCENT method. We are also aiming at more
tightly integrating non-functional requirements into scenarios and statecharts.

References
[1] M. Andersson, J. Bergstrand, “Formalizing Use Cases with Message Sequence Charts,” in

Lund Institute of Technology: Lund, 1995.
[2] M. Arnold, M. Erdmann, M. Glinz, P. Haumer, R. Knoll, B. Paech, K. Pohl, J. Ryser, R.

Studer, K. Weidenhaupt, “Survey on the Scenario Use in Twelve Selected Industrial Proj-
ects,” GI Fachgruppe 2.1.6 Requirements Engineering, Aachener Informatik-Berichte 98-07,
June 1998.

[3] B. Beizer, Software Testing Techniques, Second Edition ed. New York: Van Nostrand Rein-
hold, 1990.

[4] B. Beizer, Black-Box Testing, Techniques for Functional Testing of Software and Systems.
New York: John Wiley & Sons, 1995.

[5] B. Boehm, Software Engineering Economics. Englewood Cliffs, N.J.: Prentice Hall, 1981.
[6] T. S. Chow, “Testing Software Design Modeled by Finite-State Machines,” IEEE Transac-

tions on Software Engineering, vol. 4, # 3, pp. 178-187, 1978.
[7] D. C. Firesmith, “Modeling the Dynamic Behavior of Systems, Mechanisms and Classes with

Scenarios,” Report on Object Analysis and Design, vol. 1, # 2, pp. 32-36,47, 1994.
[8] M. Glinz, “An Integrated Formal Model of Scenarios Based on Statecharts”, in W.Schäfer,

and P.Botella, (eds.) Software Engineering - ESEC '95. Proceedings of the 5th European
Software Engineering Conference, Sitges, Spain. Springer, Berlin (Lecture Notes in Com-
puter Science 989), pp. 254 - 271, 1995.

[9] G. Gonenc, “A Method for the Design of Fault-detection Experiments,” IEEE Transactions
on Computers, vol. C-19, pp. 551-558, 1970.

[10] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,” Science of Computer
Programming, vol. 8, pp. 231-274, 1987.

[11] P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, C. Chen, “Formal Approach to Scenario
Analysis,” IEEE Software, vol. 11, # 2, pp. 33-41, 1994.

[12] R. Itschner, C. Pommerell, M. Rutishauser, “GLASS: Remote Monitoring of Embedded Sys-
tems in Power Engineering,” IEEE Internet Computing, vol. 2, # 3, 1998.

[13] I. Jacobson, M. Christerson, P. Jonsson, G. Övergaard, Object Oriented Software Engineer-
ing: A Use Case Driven Approach. Amsterdam: Addison-Wesley, 1992.

18

[14] I. Jacobson, “Basic Use Case Modeling,” Report on Object Analysis and Design, vol. 1, # 2,
pp. 15-19, 1994.

[15] I. Jacobson, “Basic Use Case Modeling (cont.),” Report on Object Analysis and Design, vol.
1, # 3, pp. 7-9, 1994.

[16] W. J. Lee, S.D. Cha, Y.R. Kwon, “Integration and Analysis of Use Cases Using Modular
Petri Nets in Requirements Engineering,” IEEE Transactions on Software Engineering, vol.
24, # 12, pp. 1115-1130, 1998.

[17] G. J. Myers, The Art of Software Testing. New York: John Wiley & Sons, 1979.
[18] S. Pimont, J.C. Rault, “A Software Reliability Assessment Based on a Structural Behavioral

Analysis of Programs,” Proceedings 2nd International Conference on Software Engineering,
San Francisco, CA, 1976.

[19] C. Potts, K. Takahashi, A.I. Anton, “Inquiry-based Requirements Analysis,” IEEE Software,
vol. 11, # 2, pp. 21-32, 1994.

[20] B. Regnell, K. Kimbler, A. Wesslén, “Improving the Use Case Driven Approach to Require-
ments Engineering,” Proceedings 2nd International Symposium on Requirements Engineering,
York, England, 1995.

[21] B. Regnell, M. Andersson, J. Bergstrand, “A Hierarchical Use Case Model with Graphical
Representation,” IEEE International Symposium and Workshop on Engineering of Computer-
Based Systems, Friedrichshafen, 1996.

[22] C. Rolland, C. Souveyet, C. Ben Achour, “Guiding Goal Modeling Using Scenarios,” IEEE
Transactions on Software Engineering, vol. 24, # 12, pp. 1055-1071, 1998.

[23] J. Ryser, S. Berner, M. Glinz, “On the State of the Art in Requirements-based Validation and
Test of Software,” Universität Zürich, Institut für Informatik, Zürich, Berichte des Instituts
für Informatik 98.12, Nov 1998.

[24] J. Ryser, “SCENT: A Method Employing Scenarios to Systematically Derive Test Cases for
System Test,” to appear as a technical report at University of Zurich, Institut für Informatik,
Zürich, 1999.
see: www.ifi.unizh.ch/groups/req/ftp/SCENT/SCENT_Method.pdf

[25] S. Somé, R. Dssouli, J. Vaucher, “Toward an Automation of Requirements Engineering using
Scenarios,” Journal of Computing and Information, vol. Special issue: ICCI'96, # 8th Inter-
national Conference of Computing and Information, pp. 1110-1132, 1996.

[26] I. Spence, C. Meudec, “Generation of Software Tests from Specifications,” SQM'94 Second
Conference on Software Quality Management, Edinburgh, Scotland, UK, 1994.

[27] A. G. Sutcliffe, N.A.M. Maiden, S. Minocha, D. Manuel, “Supporting Scenario-Based Re-
quirements Engineering,” IEEE Transactions on Software Engineering, vol. 24, # 12, pp.
1072-1088, 1998.

[28] K. Weidenhaupt, K. Pohl, M. Jarke, P. Haumer, “Scenarios in System Development: Current
Practice,” IEEE Software, vol. 15, # 2, pp. 34-45, 1998.

[29] T. Yamaura, “How to Design Practical Test Cases,” IEEE Software, vol. 15, # 6, pp. 30-36,
1998.

5. November 1999SCENT: A SCENario -Based Validation and
Test Case Generation Method

1

A Practical Approach to

Validating and Testing
Software Systems Using

Scenarios
Johannes RYSER Martin GLINZ

University of Zurich

{ryser, glinz}@ifi.unizh.ch

5. November 1999SCENT: A SCENario -Based Validation and
Test Case Generation Method

2

Testing as a Problem

• Testing as an unplanned, ad hoc process
– Sparse time and resources allocated for testing

– No test plan, tests are not documented

– Unstructured, non-systematic test case design

• Testing is a drudgerous, error-prone activity

• Lacking tool support
– Specific or formal testing languages that can only be applied

to limited problems or specific domains

– Automatic testing/test case generation not generally possible

• Lacking method(s), lacking problem understanding

5. November 1999SCENT: A SCENario -Based Validation and
Test Case Generation Method

3

Solutions to the problem(s) at hand

• Methods and process improvements
– Systematic, methodical test case development

– Methods that
• are easy to apply

• blend into existing development methods/paradigms

• do not impose inappropriate overhead/intolerable cost

– Test planning, test preparation and documentation (just do it)

• Improved (formal?) languages and tool support

• Integration of testing, early test case development and
reuse of SW artifacts

5. November 1999SCENT: A SCENario -Based Validation and
Test Case Generation Method

4

Our Approach: SCENT

• SCENT: A method for SCENario-based
validation and Test of software

• Scenario-based
– User view, black-box view

– User involvement in requirements engineering

– Improved communication among stakeholders

– No special language/notation

– Requirements capture, documentation and bundling

– Help the developer acquire the vocabulary of the application
domain

5. November 1999SCENT: A SCENario -Based Validation and
Test Case Generation Method

5

Our Approach: SCENT

• Validation
– Formalization

• Practice-oriented
– Step-by-step procedure

– Reuse of (analysis) scenarios

– No formal language

– Benefits outweigh additional cost and labor

• Systematic test case development

• Easy integration with software development methods

5. November 1999SCENT: A SCENario -Based Validation and
Test Case Generation Method

6

Scenario Definition

• Scenario – An ordered set of interactions between partners,
usually between a system and a set of actors external to the
system. May comprise a concrete sequence of interaction steps
(instance scenario) or a set of possible interaction steps (type
scenario).

• Use case – A sequence of interactions between an actor (or
actors) and a system triggered by a specific actor, which
produces a result for an actor. A type scenario.

• Actor – A role played by a user or an external system inter-
acting with the system to be specified

5. November 1999SCENT: A SCENario -Based Validation and
Test Case Generation Method

7

The SCENT Approach

• Use of scenarios not only in analysis, but also in
testing
– natural language scenarios to elicit and document

requirements

– ‘formalized’ scenarios (= statecharts) to systematically
derive test cases for system test

ðReuse of early development artifacts

ð Integration with existing development methods

ðWeaknesses of natural language specifications are alleviated
by formalization

ð (Continuous) validation of system

5. November 1999SCENT: A SCENario -Based Validation and
Test Case Generation Method

8

The SCENT Approach

• Statechart/scenario annotations support test case
derivation
– Pre- and postconditions

– Data ranges and values

– performance and non-functional requirements/qualities

• Concrete test cases are developed by paths traversal in
statecharts

ðEnhanced behavioral system specification

ðSystematic approach to test case development

ðDocumentation of test cases

5. November 1999SCENT: A SCENario -Based Validation and
Test Case Generation Method

9

Scenario Creation

• Step-by-step procedure
– Identify actors, (external) events, in- & output and results

– Determine system boundaries

– Create coarse business process level scenarios, prioritize them

– Refine scenarios by creating a step-by-step description and an
overview diagram, and by modeling alternative flows of
actions

– Factor out abstract scenarios, include qualities and
performance requirements

– Have users review and validate scenarios and diagrams

• Scenario Template (layout, structure, format)

Scenario Creation Procedure
Step Description Results

1 Find all actors interacting with the system List of actors

2 Find all (relevant system-external) events List of events (triggers)

3 Determine results and output of the system System output

4 Determine system boundaries System boundaries

5 Create coarse overview scenarios (instance or type scenarios on
business process or task level)

List of scenarios

6 Prioritize scenarios according to their importance and assure that
the scenarios cover all system functionality

 List of prioritized scenarios
 Links scenarios – actors

7 Transform instance to type scenarios. Create a step-by-step de-
scription of events and actions for each scenario (task level)

Coarse grained flow of actions in sce-
narios

8 Create an overview diagram Overview Diagram

9 Have users review and comment on the scenarios and diagrams Comments and annotations to scenarios

10 Extend the scenarios by refining the description of the normal
flow of actions, break down tasks to single working steps

Description normal flow of actions
Hints on test case derivation

11 Model alternative flows of actions, specify exceptions and how to
react on exceptions. Include hints on test case derivation

Alternative flows of actions, exception
handling in scenarios

12 Factor out abstract scenarios Abstract scenarios

13 Include performance/ non-functional rqmts./ qualities in scenarios Scenarios, annotated with qualities

14 Revise the overview diagram Revised overview diagram

15 Have users check and validate the scenarios (Formal reviews) Validated scenarios

5. November 1999SCENT: A SCENario -Based Validation and
Test Case Generation Method

11

Example: Scenario Creation

Description: At an ATM the customer may inquire the balance of his/her account
or withdraw money up to a certain amount and at given piecing. The
customer needs a card and a personal identification number (PIN) to
get access to the system and perform the mentioned transactions.
The system interacts with a central bank system to get customer and
account information and to inquire and update account balances.

Actors: ”Customer”,” Service Personnel”,” Operator”, ” Banking system”

Events: Customer inserting card, entering PIN-code, choosing action, entering
amount, taking back card, taking cash; operator filling bills; service personnel
servicing machine

System input: Cards, PINs, choices for actions, amounts, bills

System output/results: Cards, balance info, cash/bills

Scenarios: (1)Inquire Balance, (2)Withdraw cash, (3)Service ATM, (4)Reload bills

5. November 1999SCENT: A SCENario -Based Validation and
Test Case Generation Method

12

Excerpts from a Scenario

Scenario 2: Withdraw cash (Actor: Customer)
The customer withdraws money

Flow of actions:
1. The customer inserts the card
2. The system checks the cardÕs validity
3. The system displays the ÓEnter PINÓ Dialog
4. The customer enters his PIN
5. The system checks the PIN
6. The system displays ...

Alternatives:
1a. The slot is obstructed
1a.1 The customer informs ...
1a.2 ...

5. November 1999SCENT: A SCENario -Based Validation and
Test Case Generation Method

13

Problems in Using Natural Language Scenarios

• How to check for
– Inconsistencies

– Incompleteness

– Ambiguity

ðReviews, Walkthroughs

ðFormalization of scenarios

In SCENT we take an intermediate approach:
Formalization of natural language scenarios to a
semiformal graphical representation

5. November 1999SCENT: A SCENario -Based Validation and
Test Case Generation Method

14

Scenario Formalization

• Transformation of narrative scenarios into statecharts

• Transformation is not formal, but supported by heuristics
– One scenario plus all its alternative flows = one statechart

– Statecharts are created and refined along with scenarios

– Model normal flow first, integrate alternatives later on. Check
if alternatives are missing

– Events map to transitions, single working steps in scenarios
map to states or transitions in statecharts

– Check statecharts for internal completeness and consistency

– Crosscheck statecharts

5. November 1999SCENT: A SCENario -Based Validation and
Test Case Generation Method

15

Scenario Formalization

• Formalization makes validation and verification easier
– Inconsistencies, ambiguities and omissions are found

– Enhanced validation (animation, ‘formal’ reasoning, ...)

• Statecharts may be integrated to create a model of the
whole system

• Validation of statecharts goes hand-in-hand with test
case derivation

5. November 1999SCENT: A SCENario -Based Validation and
Test Case Generation Method

16

Statechart Annotation

• Statecharts model system behavior, but data,
performance and qualities are not modeled
ðMissing information for test development

ðAnnotate statecharts with
– Pre- and Postconditions

• Setup for tests derived from statechart

– Data ranges and values
• To enable development of domain tests, boundary analysis

• Expected results (functions as test oracle)

– Performance and non-functional requirements, qualities

5. November 1999SCENT: A SCENario -Based Validation and
Test Case Generation Method

17

Example: Scenario Formalization

UC 002: Authentication v0.1

Customer
inserts card

System
checks PIN

System checks
the card’s validity

Customer
enters PIN

Card
entered

PIN
entered

PIN valid
Display main menu

Card valid
Display ‘Enter PIN’ Dialog

UC 002: Authentication v0.4

Eject card

Customer
inserts card

System checks
the card’s validity

Retain card

Customer
enters PIN

System
checks PIN

Card valid

Display ‘Enter
PIN’ Dialog

Invalid PIN
Display

retry msg

PIN
entered

Card
retained

Display
msg

Card
ejected
Reset Card

inserted

PIN valid
Display main menu

Third
invalid PIN

Timeout
Display

welcome
screen

Display
error msg

Card invalid

Card can’t
be read

Display
error msg

Card can’t fully
be inserted

Display
error message

Precondition: ATM is operational, card is being inserted

Annotations PIN consists of more than 3 and less than 7 numerals
The color to be used for error messages onlyred

[<2s]

[<0.05s]

{PIN -> [0..9] }6
4

PIN consists of more than 3 and less than 7 numerals
The color red to be used for error messages onlyAnnotations

5. November 1999SCENT: A SCENario -Based Validation and
Test Case Generation Method

18

Test Case Derivation

• Test case derivation in SCENT consists of:
– Test case derivation from statecharts

– Additional testing (supported by scenarios)
• dependencies between scenarios

• testing for qualities, performance

• intuitive tests according to notes in scenarios

• Test cases are determined by path traversal in statecharts
– node-link-coverage (alternatively switch/n-switch coverage)

– normal flow, alternative flows, exceptions

• Use of annotations to enhance test case development

5. November 1999SCENT: A SCENario -Based Validation and
Test Case Generation Method

19

Example: Test Case Derivation

1.1 Normal flow is tested first

1.2-1.4 Cover all alternative flows and exceptions

1.3-1.4 Use annotations and notes to develop enhanced test cases

Test preparation: ATM operational, card and PIN (1234) have been issued, card is being inserted

ID State Input/User actions/ Conditions Expected output

1.1 Card sensed
Card can be read, card valid, valid PIN (1234)
entered in time

Main menu displayed

1.2 Card sensed Card can be read, card valid, invalid PIN (1245)
entered in time (first try)

Retry message displayed

1.3 Retry msg Invalid PIN (123) entered in time, second try Retry message displayed

1.4 Retry msg Invalid PIN (1234567) entered in time, third try Card retained, user informed

… … … …

5. November 1999SCENT: A SCENario -Based Validation and
Test Case Generation Method

20

Conclusions

• SCENT has been applied in two industrial projects
– Applications to remote monitoring of embedded systems

• Experiences made
– Use of scenarios proved valuable

– Iterative refinement appreciated by the developers

– Scenarios not suited to model system internals

– Scenario management was a problem

• Direction of future work
– Tighter integration of non-functional requirements

– Measure requirements coverage achieved

 1999 Gitek nv page 1 of 10

Structured Testing, a must in a Validation Critical Environment

Nathalie Fuchs

Gitek nv - interaction through software

St. Pietersvliet 3, B-2000, Antwerpen, Belgium

Tel: +32 3 231 12 90 - Fax: +32 3 226 10 83

E-mail: nf@gitek.be

1 Introduction

This paper explains our point of view on the subject ″Structured testing in validation critical environments”
at Janssen Research Foundation.

JRF is a part of Janssen Pharmaceutica, which was founded in 1953. It has 5 products on the WHO list of
Essential Drugs. Janssen Pharmaceutica currently produces over 80 pharmaceutical products.

Since 1961 JRF belongs, as a pivot pharmaceutical research company, to Johnson & Johnson. J&J stands for
188 companies in 52 countries with more than 93.000 employees and is active in the consumer, professional
and pharmaceutical sector. Of the annual sales, approximately 10% is dedicated to Research and
Development. In Belgium the research department is grouped in the Janssen Research Foundation.

The paper covers the following topics: JRF’s growing need for a structured test process as part of a business
improvement process, the JRF Validation Policy, the incorporation of TMap1 in the JRF V-model and the
lessons learned of several IT projects and the measures for the future.

2 The growing need

In the pharmaceutical industry, validation became a necessary part of the company’s quality system.
Validation was defined as follows: “establish a documented evidence which provides a high degree of
assurance that a specific process will consistently produce a product meeting its predetermined
specifications and quality attributes” (FDA2, May 1987).

At a time, when “absence of errors” was no longer acceptable as “proof for a validated computer system”
the awareness for the need of a structured test process grew quickly.

Therefore, at JRF a V-model was elaborated and the first guidelines for validating computer systems were
developed.

By 1997 they were fine-tuned, resulting in a daily used set of guidelines, templates and examples and a JRF
validation policy, which is the same as the world-wide approach to quality standards of Janssen
Pharmaceutica.

1 TMap = Test Management approach
2 FDA = Food and Drug Administration, part of the U.S. government

“Structured Testing, a must in a Validation Critical Environment”

17 September 1999

 1999 Gitek nv page 2 of 10

3 The JRF Validation Policy

At company level the Validation Policy outlines the broad principles for the validation of systems. The
implementation of the policy is achieved through a Validation Methodology.

The Validation Methodology encompasses the procedures, methods, tools and techniques that are needed to
establish a coherent, pragmatic, and controlled approach across all departments. Together they form a
Quality System. The methodology includes an overall description of the validation methodology, the
guidelines covering validation during the complete software development life cycle and the common
templates. The procedures or standards used, are documented in Validation Master Plans, different for each
business area. The Validation Master Plans explain “how” validation is being managed and include an
inventory of all types and levels of computerised systems and related processes.

4 The JRF V-model

The JRF Validation policy states that Validation as part of the development process shall assure GXP3

compliance throughout the full life cycle of a computerised system (cf. Figure 1: The V-model).

The life cycle includes the following elements:

The Project and Quality Plan (PQP)

The purpose of the Project and Quality Plan is to:
• Define JRF’s obligations in relation to quality;
• Determine all the means that are and will be applied to meet the JRF’s technical and quality

requirements;
• State all the participants of the project, procedures, rules and applicable methods.

The Validation Plan (VP)

The Validation Plan describes the process to be validated, and how validation will be conducted. The
completion of the plan will produce the Validation Report, which summarises the results of the validation
activities and defines the final validation status.

The objective of the Validation Plan is to provide a basis for planning and control of the activities required,
to validate the concerned system.

The User Requirements (URS)

The User Requirements Specification defines clearly and precisely:
• What the process in which the system is to be used requires from the system;
• The business and user needs for the system;
• The constraints that are set for the execution of the project;
• The company standards (both tools and methods) that have to be followed when developing and

implementing the system.

The URS is an integral part of the Software Development Life Cycle (SDLC). This means that it will be
continuously updated during the lifetime of the computerised system to reflect the true functionality as built
and installed.

3 GxP regulations: Good Manufacturing Practices (GMP), Good Laboratory Practices (GLP), Good Clinical Practices
(GCP). The paper stresses experience in a GLP compliant environment.

“Structured Testing, a must in a Validation Critical Environment”

17 September 1999

 1999 Gitek nv page 3 of 10

P ro g ra m
B uild

T e c h n ic a l De s ign

S upplie r
T e s ts

Ins ta lla tion
Q u a lific a tion

O p e ra tio n a l
Q u a lific a tion

F unc tio n a l
S pe c ific a tions

P e rfor m a n c e
Q u a lific a tion

U s e

R e tire

S O F TWARE/
S Y S TEM

S U P P L IE R

P R O J E C T

D e ve lopme n t

G X P
R e gula tions

U s e r
R e quire m e nts

V a lidation
P la n

C h a n g e C o n tro l

M a inta in
P ro je c t C o n c e pt

P ro je c t & Q u a lity
P la n s

P ro je c t & Q u a lity
P la n s

P ro c e s s & Me thods
V a lidation

C ritic a lity An a lys is

Figure 1: the JRF V-model

The Criticality Analysis (CA)

The purpose of the Criticality Analysis is to:
• Highlight the items which are critical in regard with the GxP regulations and identify the GxP

regulations that are applicable to the concerned system;
• Show that the user requirements of the concerned system take into consideration the identified

regulations and thus demonstrate that the concerned system is GxP compliant;

Define the subsequent actions that must ensure that critical areas are appropriately addressed. Areas that are
not well covered in the current version of the requirements have to be included in a subsequent version of
the URS-document.

The Functional Specifications (FS)

The Functional Specification identifies how the system will meet the User Requirements Specification.
Traceability between URS and FS has to be maintained and this is achieved through a traceability matrix
and numbering of all specifications. The FS will define the system’s functions, including explanation of
how they will be performed manually (in accordance with procedures), by equipment or by a computer
system or systems.

The Technical Design (TD)

The Technical Design identifies in precise technical detail how the system will meet the Functional
Specification. Traceability between URS, the FS and the Technical Design has to be maintained and this is
achieved through a traceability matrix and numbering of all specifications.

“Structured Testing, a must in a Validation Critical Environment”

17 September 1999

 1999 Gitek nv page 4 of 10

Supplier Tests (ST)

The Supplier tests incorporate code reviews, unit, integration and system testing by the supplier in a
development environment.

Installation Qualification (IQ)

The objective of the Installation Qualification is to verify that the system has been installed and configured
in its operational environment according to the design documentation and recommendations of the
manufacturer or supplier(s).

Operational Qualification and Performance Qualification (OPQ)

The objective of the Operational Qualification is to demonstrate, through the execution of tests, that the
system performs and behaves as specified. The objective of the Performance Qualification is to prove that
the entire system performs correctly and consistently in the true operating environment, according to the
requirements for the process.

This is managed using an OQ and PQ Test Plan. The plan must:
• Be written and approved prior to execution;
• Ensure that all activities are carried out and documentation has been delivered;
• Summarise all “out of acceptance” results (known errors) in a document “Test Report”;
• Be followed by a Validation Report.

Validation Report (VR)

The Validation Report summarises the results of the validation activities and defines the final validation
status.

The objective of the Validation report is to confirm that the items required by the Validation Plan have been
completed. The Validation report makes the overall conclusions for the project.

The Validation report must:
• Be written and approved;
• Enclose all out of acceptance results (known errors) with a status “Resolved”, “Part of a Corrective

• Describe all non-compliance remarks in relation to the departmental SOP’s4.

The system may not be released as fully validated if the Validation Report has not been approved by Quality
Assurance.

4 SOP = Standard Operating Procedure

“Structured Testing, a must in a Validation Critical Environment”

17 September 1999

 1999 Gitek nv page 5 of 10

5 The introduction of Test Management approach

JRF refined the test aspects of the V-model by incorporating TMap in their validation methodology.
TMap was developed by IQUIP Informatica B.V. in the Netherlands.

TMap is a generic model based on 4 cornerstones:
• A development process related life cycle model for the testing activities (L). The model recognises five

phases: planning and control, preparation, specification, execution and completion;
• Solid organisational embedding (O);
• The right resources and infrastructure (I);
• Usable techniques for the various testing activities (T).

For several pharmaceutical projects the life cycle model was incorporated in the Operational and
Performance Qualification of the JRF V-model.

6 The lessons learned and measures taken

6.1 The Test Life Cycle Model

6.1.1 Planning & Control

During the very first project, several mismatches between TMap® and the JRF Validation Methodology
appeared. TMap® calls for a very early development of a high-level test plan while JRF defined a more
detailed test plan later in the project.

There were no detail plans drawn up. This was met by planning and re-planning the testing activities on a
regular basis. In the near future detail plans will be made. For every part of the detail plan the used test
specification techniques, the kind of test and the applied test base will be mentioned.
Moreover, the plans will indicate the planned effort and the predicted run time. Optionally the predicted
number of defects can be included (cf. “Experience based estimations”, TESPRA Johan Swinnen Gitek nv).

Planning and control was well organised from the testing point of view although the first plans were too
optimistic. Planning and control was formalised on a weekly basis and communicated to all members of the
test team. Today an extension of the working hours administration is taken into consideration sincethe
testing hours alone can not give a detailed cost status of the testing project (cf. “Experience based
estimations”, TESPRA Johan Swinnen Gitek nv).

Both methodologies proved to be rather flexible, some high-level test information can be incorporated in the
Project and Quality Plan and the test plan will be created earlier during validation.

“Structured Testing, a must in a Validation Critical Environment”

17 September 1999

 1999 Gitek nv page 6 of 10

6.1.2 Preparation

During our first project, the preparation phase was impeded because of problems by the version control of
the test base and the objects to be tested. Meanwhile awareness is created and the need for good version
control is recognised.
From the testing point of view version control was well managed.
JRF is now thinking of elaborating a tool to overcome the former administrative tasks about version control.
(The disadvantage of the use of a tool is that it can have a rather restrictive impact).
JRF uses version control whereby documents are provided with a document name, version number, release
number and fix. The fix can alter during the entire project where as the release number only alters in case of
partial release in production. The version number alters in case of complete changes.

6.1.3 Specification

During specification the test cases were specified and the appropriate infrastructure was put in place.
The test cases were defined in two stages, the logical and physical test design. The used test specification
techniques were conclusive. JRF started for the second pilot project to execute detailed pre-tests. The
supplied products were tested during the specification phase to determine whether it would serve any
purpose to submit the test object to the formal structured test. This resulted in a shorter and more effective
execution. Fewer defects were found and less re-tests had to be performed.
Experience indicates that a more formal test environment is needed. One of the aspects needed in such an
environment is a tool restricting the access to the test base.

6.1.4 Execution

The defect tracking proved that the phase of test execution was productive and effective. There were a lot of
defects made on test execution. This was due to incorrect and incomplete answers on the intakes and no
solution for a considerable number of defects with a low severity rather than the design of the scripts. New
versions of test scripts had to be made for re-test. This resulted in a loss of efficiency.
The JRF Validation Methodology stresses the importance of functional and technical documentation. Good
communication and well-thought answers concerning design and development is very important. The
changes seen during the development of the sequential projects proves that this is very well possible and can
be changed in a short time period.

According to the JRF Validation Methodology a test witness is compulsory during test execution if test
evidence can not be gathered in other ways. The related need of extra manpower, causing extra costs, was
solved using Lotus ScreenCam. This tool is used to create a kind of video movie that registers the actions
executed on a PC. The resulting file is then stored on a CD-ROM. JRF is implementing the use of this tool
in the entire organisation.

The type of project did not allow a separate test environment, since this would require the purchase of a full
set of lab-instruments. Analysing samples and other research work took priority.

6.1.5 Completion

Planned completion time was insufficient when re-tests were taken into consideration. Too many findings
were made on planned but not executed modifications. This underestimation of the number of defects was
the consequence of too little attention from developer’s point of view and too much confidence from the
side of the test team. As a result JRF’s Methodology has been adapted and now states that white-box testing
should be done during development before software is released for black-box testing. A planning with
checkpoints and milestones is elaborated for Development.

“Structured Testing, a must in a Validation Critical Environment”

17 September 1999

 1999 Gitek nv page 7 of 10

6.2 Techniques

JRF is aware that the intake (inspection) of the test base has to be executed earlier in time. Fagan
inspections are considered.
The syntactic tests were drawn up with too much detail. In the future they will be put together in one script
where possible.
Depending on the risks and use of the test base, the dataflow and error guessing part of the test scripts must
be extended with an elementary comparison test.
Detachment of the logical and physical test specifications has proven its advantage. Certainly in case of
regression tests.

6.3 Infrastructure

Clearly the test infrastructure is a point of attention. Not only a separate test environment is needed to test
efficiently, the PC’s used by the testers are of importance as well and sufficient resources have to be spent
in this area.

JRF decided not to use test tools yet since they are convinced that a test process needs to be in place before
automation is worthwhile.

The defect administration was very effective and userfriendly. JRF is introducing it through the complete
organisation. In the future defects will be managed using a database instead of an excel spreadsheet. This
would allow minimisation of manual tasks and the improved use of metrics over several projects (cf.
TESPRA, Johan Swinnen, Gitek nv).

The use of metrics is introduced. Questions like “where to find the causes of the defects” and “which actions
should be taken to structurally solve problems” are answered. JRF recognises the great importance of an
estimation of the expected defects to budget a project. The defects have to be linked to change management.

6.4 Organisation

The JRF organisation has clearly found a good test methodology by incorporating the TMap® approach in
several projects. JRF has decided to choose TMap® to test all major software releases.

The integration of a test methodology in the JRF Validation Methodology clearly needed time and effort. At
this moment, planning and formalisation of decisions made, is included in standard project management.

Prototyping at development level has proven its advantages. JRF stressed the importance of white-box
testing, even when prototyping.

The test team was well organised. Co-operation and communication were open and clear although the
instability of the test base caused high work pressure at moments.

7 General objectives for the future

For the near future JRF is concretising actions on the following issues:
• Elaborating a Janssen Pharmaceutica generic V-model with the clear incorporation of the TMap®

approach;
• Continue to cultivate the awareness that a validation process is an integrated part of the development

process. More stable software should result in less maintenance. Therefore clear roles and
responsibilities for all project members must be set;

• Implementing validation and starting test planning at a higher stage of the V-model (cf. The future V-
model). This must result in reducing costs, more predictable and controllable budgets or projects;

“Structured Testing, a must in a Validation Critical Environment”

17 September 1999

 1999 Gitek nv page 8 of 10

• Evaluating user requirements, functional specifications and technical design by the use of “Peer

• Elaborating the requirements by levelling the importance (high, medium, low). This in order to specify
the business risk in detail;

• High quality test evidence and important test metrics by the use of defect tracking (cf. TESPRA Johan
Swinnen Gitek nv) and other tools to provide a clear view of the overall test and development process.
This, in order to take the right management decisions at the right time;

• Elaborating traceability matrices between user requirements, functional specifications and logical test
cases. This in order to clearly explain “why” certain functions are in place and to prove that the
information system is under control.

Program
Build

SUPPLIER
Supplier

Tests

Validation Report

System
Use

RetireMaintain

SOFTWARE/
SYSTEM

PROJECT

GXP
Regulations

Criticality Analysis

Development

Project & Quality
Plans

Project & Quality
Plans

Project Concept

Validation Plan
Master Test Plan

Change Control

spaties

Test Plan
Performance
Qualification

User
Requirements

Technical Design
Installation

Qualification

Operational
Qualification

Functional
Specifications

Test Plan

Test Plan

Intake
Fagan Inspection

Figure 2: the future JRF V-model

8 Biography

Nathalie Fuchs is a commercial engineer and has a post university degree on Information Management. In
the early nineties she started as a project leader – application manager practising testing information systems
in the retail business. She has experience in testing and implementing software for cash register systems,
change management and user support. She joined Gitek nv in the beginning of 1998 and is now test co-
ordinator of several pharmaceutical test projects.

“Structured Testing, a must in a Validation Critical Environment”

17 September 1999

 1999 Gitek nv page 9 of 10

9 Appendices

9.1 Project roles and responsibilities

System sponsor • Ensures that regulatory requirements are met;
• Provides adequate resources;
• Reviews the qualification status of the system prior its release for operational use.

System User
(Key User)

• Executes the qualification test scripts;
• Uses the system according to the SOP’s.

System Owner • Ensures that regulatory requirements are met;
• Ensures user training;
• Ensures the availability of all documentation;
• Corrects definition of User Requirements
• Evaluates recommended change actions;
• Ensures the availability of the SOP’s and guidelines for system use;
• Ensures correctness of data conversion;
• Ensures controlled access to the system;
• Qualifies of the system prior to operational use;
• Maintains the qualification status of the system.

System Validation
team

• Prepares the URS, VP, IQ, OPQ, test scripts and Validation Report;
• Supports the execution of the test scripts;
• Resolves issues arising from the validation tasks;
• Performs project verification.

Quality Assurance • Audits validation activities for compliance with the validation policy;
• Reviews the URS, VP, IQ, OPQ, test scripts and Validation Report.

System Developer • Prepares the System Specifications with the owner;
• Prepares the System Design Description and the system documentation;
• Provides documented evidence of the product quality during development and

installation;
• Provides technical support.

System Supplier • Provides documented evidence of the product quality during development and
installation;

• Provides technical support.

LSV Manager • Provides validation guidelines;
• Provides project and validation standards and templates
• Assists during validation.

“Structured Testing, a must in a Validation Critical Environment”

17 September 1999

 1999 Gitek nv page 10 of 10

9.2 Glossary

Intake Formal review / audit of all specifications (test base) for the system that is to be
developed in which consideration is given to the question whether the documentation
is sufficiently complete accurate and consistent to serve as the starting point for the
tests.

Fagan Inspection Formal review / inspection of the test base executed by several users (e.g. end user,
developer, test team, …).

Physical test case A physical description of the test inputs and database at the level at which the test
cases can be executed. The description also includes the test actions to be performed
and the way in which the expected and actual results may be compared.

Syntactic test The object of a syntactic test is to detect defects in the layout of screens and reports
and prints, and in primary input checks relating to the entry fields. Standards in force
and specific descriptions of screens and reports in the functional specifications may be
used as test criteria. This test technique is particularly useful in testing on-line
systems, but may also be used for checking reports produced in batch-oriented
systems.

Dataflow test As the name suggests, data flows and their processing form the basis of a data flow
test. It is a test technique whereby processing by functions and relations between
functions are tested. A data flow test is a semiformal test technique used in testing
functionality as part of a black-box test, especially during acceptance testing.

Error guessing Error guessing is basically unstructured testing and consists of guessing at the
occurrence of defects. Its value lies in the unexpected: it includes tests, which in all
probability would not have been executed otherwise. It makes a valuable contribution
to the structured test specification techniques. The error guessing technique may be
used in all test levels and may basically focus on any kind of quality characteristic. It
is not advisable to use error guessing for a relatively unstable test object since, as a
result of the very nature of the technique, repeatability, and therefore the
reproducibility of defects, is very low.

Elementary
comparison test

In an elementary comparison test, processing is tested in detail. The test verifies all
functional paths of a function. An elementary comparison test guarantees a high degree
of completeness, and is therefore time consuming. It is used mainly for testing
functions considered to be of major importance, and for complex calculations. This
test technique was developed basically for black-box testing, but it may also be used in
a white-box test. Elementary comparison tests focus on the quality characteristic
functionality.

Regression test Selective testing to verify that modifications have not caused unintended adverse side
effects or to verify that a modified system still meets requirements. Regression testing
aims at establishing confidence that the quality of the system is not deteriorating.

1

Structured Testing, a Must in a Validation Critical Environment, nr. 1

“Structured Testing,
A Must in a Validation Critical

Environment”

Nathalie Fuchs
Gitek nv

Structured Testing, a Must in a Validation Critical Environment, nr. 2

Agenda

• Janssen Research Foundation
• The JRF V-model
• The incorporation of TMap®
• Lessons Learned
• The future

2

Structured Testing, a Must in a Validation Critical Environment, nr. 3

Janssen Research Foundation

• Foundation at 1953
• 5 products on WHO of essential drugs
• Belongs to Johnson & Johnson since 1961:

– 188 companies in 52 countries

– with 93.100 employees

– active in 3 sectors: consumer, professional & pharmaceutical

Structured Testing, a Must in a Validation Critical Environment, nr. 4

• FDA Definition (1987)

Establishing documented evidence which provides a high degree
of assurance that a specific process will consistently produce a
product meeting its predetermined specifications and quality
attributes

– Key validation concepts
• Process-based
• Establish a plan
• Pre-determined specifications

• Document the evidence
• Consistent performance

JRF: Definition of Validation

Ref. FDA ‘Guideline on General Principles of Process Validation (May 1987)’

3

Structured Testing, a Must in a Validation Critical Environment, nr. 5

JRF: Validation Policy

• Worldwide CS Policy - Jan 1997 and Dec 1998
– Applicable to all Janssen-Cilag and JRF

Computerised systems have become critical to our business, and
it is important that their quality meets our needs.
The purpose of the Policy is to ensure that we can

– trust the systems that can affect product quality, and prove
reliability

– trust our data and data handling systems, and prove that they are
reliable

• CS Validation Policy is supported by:
– Methodology, Guidelines and Templates

– Often adapted to local situations and implemented at
Company / Department level

– Best practice examples

Structured Testing, a Must in a Validation Critical Environment, nr. 6

• Increases reliability of system
• Increases confidence of the user
• Increases the quality and decreases downtime
• Required by the authorities
• Improves the image and the reputation of the company
• Reduces the time to complete a Project properly
• Return On Investment

– Cost of validation is not easy to measure
• What is the cost of fixing errors ?

• What is the price of bad quality ?
• Can you take the risk of not validating ?

JRF: Why do validation?

4

Structured Testing, a Must in a Validation Critical Environment, nr. 7

JRF: The V-model

Program
Build

Technical Design

Supplier
Tests

Installation
Qualification

Operational
Qualification

Functional
Specifications

Performance
Qualification

Use

Retire

SOFTWARE/
SYSTEM

SUPPLIER

PROJECT

Development

GXP
Regulations

User
Requirements

Validation
Plan

Change Control

MaintainProject Concept

Project & Quality
Plans

Project & Quality
Plans

Process & Methods
Validation

Criticality Analysis

Structured Testing, a Must in a Validation Critical Environment, nr. 8

Life-cycle

Techniques

Infrastructure

Organisation

What, when ?

How ?

Where, etc. ?

Who ?

OI

L

T

JRF: The incorporation of TMap®

5

Structured Testing, a Must in a Validation Critical Environment, nr. 9

PreparationPreparation
SpecificationSpecification

ExecutionExecution

CompletionCompletion

Planning & ControlPlanning & Control

P&C

P S E C

JRF - TMap®, the Life Cycle

Structured Testing, a Must in a Validation Critical Environment, nr. 10

JRF - TMap®, the Life Cycle

• First project mismatch TMap® and JRF Validation:
– detailed test plans later in the project as TMap® indicates
– both flexible

– high-level test information in Project & Quality Plan

• No detailed test plans:
– solved by regular re-planning
– new: planned effort and predicted run time in detail plans

– new: predicted number of defects in detail plans
(cf. TESPRA, Johan Swinnen, Gitek nv)

• Planning and control well organised from testing point of view
– too optimistic in the beginning
– extension of total workload administration

Planning & ControlPlanning & Control
P&C

P S E C

6

Structured Testing, a Must in a Validation Critical Environment, nr. 11

PreparationPreparation
P&C

P S E C

• First project: preparation phase was impeded because of:
– problems with version control of test base and test objects
– meanwhile:

• awareness created
• good version control recognised

– testing point of view: version control well managed

• JRF is now:
– elaborating a tool to overcome former administrative tasks about

version control (disadvantage: a rather restrictive impact)
– using version control whereby documents with name, version

number, release number and fix

JRF: Lessons Learned

Structured Testing, a Must in a Validation Critical Environment, nr. 12

• Test cases were specified in two stages: logical & physical

• Used test specification techniques conclusive

• Appropriate infrastructure put in place

• Second pilot: execution detailed pre-tests

• More formal test environment needed with tool restricting the
access to test base

SpecificationSpecification
P&C

P S E C

JRF: Lessons Learned

7

Structured Testing, a Must in a Validation Critical Environment, nr. 13

• Defect tracking proved productive and effective test execution

• Lot of defects on test execution due to:

– incorrect and incomplete answers on the intakes

– no solution for a considerable number of defects with low severity

– new versions of scripts for re-test: loss of efficiency

• The JRF Validation Methodology stresses:

– importance of functional and technical documentation

– good communication of well-thought answers concerning design and
development

• Compulsory test witness solved using Lotus ScreenCam
• Type of project did not allow separate test environment

ExecutionExecution
P&C

P S E C

JRF: Lessons Learned

Structured Testing, a Must in a Validation Critical Environment, nr. 14

• Planned completion time insufficient when re-tests into
consideration

• Too many findings on planned but not executed modifications
due to:

– too little attention from developer’s point of view

– too much confidence from the side of the test team

as a result:

– JRF’s Methodology adapted and states that white-box before release for
black-box testing

– planning with checkpoints and milestones elaborated for Development

CompletionCompletion
P&C

P S E C

JRF: Lessons Learned

8

Structured Testing, a Must in a Validation Critical Environment, nr. 15

 OI

 L

 TTechniques

• JRF aware: intake of test base earlier in time
• Fagan inspections considered
• Syntactic tests with too much detail
• Future: together in one script where possible
• Detachment of logical and physical test specifications
Ö regression tests

JRF: Lessons Learned

Structured Testing, a Must in a Validation Critical Environment, nr. 16

JRF: Lessons Learned

• Infrastructure point of attention:
– tester’s PC: sufficient resources

– separate test environment needed to test efficiently

• JRF: no use of test tools yet:
– test process in place before automation is worthwhile

• Defect administration:
– JRF introducing in complete organisation

– Future: use of metrics* over several projects

– Questions like “where to find causes of defects” and “which
actions should be taken to structurally solve problems” are
answered

– Expected defects to budget a project*

– Linked to change management
*cf. TESPRA, Johan Swinnen, Gitek nv

 O I

 L

 T

Infrastructure

9

Structured Testing, a Must in a Validation Critical Environment, nr. 17

JRF: Lessons Learned

• JRF clearly found a good test
methodology by incorporating TMap®

• JRF decided to choose TMap® to test all major
software releases

• Integration of a test methodology in the JRF Validation
Methodology clearly needed time and effort

• At this moment, planning and formalisation included in
standard project management

• Prototyping at development advantages nevertheless
JRF recognises the importance of white-box testing

• Test team was well organised. Co-operation and
communication open and clear although the instability
of the test base caused high work pressure

OI

L

T

Organisation

Structured Testing, a Must in a Validation Critical Environment, nr. 18

JRF: The future

• Generic V-model with clear incorporation of TMap®
• Continuing cultivating awareness: validation process is

integrated part of development process
• The future V-model: test planning at higher stage :
Ö reducing costs, more predictable, controllable budgets

• “Peer reviews” of URS, FS, TD before final budget
• In order to specify business risks in detail, levelling

importance of the URS(high, medium, low)
• High quality test evidence and important test metrics

for right management decisions (cf. TESPRA Johan Swinnen Gitek nv)

• Traceability matrices URS, FS and logical test cases:
– to clearly explain “why” certain functions are in place

– to prove that information system is under control

10

Structured Testing, a Must in a Validation Critical Environment, nr. 19

JRF: The future V-model

Program
Build

SUPPLIER

Supplier Tests

Validation Report

System
Use

RetireMaintain

SOFTWARE/
SYSTEM

PROJECT

GXP
Regulations

Criticality Analysis

Development

Project & Quality
Plans

Project & Quality
Plans

Project Concept

Validation Plan
Master Test Plan

Change
Control

Test Plan
Performance
Qualification

User
Requirements

Technical Design Installation
Qualification

Operational
Qualification

Functional
Specifications

Test Plan

Test Plan

Intake
Fagan Inspection

Structured Testing, a Must in a Validation Critical Environment, nr. 20

“Structured Testing,
A Must in a Validation Critical
Environment”

Nathalie FUCHS

Gitek nv
Sint-Pietersvliet 3
B - 2000 Antwerp
Belgium

nf@gitek.be

Improving developer's tests
by Tim Koomen and Rob Kuijt

IQUIP Informatica B.V.
PO Box 263, 1110 AG Diemen,

The Netherlands

phone: +31 20 660 66 00
fax: +31 20 695 32 98

email: koomenti@iquip.nl / kuijtrob@iquip.nl

Abstract

This paper discusses the reasons for improving the developers' tests. Next, a
practical approach is given for improving the quality of the developers' tests (i.e.
program test and integration test). The emphasis of the approach is on:
• clear testing responsibilities;
• the idea that improvements come from within the development team;
• insight into the quality of the test object by using exit- and entry-criteria.

The paper concludes with two case-stories.

Introduction

Testing theory states the importance of early testing. One of the earliest forms of
testing is performed by the developers. There is sufficient literature on how this
kind of testing should be performed, including a lot of techniques and tools.
However, there is a large gap between theory and practice. In practice, developers
often test based on their intuition and in an unstructured way, in stead of using
techniques, etc.

Based on our own experiences, this paper gives reasons why better developer
testing is important and how improvements can be implemented. The paper
concludes with two case-stories.

Our experiences originate from the world of administrative automation (financial
institutions, government, industry), and "new media" projects (such as internet,
knowledge management, datawarehousing).

Characteristics of developers' tests

Typical developers' tests are the program test and the integration test. Some
characteristics of these tests (and differences with other types of tests) are:
• The finder of a defect is also (often) the solver of the defect. This means

communication overhead can be kept to a minimum;
• (In principle) all defects found should be repaired before the product is

handed over. Therefore, the amount of reporting is limited;
• A developer differs in attitude from a professional tester; the former wants

to demonstrate that the product works, the latter wants to demonstrate the
inverse. Time-consuming and thorough testing conflicts with the developer's
attitude;

• The tests are an integral part of the development process;
• At the time these tests start, most defects are in the product: this requires

cheap and fast repair of defects.

Should developers' tests be improved?

When asking the developers whether their ways of testing need improvement,
frequent answers are:
• Not enough time, too expensive;
 Only if given more time and money, better testing is possible. However,

development is always short of time and money. But when the project
leader is asked for more time and money, that person responds something
like: "If I give the developers more time and money, they'll certainly spend
it. The big question is, on what?")

• Faith in current way of working, in current product quality;
 It is common knowledge that 100% defect free software is impossible to

achieve. Apart from that, developers are proud of the products they develop.
• A good (better) test follows
 Later tests are performed by test professionals. These people are trained in

testing and they typically find a lot of defects. And what's more important,
they like testing. Because for most developers …

• Testing is boring!

There are of course a number of reasons for improving developer testing:
• Defects one finds oneself are easier to analyse than defects found by other

parties;
• Early rework is cheaper, since knowledge is still fresh and all relevant

parties are still there;
• Earlier feedback prevents similar errors;
• White-box techniques used in developers' tests find different defects from

black-box techniques used in later tests.
• Because higher quality products are delivered, less defects are found in later

tests (and in production). As a consequence, developers can spend less time
reworking products and more time creating products;

• One of the most uncertain planning factors is the amount of time and
resources necessary for rework activities. More certainty about product
quality therefore results in better project planning;

• For the same reason, the project lead time is shortened;

These arguments sound good enough, but in practice seldom win from the
arguments given against improvement. However, there is a new development
adding arguments in favour of improving. This important development is the
increasing strategic use of software, i.e. supporting the primary business of an
organisation, directly dealing with the customers and readily adaptable to new
challenges. This means a different kind of customer than the traditional IT
department, demanding quality software delivered in time. Improving only system
and acceptance testing will result in failing to meet these "in time" demands.
Improving developers' tests is an important step towards meeting the demands.

How to improve? An approach

Below, a practical approach on how to improve developers' tests is described. The
approach has the following key aspects:
• organisation
• use of test design techniques
• use of a test life-cycle model

1) Organisation

Perhaps the most important aspect of the approach is that an Application
Integrator (AI) will be made responsible for the progress of integration and for
the quality of the outgoing product. The AI negotiates with the project manager or
the development team leader what level of quality is required: under what
conditions can the system be released to the next phase (exit-criteria). The AI also
demands insight in the quality of incoming modules or programs (entry-criteria).
A module or program is only accepted into the integration process if it meets the
entry-criteria. In order to prevent mixing interests, the AI should not be
development team leader. This creates a deliberate tension between the AI, who is
responsible for quality, and the development team leader, who tends to focus on
functionality and the amount of time and resources spent. Since the AI is a
member of the development team, this generates far less resistance from the
developers against improving their testing than other test approaches would do
and considerably raises the awareness of quality within the development team. For
test specific expertise, the AI is supported by test professionals (outside of the
project). The AI communicates with the customer on quality issues. Because
communication is essential, it is very important for the AI to have good social
skills.

2) Use of test design techniques

The approach does not prescribe 100% use of formal test design techniques as this
will (in our experience) generate too much resistance. Instead, the AI, program
testers and project manager or development team leader negotiate: important parts
of the system will be tested using formal test design techniques, less important
parts will be tested using informal techniques or even in the old-fashioned,
undocumented way of testing without use of any techniques. A good balance has
to be found, for which several aspects play a role:
• risks for the organisation / importance of the system;
• desired quality of the product;
• progress of the project;
• test maturity of the development team;
• test coverage;
• test evidence;
• resource consumption (of using the test design technique).
Popular techniques often applied in our projects are checklists and marking test
situations in the functional specifications. Only test situations too complex to be
tested directly from these markings are detailed further into specific test cases.
Although definitely not watertight, the marked up documents supplied with the
tester's initials serve as test evidence.

3) Use of a test life-cycle model

Exit- and entry-criteria and other agreements are laid down in a test plan (phase
1), test cases are prepared (phase 2) and executed (phase 3). Again, practical use
prevails: writing documentation such as a test plan is not a target in itself, but
serves as a means of communication between project leader, AI and customer, and
should be kept as minimal as possible.

Case-stories

1. Telebanking

A large bank ordered a Telebanking application (size: 900 function points) to be
developed. After some time of developing, the product is handed over to the
acceptance testers of the bank. Acceptance testing starts and after 3 man weeks of
testing, they have registered 341 defects in the product. The developer is

dismissed… Next, IQUIP gets the assignment (starting from scratch). To avoid the
first experience from happening again, delivering a quality product in time is
considered crucial. This is the first time the function of AI is used in a project. The
team then consists of 7 people (development team leader, AI, 5 programmers).
This time, the acceptance testers have a more difficult job. After 12 man weeks of
testing, 130 defects have been registered. These results are even more promising
when we look at the distribution of defects in severity categories:

Severity Very
serious

 =====> Cosmetic

Competitor 10% 15% 30% 45%

IQUIP 0% 10% 50% 40%

2. Mail room

The second case involves a very small project for Dutch mail, with only three
developers and a project manager. The purpose of the project was to develop two
small applications for mail room control (sizes: 410 and 274 function points).
With such a small team, a full-time AI was not feasible. The project manager
solved this by attributing the AI role to the two senior developers (one for each
application) and implementing the other improvements as practically as possible.
(If only one application was to be developed, one developer would get the role of
AI, but his or her programming results would be reviewed by the other developer.)
This approach turned out to be a success. During acceptance testing 33 potential
defects were registered, 9 of which turned out to be no defect at all. During
production, so far only 1 defect has been found. The big advantage to both
customer and project manager is the consistent quality of the applications, which
has become less dependent on the skills of the individual programmer.

Advantages

Of course, the used numbers such as in the case descriptions above raises all kinds
of questions (in case 1 maybe the competitor was really doing a bad job, 130
defects still sounds like a lot, etc.), but the main point is: developers, project
leader, customer and application integrator were enthusiastic about the approach
and felt that it worked for them. Developers became more aware of the importance
of quality (and how to achieve this), the project manager had better control over
the project, the customer had more confidence in the quality of the application,
and as for the AI: the job was fun and rewarding, requiring communicating with a
lot of different people.

Conclusion

This paper describes the importance of better testing by developers, and shows a
practical way to achieve this. In practice the approach turns out to be successful
since:
• clear testing responsibilities are defined;
• the improvements come from within the development team;
• there is insight in the quality of the application under test by using exit- and

entry-criteria.

1

IQUIP
99 nr Be 1

Improving developer’s tests

Tim Koomen and Rob Kuijt
IQUIP Informatica BV
The Netherlands
koomenti@iquip.nl / kuijtrob@iquip.nl

IQUIP
99 nr Be 2

Agenda

• What are developer’s tests
• Why improve?
• How to improve?

2

IQUIP
99 nr Be 3

Agenda

Â What are developer’s tests
• Why improve?
• How to improve?

IQUIP
99 nr Be 4

Characteristics

• Low-level tests: unit test, integration test, mostly
performed by developers

• Defect finder = defect solver
• All defects should be repaired (no risk reporting)
• Attitude developer versus attitude tester
• Tests integral part of development process
• Most defects in product: fast & cheap repair

3

IQUIP
99 nr Be 5

Agenda

• What are developer’s tests
Â Why improve?
• How to improve?

IQUIP
99 nr Be 6

No improvement necessary!

• Good enough as it is
• Not enough time, too expensive
• A good (better) test follows!

• “Not my job”

4

IQUIP
99 nr Be 7

Benefits

Benefits to developer:
• Easier and cheaper repair
• Prevention of (similar) defects
• Less later rework
• Better planning
• Shortened lead time
• More certainty about product quality
• Better product quality

Benefits to total project:

 1 + 1 = 3

IQUIP
99 nr Be 8

Improvement is necessary

Customer demands

QUALITY software

IN TIME!

5

IQUIP
99 nr Be 9

Case

• Large bank
• Telebanking application: 900 function points
• Second try
• Clean start
• Team: 7 developers
• Duration: 8 months

IQUIP
99 nr Be 10

Case results

• Defects from acceptance testing:
– First try: 341 defects in 3 manweeks
– Improved testing: 130 defects in 12 manweeks

• Severity category: serious cosmetic
– First try: 10% 15% 30% 45%
– Improved testing : 0% 10% 50% 40%

0
100
200

300
400

1 2 3 4

6

IQUIP
99 nr Be 11

Agenda

• What are developer’s tests
• Why improve?
Â How to improve?

IQUIP
99 nr Be 12

Traditional organisation

Project
Management

Acceptance
Test

Development
projectleader

D

Staff

D DD

7

IQUIP
99 nr Be 13

Role: Application integrator

Application Integrator

Project
Management

Acceptance
Test

Development
projectleader

D

Staff

D DD

IQUIP
99 nr Be 14

Quality and integration

Entry-criteria ?

Exit-criteria ?

Integration

Programs or
modules

(Sub)system

Testing
required

Developers

Application
integrator

Customer

8

IQUIP
99 nr Be 15

Test strategy

• Be practical!
• “Right quality”
• Important functions:

– better test coverage
– more test evidence

• Important quality characteristics: the same
• Popular “techniques”

– Checklists
– Marked up functional specifications
– Only specification of test cases if necessary

IQUIP
99 nr Be 16

Use of a life-cycle model

• Test planning phase
– agreements
– strategy
– ...

• Test specification phase
– identify test situations, according to strategy
– (if necessary) prepare test cases
– ...

• Test execution phase
– execute tests
– analysis
– reporting
– conserve required evidence
– ...

9

IQUIP
99 nr Be 17

Summary

• Improving developers’ tests is necessary:
– Better product quality
– Insight
– Customer satisfaction & confidence
– Quality awareness developers

• How to improve:
– Application Integrator
– Practical
– Improvement from within development team,

supported by professional testers

IQUIP
99 nr Be 18

Questions?

or email:

koomenti@iquip.nl

kuijtrob@iquip.nl

What??

How?
Who!

Where...

Do you really think... Can you explain…?

Ask now!

1

Developing Embedded Software for a Helicopter Testbed

Henrik Oertel, Klaus Alvermann, Stephan Graeber, Lothar Thiel
Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)

Institute of Flight Mechanics
Braunschweig, Germany

Abstract
The Institute of Flight Mechanics of the German Aerospace Center (DLR) develops software
intensive real-time systems for embedded airborne systems. Based on the current development of
an experimental on-board equipment for a new helicopter testbed, the Process Improvement
Experiment 27751 ICARUS enables the usage of the design tool ObjecTime. This paper gives an
overview over the helicopter baseline project, presents the objectives as well as the approach of
the experiment, describes the software development procedure and explains the evaluation of
several design tools, analyzes the key lessons learnt and major impacts of this experiment and
concludes with an outlook onto future actions.

Introduction
The Institute of Flight Mechanics of the German Aerospace Center (DLR) operates real-time
systems for on-board experiments and ground support of research aircraft. In this context, the
Active Control Technology / Flying Helicopter Simulator (ACT/FHS), an EC135 helicopter, is
presently being modified by DLR, Eurocopter Deutschland and Liebherr Aerotechnik to enable
fly-by-wire / light operation. The objective of the ACT/FHS project is to develop an airborne
helicopter testbed, which will serve the various demands of research establishments, industry, and
national flight test centers.

Enabling a high maintainability as well as an efficient portability to new hardware coming up
during the course of the software life cycle the Process Improvement Experiment 27751 ICARUS
helps to better utilise a research aircraft in terms of significantly reducing the time-to-experiment,
i.e., the time needed to prepare and execute an experiment. This permanent and effective
adaptation of software to different user requirements without sacrificing software quality issues is
vital to achieve the DLR business objectives. In the past, the lack of appropriate specification and
design processes and methods as well as the lacking tool support resulted in maintenance efforts
which undermined the competitiveness of the research aircrafts in terms of costs as well as time-
to-experiment.

The usage of the design tool ObjecTime [1] enables us to introduce two major process
improvements: First, we are able to design and document our system and to prove the system
behaviour through simulation. Second, we are enabled to achieve complete software traceability
between requirements, design, and source code as well as test functions.

This project is a Process Improvement Experiment (PIE) funded by the Commission of the
European Communities within the European Software and Systems Initiative (ESSI).

2

Baseline Project Description
The baseline project is the development of the experimental on-board equipment for a new
helicopter testbed, called ACT/FHS (Active Control Technology Demonstrator and Flying
Helicopter Simulator) [2]. The objective of the ACT/FHS project is the development of a
technology testbed for test and validation of key technologies for future military and civil
helicopters. This helicopter will be available as a multi purpose test vehicle for the evaluation of
new control technologies, cockpit designs, sensor systems and man machine interfaces. The
ACT/FHS project is funded by the German Aerospace Center (DLR), Eurocopter Deutschland
(ECD) and the German Ministry of Defense. The test helicopter is based on the civil helicopter
EC135 re-fitted with fly-by-light-technology, smart actuators, high-speed processors, intelligent
sensors, and state-of-the-art display technology, Fig. 1.

Fig. 1: EC135 helicopter

The original helicopter has mechanical controls operating on hydraulic actuators. A full operative
fly-by-light system is integrated, leaving the original mechanical system as a backup. This fly-by-
light system - a safety critical quadruplex system - allows to fly the helicopter electronically by a
safety pilot. An evaluation pilot can fly the helicopter using this system as well. The fly-by-light
system does not change the pilot´s feeling of the flight behaviour compared to the original
unmodified helicopter. Many of the elements of the fly-by-light system are being developed by
LLI (Liebherr Aerospace Lindenberg).

3

In the flight test mode the signals coming from the evaluation pilot´s steerings are fed through an
experimental computer allowing modifications of these signals before sending them to the
actuators. The experimental computer is designed to realize controllers, limiters, and even
simulation of the behaviour of another helicopter during flight. The experimental computer can be
a simplex system. In the case of anomalies the safety pilot takes over the controls immediately.

Fig. 2 shows the overall structure of the helicopter. The safety pilot has two ways of control: the
fly-by-light system and the mechanical backup. Both are certified systems to which control can be
switched back for safety reasons at any time. The evaluation pilot also has two ways to control the
helicopter. The first one is active when the fly-by-light control is transferred from the safety pilot
to the evaluation pilot. This path usually uses a simplex experimental computer and therefore
assures not the same kind of safety like the other ways of control.

Fig. 2: ACT/FHS system overview

The experimental on-board computer system is divided into three parts (Fig. 3):
• Data Management Computer (DMC),
• Experimental Computer (EC),
• Graphic Computer (GC).

The DMC is connected to all sensors, the cockpit interface unit, the telemetry system, the data
storage, the Control and Display Units (CDUs), and displays. Additionally, it is connected to the
EC, and the GC. The main tasks of the DMC are to collect and distribute the sensor data, to send
selected data over the telemetry to the ground station and to store selected data for later
evaluation on the data storage. It can be managed during flight from the safety pilot (switches),
the evaluation pilot (switches, CDU, display), and the flight test engineer (CDU, display).

Core System
Experimental System

Mechanical Backup

Cockpit Interface Unit
(Fly-By-Light

Computer)

Basic
Experimental
Equipment

On Board
Computer System

Experiment
Specific

Equipment

El.-Hydraulik
Actuators
Pitch
Roll
Coll.
Yaw

Safety Pilot
Controls

Eval. Pilot
Controls

4

Fig. 3: On-board computer system overview

The EC is connected to the cockpit interface unit, selected sensors, the CDUs, and to optional
experimental equipment. Additionally, it is connected to the DMC. The EC receives the control
commands of the evaluation pilot via the Cockpit Interface Unit, calculates responses in a
controller subsystem, and sends them via the Cockpit Interface Unit to the actuators of the
helicopter. The DMC listens to this (ARINC-429) connection and copies the data to data storage
and telemetry. The EC receives input from selected sensors to be able to use this data directly.
This has been realized to allow an operation of the system without the DMC, i.e., to use an
external standalone EC. The main task of the EC is to provide an interface to all kinds of present

Telemetry
System

Data
Storage

DGPS

Rotor
Telemetry

Accelerometers

 Noseboom Air
Data Sensors

Pilot
Switches

GC

Radar
Altimeter

Air Data
System (2x)

 Standard
AHRS (2x)

Engine
Sensors (2x)

CDU
(2x)

Exp. AHRS
+ GPS

Display
(2x)

DMC

EC

Experimental Equipment

IntercomCockpit Interface Unit

5

and future experimental equipment (either directly with boards inserted into the EC or indirectly
via one of the standard interface boards).

The connection between the DMC and the EC is used in the following way. The DMC sends
selected sensor data (needed for the control algorithm and the expermental equipment) from the
DMC to the EC. The EC sends the results and internal controller data as well as all data received
from the experimental equipment to the DMC.

The GC is connected to the displays and the DMC. It drives the displays for the experimental
pilot and the flight test engineer according to the data supplied by the DMC.

Process Improvement Experiment Objectives
All components of the experimental on-board computer system have to fulfil hard real-time
requirements with cycle and latency times in the magnitude of 1 to 5 milliseconds and an average
data throughput of about 1 MByte/s. The experimental system has to be designed to provide the
user with the flexibility to modify, add, and upgrade experimental software and hardware.

While the hardware of the experimental system has to be qualified to match the requirements of
flight approved systems, this does not apply to the software for the experimental system, which is
- due to the safety concept of ACT/FHS - not considered to be flight critical. However, it is
essential to ensure the application of best practice quality standards like the ESA [3] and DO-
178B [4] software engineering standards. To adapt to the wide range of different user require-
ments as well as to changes in the hardware environment and infrastructure, the experimental
system and especially the development of the software for the on-board computers needs
sufficient flexibility to allow for frequent configuration changes and modifications, as well as
system upgrades. At the same time, the experimental system is an embedded system which has to
meet hard real-time requirements. This results in maintainability and portability requirements that
can only be achieved via the application of a well defined software engineering approach and
concept.

The objectives of the ICARUS PIE are to significantly reduce the development time and
maintenance effort for this complex, embedded system via the definition and introduction of an
analysis, design, and implementation process based on software best practice methods and tools
as well as on the ESA [3] and DO-178B [4] software engineering standards. In addition,
significant quality improvements in software verification and documentation are envisaged by the
use of a corresponding design tool suitable for embedded real-time system specification and
simulation.

Process Improvement Experiment Approach
The scope of the PIE is the definition and introduction of a consistent and continuous forward
engineering process for the design of embedded real-time software. An appropriate tool is
selected to support this engineering process. In detail, this approach to software best practice
comprises the following tasks and activities within the framework of this PIE:
• Integration of the existing software engineering practices in use as well as the defined and

selected software best practices standards and procedures into a consistent and continuous
forward engineering process.

6

• Evaluation and trial application of software best practice analysis and design methods for
embedded real-time systems as well as the corresponding tools.

• Provision of training and course material on the defined process and procedures as well as on
the underlying software best practice standards, techniques, methods, and tools.

• Application of the defined processes, selected methodology, and toolset to the underlying
baseline project.

• Improvement of the software design process, concept, and infrastructure based on the
organisational and technical problems encountered during the course of the process
application.

• Establishment of a process evaluation concept based on qualitative and quantitative
information, collection, and assessment of selected metrics.

• Provision of quantitative information on the improvements achieved as well as collection and
evaluation of qualitative statements on the applicability of the defined process.

The underlying baseline project defines the development of three software versions, called
prototypes. The process improvement experiment is applied to these three phases as well. Each
prototype is an upgrade of the previous and they are established successively. The following SW
versions are defined within the internal ACT/FHS SW development plan:
• Prototype 1: This system is used to put interfaces into operation. This means that no sensors

are connected, a basic man-machine interface is established, and a data storage is
implemented.

• Prototype 2: This system is used for the basic helicopter integration as being defined within
ACT/FHS. This means that a fully operable system is built including the connection of some
sensors, a full man machine interface, and a full data storage.

• Prototype 3: This system will be used for handing over a fully operable helicopter to DLR
users. The main difference as compared to prototype 2 is the fact that additional sensors have
to be handled by the system.

In accordance with these definitions the experiment is divided into 3 phases:
• Introduction - being based upon prototype 1: Training is provided to introduce the defined

process and methodology prior to applying the analysis and design on behalf of examples for
prototype 1. This leads to a first acquaintance with process and methodology, being based on
examples which are representative for the baseline project.

• Main application - concentrating on prototype 2: The application of the process and
methodology for the prototype 2 is used to develop an embedded real-time system which has
to fulfil pre-defined real-time requirements. This leads to a state of becoming familiar with
process and methodology being introduced. It includes an analysis of the process
improvements gained, difficulties encountered, and lessons learnt.

• Upgrade version - developing prototype 3: Improvements can be defined being based on the
main application, which are going to lead to an even better application of the process and
methodology for the development of the upgrade version. Since the aim of the experiment is
the „introduction of computer aided analysis and design for real-time software embedded in
upgradable systems“ additional lessons learnt will be gained since several features of
prototype 3 can be considered to be upgrades of implementations for prototype 2.

7

Software Development Process
The requirements for the software development process determine the standards and rules for the
process. The first requirements are standard ones:

• the software is developed and maintained by several people over several years;
• the software is not safety critical, however, it must be highly reliable;
• most parts of the software are real-time software with a cycle time of about 1ms.

Additionally, the following requirements must be fulfilled for the helicopter application:
• parts of the software will change significantly over the years, there is no final product;
• the experimental use will produce a tree of parallel software versions rather than a linear

line of versions with one actual valid version;
• the product has to incorporate software of external companies;
• parts of the software must be changeable during flight campaigns.

The software for the on-board computer system has to provide two main services:
• A collection of system services: these are programmed once and will not change

significantly in the future.
• The connection and programming of experimental equipment: these parts will change

frequently.

Since the software has to be maintainable over several years and by several people, a standard
software development method has to be used. However, the method has to be adapted, since no
final product is delivered. Rather a flexible way of adapting to new requirements has to be used.

Although the software is not safety critical the RTCA DO-178B [4] standard for development of
certified airborne systems was chosen as guideline. All procedures are observed, with the
exception of writing the documents only needed for certification. Additional criteria are taken
from the internal software development standards of DLR [5] and the software engineering
standards of the ESA [3] for the requirements phase.

According to RTCA DO-178B the software development uses three main processes which are
interlocked: The planning, development, and verification process.

During the planning process the subsequent methods are defined:
• quality assurance,
• configuration management,
• structure of software development,
• verification procedures,
• standards for requirements, design, and implementation.

Quality assurance uses formal approvements during each phase of the development process and a
final clearance of a software version for flight tests. The configuration management allows the
coexistence of several cleared software versions (for parallel projects).

8

The development process consists of five phases:
• requirements,
• design,
• implementation,
• integration,
• user documentation (i.e., the documentation needed to handle the system).

Requirements and design have to be formally approved before the next phase can start. This
includes a check against the standards set up during the planning process. A final approvement
checks the implementation, integration, and user documentation in one step.

In order to achieve a tracing between these five phases a data base is established containing all
dependencies. Containing all logical connections the data base allows automatic tracing from the
requirements through the design to the code and test procedures and back again. It is expected
that the effort for further upgrades and adaptions to new user requirements will be reduced by this
approach.

The verification process uses standard verification procedures (module test, integration test,
system test) to ensure high quality and the compatibility with aforementioned standards. The
dependencies according to Fig. 4 are checked for completeness and traceability. The final system
test uses the simulation of the EC135 helicopter at the DLR ground based simulation facility,
where the software is tested within a simulated environment (helicopter, sensors, actuators, etc).

System Requirements

SW Requirements

Design

Source Code

Executable Programs

Requirement Standards

Design Standards

Coding Standards

User Documentation

Fig. 4: Software development process and its dependencies

Traceability ensures that the links between system requirements, software requirements, design,
source code, tests, and documentation are documented and maintained. The link between system
requirements and software requirements is documented in the requirements document, the link
between software requirements and design is documented inside the design tool, all other links
are documented in the source code. All links are extracted by tools from the requirements
documents, the design tool, and the source code and are collected in a trace data base.

9

The software verification process as well as the above described software management process do
not allow „in-the-field“ source code changes. A flexible way had to be found to allow such
changes during flight test campaigns: A cleared version may be changed and used without the
standard verification process under the responsibility of the flight test engineer. After the
campaign some or all of these software changes are incorporated back into the formal
development process.

Software Develpment Environment
Following the hardware decision for a VMEbus based system and PowerPC processors the
VxWorks real-time operating system (Wind River Systems Inc.) was chosen for most computers.
The main reasons for this choice were its wide spread use and the direct support by the hardware
vendor.

VxWorks offers the Tornado development environment which can be used by several developers
in a networked environment under UNIX (SUN workstations) and Win95/NT (PC). The software
for the target computers is programmed in C, possibly adding C++ and/or ADA components later
on.

The design tool ObjecTime is used for the requirements, design and possibly the design-to-
implementation phase. No special tool is used to collect and manage the requirements. The code
checking tool xlint (ConSol Software GmbH) is used to check the source code against the
implementation standards (usage of C, layout rules, comment rules, naming conventions, etc.).

Besides the VMEbus system a graphics computer (Silicon Graphics O2) is used to drive two flat
panel (LCD) displays. Some software components are coded using the OpenGL library,
instruments are designed and programmed using the tool VAPS (Virtual Prototypes Inc.). The
latter allows a graphical design of instruments and the connections to data sources to animate
them. It produces source code to drive the displays.

The configuration management tool CVS is used to enable history and change management of the
source code and additional data files.

The trace data base is a relational SQL ORACLE data base under UNIX.

Design Tool Evaluation
In order to select the best tool and methodology for the software development, several tools were
evaluated. This survey was mainly based upon a thorough study of the documentation being
available from the manufacturer of each tool. Those not rejected immediately were invited to
present their tool. These visits were also used to solve open questions and two times we spent a
day working with the tool, in order to get a better impression of its usability. Additionally, in-
house users were asked about their experience with some products. The main aspects being
evaluated were:
• Interfacing with other products: Does the tool support open interfaces with other tools or

standards? Especially, does the tool support our configuration management system (CVS)?
• Requirements: how are requirements handled within the tool and how are they imported from

other sources?

10

• Design - methodology: is it suited to describe our event-driven, embedded real-time system?
• Design - checks and tests: does the tool check the design validating consistency and

completeness?
• Design - libraries: are library functions supported and do they lead to restrictions?
• Design - hierarchy: is a hierarchical design possible and does this still allow checks, etc.?
• Design - drawing: how comfortable is the usage of the editor and the complete user interface?
• Code generation: does the tool support C (and what about C++, ADA)? Is it possible to

include self written code and is this code affected during updates of the design?
• Connection to VxWorks: does the tool support our operating system?
• Simulation capabilities: can the design (or parts of the design) be verified through a

simulation?
• Generation of documentation: which documentation standards (and templates) are supported?
• General: on which platform is the tool running and which type of licensing is supported?
• Dissemination: how many companies are using the tool, what is the expected life duration and

familiarity, what can be said about possible support?

Design Tool Selection
After evaluating tools and methodologies, the tool was selected within an analytical decision
making process, Tab. 1. The right most columns of the table relate to the different tools. Each row
represents a requirement as it originates from the previous section. The accomplishment of each
requirement was discussed and estimated for every tool according to the marks - -, -, 0, +, ++
(from „very poor“ respectively „does not support“ to „very good“). Each mark is related to one of
the numbers -2 to +2. Related to each requirement the second column states a weight factor which
represents the importance for the evaluation according to the numbers 0 to 10 (ranging from „not
important at all“ to a „very high importance“). The summarized evaluation points for each
product are obtained by multiplying the weight factor for each requirement with its mark and by
calculating the sum of all these specific evaluations.

Of course this table may contain subjective impressions originating from a faulty evaluation item,
but nethertheless it shows that tool 3 (the product ObjecTime) seemed to be the best choice for
our application. Besides ObjecTime we evaluated the tools Software through Pictures, Statemate
and Teamwork. Other tools were rejected immediately because they did not fulfill some
important knock-out criteria.

Requirement Weight Tool 1 Tool 2 Tool 3 Tool 4
Configuration management 7 + 7 0 0 ++ 14 + 7
Requirements 5 + 5 0 0 + 5 - -5
Design: methodology
Design: checks 9 + 9 ++ 18 ++ 18 ++ 18
Design: libraries 6 - -6 0 0 + 6 0 0
Design: hierarchy 9 0 0 + 9 + 9 + 9
Design: drawing 7 + 7 - -7 + 7 0 0
Code generation: C 3 ++ 6 + 3 + 3 0 0
Code generation: C++ 1 ++ 2 - - -2 ++ 2 - - -2

11

Code generation: ADA 1 - - -2 + 1 - - -2 + 1
Code: Connection to VxWorks 2 - - -4 + 2 + 2 - - -4
Code: Reverse Engineering 1 + 1 + 1 -- -2 + 1
Code: Tests 3 + 3 - -3 0 0 + 3
Simulation 8 - - -16 + 8 ++ 16 + 8
Generation of documentation 5 + 5 + 5 0 0 + 5
User interface 7 - -7 - -7 0 0 - -7
Interfacing with other products 6 0 0 + 6 0 0 - -6
Platform 2 0 0 0 0 0 0 0 0
Licences 2 0 0 0 0 0 0 0 0
Dissemination 4 ++ 8 + 4 - -4 + 4
Life duration 3 + 3 + 3 0 0 + 3
Familiarity 4 0 0 - -4 - -4 0 0
Support 3 + 3 + 3 + 3 + 3
Tool integration 6 + 6 0 0 ++ 12 0 0
Evaluation Points 30 40 85 38
Tab. 1: Decision matrix for the tool selection

Key Lessons Learnt
The overall impression of the improved software design is considered successful. Especially due
to the traceability of requirements through the design, source code and test procedures it looks
promising, that the expected reduction of maintenance and upgrade effort for our embedded
system will be achieved. Nevertheless the following lessons were learnt:
• According to our impression most weaknesses are seen in connection with the selected design

tool. This does not mean that the tool evaluation process came to wrong conclusions
considering the choice of the tool. Any tool can only be used in a successful way if it is well
known by its users. We started to develop our design without having much experience with
ObjecTime. We expect to improve this situation in the future.

• In the past we developed and documented our design with pencil and paper using the
methodology of Hatley and Pirbhai [6]. A comparison with the past shows that the design tool
does not simplify the creative thinking process, e.g., it does not encourage to try out things.
Thus, sketching the design still has to be done before using the tool.

• We observed that the definition of the process as well as a thorough analysis of the
requirements to be implemented simplifies design and implementation.

• Besides a well established software development process, it is worth while to spend a lot of
effort investigating (and defining) the requirements since they are the basis for the software.
Gathering requirements normally goes hand in hand with the so-called analysis phase. The tool
ObjecTime is good in designing the software but it is not so well suited for the analysis.

• Until now we did not handle significant parts of our source code through ObjecTime. This
results from the fact that we have to handle many different interfaces with external devices and
we have to integrate quite a bit of „external code“ resembling the I/O drivers.

12

• In order to generate code for the target system automatically, the ObjecTime C version requires
that all tasks (i.e., all parallel processes) are actors on the top level. Moreover, individual
models have to be used for each processor. This complicates model handling significantly.

• Our system seems to lack a certain amount of “top-level communication complexity” (not
enough state transitions) in order to really utilize the advantages of ObjecTime. For our system
a lot of communication is hidden within specific board drivers.

Major Impacts
Today, embedded software is a major component of many technical product innovations. Thus,
the ability to adapt embedded real-time software to new requirements, coming up with each new
product generation, is the predominant success factor of an enterprise. This time-to-market
pressure also applies to the airborne testbeds of DLR, since experiment specific user requirements
for the embedded real-time software have to be fulfilled within tight time-to-experiment
schedules.

From the business point of view, the marketability of the research aircraft and the corresponding
experimental systems depends heavily on the cost for the preparation and performance of an
experiment as well as the time-to-experiment, i.e. the time necessary to adapt the experimental
system to the specific requirements of a particular customer. Since the utilisation of a research
aircraft is supposed to significantly reduce the development cost and time-to-market of new
aircraft, a significant reduction of these two factors is necessary to provide an attractive and
competitive research aircraft and experimental system.

With the ICARUS process improvement experiment two major technical process improvements
were introduced:
• The design tool ObjecTime enables us to design and document our system and to prove the

system behaviour through simulation.
• We are enabled to achieve complete software traceability between requirements and source

code as well as test functions. The required links from design elements to the requirements and
to the source code are handled within the design tool ObjecTime.

Future Actions
Until now three main steps have been finished:
• The software process was defined, documented, and established.
• A design tool was selected.
• Introduction based on prototype 1 is completed including a design with the selected tool.

Presently we are designing the prototype 2 software. Major Future actions will be
• Design of prototypes 2 and 3 with the selected design tool, including automatic code

generation.
• Further evaluation of the tool.
• Evaluating the automatic building and usage of the trace structure as shown in Fig. 4.
• Further evaluation of the complete software development process.

13

After the successful completion of this first process improvement step further activities focusing
on the later phases of the life cycle, i.e. implementation and testing, are planned outside of this
PIE.

DLR has already decided to stick to the software improvements gained within the ICARUS
project, especially to continue using the design tool ObjecTime. Projects being involved in
similar applications watch this process improvement very closely, a lot of discussion as well as
know how transfer is already happening.

One of the most important tasks of DLR is to support the industry in sense of know how transfer.
We see that the industry as well as partner research organisations are very interested in software
process improvements in general and thus, there will be some future actions in this field.

Conclusions
Process improvement does not come on its own. Most important is to write down the process
itself. Especially the project specific setup through the adaption of DO178B [3] was very
important. The introduction of a good software development process requires quite a lot of
documentation. It is important to not underestimate the effort needed. This has to be made clear
for senior management. The return of investment from a good software development comes on
the long run, but first it means additional effort spent.

Overall this PIE is considered very successful by the people directly involved in the ICARUS
work and by the management of the baseline project as well as by superiors. Until now
weeknesses are only seen in connection with the selected design tool. An evaluation of these
weeknesses lead to the conclusion that:
• It has to be considered fairly normal to detect weeknesses with tools.
• One needs to become an expert with a tool before one knows and avoids all disadvantages.

Nevertheless one should keep in mind that the definition of the software development process
itself as well as a thorough analysis of the requirements to be implemented seem to be much more
efficient than trying out things with a design tool.

Glossary
ACT/FHS: Active Control Technology / Flying Helicopter Simulator
AHRS: Attitude and Heading Reference System
CDU: Control and Display Units
DLR: Deutsches Zentrum für Luft- und Raumfahrt e.V.
DMC: Data Management Computer
EC: Experimental Computer
ECD: Eurocopter Deutschland
ESA: European Space Agency
ESSI: European Software and Systems Initiative
GC: Graphic Computer
GPS: Global Positioning System
ICARUS: Introduction of Computer Aided Analysis and Design for Real-Time Software

Embedded in Upgradable Systems

14

LLI: Liebherr Aerospace Lindenberg
PIE: Process Improvement Experiment
ROOM: Real-Time Object-Oriented Modeling
SW: Software

References
[1] Real-Time Object-Oriented Modeling. B. Selic, G. Gullekson, P. Ward, John Wiley &

Sons, New York, 1994.
[2] ACT/FHS On Board Computer System. K. Alvermann, R. Gandert, B. Gelhaar, S. Graeber,

H. Oertel, European Telemetry Conference, Garmisch Partenkirchen, 1998.
[3] Software Engineering Standards: European Space Agency. ESA PSS-05-0, Issue 2, Februar

1991.
[4] Software Considerations in Airborne Systems and Equipment Certification.

RTCA DO-178B, Dec. 1992.
[5] Software Quality Standards für kleine Projekte, DLR, Hauptabteilung Qualität und

Sicherheit, April 1997.
[6] Strategies for Real-Time System Specification. D. Hatley, I. Pirbhai, Dorset House

Publishing, 1988.

1

3.11.99 QWE '99 1

Deutsches Zentrum für Luft- und Raumfahrt e.V.

Developing E mbedded S oftware
for a Helicopter T es tbed

Klaus Alvermann
S tephan Graeber

Henrik Oertel
L othar T hiel

Ins titute of F light Mechanics
Deutsches Zentrum für L uft- und R aumfahrt e.V.

B raunschweig, Germany

Systems & Software
Initiative

SSI
European

E

3.11.99 QWE '99 2

Deutsches Zentrum für Luft- und Raumfahrt e.V.

Contents

z Helicopter Baseline Project
z Process Improvement E xperiment

Æ Objectives
Æ Approach

z Defined S W Development Process
z S oftware Development Environment
z Des ign T ool S election
z ROOM - ObjecT ime Modeling
z L essons L earnt / Future P lans
z Conclus ions

2

3.11.99 QWE '99 3

Deutsches Zentrum für Luft- und Raumfahrt e.V.

Background / Baseline Project

z Goal:
Æ Operation of an experimental FB W helicopter

z Motivation:
Æ T es tbed for in-flight s imulation & technology

demonstrator

z Customers (European):
Æ Industry
Æ Minis try of Defense
Æ R esearch E s tablishments
Æ Pilot schools

3.11.99 QWE '99 4

Deutsches Zentrum für Luft- und Raumfahrt e.V.

Helicopter View
A ctuator uni t

tai l rotor A ctuator uni t
m ain rotor

Flight test engi neer

Eval uati on pi lot

D ispl ay (eval . pi lot)

Cockpi t interface uni t

Control & displ ay uni t

G raphi cs com p.
Rotor-acqui si ti on

D ata m anagem ent com p.
Telem etry

D ata storage

Exp. com puter

Exp. equi pm ent

Safety pi lot

ai r data sensor

Equipm ent for
fl ight test engi neer

3

3.11.99 QWE '99 5

Deutsches Zentrum für Luft- und Raumfahrt e.V. S ystem Architecture

Cockpi t
Interface

Act. Roll

Act. Coll.

Act. Yaw

Act. Pitch

M echanical Backup

C
O

R
E

 S
Y

S
T

E
M

E
X

P
E

R
IM

E
N

TA
L

S
Y

S
TE

M

CDUs

Data
Storage

+
Telem etry

Sensors

Data
M anagem ent

Com puter

Displ ays
Graphi cs

Com puter

Experi m ent
Speci fi c

Com puter

Safety
Pilot

Eval .
Pilot

3.11.99 QWE '99 6

Deutsches Zentrum für Luft- und Raumfahrt e.V.

Process Improvement Experiment ICARUS

z Bus iness motivation
Æ T ight „T ime-to-experiment“ schedules

z Objectives :
Æ Adapt to a wide range of user requirements and

hardware environment
Æ Meet hard real-time constraints
Æ R educe development time and maintenance effort
Æ Improve quality in verification and documentation
Æ T raceability from requirements to source code

Introduction of Computer Aided
Analys is and Design for R eal-
T ime S oftware Embedded in
Upgradable S ystems

4

3.11.99 QWE '99 7

Deutsches Zentrum für Luft- und Raumfahrt e.V.

PIE : Approach

z Integrate a cons is tent engineering process
z E valuate S W best practice des ign methods for

embedded real-time sys tems
z Provide training on the defined process
z Improve software des ign process , concept, and

infrastructure
z E stablish a process evaluation concept
z Adapt to software vers ions of baseline project

Æ Prototype 1: Introduction
Æ Prototype 2: Main application
Æ Prototype 3: Upgrade vers ion

3.11.99 QWE '99 8

Deutsches Zentrum für Luft- und Raumfahrt e.V.

S oftware Development Processes

z Planning Process
z Development Process

Æ R equirements
Æ Design
Æ Implementation
Æ Integration

z Control Process
Æ Verification
Æ Configuration Management
Æ Quality Assurance

RT CA/DO-178B
E SA S oftware E ngineering S tandards
Company S W Development S tandards

Guidelines :

5

3.11.99 QWE '99 9

Deutsches Zentrum für Luft- und Raumfahrt e.V.

Controlled S oftware Development
Processes

Control

Planni ng

Require-
m ents

D esign
Im plem en-

tati on
Integrati on

D evel opm ent

3.11.99 QWE '99 10

Deutsches Zentrum für Luft- und Raumfahrt e.V.

Verification: T raceability

S ystem R equirementsS ystem R equirements

S ource Code
Components

S ource Code
Components

Design ComponentsDesign Components

S oftware R equirementsS oftware R equirements

T es tsT es ts

User DocumentationUser Documentation

6

3.11.99 QWE '99 11

Deutsches Zentrum für Luft- und Raumfahrt e.V.

T race Database

Documents Design T ool S ource Code

Document
F ilter

ObjecT ime
E xport

S ource Code
F ilter

S oftwareReq
soft_id
vers ion_id

category
priority
description

n:m

S ystemReq
sys_id
vers ion_id

impl_vers ion
category
description

n:m

n:m

DesignE lement
sdes_id
vers ion_id

type
description

S ourceE lement
ssrc_id
vers ion_id

3.11.99 QWE '99 12

Deutsches Zentrum für Luft- und Raumfahrt e.V.

S oftware Development Environment

z VxWorks real-time operating system (VME bus)

z ObjecT ime des ign tool
z VAPS instrument des ign tool (OpenGL interface)

z C programming language
z CVS configuration management tool
z xlint source code checker
z OR ACL E trace data base

z Helicopter s imulation for HIL - T ests

7

3.11.99 QWE '99 13

Deutsches Zentrum für Luft- und Raumfahrt e.V.

Des ign T ool E valuation

z Interfacing with other products (e.g. CVS)?
z Handling of requirements?
z Is the methodology suited for a real-time system?
z Checks for completeness and cons is tency?
z Are library functions supported?
z Is a hierarchical approach supported?
z Drawings - how comfortable is the editor?
z S upport of code generation (C), ((C++)), (((ADA)))?
z Connection to VxWorks?
z S imulation capabilities?
z Documentation?

3.11.99 QWE '99 14

Deutsches Zentrum für Luft- und Raumfahrt e.V.

Des ign T ool S election
Requirement Weight Tool 1 Tool 2 Tool 3 Tool 4

Configuration management 7 + 7 0 0 ++ 14 + 7
Requirements 5 + 5 0 0 + 5 - -5

Design: methodology
Design: checks 9 + 9 ++ 18 ++ 18 ++ 18
Design: libraries 6 - -6 0 0 + 6 0 0
Design: hierarchy 9 0 0 + 9 + 9 + 9
Design: drawing 7 + 7 - -7 + 7 0 0

Code generation: C 3 ++ 6 + 3 + 3 0 0
Code generation: C++ 1 ++ 2 - - -2 ++ 2 - - -2
Code generation: ADA 1 - - -2 + 1 - - -2 + 1
Code: Connection to VxWorks 2 - - -4 + 2 + 2 - - -4
Code: Reverse Engineering 1 + 1 + 1 -- -2 + 1
Code: Tests 3 + 3 - -3 0 0 + 3

Simulation 8 - - -16 + 8 ++ 16 + 8
Generation of documentation 5 + 5 + 5 0 0 + 5
User interface 7 - -7 - -7 0 0 - -7
Interfacing with other products 6 0 0 + 6 0 0 - -6

Platform 2 0 0 0 0 0 0 0 0
Licences 2 0 0 0 0 0 0 0 0
Dissemination 4 ++ 8 + 4 - -4 + 4
Life duration 3 + 3 + 3 0 0 + 3
Familiarity 4 0 0 - -4 - -4 0 0
Support 3 + 3 + 3 + 3 + 3
Tool integration 6 + 6 0 0 ++ 12 0 0

Evaluation Points 30 40 85 38

8

3.11.99 QWE '99 15

Deutsches Zentrum für Luft- und Raumfahrt e.V.

ROOM Methodology

z T imeliness
z Dynamics
z Reactiveness
z Concurrency
z Dis tribution

Descriptions are based on
Æ Abstraction
Æ Completeness
Æ Hierarchy
Æ Incremental modeling
Æ R eusability

reaction within pre-scribed interval
s tructure changes during run-time
sys tem is event driven
multiple concurrent threads
multi-processor architecture

3.11.99 QWE '99 16

Deutsches Zentrum für Luft- und Raumfahrt e.V.

S imulation
On Development P latform On T arget S ys tem

Design
Interface

R un-T ime
Interface

E xecutable
Model

Virtual
ROOM Machine

Design Model

Requirements
Model

E xecutable
Model

Virtual
ROOM Machine

Non-ROOM
Components

VxWorks

Peripherals

9

3.11.99 QWE '99 17

Deutsches Zentrum für Luft- und Raumfahrt e.V.

Overview of R OOM Modeling L anguage

Actor1 protocol cl ass Prot1:
 in: {signal1, Data1}

cl ass Data2 {
 publ ic:
 Data1 dat a1;
 ...

Actor1- top
state1

state2

t : {signal1, port1}

vars:
 dat a2: Data2.

- Applicati on1 Classes -

Actor1 Protocol 1 Data2
Data1

port1

3.11.99 QWE '99 18

Deutsches Zentrum für Luft- und Raumfahrt e.V.

Key L essons L earnt

Overall impress ion is cons idered success ful,
nevertheless :

z We need more experience with the tool
z S ketching of the des ign s till has to be done
z A thorough analys is s implifies des ign and

implementation
z ObjecT ime induces a s lightly different

development approach, conflicting with our
analys is phase

z S upport for external hardware cannot be handled
within a design tool

10

3.11.99 QWE '99 19

Deutsches Zentrum für Luft- und Raumfahrt e.V.

Future Plans

z Des ign of further SW prototypes, including
automatic code generation

z Further usage (evaluation) of the tool
z Further improvement of software development

process
z Dissemination of results , internal and external

S oftware for Prototype 1 is completed

3.11.99 QWE '99 20

Deutsches Zentrum für Luft- und Raumfahrt e.V.

Conclus ions

z T echnical Impacts :
Æ Design and documentation of our sys tem
Æ Proving behaviour through s imulation
Æ Complete traceability (between requirements , des ign,

source code, test functions)

z Bus iness Impact:
Æ E xperiment specific user requirements for embedded

real-time software can be fulfilled within tight time-to-
experiment schedules

z Key S uccess Factors :
Æ T he process itself is most important
Æ T horough analys is of requirements helps a lot

Slide 1

Engineering Safety RelatedEngineering Safety Related
Control Software in DevelopingControl Software in Developing
CountriesCountries
Wolfgang A. Wolfgang A. HalangHalang
FernUniversitätFernUniversität
FachbereichFachbereich ElektrotechnikElektrotechnik
D-58084 HagenD-58084 Hagen MatjaMatjažž ColnariColnarièè

University of University of MariborMaribor
Faculty of Electrical Engineering and Computer ScienceFaculty of Electrical Engineering and Computer Science

SLO-2000 SLO-2000 MariborMaribor

Quality Week Europe 1999Quality Week Europe 1999

Slide 2

2

Boundary ConditionsBoundary Conditions
•• Decline of hardware costs - rapid growth of software costs;Decline of hardware costs - rapid growth of software costs;

reasons: lower degree of automation of “softwarereasons: lower degree of automation of “software
engineering” and high labour costs.engineering” and high labour costs.

•• Developing countries often have many highly qualified youngDeveloping countries often have many highly qualified young
people, who may work in software development.people, who may work in software development.

•• For developing countries it is economically feasible toFor developing countries it is economically feasible to
concentrate on software development:concentrate on software development:

–– lower initial investments, lower initial investments,

–– big demand for software, big demand for software,

–– swswmarket larger thanmarket larger than hw hwmarket,market,

–– greater added value. greater added value.

Slide 3

3

The NicheThe Niche
Problem of geographical distance to customers in industrialisedProblem of geographical distance to customers in industrialised
countries:countries:

–– low chance for customer specific software specified orallylow chance for customer specific software specified orally
“on the fly”,“on the fly”,

–– concentration on standard software and libraries is necessary.concentration on standard software and libraries is necessary.

Industrial process automation is an important market forIndustrial process automation is an important market for

standard software.standard software.

The necessity of safety licensing for safety related applicationsThe necessity of safety licensing for safety related applications

–– creates much work for people and creates much work for people and

–– high added value. high added value.

Slide 4

4

Programming ParadigmProgramming Paradigm
Restriction to application domains with software of limitedRestriction to application domains with software of limited
variability and clearly defined functionality: industrial processvariability and clearly defined functionality: industrial process
automation.automation.

Identification and setup of small libraries (max. 80) ofIdentification and setup of small libraries (max. 80) of
standardised (e.g., VDI/VDE 3696) and rigorously verified,standardised (e.g., VDI/VDE 3696) and rigorously verified,
application specific basic functions/blocks (for a larger closedapplication specific basic functions/blocks (for a larger closed
problem area each), and provision of corresponding machineproblem area each), and provision of corresponding machine
code in (E)(P)code in (E)(P)ROMsROMs..

Graphical “wiring” of function (block) instances in FBD/SFC ofGraphical “wiring” of function (block) instances in FBD/SFC of
IEC 11313:IEC 11313:
 - programminginthelarge, - programminginthelarge,
 - quality of specification. - quality of specification.

Verification by “diverse back translation”Verification by “diverse back translation”

Slide 5

5

CharacteristicsCharacteristics
Long established practices in control engineering have led to thisLong established practices in control engineering have led to this
programming paradigm,programming paradigm, viz viz., to compose software out of high., to compose software out of high
level (actually specification level), user oriented and reusablelevel (actually specification level), user oriented and reusable
building blocks instead out of low level machine oriented ones,building blocks instead out of low level machine oriented ones,
with the following properties:with the following properties:

•• application level programming primitives, application level programming primitives,

•• ROMsROMs enforce reusability, enforce reusability,

•• graphical programming. graphical programming.

Slide 6

6

Graphical programmingGraphical programming

•• meets the engineer's way of thinking,meets the engineer's way of thinking,

•• has inherent documentation value,has inherent documentation value,

•• is clear,is clear,

•• is easy to understand,is easy to understand,

•• facilitates structured topdown design,facilitates structured topdown design,

•• provides for compositeprovides for composite FBs FBs to raise abstraction levels, to raise abstraction levels,

•• hides implementation details,hides implementation details,

•• facilitates development and licensing of safety criticalfacilitates development and licensing of safety critical
software by reducing complexity and alternatives forsoftware by reducing complexity and alternatives for
problem solving.problem solving.

Slide 7

7

The Language Standard IEC 11313The Language Standard IEC 11313

defines a family of 4 mutually transformable languages:defines a family of 4 mutually transformable languages:

ILIL Instruction List (Assembly language) Instruction List (Assembly language)

LDLD Ladder Diagram (Formalisation of electrical circuit diagrams to Ladder Diagram (Formalisation of electrical circuit diagrams to
describe relay based binary controls)describe relay based binary controls)

FBDFBD Function Block Diagram Function Block Diagram

STST Structured TextStructured Text

as well asas well as

SFCSFC Sequential Function Chart Sequential Function Chart

Slide 8

8

IEC 11313 Language FBDIEC 11313 Language FBD
FBD is signalflow oriented and designobject oriented.FBD is signalflow oriented and designobject oriented.

FBD'sFBD's sole elements are sole elements are

AAdvantages:dvantages:

•• Specifications are directly mapped onto sequences ofSpecifications are directly mapped onto sequences of
procedure calls.procedure calls.

•• Software complexity is reduced by orders of magnitude,Software complexity is reduced by orders of magnitude,

•• Compiled object code contains procedure calls and internalCompiled object code contains procedure calls and internal
moves of data, only.moves of data, only.

•• function (block) instances,function (block) instances,

•• connectors and connecting lines,connectors and connecting lines,

•• names,names,

•• tasks.tasks.

Slide 9

9

Composite Function BlocksComposite Function Blocks

Slide 10

10

A Function Block DiagramA Function Block Diagram

Slide 11

11

IEC 11313 Language SFCIEC 11313 Language SFC
SFC is activityflow oriented.SFC is activityflow oriented.

SFC'sSFC's sole elements are sole elements are
–– (initial) steps, (initial) steps,

–– transitions, transitions,

–– actions. actions.

SFC (SFC (GrafcetGrafcet) is the industrial implementation of the) is the industrial implementation of the Petri Petri net net
concept.concept.

When a process is within a certain state (step), the sequentialWhen a process is within a certain state (step), the sequential
function chart describes the system reaction in dependence onfunction chart describes the system reaction in dependence on
the value of the subsequent transition condition.the value of the subsequent transition condition.

Slide 12

12

A SequentialA Sequential
Function ChartFunction Chart

Slide 13

13

Guideline VDI/VDE 3696Guideline VDI/VDE 3696
“Manufacturer independent configuration of digital control“Manufacturer independent configuration of digital control

systems”systems”

67 modules from the following function (block) classes:67 modules from the following function (block) classes:

•• Counters,Counters, monostables monostables,,
bistablesbistables, timers, timers

•• Process input/outputProcess input/output
•• Network communicationNetwork communication

input/outputinput/output
•• Dynamic elements andDynamic elements and

regulatorsregulators
•• Conditioning for display andConditioning for display and

operationoperation

•• Monadic mathematicalMonadic mathematical
functionsfunctions

•• PolyadicPolyadic mathematical mathematical
functionsfunctions

•• ComparisonsComparisons
•• Monadic Boolean functionMonadic Boolean function
•• PolyadicPolyadic Boolean functions Boolean functions
•• Edge detectorsEdge detectors
•• Selection functionsSelection functions

Slide 14

14

Software Safety LicensingSoftware Safety Licensing

The twostep development procedure propagates into theThe twostep development procedure propagates into the
verification phase:verification phase:

1. Before being released, a library of function blocks is proven1. Before being released, a library of function blocks is proven
correct - once for all with appropriate rigorous (formal)correct - once for all with appropriate rigorous (formal)
methods.methods.

2. For a given application, only the interconnection of2. For a given application, only the interconnection of
instantiated function blocks (i.e., a certain data flow) needsinstantiated function blocks (i.e., a certain data flow) needs
verification.verification.

This is performed by diverse back translation of correspondingThis is performed by diverse back translation of corresponding
object programs on the level of module invocations.object programs on the level of module invocations.

Slide 15

15

Verifying Function Block LibrariesVerifying Function Block Libraries

This is feasible due to the limited complexity and sizeThis is feasible due to the limited complexity and size
((≤≤ 2 pages) of standardised basic function blocks. 2 pages) of standardised basic function blocks.

Their correctness can and must be formally proven withTheir correctness can and must be formally proven with
bearable effort and mathematical rigour.bearable effort and mathematical rigour.

However, this can be carried through by specialists, only.However, this can be carried through by specialists, only.

The costly safety licensing is required only once in the lifetimeThe costly safety licensing is required only once in the lifetime
of a function block library.of a function block library.

These costs are justified by the safety requirements, and canThese costs are justified by the safety requirements, and can
be spread over many implementations.be spread over many implementations.

Slide 16

16

Formal VerificationFormal Verification
Applicable methods are:Applicable methods are:

–– complete test (sometimes),complete test (sometimes),
–– symbolic evaluation,symbolic evaluation,
–– predicate calculus (predicate calculus (DijkstraDijkstra,, Hoare Hoare),),
–– Z,Z,
–– HOL/Isabelle,HOL/Isabelle,
–– whatever appropriate.whatever appropriate.

Automated tools may often be used.Automated tools may often be used.

Often the reuse of function blocks allows to reuseOften the reuse of function blocks allows to reuse
corresponding proofs.corresponding proofs.

Slide 17

17

Diverse Back TranslationDiverse Back Translation

•• is assumed to be the most powerful, the only generallyis assumed to be the most powerful, the only generally
applicable, and the only officially recognised (andapplicable, and the only officially recognised (and
developed) - by the licensing authorities (TÜV) - methoddeveloped) - by the licensing authorities (TÜV) - method
for software verification;for software verification;

•• consists in regaining a requirement specification byconsists in regaining a requirement specification by
several, independently working licensor groups on the basisseveral, independently working licensor groups on the basis
of loaded and readout machine code, and granting aof loaded and readout machine code, and granting a
license upon equivalence;license upon equivalence;

•• not feasible for most industrial applications.not feasible for most industrial applications.

Slide 18

18

Diverse Back TranslationDiverse Back Translation
•• is, however, economical feasible on the level of graphicalis, however, economical feasible on the level of graphical

FBD interconnections, where programs are shorter andFBD interconnections, where programs are shorter and
simpler by orders of magnitude, and where one easysimpler by orders of magnitude, and where one easy
transformation step leads back from machine code totransformation step leads back from machine code to
problem specification.problem specification.

•• Advantages: essentially informal, but rigorous, commonlyAdvantages: essentially informal, but rigorous, commonly
understandable (law suits), and immediately applicableunderstandable (law suits), and immediately applicable
without any training.without any training.

•• Diversity can be provided with one human licensor only.Diversity can be provided with one human licensor only.

•• Diverse back translation elegantly circumvents the problemDiverse back translation elegantly circumvents the problem
of nonsafetylicensed compilers.of nonsafetylicensed compilers.

Slide 19

19

Work to beWork to be Outsourced Outsourced

•• Analysis of an application area,Analysis of an application area,

•• Definition and validation of an appropriate function (block)Definition and validation of an appropriate function (block)
library,library,

•• Verification of specifications,Verification of specifications,

•• Programming of modules,Programming of modules,

•• Verification on source language level ,Verification on source language level ,

•• Verification on object code level by diverse back translation,Verification on object code level by diverse back translation,

•• Tool development,Tool development,

•• Documenting all products and phases,Documenting all products and phases,

•• In principle also: licensing.In principle also: licensing.

Slide 20

20

Work in Industrialised CountriesWork in Industrialised Countries

•• Graphical construction of application specific software in aGraphical construction of application specific software in a
dialogue with the customer, who has usually described hisdialogue with the customer, who has usually described his
problem already in form of diagrams.problem already in form of diagrams.

•• Verification of the callingVerification of the calling sequencies sequencies of instantiated of instantiated
software modules by diverse back translation.software modules by diverse back translation.

•• Diversity provided by personal and spatial separation ofDiversity provided by personal and spatial separation of
the construction and verification steps.the construction and verification steps.

Slide 21

21

Concept of a Software HouseConcept of a Software House
Very low initial investments:Very low initial investments:

•• Office space,Office space,

•• Workstations, PCs,Workstations, PCs,

•• Internet connection,Internet connection,

•• Software tools (often in PD).Software tools (often in PD).

Highly qualified staff:Highly qualified staff:

 Linking to a university institute feasible according Linking to a university institute feasible according
 to the “ spinoff ” model. to the “ spinoff ” model.

Slide 22

22

ConclusionConclusion
Program controlled safety related systems are an economicalProgram controlled safety related systems are an economical
must.must.

The problem of software dependability will furtherThe problem of software dependability will further
exacerbate severely, particularly in process automation.exacerbate severely, particularly in process automation.

A software engineering method was presented here, whichA software engineering method was presented here, which
meets societies' high dependability requirements formeets societies' high dependability requirements for
technical systems.technical systems.

Through outsourcing, developing countries can achieve highThrough outsourcing, developing countries can achieve high
added value and good exports with low investments. Theyadded value and good exports with low investments. They
can thus create urgently needed jobs for people, whocan thus create urgently needed jobs for people, who
otherwise may emigrate.otherwise may emigrate.

As a side effect, technology is transferredAs a side effect, technology is transferred..

Developing Highly Reliable Products in "Internet Time" QWE99

Walter Baziuk - Nortel Networks 1

Developin g HighlyDevelopin g Highly
Reliable Products inReliable Products in

"Internet Time""Internet Time"
$SSOLFDWLRQV�
6ROXWLRQV

7UDFN�
�$

Walter BaziukWalter Baziuk
baziuk@nortelnetworks.combaziuk@nortelnetworks.com

QWE99 - Brussels, Belgium - November 3, 1999QWE99 - Brussels, Belgium - November 3, 1999

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 2

Why develop in “Internet time”Why develop in “Internet time”

M
ar

ke
t S

ha
re

M
ar

ke
t S

ha
re

Product revenueProduct revenue
(late to market)(late to market)

Lost revenueLost revenue
(product is late)(product is late)

Product isProduct is
introduced lateintroduced late

Product isProduct is
introduced on timeintroduced on time

ObsolescenceObsolescence
Product RevenueProduct Revenue

(on time introduction)(on time introduction)

++t=0t=0 Product’s time in market placeProduct’s time in market place
--

++

Developing Highly Reliable Products in "Internet Time" QWE99

Walter Baziuk - Nortel Networks 2

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 3

➨ Identify key market/customer requirements
◆ Work with your customer determine "which

features are in and which aren't" in each
release.

◆ Manage requirements churn and still deliver on
time.

◆ Get the customer involved earlier and have
them witness intermediate results.

■ Manage product reliability and quality
■ Accelerate software development

AgendaAgenda

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 4

Define your strategic fitDefine your strategic fit

Determine
market

segmentationsegmentation

Assess market vs.
Company fit

Identify market segments and
the quality levels they requirerequire

Customer Analysis
Who BUYSBUYS What, Where,
When, How & Why

Determine
basis of

differentiationdifferentiation

Assess product vs.
Company fit

Evaluate the market segments and
quality levels you can BEATBEAT

Competitor Analysis
Who OFFERSOFFERS What, Where,
When, How & Why

Company Analysis
Given your objectives &objectives &
resourcesresources - what can you do,
for when, where and when?

Product vs market fit
Does a market existexist for your intended Price / Quality level?
If so, what activitiesactivities are need to communicate, deliver & insulate your position?

Developing Highly Reliable Products in "Internet Time" QWE99

Walter Baziuk - Nortel Networks 3

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 5

ValueValue
DriveDrive

Set your Business StrategySet your Business Strategy

PricePrice
DrivenDriven

QualityQuality
DrivenDriven

Relative Quality

Relative
Price

++

--

--

++

••Customer seeks basic product at lowest costCustomer seeks basic product at lowest cost
••Strategic emphasis on major cost elementsStrategic emphasis on major cost elements
••Function focus is on R&D and operationsFunction focus is on R&D and operations
••Primary objective is cost containmentPrimary objective is cost containment

••Customer seeks maximum quality, product price is Customer seeks maximum quality, product price is
a secondary concerna secondary concern
••Strategic emphasis on unique features & capabilitiesStrategic emphasis on unique features & capabilities
••Function focus is product, service & customer Function focus is product, service & customer
supportsupport
••Primary objective is quality enhancementPrimary objective is quality enhancement

••Customer seeks product Customer seeks product
with a superior valuewith a superior value
••Strategic emphasis Strategic emphasis
balances quality vs. pricebalances quality vs. price

••Usually the largest market Usually the largest market
segment i.e. margin x volumesegment i.e. margin x volume
••Primary objective is Primary objective is
sustained market sharesustained market share

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 6

Set your key Business ValuesSet your key Business Values

Customer Customer
ValuesValues

P
ro

du
ct

P
ro

du
ct

S
pe

ci
fic

at
io

ns
S

pe
ci

fic
at

io
ns

Company Company
ValuesValues

 QualityQuality

 Service Service

 Regulatory Regulatory

Lifecycle costLifecycle cost

 Functionality Functionality

RevenueRevenue

 Profitability Profitability

 Time to Market Time to Market

 Quality Quality

 Asset Velocity Asset Velocity

P
ro

du
ct

P
ro

du
ct

R
eq

ui
re

m
en

ts
R

eq
ui

re
m

en
ts

Developing Highly Reliable Products in "Internet Time" QWE99

Walter Baziuk - Nortel Networks 4

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 7

Idea Opportunity Definition Implementation Deployment

•Postpone and
reschedule
meeting

•Redirect
rather than
remove

•Proceed
without needed
resources

•Micromanage
development

•Make late changes
now that design is
understood

•Make up for lost time
by adding features from
next release

•Approve
new features
that
postpone
launch
further

•Question
strategy fit
and redirect
to Idea
Phase

•Avoid
decision
altogether

•Approve
without
resources
for design or
funds for
market
research

Typical decision making methodTypical decision making method

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 8

 Is the economic analysis sufficiently
robust, are the critical assumptions
correct, and do the expected financial
returns meet company objectives?

 Are the major risks and
contingencies
acceptable?

 Have the strategic and
market positioning
implications for other
existing or planned
products been
properly evaluated?

 Do we have adequate
resources to get this to
the market in time?

 Is the plan for the next phase
reasonable ?

Are the development
 requirements consistent with

technology trends and
development capability?

Can the product
maintain a

competitive
advantage over a

sufficiently long life
cycle?

Is there a clear understanding of the
market and its potential, and the

customer problems / needs
over time?

Is there a winning customer
value proposition for the

planned product offering?

Base decisions on specific questions!Base decisions on specific questions!

Developing Highly Reliable Products in "Internet Time" QWE99

Walter Baziuk - Nortel Networks 5

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 9

Key time to market enablersKey time to market enablers

End-to-End Accountability:End-to-End Accountability:
• Schedule Commitments
• Budget Commitments
• Specification Commitment
• People Commitments

CustomerCustomer
FocusedFocused
DesignDesign

 What we deliver
vs. what the
customer expects

Outputs
 to
Business
 Metrics

 Inputs
 from
Project
Metrics

Adaptability:
% Utilization

Efficiency:
Cost of
cancellations

Effectiveness:
TTM /TTP

Shareholder value metrics:Shareholder value metrics:

• Market Plan
• Corporate Strategy
• Business Plan
• Technical Plan
• Customer Focused
 Design

Viable business caseViable business case

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 10

“Internet time” delivery“Internet time” delivery
demands makingdemands making

decisions that stickdecisions that stick

Decisions making fundamentalsDecisions making fundamentals

The decision
maker must have
authority over the
product domain

Unambiguous
decisions
must result

A real authority
must make the

decisions

Developing Highly Reliable Products in "Internet Time" QWE99

Walter Baziuk - Nortel Networks 6

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 11

Idea Opportunity Definition Implementation Deployment

Provide the
resources
needed for
success based
on detailed
feasibility,
value, fit, etc.

Commit the
company to
customers
on a limited
scale for
testing and
refinement

Broadly
commit the
company
to the
marketplace

•Agree to
commit
serious
attention to
carefully
define an
apparently
feasible
opportunity

“Internet time” decision-making“Internet time” decision-making

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 12

AgendaAgenda

■ Identify key market/customer requirements
➨ Manage product reliability and quality

◆ Where should I focus my efforts

■ Accelerate software development

Developing Highly Reliable Products in "Internet Time" QWE99

Walter Baziuk - Nortel Networks 7

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 13

Competitive Intelligence study: recommendationsCompetitive Intelligence study: recommendations
C o m p a n y A B C D E F

S t r a t e g i c

R e c o m m e n d a t i o n s

A l l o c a t i o n o f t i m e

i n e a r l y s t a g e s
+ + + + + + +

P r o j e c t

m a n a g e m e n t

L e a d e r s h i p

+ + + + + + +

C u s t o m e r f o c u s + + + + + + + +

I n t e r n a l

c o m m u n i c a t i o n o f

b e s t p r a c t i c e s

+ + + + + + + +

C o m p e n s a t i o n

P a c k a g e
+ + + + + + + + + +

T a c t i c a l

R e c o m m e n d a t i o n s

B u i l d C o n c u r r e n t

E n g i n e e r i n g t e a m s

a t w o r k i n g l e v e l

+ + + + + + + +

U s e r R e q u i r e m e n t s

– s h o r t d i s t a n c e

b e t w e e n

c u s t o m e r s a n d

d e s i g n e r s

+ + + + + + + + + + + +

A u t o m a t e d T e s t

T o o l s
+ + + + +

C o d e r e u s e + + + + +

L i m i t t e a m s i z e + + + + + + + + + +

C A S E t o o l s + + +

CompanyCompany
strengths:strengths:

++ mild mild

++++ strong strong

++++++ very very
strongstrong

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 14

Project office “dashboard”Project office “dashboard”

From: Software Program manager network http://www.spmn.com

Developing Highly Reliable Products in "Internet Time" QWE99

Walter Baziuk - Nortel Networks 8

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 15

Fault Classification:Fault Classification:
trend vs. phasetrend vs. phase

Faults/KLOC = (Major faults + (Minor faults)/ 3) / Total KLOC for productFaults/KLOC = (Major faults + (Minor faults)/ 3) / Total KLOC for product
Major faults = Service affecting problemMajor faults = Service affecting problem
Minor faults = Non-service affecting problemMinor faults = Non-service affecting problem

Product Phase A ctivity / S ource o f Fau lt

Faul ts /

KLO C

%

contribution

Faul ts per

phase

Cum ulative

Faul ts

Re qu ire m e nts P roduc t Requirem ents Docum ent 2.5 5.0% 5% 5%

De fin ition P roduc t Object ive Docum ent 3.5 7.0% 24% 29%

P roduc t Spec ificat ion Docum ent 8.5 17.0%

De sign A rchitec ture Inspec tion 5.0 10.0% 25% 54%

Des ign Inspec tion 7.5 15.0%

Cod ing Coding 6.4 12.8% 13% 67%

De ve lopm e nt M odule Tes t plan 0.5 1.0% 20% 87%

te sting M odule Tes t 4.5 9.0%

Unit Tes t plan 0.5 1.0%

Unit Tes t 4.5 9.0%

In te g ra tion Func tional Tes t plan 0.5 1.0% 13% 100%

te sting Func tional Tes t 3.5 7.0%

S ys tem Tes t plan 0.3 0.6%

S ys tem Tes t 2.0 4.0%

Regress ion Tes t plan 0.0 0.0%

Regress ion Tes t 0.2 0.4%

P ost De live ry Cus tom er P roblem reports 0.1 0.2% 13% 100%

T o ta l 50 100%

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 16

Total Total
Faults Faults

Latent FaultsLatent Faults

Removed Removed
FaultsFaults

-- ==

If we developed 100,000 LOC, If we developed 100,000 LOC,
ranran 1000 test cases and 1000 test cases and

42 42 failedfailed ; ;

How many LOC would have to be How many LOC would have to be identified and fixedidentified and fixed before before
we could we could shi pshi p??

Latent FaultsLatent Faults
If we manufactured 100,000 light bulbs, If we manufactured 100,000 light bulbs,
sampledsampled 1000 and 1000 and

found 42 to be found 42 to be defectivedefective ; ;

How many bulbs would have to be How many bulbs would have to be found and fixedfound and fixed before before
we could we could shi pshi p??

42004200

Good Question!Good Question!

Developing Highly Reliable Products in "Internet Time" QWE99

Walter Baziuk - Nortel Networks 9

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 17

Measuring/IdentifyingMeasuring/Identifying
■■ Measure current rate of fault introductionMeasure current rate of fault introduction
■■ Measure program attributes related to faultsMeasure program attributes related to faults
■■ Monitor the rate of code fault introductionMonitor the rate of code fault introduction
■■ Fault Classification ProcessFault Classification Process

Source Source
code code

with bugswith bugs

DesignDesign
with faultswith faults

User User
commentscomments

ProductProduct
RequirementsRequirements

ArchitectureArchitecture

CommercialCommercial
SpecificationsSpecifications

InspectionInspection
& RCA results& RCA results

Design Design
Review feedbackReview feedback

MeasurementsMeasurements

HL & DDHL & DD
DesignDesign

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 18

Quality Management ProcessQuality Management Process
Design Process / CycleDesign Process / Cycle

Arch & design Faults Arch & design Faults Customer BugsCustomer Bugs
Process Process
FeedbackFeedback

Problem Problem
FixedFixed

 CC
 U U
 S S
 T T
 O O
 M M
 E E
 R R

V MV M
A EA E
L TL T
U & RU & R
E IE I
S CS C
 S S

RR
EE
LL
II
AA
BB
LL
EE

PP
RR
OO
DD
UU
CC
TT

CUSTOMER VALUES DRIVE CUSTOMER VALUES DRIVE
 QUALITY ASSURANCE QUALITY ASSURANCE

Pillars of Quality Assurance :Pillars of Quality Assurance :

Rapid Root Cause AnalysisRapid Root Cause Analysis

±±Rapid root cause analysis Rapid root cause analysis

OperationalOperational
ProfileProfile

±±Operational profilesOperational profiles

Complexity Complexity
ManagementManagement

±±Complexity managementComplexity management

ReliabilityReliability
GrowthGrowth

±±Reliability growthReliability growth

Developing Highly Reliable Products in "Internet Time" QWE99

Walter Baziuk - Nortel Networks 10

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 19

AgendaAgenda

■ Identify key market/customer requirements
■ Manage product reliability and quality
➨ Accelerate software development

◆ How to work in small highly dynamic teams
◆ How to break your product development cycle

into shorter doable units.
◆ How to work with the up-front and down stream

staff to deliver a highly reliable product.

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 20

Business &Business &
ProductProduct

ManagersManagers
••CostCost
••MarketingMarketing
••Portfolio planningPortfolio planning

ProductProduct
DevelopmentDevelopment

••FeaturesFeatures
••EnhancementsEnhancements
••MaintenanceMaintenance

Project Project
ManagementManagement

••Metrics Metrics
••MeasurementsMeasurements
••PlanningPlanning

Crossfunctional KnowledgeCrossfunctional Knowledge
Sharing: For the FutureSharing: For the Future

Time to marketTime to market
enhancementsenhancements

Best practiceBest practice
deploymentdeployment

Quality Quality
& Process & Process

EngineeringEngineering

 Small teams Small teams

Developing Highly Reliable Products in "Internet Time" QWE99

Walter Baziuk - Nortel Networks 11

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 21

 Task
Responsibility

Team Member Participation
 Dedicated
 to Team

 Project
Management

None

 Functional
 Project
Management

 Designated
Co-ordination

 Single
 Project
Manager

Excessive Minimum

Slow

Rapid

Decision
 Making

 Co-ordination and Communication Required

Autonomous
 Teams Core

Team

Matrix
 Team

One or More Teams

Functional
 Team

 Program
Coordinator

 Project
 Manager.
by Phase

 QuickerQuicker
Time-to-MarketTime-to-Market

Team Approach vs. Time-to-MarketTeam Approach vs. Time-to-Market

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 22

Deploy cross-functional teamsDeploy cross-functional teams

ManufacturingManufacturing

MarketingMarketing
& sales& sales

CustomerCustomer
ServiceService

Supply Supply
ChainChain

HardwareHardware
EngineeringEngineering

SoftwareSoftware
DevelopmentDevelopment

Core Team Full Team

Core TeamCore Team
• 4-8 people dedicated to project

• Manages all aspects of the
project

• Makes decisions as a team

Full TeamFull Team
• The 20-50 part time & full time

staff that are dedicated to this
project

• Coordinated by designated
member of the core team

Core Team LeaderCore Team Leader
• Primary responsibility for

project leadership

• Project “general manager”

FacilitatorFacilitator
• Helps core team to leverage

process and provides feedback
to improve process

Core TeamCore Team
LeaderLeader

FacilitatorFacilitator

Developing Highly Reliable Products in "Internet Time" QWE99

Walter Baziuk - Nortel Networks 12

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 23

Dedicated TeamsDedicated Teams
■■ Resource fragmentation isResource fragmentation is

one of the greatest sourcesone of the greatest sources
of poor productivityof poor productivity

■■ Long development cyclesLong development cycles
contribute to fragmentationcontribute to fragmentation

■■ Fragmentation is a culturalFragmentation is a cultural
issue, often difficult to changeissue, often difficult to change

■■ The core team should be dedicated 100% of the time.The core team should be dedicated 100% of the time.
Alarm bells should be sounded if any core teamAlarm bells should be sounded if any core team
member’s time starts to fall below member’s time starts to fall below 75%.75%.

“A team is a small number of people with complementary skills who are“A team is a small number of people with complementary skills who are
committed to a common purpose, performance goals, and approach forcommitted to a common purpose, performance goals, and approach for
which they hold themselves mutually accountable.”which they hold themselves mutually accountable.”

 Katzenback & Smith, Katzenback & Smith, The Wisdom of TeamsThe Wisdom of Teams

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 24

Rapid deployment processRapid deployment process

RequirementsRequirements

ArchitectureArchitecture

AcceptanceAcceptance

Manufacture & ShipManufacture & Ship

Integrate Integrate
“back end”“back end”

 sooner sooner

ContinuousContinuous
customercustomer
FeedbackFeedback

ArchitectureArchitecture

IntegrationIntegration

DesignDesign

CodeCode

TestTest

Incremental customer releasesIncremental customer releases

IntegrationIntegration

DesignDesign

CodeCode

TestTest

IntegrationIntegration

DesignDesign

CodeCode

TestTest

IntegrationIntegration

DesignDesign

CodeCode

TestTest

Developing Highly Reliable Products in "Internet Time" QWE99

Walter Baziuk - Nortel Networks 13

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 25

DeploymentDeployment
phasephase

ImplementationImplementation
phasephase

DefinitionDefinition
phasephase

OpportunityOpportunity
phasephase

IdeaIdea
phasephase

S/W LifecycleS/W Lifecycle

Feasibility Feasibility
& Idea stage& Idea stage

ProductProduct
ConceptConcept

RequirementsRequirements
Commercial & ProductCommercial & Product

specificationspecification

ArchitectureArchitecture
designdesign

High level High level
designdesign

DetailedDetailed
S/W designS/W design

ModulesModules
designeddesigned

Beta Customer Beta Customer
& ready to Mfg.& ready to Mfg.

Satisfied Satisfied
customerscustomers

Coding &Coding &
ImplementationImplementation

ImplementedImplemented
modulesmodules

Unit &Unit &
module testingmodule testing

DebuggedDebugged
modulesmodules

S/W Test &S/W Test &
IntegrationIntegration

IntegratedIntegrated
subsystemsubsystem

System Test &System Test &
IntegrationIntegration

System System
VerifiedVerified

Development Development
cycle categorycycle category

MajorMajor
DeliverableDeliverable Note : This is a dataflow diagram and Note : This is a dataflow diagram and

NOT a timelineNOT a timeline

LeverageLeverage
pointpoint Modules

coded

Modules
tested

Sub-system verified
against HLD

System verified
against specifications

Product
delivered

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 26

The collaborative teamThe collaborative team
Design & Design &
ImplementationImplementation

Testing & VerificationTesting & Verification

Project planningProject planning

Specific, realistic andSpecific, realistic and
measurable measurable

performance goalsperformance goals

Enables clear communications Enables clear communications
and constructive conflictand constructive conflict

Together, the team Together, the team
defines thedefines the

work-productwork-product

Easier to maintain Easier to maintain
focus on resultsfocus on results

Small team Small team
collaborations collaborations

build “wins”build “wins”

Reliability EngineerReliability Engineer

Developing Highly Reliable Products in "Internet Time" QWE99

Walter Baziuk - Nortel Networks 14

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 27

RecommendationsRecommendations

■■ Once decisions are made, move forward!Once decisions are made, move forward!
■■ Reduce development projects to < 50 peopleReduce development projects to < 50 people
■■ Deploy cross-functional empowered teamsDeploy cross-functional empowered teams
■■ Limit development time to < 6 monthsLimit development time to < 6 months
■■ Define your objectives and confirm marketDefine your objectives and confirm market

opportunities each releaseopportunities each release
■■ Involve customer at each phase & releaseInvolve customer at each phase & release
■■ Deploy incremental releases to customer forDeploy incremental releases to customer for

feedback and approvalfeedback and approval

■■ Once decisions are made, move forward!Once decisions are made, move forward!

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 28

Those who cannot remember the past are condemned to repeat it!Those who cannot remember the past are condemned to repeat it!
George Santayana, 1863 - 1952

Closing RemarksClosing Remarks

Developing Highly Reliable Products in
"Internet Time"

QWE99

Walter Baziuk - Nortel Networks 1

Developing Highly
Reliable Products in

"Internet Time"
Applications/

Solutions

Track
5A

Walter Baziuk
baziuk@nortelnetworks.com

QWE99 - Brussels, Belgium - November 3, 1999

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 2

Why develop in “Internet time”

M
ar

ke
t

S
h

ar
e

Product revenue
(late to market)

Lost revenue
(product is late)

Product is
introduced late

Product is
introduced on time

Obsolescence
Product Revenue

(on time introduction)

+t=0 Product’s time in market place

-

+

Developing Highly Reliable Products in
"Internet Time"

QWE99

Walter Baziuk - Nortel Networks 2

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 3

è Identify key market/customer requirements
u Work with your customer determine "which

features are in and which aren't" in each
release.

u Manage requirements churn and still deliver on
time.

u Get the customer involved earlier and have
them witness intermediate results.

n Manage product reliability and quality
n Accelerate software development

Agenda

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 4

Define your strategic fit

Determine
market

segmentation

Assess market vs.
Company fit

Identify market segments and
the quality levels they require

Customer Analysis
Who BUYS What, Where,
When, How & Why

Determine
basis of

differentiation

Assess product vs.
Company fit

Evaluate the market segments and
quality levels you can BEAT

Competitor Analysis
Who OFFERS What, Where,
When, How & Why

Company Analysis
Given your objectives &
resources - what can you do,
for when, where and when?

Product vs market fit
Does a market exist for your intended Price / Quality level?
If so, what activities are need to communicate, deliver & insulate your position?

Developing Highly Reliable Products in
"Internet Time"

QWE99

Walter Baziuk - Nortel Networks 3

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 5

Value
Drive

Set your Business Strategy

Price
Driven

Quality
Driven

Relative Quality

Relative
Price

+

-

-

+

•Customer seeks basic product at lowest cost
•Strategic emphasis on major cost elements
•Function focus is on R&D and operations
•Primary objective is cost containment

•Customer seeks maximum quality, product price is
a secondary concern
•Strategic emphasis on unique features & capabilities
•Function focus is product, service & customer
support
•Primary objective is quality enhancement

•Customer seeks product
with a superior value
•Strategic emphasis
balances quality vs. price

•Usually the largest market
segment i.e. margin x volume
•Primary objective is
sustained market share

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 6

Set your key Business Values

Customer
Values

P
ro

du
ct

S
pe

ci
fic

at
io

ns

Company
Values

Quality

Service

Regulatory

Lifecycle cost

Functionality

Revenue

Profitability

Time to Market

Quality

Asset Velocity

P
ro

du
ct

R
eq

ui
re

m
en

ts

Developing Highly Reliable Products in
"Internet Time"

QWE99

Walter Baziuk - Nortel Networks 4

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 7

Idea Opportunity Definition Implementation Deployment

•Postpone and
reschedule
meeting

•Redirect
rather than
remove

•Proceed
without needed
resources

•Micromanage
development

•Make late changes
now that design is
understood

•Make up for lost time
by adding features from
next release

•Approve
new features
that
postpone
launch
further

•Question
strategy fit
and redirect
to Idea
Phase

•Avoid
decision
altogether

•Approve
without
resources
for design or
funds for
market
research

Typical decision making method

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 8

Is the economic analysis sufficiently
robust, are the critical assumptions
correct, and do the expected financial
returns meet company objectives?

Are the major risks and
contingencies
acceptable?

Have the strategic and
market positioning
implications for other
existing or planned
products been
properly evaluated?

Do we have adequate
resources to get this to
the market in time?

Is the plan for the next phase
reasonable ?

Are the development
requirements consistent with

technology trends and
development capability?

Can the product
maintain a

competitive
advantage over a

sufficiently long life
cycle?

Is there a clear understanding of the
market and its potential, and the

customer problems / needs
over time?

Is there a winning customer
value proposition for the

planned product offering?

Base decisions on specific questions!

Developing Highly Reliable Products in
"Internet Time"

QWE99

Walter Baziuk - Nortel Networks 5

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 9

Key time to market enablers

End-to-End Accountability:
• Schedule Commitments
• Budget Commitments
• Specification Commitment
• People Commitments

Customer
Focused
Design

What we deliver
vs. what the
customer expects

Outputs
to

Business
Metrics

Inputs
from

Project
Metrics

Adaptability:
% Utilization

Efficiency:
Cost of
cancellations

Effectiveness:
TTM /TTP

Shareholder value metrics:

• Market Plan
• Corporate Strategy
• Business Plan
• Technical Plan
• Customer Focused

Design

Viable business case

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 10

“Internet time” delivery
demands making

decisions that stick

The decision
maker must have
authority over the
product domain

Unambiguous
decisions
must result

A real authority
must make the

decisions

Decisions making fundamentals

Developing Highly Reliable Products in
"Internet Time"

QWE99

Walter Baziuk - Nortel Networks 6

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 11

Idea Opportunity Definition Implementation Deployment

Provide the
resources
needed for
success based
on detailed
feasibility,
value, fit, etc.

Commit the
company to
customers
on a limited
scale for
testing and
refinement

Broadly
commit the
company
to the
marketplace

•Agree to
commit
serious
attention to
carefully
define an
apparently
feasible
opportunity

“Internet time” decision-making

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 12

Agenda

n Identify key market/customer requirements
è Manage product reliability and quality

u Where should I focus my efforts

n Accelerate software development

Developing Highly Reliable Products in
"Internet Time"

QWE99

Walter Baziuk - Nortel Networks 7

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 13

Competitive Intelligence study: recommendations
C o m p a n y A B C D E F

S t r a t e g i c

R e c o m m e n d a t i o n s

A l l o c a t i o n o f t i m e
i n e a r l y s t a g e s

+ + + + + + +

P r o j e c t

m a n a g e m e n t

L e a d e r s h i p

+ + + + + + +

C u s t o m e r f o c u s + + + + + + + +

I n t e r n a l

c o m m u n i c a t i o n o f

b e s t p r a c t i c e s

+ + + + + + + +

C o m p e n s a t i o n

P a c k a g e
+ + + + + + + + + +

T a c t i c a l

R e c o m m e n d a t i o n s
B u i l d C o n c u r r e n t

E n g i n e e r i n g t e a m s
a t w o r k i n g l e v e l

+ + + + + + + +

U s e r R e q u i r e m e n t s

– s h o r t d i s t a n c e

b e t w e e n

c u s t o m e r s a n d

d e s i g n e r s

+ + + + + + + + + + + +

A u t o m a t e d T e s t

T o o l s
+ + + + +

C o d e r e u s e + + + + +

L i m i t t e a m s i z e + + + + + + + + + +

C A S E t o o l s + + +

Company
strengths:

+ mild

++ strong
++

+ very
strong

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 14

Project office “dashboard”

From: Software Program manager network http://www.spmn.com

Developing Highly Reliable Products in
"Internet Time"

QWE99

Walter Baziuk - Nortel Networks 8

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 15

Fault Classification:
trend vs. phase

Faults/KLOC = (Major faults + (Minor faults)/ 3) / Total KLOC for product
Major faults = Service affecting problem
Minor faults = Non-service affecting problem

Product Phase Activity / Source of Fault
Faults /
KLOC

%
contribution

Faults per
phase

Cumulative
Faults

Requi rements Product Requirements Document 2.5 5.0% 5% 5%

Definit ion Product Objective Document 3.5 7.0% 24% 29%

Product Specification Document 8.5 17.0%

Design Architecture Inspection 5.0 10.0% 25% 54%

Design Inspection 7.5 15.0%

Coding Coding 6.4 12.8% 13% 67%

Developm e n t Module Test plan 0.5 1.0% 20% 87%

te sting Module Test 4.5 9.0%

Unit Test plan 0.5 1.0%

Unit Test 4.5 9.0%

Integra tion Functional Test plan 0.5 1.0% 13% 100%

te sting Functional Test 3.5 7.0%

System Test plan 0.3 0.6%

System Test 2.0 4.0%

Regression Test plan 0.0 0.0%

Regression Test 0.2 0.4%

Post De livery Customer Problem reports 0.1 0.2% 13% 100%

T o tal 50 100%

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 16

Total
Faults

Latent Faults

Removed
Faults

- =

If we developed 100,000 LOC,
ran 1000 test cases and

42 failed;

How many LOC would have to be identified and fixed before
we could ship?

Latent Faults
If we manufactured 100,000 light bulbs,
sampled 1000 and

found 42 to be defective;

How many bulbs would have to be found and fixed before
we could ship?

4200

Good Question!

Developing Highly Reliable Products in
"Internet Time"

QWE99

Walter Baziuk - Nortel Networks 9

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 17

Measuring/Identifying
n Measure current rate of fault introduction
n Measure program attributes related to faults
n Monitor the rate of code fault introduction
n Fault Classification Process

Source
code

with bugs

Design
with faults

User
comments

Product
Requirements

Architecture

Commercial
Specifications

Inspection
& RCA results

Design
Review feedback

Measurements

HL & DD
Design

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 18

Quality Management Process
Design Process / Cycle

Arch & design Faults Customer Bugs
Process
Feedback

Problem
Fixed

C
U
S
T
O
M
E
R

V M
A E
L T
U & R
E I
S C

S

R
E
L
I
A
B
L
E

P
R
O
D
U
C
T

CUSTOMER VALUES DRIVE
QUALITY ASSURANCE

Pillars of Quality Assurance :

Rapid Root Cause Analysis

ËRapid root cause analysis

Operational
Profile

ËOperational profiles

Complexity
Management

ËComplexity management

Reliability
Growth

ËReliability growth

Developing Highly Reliable Products in
"Internet Time"

QWE99

Walter Baziuk - Nortel Networks 10

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 19

Agenda

n Identify key market/customer requirements
n Manage product reliability and quality
è Accelerate software development

u How to work in small highly dynamic teams
u How to break your product development cycle

into shorter doable units.
u How to work with the up-front and down stream

staff to deliver a highly reliable product.

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 20

Business &
Product

Managers
•Cost
•Marketing
•Portfolio planning

Product
Development

•Features
•Enhancements
•Maintenance

Project
Management

•Metrics
•Measurements
•Planning

Crossfunctional Knowledge
Sharing: For the Future

Time to market
enhancements

Best practice
deployment

Quality
& Process

Engineering

Small teams

Developing Highly Reliable Products in
"Internet Time"

QWE99

Walter Baziuk - Nortel Networks 11

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 21

Task
Responsibility

Team Member Participation
Dedicated
to Team

Project
Management

None

Functional
Project

Management

Designated
Co-ordination

Single
Project

Manager

Excessive Minimum

Slow

Rapid

Decision
Making

Co-ordination and Communication Required

Autonomous
TeamsCore

Team

Matrix
Team

One or More Teams

Functional
Team

Program
Coordinator

Project
Manager.
by Phase

Quicker
Time-to-Market

Team Approach vs. Time-to-Market

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 22

Deploy cross-functional teams

Manufacturing

Marketing
& sales

Customer
Service

Supply
Chain

Hardware
Engineering

Software
Development

Core Team Full Team

Core Team
• 4-8 people dedicated to project

• Manages all aspects of the
project

• Makes decisions as a team

Full Team
• The 20-50 part time & full time

staff that are dedicated to this
project

• Coordinated by designated
member of the core team

Core Team Leader
• Primary responsibility for

project leadership

• Project “general manager”

Facilitator
• Helps core team to leverage

process and provides feedback
to improve process

Core Team
Leader

Facilitator

Developing Highly Reliable Products in
"Internet Time"

QWE99

Walter Baziuk - Nortel Networks 12

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 23

Dedicated Teams
n Resource fragmentation is

one of the greatest sources
of poor productivity

n Long development cycles
contribute to fragmentation

n Fragmentation is a cultural
issue, often difficult to change

n The core team should be dedicated 100% of the time.
Alarm bells should be sounded if any core team
member’s time starts to fall below 75%.

“A team is a small number of people with complementary skills who are
committed to a common purpose, performance goals, and approach for
which they hold themselves mutually accountable.”

Katzenback & Smith, The Wisdom of Teams

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 24

Rapid deployment process

Requirements

Architecture

Acceptance

Manufacture & Ship

Integrate
“back end”

sooner

Continuous
customer
Feedback

Architecture

Integration

Design

Code

Test

Incremental customer releases

Integration

Design

Code

Test

Integration

Design

Code

Test

Integration

Design

Code

Test

Developing Highly Reliable Products in
"Internet Time"

QWE99

Walter Baziuk - Nortel Networks 13

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 25

Deployment
phase

Implementation
phase

Definition
phase

Opportunity
phase

Idea
phase

S/W Lifecycle

Feasibility
& Idea stage

Product
Concept

Requirements

Commercial & Product
specification

Architecture
design

High level
design

Detailed
S/W design

Modules
designed

Beta Customer
& ready to Mfg.

Satisfied
customers

Coding &
Implementation

Implemented
modules

Unit &
module testing

Debugged
modules

S/W Test &
Integration

Integrated
subsystem

System Test &
Integration

System
Verified

Development
cycle category

Major
Deliverable Note : This is a dataflow diagram and

NOT a timeline

Leverage
point Modules

coded

Modules
tested

Sub-system verified
against HLD

System verified
against specifications

Product
delivered

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 26

The collaborative team

Design &
Implementation

Testing & Verification

Project planning

Specific, realistic and
measurable

performance goals

Enables clear communications
and constructive conflict

Together, the team
defines the

work-product

Easier to maintain
focus on results

Small team
collaborations

build “wins”

Reliability Engineer

Developing Highly Reliable Products in
"Internet Time"

QWE99

Walter Baziuk - Nortel Networks 14

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 27

Recommendations

n Once decisions are made, move forward!
n Reduce development projects to < 50 people
n Deploy cross-functional empowered teams
n Limit development time to < 6 months
n Define your objectives and confirm market

opportunities each release
n Involve customer at each phase & release
n Deploy incremental releases to customer for

feedback and approval

n Once decisions are made, move forward!

Developing Highly Reliable Products in "Internet Time"Walter Baziuk ©1999 by Nortel Networks 28

Those who cannot remember the past are condemned to repeat it!

George Santayana, 1863 - 1952

Closing Remarks

1

An Efficient Measurement for Assertion Placement

Jin-Cherng Lin & Szu-Wen Lin
Dept. of Computer Science and Engineering

Tatung University
Taipei 10451, Taiwan, R.O.C

Jclin@cse.ttit.edu.tw
Swlin061@ms3.hinet.net

Tel: +886-2-25925252 ext 3295

Abstract
Software testing is one of the most powerful

methods to improve the software quality directly.
Usually, testing costs on the large scales of 50%
during software system development phase. How to
reduce the testing cost thus becomes an important
issue. Software Testability, the degree for software
to reveal its faults during testing, is an important
issue for quality assurance and verification. When
testability is low, testers often want advice on how
to increase it. We propose using data state errors
measurement for assertion placement. Software
assertions are one relatively simple trick for
improving testability. When knowing where data
state errors appear likely to hide from a test, we
have insight into where assertions are beneficial.
We explore using data state errors that measure
testability as a method for where and to inject
software assertions in their placement.
Keywords: software testability, assertion
placement, software reliability, design for software
testability

1. Introduction
Software reliability becomes significant

while software applies to more critical
applications. High reliability software means that
the software works properly and meets its
specification. How to promote the reliability of
software is one of the most noticeable things for
the software system developers. Software testing is
one of the most powerful methods to check
whether the software errors occur. It improves the
software reliability directly [Yang].

Software testing has been proved to be an
important and valuable activity for determining
whether the software system has faults. The
purpose of testing is to evaluate if a software
system meets its specification and to evaluate the
correctness, reliability, and failure rate of the
software [Free91]. Software testing is performed

for two reasons: (1) to detect and then remove
faults, and (2) to estimate the reliability of the code
[Voas94]. Besides, testing costs on the large scales
of 50% during software system development phase
[Mosl93, Boeh75]. How to reduce the testing cost
thus becomes an important issue in the software
engineering strategies.

Software assertion approach is one kind of
software testing techniques. An assertion is a test
on the state of an executing program or a test on
some portion of the program states. Typically,
software testing checks the correctness of values
only after they are output. In contrast, assertions
check intermediate values. A benefit of checking
values internally is that we know as soon as
possible whether the program has entered into an
erroneous state [Voas95].

We assume that the assertion evaluates to
TRUE when the corresponding internal state is
satisfactory and FALSE otherwise. In this
methodology, if an assertion evaluates to FALSE,
then we consider the execution of the program to
have resulted in failure, even if the eventual output
is correct according to the specification [Voas95].
Hence we refine the conception of failure in the
software testing: a failure occurs if the output
results an unexpected incorrect state or an
assertion fails.

Besides, the software designers should apply
some kind of techniques to assist the software
testing process in order to reveal errors easily and
effectively. Software testability ought to be
considered and emphasized during the design of
software .The software testability is an ability to
reveal errors while testing the software in various
testing phases. To make a software “more testable”
means the software system can easily reveal errors
and can be checked easily and precisely against
specifications. Software testability and software
design for testability must get its proper attention
in order to reduce testing cost and promote
software reliability.

2

An assertion is a method for increasing the
reliability of software by increasing the
dimensionality of the output space. As long ago as
the 1975 International Conference on Reliable
Software, several authors described systems for
deriving runtime consistency checks from simple
assertions [Stuck75, Boeh75, Yau75]. Assertions
have been recognized as an effective method for
detection of software faults. Assertion features are
available in many high-level formal specification
languages, as well as some programming
languages (such as Turing [HC88] and Eiffel
[Mey88]). Such languages can be used to specify
system behavior at the requirements and/or design
levels [Rose92]. But those authors didn’t mention
to the three most important details: (1) where
should we need to insert the assertions, (2) what
kinds of assertions should be used, (3) and when
assertions inserted, what is the result. We develop
a technique called “state analysis” to arm the three
details. This article brings up some proposal for
the three details.

2. Related Works
2.1 Assertion

Assertions are used to check and maintain
programs [Yang, Rose92, Biem95]. The primary
goal in writing assertions is to specify what a
system is supposed to do rather than how it is to do
[Rose95]. When assertion tests fail, the program is
aborted. The advantage of adding assertions is that
we can make an automatic checking while
developing the software system. The assertion
method has been implemented in some languages
such as Anna and Eiffel [Luck85]. Anna
(Annotated Ada) uses comments to embed
assertions; Eiffel uses object invariant inserted as
pre-conditions and post-conditions to all
operations on the object.

But there are still a lot of problems for
assertions: (1) Previous assertion processing did
not integrate easily with existing programming
environments. (2) It is not well understood what
kinds of assertions are most effective at
detecting software faults [Rose95]. (3) The
assertion techniques are little widespread used in
practice. (4) Existed assertions processing system
is not easy-to-use.

2.2 Annotation Pre-Processor for C
Annotation preprocessor (APP) for C

[Rose95] uses assertion technique to check the
consistency of software system. It expands the C
extended comment to check the run time

consistency. It also provides some classification to
prompt the user how and when to add the
checking. But that the users have to learn new
syntax makes its application limited.

2.3 Robust C
Robust C [Flat93] uses assertions to restrict

and check the C programs semantics. In other
words, Robust C enhances some insufficiency of C
compiler such as out of range checking for arrays.
The kind of enhanced C compilers have been
developed by various versions of C or C++
languages. Such language can only solve limited
errors because of C compiler’s insufficiency.

For a lot of structure errors or errors
about the specification of system output, Robust C
can not check out them. At the same time, its
preprocessor does not add checking at proper place
in software. These are the disadvantages of Robust
C.

2.4 Specification Based Test Oracle
Specification based test oracle [Rich92,

Pete94] is designed from system specifications. It
checks the outputs by corresponding with test data.
The checking is said failed when the output does
not match with the oracles. This kind of outputs
checking, usually uses some particular
specification languages, determines whether the
system is correct or not. This method has to
redesign different test oracle rules against different
applications and thus can not reuse the test oracles.

2.5 Automated Test Oracles
Automated test oracles [Biem92] are

used to check the outputs whether the system is
correct or not. When a large number of inputs are
executed, automated test oracle can help the user
to check the outputs. However, it will take a few
times for user to learn specification languages
since such kind of methods usually bases on
specification languages.

2.6 PIE Software Testability Model
Voas suggests that the software testability

consists of three estimates P, I, and E [Voas92] at
each location of the program:
Execution estimation E: The likelihood that the
location is executed on inputs selected from the
assumed input distribution of the software.
Infection estimation I: The likelihood that if a
mutant exists at certain location, it will change the
data state.
Propagation estimation P: The likelihood that if the

3

data state has been changed, the change will
propagate to the output space.

The estimates of these three events occurred
yields an estimate of the probability of failure that
would occur when this location contains a fault.
This is the testability of that location. By
calculating the testability of each location in tested
program, we can evaluate the software testability
of a program in order to address the weak points of
a software systems in the testing view. Besides, it
can also be used to arrange the test schedule and
test cost accurately.

3. Assertion Method in Software
Programming

Assertions are used to test and maintain
programs. Run-time assertion checking is a
programming for validation “trick” which can help
insure the program satisfies certain semantic
constraints. Assertions are usually embedded into
the programs to promote the ability of revealing
faults. An advantage of using assertions is we can
make an automatic checking [Yang, Rose92].
Assertions check the correctness of the program
states. Typically, traditional software testing
approaches only check the correctness of data
states those are output. In contrast, assertions
check “intermediate data values” those occur
during the program is executing. Checking the
intermediate data values benefits from that we
know it immediately while the program has
entered into an erroneous state.

Assertions have been recognized as an
effective method for detection of software faults
[Rose92, Biem95]. Assertion features are available
in many high-level formal specification languages,
as well as some programming languages (such as
Turing [HC88] and Eiffel [Mey88]). But those
authors didn’t mention the three key points: (1)
where should we need to insert the assertions, (2)
what kinds of assertions should be used, (3) and
when assertions inserted, what is the result. This
article proposes a method to solve these three key
points.

In this article, we first consider what are the
suitable locations to put the assertions. We
advocate to put assertions only at some locations
where the traditional software testing methods are
unlikely to uncover faults. We use the
measurement techniques and state analysis
technique to locate the places where the faults
maybe mostly hidden. Besides, we also consider
what kinds of assertions should be put in order to

maximize effectiveness. Assertions are classified
into many categories to study. The aim of
classifying is to identify which category of
assertions are suitable to be put in a specific
location in the program to maximize effectiveness.

3.1 Terminology
l Anomaly: One of the most important

concepts in software fault injection is the idea
of anomaly. The anomaly is defined to some
events that have the potential to alter software
behavior through the corruption of some
internal program state value. Anomalies
occur at two levels: (1) internally in the
program states, and (2) externally in the
output space. From here on we refer to
anomaly, we mean internal program state
corruption [Gary97].

l Data state: The state of the program between
one location and its succeeding locations is
termed a data state. A data state includes the
state of all defined variables, and fully
determines where the control flow goes next.

l Fault: A fault is a defect in the program. To
count as a fault, something must cause at
least one of the input to result in failure.

l Failure: A failure is the event where a
program’s output is not complied with the
specification [BS96]. A failure occurs
because the program enters an error state.

l Perturbation: Anomalies can get from any
information source that feeds a program.
Perturbation simulates the anomalies by
replacing the original data with perturbed
data.

l Perturbation function: The function specifies
to perform data perturbation at locations in
the program. Anomalies are simulated by the
perturbation function.

3.2 State Analysis Estimate
State analysis measures the probability that

the corrupted data state to transfer out. The state
analysis produces a point estimate in [0,1]. We
denote��l as the estimate score of a source code at
location l which represents a measure of how much
impact the program state created by l has on the
output computations of the program.

State analysis is a fault-injection technique
that estimates the probability that an infected data
state transfer to a location l will affect the
succeeding locations. To make the estimate, state
analysis repeatedly perturbs the selected variable.
Hence state analysis is concerned with the

4

likelihood that the value in the following data state
will be different than the value that is produced by
the original location. State analysis is based on
changes to the data states. To obtain the data states
when executed to completion, we use a function
based upon a random distribution termed a
perturbation function. A perturbation function
inputs a variable’s value and produces a different
value chosen according to the random distribution
– the random distribution uses the original value as
a parameter to produce the different value.

An algorithm for finding the state analysis
estimate is:
1. Copy program P as P’.
2. Set counts to 0.
3. Select a variable or assignment x from the

program P’. And, select one input data from the
test case used for testing (the test data is P’s
input distribution domain D).

4. Perturb the sampled value of x of P’ in the data
state created after one location l, if l is executed
and if x is defined. Else assign x a random value
from the D, and execute the succeeding codes
which uses x on both the perturbed data states
(P’) and original data states (P).

5. Execute the succeeding codes after location l,
compare the outcome between the perturbed
data sates and the original data states. Increment
count when they are different .

6. Repeat steps 3-5 n times.
7. Divide counts by n, get the estimate for each

location.
8. Selected the minimum estimate from those

using variable x locations.
9. Repeat steps 2-8, until each variable or

assignment has been chosen.
10. When finished, we got some minimum

estimate locations for all variables.
Assertions that are placed at each statement

in a program can monitor the internal
computations of a program execution. However,
the advantage of inserted assertions everywhere in
the program will come at a cost. The state analysis
provides numerical scores of how likely faults are
to be observable during testing.

The scores can rank ordered from highest
(1.0) to the lowest (0.0). This ordering provides
knowledge as to (1) which locations are likely to
hide faults during testing, and (2) where assertions
can be employed. If the state analysis estimate for
location l is the lowest estimate score for some
selected variable, then there is other locations
using location l’s value may mask problem at l,
and hence asserting on l allows us to be concerned
with such problems.

To rank locations, we choice the estimate
score which each selected variable perturbed data
state and got the lowest score of estimate locations.
By the way, we will got some locations will be the
lowest score for each selected variable. And those
locations are judged to be dangerously insensitive
to faults. for a variable assigned a value at one of
these dangerous locations. We will place an
assertion at that location. The assertion is devised
to reflect a required state of the computation of the
location. This information must be extracted form
the specification.

Then we will put assertions for all locations
whose estimate score is lowest for the selected
variable, and place those assertions in the
locations.

The technique involves the testing
characteristics of data and functions of the
program into the source code to guard against the
program faults. It promotes the software reliability
after testing. Assertion checking is one such
alternative, it is powerful, practical, scalable and
simple to use. The goal of using assertions is to
provide developers of large systems with applying
assertions to their development efforts.

4. Classification of Assertions

Assertions have been recognized as a
potentially powerful tool for runtime detection of
software faults during debugging, testing and
maintenance [DS92]. The assertions are often
designed to check if the data values satisfy
specified constraints. Assertions are defined in
terms of specific data declarations, and they must
be placed where the data values are referenced or
modified.

In this chapter, we classify assertions for
several types. Those types will check data
invariant and pre- and post-conditions and others.
We rank those assertions into different groups, one
is block structure, which means that the program
can see as some of the block unit modules into it.
The block unit received argument from others
block structure, not itself. It means that the
argument is in other block unit output, but this
block needs to use it.

The local statements are the sequence
statements in the program, and its variable uses the
value just from the sequence statement’s output.

4.1 Block Structure:
The primary goal of specifying a block

structure is to insure that the arguments, returned

5

value and states are valid with respect to the
behavior of the block structure.

The common characteristic of all block
structure constraints is that they are stated
independently of any implementation for the block
structure. That is, the block structure’s behavior
depends on the callers of the block structure. The
block may be a unit module, function, subprogram,
and so on. The constraints specify on pre-
conditions and post-conditions.

4.1.1 Consistency:
Arguments in the block structure are often

interdependent, for each block structure in the
system, specify how eavy value of arguments
depends on the values of other arguments.

We can use assertions to specify mutual
consistency constraints and preconditions.

For instance, consider a language processing
system that uses a routine called getop to get next
operator or numeric operand in an input stream. As
show in below[Kern89], the routine takes the input
stream and return value to main routine. The
assumption checks that whether the syntax of the
input is consistent with the value of argument. If
the first input character is space or tab than skip it.

/* getop: get next operator or numeric
operand */

int getop(char s[])
{

int i,c;
//* assert ((s[0] = c = getch()) == ‘ ‘

|| c == ‘\t’) *//
s[1] = ’\0’;
if (!isdigit(c) && c != ‘.’)

return c;
i = 0;
if (isdigit(c))

while (isdigit(s[++i] = c =
getch()));

if (c = ‘.’)
while (isdigit(s[++i] = c =

getch()));
s[i] = ‘\0’;
if (c != EOF)

ungetch(c);
return NUMBER;

}

4.1.2 Dependency:
For each block structure in the system, it

could use the post-condition to specify the returned
value which depends on the argument values.

We can use assertions to sate important
aspects to specify the relationship between the
returned value and its input entry.

For instance, as shown below, the post-
conditions of the block illustrate this kind of
assertion.

/* swap: interchange v[i] and v[j] */
void swap (char *v[], int i, int j)
{

char *temp;
temp = v[i];
v[i] = v[j];
v[j] = temp;

//* assert (v[i] && v[j] && v[i] != v[j]) *//
}

4.1.3 State:
For each function in the system, specify

whether argument values passed to function by
references, or global variable value is to be
changed or not by a function.

We can use assertions to specify how
function changes the global state, and ensure that
functions are called in certain contexts.

For instance, consider a language processing
system that uses a routine call *install to put
entries into hash table. As shown below, assume
that hash table is searched using the subroutine
lookup, which returns a non-zero pointer to a table
entry if successful and null if unsuccessful. The
assumption states that the argument to *install
should have the entry in hash table. In particular,
upon entry to *install a call to lookup with the
same argument must return a non-zero or “true”
result.

/* install: put (name, defn) in hash table */
struct nlist *install (char *name, char *defn

)
{

struct nlist *np;
unsigned hashval;
if ((np = lookup(name)) == NULL)

{
np = (struct nlist *) malloc(

sizeof(*np));
if (np == NULL || (np -> name

= strdup(name)) == NULL)
return NULL;

hashval = hash(name);
np -> next = hashtab[hashval];
hashtab[hashval] = np;

} else

6

free((void *) np -> defn);
if ((np -> defn = strdup(defn)) ==

NULL)
return NULL;

return np;
//* assert (np = lookup(name)) *//
}

4.1.4 Membership:
For each block structure in the system,

specify all constraints on the argument values and
global states are the same type.

We can use assertions to specify the
constraints and guard against the mishandling.

4.1.5 Non-Null Pointer:
For each block structure in the system,

specify the pointer-valued arguments; returned
values must not be null.

We can use assertions to specify when
should pointers be non-null.

For instance, as shown in 4.1.2, the
assumption “assert (v[i] && v[j] && v[i] != v[j]
)” specified on the swap shown in 4.1.2 illustrates
an assertion that constrains a pointer argument to
be non-null.

4.2 Local Statement
A program often contains a lot of sequences

statements and complex control condition, which
offer many opportunities for introducing faults.
Assertions can be used to guard against such
faults.

 4.2.1 Complex Control Condition:
For each system, the implicit control

condition of the default branch for if-else
statement or switch statement is often stronger
than other non-default conditions.

We can use assertions to specify the intended
condition statements explicitly, and describe the
limited domain.

For instance, as shown below, the sequence
statements rather than taking an argument
indicating the mid of elements it is got, instead
makes that determination in its implementation.

/* binsearch: find x in v[0] <= v[1] <= … <=
v[n-1] */

int binsearch(int x, int v[], intn)
{

int low, high, mid;
low = 0;

high = n – 1;
while (low <= high)
{

mid = (low + high) /2;
if (x < v[mid])

high = mid – 1;
else if (x > v[mid])

low = mid + 1;
else /* found match */

return mid;
//* assert (low <=mid && mid <= high) *//
}

return –1; /* no match */
}

 4.2.2 Related Data Consistency:
It is often necessary to process related data

in different ways in the system. We can use
assertions to insure that the data remain consistent
after processing. For instance, consider that inserts
a new entry into a priority queue before
performing other processing on the new entry. This
might first use a loop to find where in the queue
the new entry belongs. This might then use a
separate check determining if the new entry was
placed at the end of the queue, in which case the
queue’s tail pointer would need to be updated. An
assertion like the one shown below can be used to
insure that the two parts of the insertion code treat
the tail pointer consistently.

//* assert new_entry -> next !=0 ||
queue.tail == new_entry *//

 4.2.3 Intermediate State:
Assertion can monitor the intermediate state

to check the dangerous locations. The effort of
constructing the assertions is quick in automatic
detection and isolation of faults that would have
otherwise consumed as much as several hours of
effort using more primitive debugging tools. And,
it would be fruitful to stop and examine the
systems with all the kinds of assertions that were
most effective in uncovering faults.

The categories of assertions guard against
many common kinds of faults and errors. Yet the
very commonness of such faults demonstrates the
need for an explicit, high-level, automatically
checkable specification of required behavior.

5. Testability with Assertion

Are faults likely to hide after assertions are

7

added? We look at the situation with the code has
no assertions, and then we will consider the
situation with assertions are embedded.

For program P without assertion in the test
suite D, we know the Testability T(P)D of the
program P. Now let PA represent program P with
assertions designed to boost the fault revealing
ability of test suite D. We denote as the Testability
T(PA)D.

From the Voas’s sensitivity analysis, with the
three analysis estimates, we will show the
difference between program without assertions and
program embedded with assertions.

Assertions increase the likelihood that the
second and third conditions of the fault/failure
model happen [Voas].

At first, we discuss the execution analysis
estimate, E(P)D represents program P without
assertions in the test suite D. And E(PA)D

represents program P with assertions in the test
suite D. We know that assertions were designed to
boost the fault revealing ability of D, assertions
will not change the locations to execute or not.
Hence, we can say that, E(PA)D is the same as
E(P)D. Then,

E(P)D = E(PA)D .
Second, for infection analysis estimate, I(P)D

represents program P without assertions in the test
suite D. And I(PA)D represents program P with
assertion in the test suite D. From the sensitivity
analysis definition, the infection analysis definition
is the likelihood that if a mutant exits at certain
location, it will change the data state. Assertions
increase the likelihood of infection analysis of the
fault/failure model. Then,

I(P)D �� I(PA)D .
Third, for propagation analysis estimate,

P(P)D represents program P without assertions in
the test suite D. And P(PA)D represents program P
with assertion in the test suite D. From the
sensitivity analysis definition, the propagation
analysis definition is the likelihood that if the data
state has been changed, the change will propagate
to the output space.

With the assertion characteristic, assertions
will always propagate the situations to the output
space. Then,

P(P)D �� P(PA)D .
Hence, form the sensitivity analysis

conditions we can get that:
E(P)D = E(PA)D .
I(P)D �� I(PA)D .
P(P)D �� P(PA)D .
And, testability is defined as execution *

infection * propagation.

From those, we will conjecture that:
T(P)D �� T(PA)D .
Our argument in support of this conjecture

follows: if the assertions placed into program P
(with the test suite D) are never with the input
from D, then T(P)D = T(PA)D ; if one of the
assertions is exercised by some input in D, then it
is possible that T(P)D �� T(PA)D will be true.

Since assertions directly affect propagation,
then assertions appear to have an impact on fault
detecting ability by increasing the output space.

For instance, as shown below, when the
statement a = a mod 2 has the lowest estimate
score, what does it mean?

a = x + 1
……..
a = a mod 2
We now denote the first a in the statement (a

= x + 1) as a1, then a2 in the right-hand side of the
second statement (a = a mod 2) and a3 in the left-
hand side. We use a1, a2, a3 to substitute the
variable a in the example.

When the variable a1 changed by the variable
x, the variable a2 will use the value of a1. It means
that if a1 is incorrect than a2 will be incorrect.
Hence, the variable a1 will execute by the
example’s statement. From the data flow
viewpoint, a1’s incorrect value will be right. But,
the a1’s incorrect value will change the a2’s
statement. What we think about a1 and a2?

From the a1’s viewpoint, a1 will changed by
the variable x. For the statement a1 below, we can
say its execution will be correct, even though the
variable x has error value. But the executing result
will affect the a2’s data state. And, for the single
statement, we can not decide it’s behavior is
correct or with variable a. And, from Voas’s
testability definition, we discuss a1’s execution
didn’t change. Because the statement execution
will not affect by it’s value. So we say the
execution will not be affected.

Now we talk about the infection. If the
variable x changed it’s value, and it will transfer
value to a1. The statement’s infection estimate will
not change. When the variable x in the right-hand
side has an error state, it will still infect its state to
a1. From the infection definition, the infection
estimate will not affect anymore.

From a2’s viewpoint, a2 received a1’s
anomalies state and executed. At this time, the
execution estimate will not be affected. When a2

received a1’s output as input, it will not be changed
no matter the a1’s state is correct or not. And the
statement a2 below, it will still be executed. Hence,
execution estimate will not be affected. Now we

8

look inside the statement : the a1’s anomalies will
affect a2’s input and a2’s data state may not affect
to a3. It means, the a1’s anomalies will affect the
statement. Then a2 can’t always reflect whether
a1’s data state is correct or not. Hence, the
infection and propagation will be affected.

In other words, from the example, the
statement with a2 inside will have more probability
of the low testability. So we can insert assertions to
monitor its behavior. When the assertions inserted,
the execution estimates will not be affected.
Because of the assertions will not affect the
statement’s execution.

After the assertion has been inserted, for the
infection and propagation estimate, the estimate
score will be affected. The assertion can be used to
monitor the statement behavior, using the
statement’s output as post-condition and the
variable x’s input as pre-condition. With the
monitor condition, when a1 has error value and a2

executed, the assertion can reflect the result.
Therefore, the statement with assertion inserted
will enhance the infection and propagation
estimate score when the assertion reflecting its
result.

Hence, the analysis method did not only
monitor where is the variable state having
anomalies, but also check where the anomalies will
practically affect the program. By the way, we
could improve the program’s reliability and
0correctness.

6. Concluding Remarks

6.1 Conclusion
We have provided a methodology where we

should insert assertions into the program, and our
methodology predicting where faults will hide
during testing. Assertions are applicable to
software application, however the more critical the
application is if an application only needs
demonstrate modest degrees of quality, then the
cost of assertions may not be warranted, as that
quality can be demonstrated via basic types of
testing.

Also note that there are different forms of
assertions for different applications. Thus for
specialized applications, specialized assertions
may be necessary. Assertions are not the only
verification and validation tricks that could be
employed once it is known where testing is
unlikely to be capable of detecting faults. Manual
inspections, extensive unit testing, or formal
analysis could also be applied to insure that defects

are not hiding.
Assertions are beneficial to software testing

as “among the most significant ideas by testing and
analysis researchers “ [Oster92]. From our
previous work where to insert assertions into the
program, we believe that we have provided
insights into why assertions work well and how to
insert assertions.

6.2 Future Work
This article proposes the strategy and a

technique of using assertions for software testing
in order to reduce the testing effort and improve
the software quality. The technique involves the
testing characteristics of data and functions of the
program into the source code to guard against the
program faults. It promotes the software reliability
after testing. Assertion checking is one such
alternative, it is powerful, practical, scalable and
simple to use. The goal of using assertions is to
provide developers of large systems with applying
assertions to their development efforts.

The future work includes (1) Expending the
assertion type to be more complete. (2) Use the
strategy of assertion placement to guide how to
insert suitable assertions in test steps. (3) Use the
strategy and technique of assertion placement for
software testing proposed in this article to develop
a software tool to help the software design/test
engineers in practical cases. (4) Build the tool to
help the programmers and testers for checking the
system.

References
[Biem92]J.M. Bieman and H. Yin, “Designing for

Software Testability Using Automated
Oracles”, IEEE International Test
Conference, 1992, pp.900-907

[Biem95]J.M. Bieman and H. Yin, “A Practical
Approach to Programming With
Assertions”, IEEE Transactions On
Software Engineering, Vol. 21, No.
1,January 1995.

[Boeh75]B.W. Boehm, The High Cost of Software,
in Practical Stratages for Developing
Large Software System, Edited by E.
Horowitz, Reading, MA: Addison-
Wesley, 1975.

[BS96] Antonia Bertolino, Lorenzo Strigini,
“Using Testability Measures for
Dependability Assessment”, IEEE
Transactions of Software Engineering,
Vol. 22, number 2, Feb 1996.

[Flat93] D. W. Flater and Y. Yesha and E. K.

9

Park, "Extensions to the C
Programming Language for Enhanced
Fault Detection", Software-Practice,
June, 1993, pp.617-628.

[Free91] R. S. Freedman, "Testability of
Software Components", IEEE
Transactions on Software Engineering,
June, 1991, pp.553-564.

[Gray97] J.M. Voas and Gary McGraw,
“Software Fault Injection”, Wiley
Computer Publishing, 1997.

[HC88] Richard C. Holt and James R. Cordy.
The Turing programming language.
Communications of the ACM,
31(12):1410-1423, December 1988.

[Kren89] Kernighan, Brian W., Ritchie, Dennis
M., The C programming language. (2nd
edition), New Jersey, Prentice Hall,
1989.

[Luck85] D. Luckham and F. von Henke. An
overview of ANNA, a specification
language for Ada. IEEE Software, page
9-22, March 1985.

[Mey88] Bertrand Meyer. Object-Oriented
Software Construction. Prentice-Hall,
1988.

[Mosl93] D.J. Mosley, "The Handbook of MIS
Application Software Testing",
Yourdon Press Computing Series,
Englewood Cliffs, N.J., 1993.

[Pete94] D. Peters, “Generating a Test Oracle
from Program Documentation”,
International Symposium on Software
Testing and Analysis, SIGSOFT
Software Engineering Notes, Seattle,
W.A., 17-19 Aug. 1994, pp.58-65.

[Oster92] L. Osterweil and L. Clarke. A Proposed
Testing and Analysis Research
Initiative. IEEE Software, pages 89-96,
September 1992.

[Rich92] D.J. Richardson, “Specification-based
Test Oracles for Reactive Systems”,
ACM, 1992, pp.105-118.

[Rose95] D.S. Rosenblum, "A Practical
Approach to Programming With
Assertions", IEEE Trans. on Software
Engineering, January 1995, pp.19-31.

[Rose92] D.S. Rosenblum, "Towards a Method of
Programming with Assertions",
Proceedings, 14th International
Conference on Software Engineering,
Melbourne, Australia, 1992, pp.92-104.

[Stuck75] L.G. Stucki and G. L. Foshee, “New
assertion concepts for self-metric
software validation,” in Proc. Int. Conf.
Reliable Software, ACM and IEEE
Computer Society, Apr. 1975, pp. 59-
71.

[Voas95] J.M. Voas and K.W. Miller, “Software
Testability�The New Verification”,
IEEE Software Journal, MAY 1995,
pp.17-28

[Voas94] J.M. Voas and K.W. Miller, “Putting
Assertions in Their Place”, Proc. of the
International Symposium on Software
Reliability Engineering, Monterey, CA,
November 1994. IEEE Computer
Society Press.

[Voas91] J. Voas, L. Morell, and K. Miller,
“Predicting Where Faults Can Hide
from Testing”, IEEE Software Journal,
March 1991, pp.41-48

[Voas] J. Voas, L.Kassab, “Using Assertions to
Make Software More Testable”, To
appear in Software Quality
Professional.

[Yang] S.C. Yang, “An Experimental Partial
Oracle for Software Testability at
Programming Step”.

[Yau75] S. S. Yau and R. C. Cheung, “Design of
self-checking software,” in Proc. Int.
Conf. Reliable Software, ACM and
IEEE Computer Society, Apr. 1975, pp.
105-113.

Interactive Media Group, Rex Black Consulting Services Copyright

Software Quality Week Europe Nov. 1-5 Brussels 1

"Integrated Test Automation of IVR-Telephony Applications and
Client-Server Call Center Applications"

Torsten Baumann; Test Team Leader,

Interactive Media Group,
Toronto, Ontario, Canada

Rex Black; President and Principal Consultant,
 RBCS, San Antonio, TX
Serban Teodorescu; President and Principal Consultant,
 STCS, Toronto, Ontario
Gordon Page; Consultant
 RBCS, San Antonio, TX

Key Words: IVR, telephony, CTI, Client-Server, Test Automation,

Test System Fake Pipe (TSFP), integration, simulated calls,
Results, system under test.

Abstract
The Testing performed by our Test Group is Black Box Testing. This paper will discuss the following

areas of our test effort in more detail:

• Client-server GUI testing
• CTI client-server testing
• IVR applications testing using simulated calls
• Product-wide integration testing using multi-tools (CallSim, Fake-Pipe, QA Partner) Approach
• Management considerations

Introduction

 While test tools do exist for IVR Telephony, Client-Server and GUI Testing independently, there
is not one that can test across the various systems. We have developed an approach that can be used in an
integrated test environment.

The system under test (SUT) is described as follows. There are four main components:

• The Customer service application
• The IVR Telephony application
• The Content monitoring application
• The CTI server and PBX.

[See figure 1.0]

Interactive Media Group, Rex Black Consulting Services Copyright

Software Quality Week Europe Nov. 1-5 Brussels 2

 System Under Test Architecture

N x T1

PBX

ACD
Monitor

ACD

Telephone

Telephone

Telephone

CSA Workstation

CM Workstation

CSA Workstation

IVR

CT-Connect
Server

Voice Repository

CM Server Pub/Su

City
IVR

WAN

 City IVR

CSA-Server

 Figure 1.0

The Client-Server GUI Testing will discuss the obstacles involved in developing and executing tests
on a multi-form application developed in VB for applications.

The CTI Client-Server Testing will discuss the successes and difficulties involved in testing a CTI

application developed in Visual C++.

The IVR applications module will allow the audience to understand the complexities involved in

developing a call simulator in Perl as well as Tcl for stress, performance and path coverage testing.

The Product-wide Integration Testing using multi-tools approach will focus on the successes and

issues associated with developing an integrated automation suite for this project. We will describe how test
tools and programming languages widely available on the market can be combined by means of a “Test
System Fake Pipe” (TSFP) to effectively test the entire data flow of the integrated system under realistic
stress conditions. All failures are captured in a single easy to read report generated after test execution. All
control points between the systems under test will be held in the TSFP file.

Last but not least the paper will discuss the management considerations involved in leading a test
team made up of consultants, full-time test engineers and student test technicians in a project as large and
as complex as this one.

Interactive Media Group, Rex Black Consulting Services Copyright

Software Quality Week Europe Nov. 1-5 Brussels 3

Who we are Software Testing, QA or QC?

Quality Assurance:
These teams assure quality. You cannot do that by testing alone. True QA Staff is extremely senior
otherwise there will be an issue of credibility. If this is the group that assures quality then the rest of the
company does not assure quality. A true QA group must be involved at every stage of development; it must
set standards, introduce review procedures, and educate people into better ways to design and develop
products. It helps a company prevent defects. Here at iMG management holds this role.

This is not us.

Quality Control:
They do a lot of inspection and have the power ensure that a defective product not be released or be
removed from production. We recommend to management that a defective product be pulled from the
hopper. The QC Group will provide management with the following:

a) Reports,
b) Information gathering,
c) Software testing of various products.

This group is a management assistant in that it informs management of product problems and the severity.
Ultimately management decides.

This is what we are called.

Software Testers:

This is really what we are.

Project at a Glance

This project as all projects has had its ups and downs. The overall approach that was used for the entire
project was as follows:

• Developers would Unit/Component and String Test their code.
• Developers would install the SUT in the test environment and Test would then perform a smoke

test to determine if the system that was installed is in fact testable.
• If not, development would roll back the test environment to previous build. If testable, the testing

cycle would begin.

Component, Integration, and System Test

When we first arrived at iMG, no formal testing by a test organization occurred prior to release to
a test city for acceptance test. This strategy proved to be risky, since the deployment of an untested release
candidate to a test city could result in some amount of downtime for that city’s customer service staff due
to software defects thus having a revenue impact for the company.

We then proceeded in implementing a test team, separate from the development team, to perform formal
testing against release candidates prior to acceptance testing. This testing was generally divided into three
overlapping phases:

Unit/Component Testing would basically cover the following areas:
• States, Transactions, Code Coverage, Functionality, Interface.

System Test would focus on each individual system with stubs around the integrated pieces so as to
verify if the CT application would work standalone or the CSA application would work standalone.

Interactive Media Group, Rex Black Consulting Services Copyright

Software Quality Week Europe Nov. 1-5 Brussels 4

This in no way showed that CSA would communicate effectively with CT application or vice-versa.
The following quality risks are checked for:
• Functionality, User Interface, States, Transactions, Data Quality, Operations, Stress/Capacity,

Load, Error Handling/Recovery, Installation, Standards, Configuration Options.

Integration Test would focus on having all major components of the entire project being put together,
so to say, in the test environment which is a replicate of the production environment so that it can be
tested from a black box approach. The quality risks verified for here were:
• Component Interfaces, Capacity and Volume, Error Handling and Recovery, Data Quality,

Functionality, Usability, Performance.

In terms of release management during testing, the common practice that we used is the use the concept of
“cycles”. Each cycle takes place against a fresh build of the product, incorporating corrections that address
all the “must-fix” bugs identified in the previous cycle.

A typical test phase, from the point of view of cycles, might follow the outline in the following table.

Test Phase
Cycle One Cycle Two Cycle Three Cycle Four Cycle Five

Component Enter Verify Exit
System Enter Verify- Exit
Integration Enter Verify Exit

This table shows an idealized case. Each test phase goes through three cycles, with the entry criteria for the
next phase met after the first cycle for the previous phase. The first cycle of each phase identifies some
number of “must-fix” issues, but not enough to violate the entry criteria for the next phase. A verification
build, with fixes, is made, and the test suite is rerun. At this point, perhaps only one or two issues remain
for that suite, so a final build, with fixes, is made, and the suite rerun a third time, confirming the fixes and
meeting the exit criteria for that phase.
Theoretically, testing may require only one cycle, if all three test suites fail to identify any “must-fix”
issues. (One proceeds directly from component to integration to system testing without a new build, since
no issues exist and no new build is required.) In practice, this seldom occurs.

We generally had three phases of test that included:

• Unit/Component and String test: This responsibility lay mainly with the development
organization.

• System Test which the Test Team was accountable for. This was a six-week period with three
two-week test cycles each.

• Integration Test which the Test Team was also accountable for. This was a six-week period with
four cycles within.

•
Acceptance Test
When we arrived, acceptance test occurred by selecting a test city and deploying the latest release of the
product there. After some length of time, the product, with any corrections arising from the acceptance test
phase, exits acceptance test. The installation then proceeds.
This process proved to be costly, in that the Test City would occasionally receive builds that would cause
great customer dissatisfaction thus impacting revenue in these test markets. This process was never
formalized either. Some amount of “actual use” is difficult to reproduce in a test setting, so ad hoc testing
by end users covers areas of the product that the test team will not. However, it is important that
acceptance testing also follow a standardized test suite, including the following elements:
• Testing of the new functions, using the release notes and the requirement documents.
• Testing of critical operations; i.e., those functions that, were they not to work properly, could result in

significant financial loss.
• Testing of typical operations; i.e., those functions most-frequently performed that, were they not to

work properly, could result in inconvenience and inefficiency.

Interactive Media Group, Rex Black Consulting Services Copyright

Software Quality Week Europe Nov. 1-5 Brussels 5

• Testing of recurring errors that surface from time to time; i.e., instability, occasional freezes under
specific conditions, etc.

In addition, testing according to a standardized test suite entails allocating sufficient resources and time to
complete execution. Therefore, acceptance test schedules should not derive solely from external priorities
and deadlines.
At the end of the acceptance test, a “closed loop” process occurs against the requirement database. In other
words, those requirements and issue reports that the end users acknowledge as resolved by the latest release
should be marked as “closed”.

Documentation

We developed and used the following five documents:
• Maintenance Test Plan. This overall plan addresses definitions, scope, risk management, failure

mode effect analysis results, test configurations and environments, test execution process, test phases,
entry and exit criteria for each phase, release management, issue tracking and analysis, status
measurement, and test/development communication processes.

• Component Test Suite. This document will define a set of test cases to exercise individual functional
components of the product.

• Integration Test Suite. This document will define a set of test cases to exercise the interfaces and
connections between individual functional components of the product.

• System Test Suite. This document will define a set of test cases to exercise the overall behavior of the
each separate component.

• Version Status Report: This document will allow one to view at a high level what was tested, what
passed testing and what did not as well as the bug ids of any issues that have been opened against the
system under test.

After the development of these documents, they undergo a peer review, including development and test

staff. Then, the test team thoroughly tests the test suites themselves. The test team reviews each document
during the specification and development phases for each release. Any enhancements or changes to the
plan, processes or suites necessary to handle testing of the new release occur at that time.

Client Server GUI Testing

 The Client server GUI Testing was one of the most successful projects in terms of early bug
find/bug fixing. It was obvious from the outset that this project was one of the more organized in terms of
design and clarity of specifications. This alone made the job of testing this application that much easier
since it was clear to the test technicians what they were supposed to be testing and how. A prototype of the
interface was also made available at an early stage so that the testers could start early with the automation
in that the screen/window declarations and some of the primary functions could be created.
 This application is created using Vantive, a third party supplier, but did necessitate many
modifications to the Vantive code as we had many custom types of functionality required that Vantive
simply did not offer. This application is running on Compaq workstations with Windows NT loaded and a
minimum of application software and thus did not require extensive testing of different configurations. In
past projects that Torsten Baumann has worked on he has found that testing for all possible configurations
of workstations, was next to impossible since there was always someone that was running another
application and thus system files may have been of different versions and the application would not work.
This made our task that much easier as well, since all client desktops had the same file-set/image.

Interactive Media Group, Rex Black Consulting Services Copyright

Software Quality Week Europe Nov. 1-5 Brussels 6

The server side resides on a Sun-UX box, which contains the Vantive application server, the
Sybase database, Jaguar and Tibco.

The application under test was your basic Customer Service application with the regular features

such as Member registration, Billing, Purchasing, Trial Offers, etc….

The Test Tool of choice for this application was QA Partner. The reason for this choice was quite

simple actually. It was determined early in the project that this would be a GUI interface and a
capture/playback tool would be used as it would be easier to train new testers with a small programming
background in its use. Three of the Test Engineers that were hired on for this project also had experience
using QA Partner in past projects and thus would not have to learn a new tool. Since Vantive is written with
VBA and QA Partner can find most objects without much difficulty, we chose this approach. We generally
would test the server by means of the client and QA Partner with all the piece parts running or stubs in
place for those that were not yet ready for test.

Client Side Testing
 There were been many discussion as to the approach we should be using. Should we do Client
Side Testing or should we go right on the server and create tests there. In Keeping with the Black Box
approach, the decision was made to go with Client Side Testing due to many different reasons some of
which we will discuss below.

 Traditionally one would think that creating tests from the client side will be easier simply for the
reason that you may not need programmers as testers since the capture/playback did it all for you. This is
not the reason we chose to go Client Side. We have found that what is generally known, as
capture/playback in various test tools is not as simple as what some make it out to be. There is almost
always a need for someone with some programming experience to make some modifications to actually
make a useful test case. The main benefits we found were:

• The User Interface of the application will be tested at the same time.
• It was decided early in the project that the User interface will be frozen thus the test script maintenance

would be kept to a minimum.
• This way we would be testing the application from the user perspective and results will be the same as

those experienced by the users once the project went into production.
• We had the budget available for as many workstations as we needed to test that the system can handle

certain loads. There was no concern that we would not have the hardware available to mimic the actual
production environment.

• The middle-ware is exercised as well. Since Server Side Testing would not allow for the middle-ware
to be tested under real-world conditions.

 For this client server testing, testing scenarios followed a particular flow. The following
incremental progression was used:

• Perform basic functional testing on a single client application so as to have those features needed for

stress testing working effectively.
• Perform functional and concurrency testing on two remote client applications.
• Perform load testing of the server with a configuration large enough to stress the server (i.e. 100 users

requirements)
• Perform extensive functional testing of all features.
• Perform regression testing.

Computer Telephony Interface Testing
The Configuration of the System under test is described as follows:

Interactive Media Group, Rex Black Consulting Services Copyright

Software Quality Week Europe Nov. 1-5 Brussels 7

• CM server – NT server based
• CM client – NT workstation based
• CM IVR – UNIX based
• Servers application are C++
• Client application is Visual Basic

The CT System Operation is described as follows:

• IVR Member submits content via telephone
• IVR sends voice file and member information to CM server to access member profile
• CM server sends member profile and voice file information to CM-IVR
• CM IVR routes content to phone at CM client
• CM client displays member profile when call is answered
• CM client assigns status (approve/reject), call is disconnected, CM client is set to ready state
• CM server will also send status information to both Customer Service Application and the Home

region IVR.
•
Manual Testing

Initial testing was done primarily in a manual fashion so as to gain familiarity with the application
and to verify object content for those objects not recognized by the test tool. This involved using a utility
(batch script calling C++ exe with DLLs), developed by the development team which was used to simulate
incoming IVR telephone calls so that the Test Team could then simulate real-time calls into the CT system.
This same DLL was used effectively to generate a background load on the application during Business
Acceptance Test as well.

Manual Testing of this and all applications continues today, as one of our mandates is to ensure that

the user will get the experience they crave when using the applications.

For this entire project (i.e. all subsystems) we have developed a test-case template that the

engineers/testers will fill out in an easy to read sort of way and then at this point it was quite simple to have
temporary workers and/or iMG employees execute the test-cases. The process was as follows:

• The testers (temporary worker, iMG employee) would be placed into teams of two (one playing
IVR member and the other playing customer service representative).

• They would then be given a test-case, go back to a desk where a PC with the call center
applications loaded, a telephone so they could dial the IVR as well as a second Lucent phone
that was connected to the switch to route incoming calls from the IVR existed.

• The Tester would then begin doing each action item described in the test-case until the system
under test would not function as described in the test case provided.

• At this point they would call a test technician who would validate the functionality, isolate the
defect if existent and enter a bug report if required.

• The Testers would then go back and get another test case and so on.

See figure 2.0 for example of test case.

Action ID Subsystem Step Person
initiating the
step

Status Bug ID

1 IVR Dial in
 IVR Listen to Welcome message
 IVR

2 IVR Skip the changes
3 IVR Press # at the login prompt
4 IVR Choose Guest access
5 IVR Choose Female

Interactive Media Group, Rex Black Consulting Services Copyright

Software Quality Week Europe Nov. 1-5 Brussels 8

6 IVR Choose Intimate
7 IVR now at main menu
8 IVR Choose access the info center
9 IVR Choose exit
9 IVR Choose Record/Listen to success

stories

11 IVR Choose record testimonial
12 IVR Record the following voice message "Testimonial, Female Guest,

Intimate, Reject"

13 IVR Choose accept valid testimonial. This posts the
testimonial to the CM

14 CM CM monitors and rejects the
testimonial

 Figure 2.0

Automation development: Screen definitions
Those same utilities to simulate incoming calls that were discussed above were used to develop the
automated test suite for this component. Some of the scenarios that we have lived through are:

• The Test Team was NOT part of the early design process. A problem encountered during this phase

was that Visual Basic allows developers to not assign a handle to an object, this makes accessing
objects for activities such as capturing text difficult if not impossible with automation tools. The
lesson learnt by this is that a QA/QC or Test organization should be part of the design process, as
retrofitting has impacted our schedules considerably due to this.

• If an object does not have a handle you may have to interact with it strictly by relative pixel location.
Although this is not the optimal way to test it does work acceptably with objects such as buttons, check
boxes, radio buttons, etc. Most tools will handle this acceptably well, if the GUI is sized so that the
object is displayed.

• The CM client had several objects, buttons and text fields, which did not have handles; the buttons
were interacted with by the above method. Text fields or boxes can not be; automation tools can not
access text in an object they do not recognize. Unfortunately, one such text box had information
related to the state of the GUI that was necessary to automate the testing. This required the developers
to code additional utilities so that we can extract this information from other means besides the actual
application.

Functional testing
• Because of the issues related to objects not having handles it was requested that the handles be added.

Development felt that would negatively impact the schedule and possibly introduced more bugs. Their
solution was to provide a window with the necessary status information when a command line
parameter was set.

• The status window did provide the status information needed to automate the testing, but eventually we
found it presented timing problems.

• Using utilities supplied by development we were able to simulate incoming content with profile
information and telephone keypad key presses to test the CM client GUI functionality.

• The testing consisted of verifying the functionality of the various controls in the GUI and the proper
update of the database.

Stress/Performance Testing

Interactive Media Group, Rex Black Consulting Services Copyright

Software Quality Week Europe Nov. 1-5 Brussels 9

• Distributed processing – Host workstation connects to clients and sets up the client agent.
• A second workstation is set up to run a script that uses the DLL’s to generate simulated calls. This

script queues a specified number of calls per unit of time.
• When a call comes into a client the script running on the host communicates with the client to handle

the call. The content was variously always approved, always rejected, or approved or rejected at the
rate projected by marketing analysts.

• Initially, content was queued at a rate approaching development’s projected maximum capacity. This
led to problems, although the clients were handling content at an acceptable rate the servers quickly
hung due to an inability to handle the load.

• Content queuing rates were lowered until the servers were able to handle the load. Then we slowly
started increasing the rate until the problems started occurring again; this allowed development to find
the problem.

Product Wide Integration Testing Using Multi-tools
Create a Test Software and Hardware Infrastructure That Allows Automated Testing of a

Heterogeneous Enterprise Wide System

Tools Used:
• QA Partner for CT and CSA interfaces
• Perl, Tcl, Unix Shell Scripts for IVR Telephony interfaces
• TSFP (Test System Fake Pipe) (see figure 3.0)

Problems to overcome:
• The subsystems involved in the project run each on different platform using different operating

systems. Each subsystem has a different kind of interface, based o a different set of paradigms, and a
different type of test tools for test purposes.

• Testing must be non-intrusive; therefore the target applications are running in production mode (no
debug and/or test configurations) as much as possible.

• The subsystems under test interact widely and continuously; therefore we must be able to test the
system as a whole.

Solutions
• We must find a way to make the test drivers for each subsystem talk to each other outside the (sub)

system(s) under test.

• The test feedback loop must be able to follow all the data transformations as the information flows
across the system under test.

Implementation
• For each test thread, we establish a pool of data containing information about the state of each test

driver involved as well as the associated test data. Each test driver is aware of the states of all the other
test drivers involved, and is responsible to make correct test decisions based on this information.

• The integrated test applications use a state driven architecture:
• The first test driver launches the tests and prepares the state information pool. It then drives its

target subsystem through the programmed test flow, and posts the associated state transition info
and test data to the state information pool. It pauses and waits for the next test driver to execute.

• The second test driver was monitoring the state information pool. It senses the state transitions,
drives its target subsystem through the programmed test flow, and posts the associated state
transition info and test data to the state information pool. It then waits for the next test driver to
execute.

Interactive Media Group, Rex Black Consulting Services Copyright

Software Quality Week Europe Nov. 1-5 Brussels 10

• For the purposes of this presentation, we assume there are only two subsystems under test
involved. The first test driver senses the state transition, wakes up and drives its subsystem into a
“verification of the results” operation. It posts the info and exits.

• The second test driver senses the state transition, wakes up, and executes a similar operation for its
target subsystem and exits.

Other Considerations:
• Each integrated test thread is independent. Any number of them, subject to resource availability, can

execute simultaneously, enabling us to execute realistic test scenarios for the system under test.
• The implementation is very flexible. We use a .ini file structure with a general section, and a particular

section for each subsystem (and its test driver) under test. Any type of test tool that can access text files
over a TCP/IP network can be part of this test harness.

• The implementation is highly scalable. We can add any number of subsystems to our integrated test
infrastructure by extending the state info pool with a corresponding section.

Test System Fake Pipe
 The Test System Fake Pipe (TSFP) is used so that the telephony test driver and the client server
test drivers can communicate with one another. Below you will find some sample code that locks, reads
from and updates the TSFP as well as an example TSFP .ini file follows.

QA Partner sample code:

[-] type TsfpCMData is record //read from *.ini
 [] string sGender
 [] string sProduct
 [] string sRegion
 [+] type TsfpCMResults is record//write into *.ini
 [] string sAdSuccess
 [] string sGrSuccess
 [] string sIVRState
 [] string sCSAState
 [] string sCMState
 [] string sStartTime
 [] string sFinishTime
[+] // SetUpCMActions () comments
 []
//***
*
 [] //
 [] // SetUpCMActions ()
 [] //
 [] // Purpose:
 [] // Reads the fake pipe .ini, and creates action file in QAP host workstation
 [] //
 [] // Usage:
 [] // SetUpCMActions (sTSFPFile, sTestPath)
 [] //
 [] // Parameters:
 [] // sTSFPFile - lstring; contains name of .ini file to read for test parameters
 [] // sTestPath - string; path where the actions file is to be written
 [] //
 []
//***
*

Interactive Media Group, Rex Black Consulting Services Copyright

Software Quality Week Europe Nov. 1-5 Brussels 11

[+] TsfpCMData SetUpCMActions (string sUAN, string sTSFPPath)
 [] string sINFileName
 [] FILEINFO fFile
 [] list of FILEINFO lfInfo
 [] IFILE ifTSFPFile = IFile ()
 [] TsfpCMData tParms
 [] string sPattern
 []
 [] sPattern = "*{sUAN}*.*"
 [] PRINT (sPattern)
 [-] // do
 [] lfInfo = SYS_GetDirContents (sTSFPPath)
 [] Print (sTSFPPath)
 [-] Print (lfInfo)
 [-] for each fFile in lfInfo
 [-] if (!fFile.bIsDir)
 [-] if (MatchStr (sPattern, fFile.sName))
 [] ifTSFPFile.Open (sTSFPPath,fFile.sName)
 [] // Get test parameters from the .ini file
 [] tParms = GetTsfpCMData (ifTSFPFile)
 [] Print (tParms)
 [] return tParms
 [-] // except
 [] LogError("File for UAN: {sUAN} not found")
 [+] return tParms
 []
[-] // GetTsfpCMData () comments
 []
//***
*
 [] //
 [] // GetTsfpCMData ()
 [] //
 [] // Purpose:
 [] // Reads a fake pipe .ini, gets the CM parameters from that .ini file and returns that
 [] // information
 [] //
 [] // Usage:
 [] // GetTsfpCMData (ifTSFPFile)
 [] //
 [] // Parameters:
 [] // ifTSFPFile - IFILE; name of .ini file to read for a test's parameters
 [] //
 []
//***
*
[-] TsfpCMData GetTsfpCMData (IFILE ifTSFPFile)
 [] //
 [] //Section Headers
 [] string sRegistration = "Registration"
 [] string sUpdateMemberInfo = "UpdateMemberInfo"
 [] string sAds = "Ads"
 [] string sGreetings = "Greetings"
 [] string sState = "State"
 [] string sData = "CMTime"
 [] //

Interactive Media Group, Rex Black Consulting Services Copyright

Software Quality Week Europe Nov. 1-5 Brussels 12

 [] //Values
 [] string sGender = "Gender"
 [] string sProduct = "Product"
 [] string sRegion = "Region"
 [] //Test
 [] string sStartTime = "StartTime"
 [] string sFinishTime = "FinishTime"
 [] TsfpCMData tParms
 []
 [] tParms.sGender = ifTSFPFile.GetValue(sData,sGender)
 [] tParms.sProduct = ifTSFPFile.GetValue(sRegistration,sProduct)
 [] tParms.sRegion = ifTSFPFile.GetValue(sRegistration,sRegion)
 [] return tParms
 []
[-] // SetTsfpCMData () comments
 []
//***
*
 [] //
 [] // SetTsfpCMData ()
 [] //
 [] // Purpose:
 [] // Reads a CM results file and then updates the .ini file
 [] //
 [] // Usage:
 [] // SetTsfpCMData (ifTSFPFile, sTestPath, sUAN)
 [] //
 [] // Parameters:
 [] // ifTSFPFile - IFILE; name of .ini file to update with a test's results
 [] // sTestPath - string; path where CM results files are located
 [] // sUAN - string; content ID for a test, used to generate CM results file name
 [] //
 []
//***
*
[-] boolean SetTsfpCMData (IFILE ifTSFPFile, TsfpCMResults tCMResults)
 [] //
 [] //Section Headers
 [] string sAds = "Ads"
 [] string sGreetings = "Greetings"
 [] string sState = "State"
 [] //
 [] //Values
 [] string sStartTime = "StartTime"
 [] string sFinishTime = "FinishTime"
 [] string sAdSuccess = "CMSuccess"
 [] string sGrSuccess = "CMSuccess"
 [] string sIVRState = "IVR_State"
 [] string sCSAState = "CSA_State"
 [] string sCMState = "CM_State"
 [] //
 [] //Test
 [] string sSection
 [] boolean bDone = False
 []
 [-] if tCMResults.sAdSuccess != NULL

Interactive Media Group, Rex Black Consulting Services Copyright

Software Quality Week Europe Nov. 1-5 Brussels 13

 [] ifTSFPFile.SetValue (sAds, sAdSuccess, tCMResults.sAdSuccess)
 [] ifTSFPFile.SetValue ("CMTimeAD", sStartTime, tCMResults.sStartTime)
 [] ifTSFPFile.SetValue ("CMTimeAD", sFinishTime, tCMResults.sFinishTime)
 [-] if tCMResults.sGrSuccess != NULL
 [] ifTSFPFile.SetValue (sGreetings, sGrSuccess, tCMResults.sGrSuccess)
 [] ifTSFPFile.SetValue ("CMTimeGR", sStartTime, tCMResults.sStartTime)
 [] ifTSFPFile.SetValue ("CMTimeGR", sFinishTime, tCMResults.sFinishTime)
 [] ifTSFPFile.SetValue (sState, sIVRState, tCMResults.sIVRState)
 [] ifTSFPFile.SetValue (sState, sCSAState, tCMResults.sCSAState)
 [] ifTSFPFile.SetValue (sState, sCMState, tCMResults.sCMState)
 []
 []
 [-] while (!bDone)
 [-] if (ifTSFPFile.SetLock ("CM"))
 [] ifTSFPFile.Close ()
 [] ifTSFPFile.iStatus = DONE
 [] ifTSFPFile.ClearLock ("CM")
 [] bDone = TRUE
 [] print ("result = {tCMResults.sStartTime} - (clear lock)")
 [+] else
 [] sleep (2)
 []
 [] return bDone
[+] boolean GotResults (string sTestPath, string sFileName)
 [] boolean bGotResultsFile = FALSE
 []
 [+] if (hHost -> SYS_FileExists ("{sTestPath}\{sFileName}.out"))
 [] bGotResultsFile = TRUE
 [] return bGotResultsFile
[]

Perl Sample Code:

A wrapper module exists that we call StateDriver written in Perl which is used for fakepipe interaction. It's
usage by a script as follows:

Tells script to use statedriver module
use StateDriver;

loads the current tsfp_filename into an array
$tsfpFiles[$index] = $tsfp_filename ;

Sets the TSFP filename in the statedriver module for all subsequent calls
&StateDriver::SetTSFPFileName(@tsfpFiles) ;

Asks statedrive for UAN field under header Data (index is the index in the array and 60 is the # timeout)
my ($uan)= &StateDriver::GetKey("Data", "UAN", $index, 60) ;

Tells Statedriver to change State information to IVR_State=GO, CSA_State=WAIT and #
CM_State=FINISHED
&StateDriver::SetState("GO", "WAIT", "FINISHED", $index, 60);

Tells Statedriver to make PreTestCSABalance field to 50 under header Data
&StateDriver::UpdateKey("Data", "PreTestCSABalance","50", $index, 60);

Interactive Media Group, Rex Black Consulting Services Copyright

Software Quality Week Europe Nov. 1-5 Brussels 14

These calls make TSFP interaction easier and allows code to be cleaner as TSFP calls can become lengthy
and make code look messy. Two of the module procedures follow.

2 procedures from StateDriver.pm

sub StateDriver::GetKey {

 my($section) = shift(@_) ;
 my($keyValue) = shift(@_) ;
 my($ini_selection) = shift(@_) ;
 my($time_out) = shift(@_) ;

 my($count) = 0 ;
 my($tsfp_file) = $tstTSFP_File[$ini_selection] ;

 my($tsfp_fp, $tsfp_head) ;

 until(($tsfp_fp = &tsfp::tsfp_get_lock($tsfp_file)) ||
 ($count++ ge $time_out)) {
 print " Waiting On Fakepipe","\n" ;
 } ;

 $tsfp_head = &tsfp::tsfp_load($tsfp_fp) or ((&tsfp::tsfp_clear_lock($tsfp_head, $tsfp_file, $tsfp_fp))
&&
 (return)) ;
 my($valueOnTsfp) = &tsfp::tsfp_retreive_key($tsfp_head, $section , $keyValue) ;
 &tsfp::tsfp_write($tsfp_head, $tsfp_fp) ;
 &tsfp::tsfp_clear_lock($tsfp_head, $tsfp_file, $tsfp_fp) ;
 return $valueOnTsfp ;
}

sub StateDriver::UpdateKey {

 my($section) = shift(@_) ;
 my($keyValue) = shift(@_) ;
 my($tstResult) = shift(@_) ;
 my($ini_selection) = shift(@_) ;
 my($time_out) = shift(@_) ;

 my($count) = 0 ;
 my($tsfp_file) = $tstTSFP_File[$ini_selection] ;

 my($tsfp_fp, $tsfp_head) ;

 until(($tsfp_fp = &tsfp::tsfp_get_lock($tsfp_file)) ||
 ($count++ ge $time_out)) {
 print " Waiting On Fakepipe","\n" ;
 } ;

 $tsfp_head = &tsfp::tsfp_load($tsfp_fp) or ((&tsfp::tsfp_clear_lock($tsfp_head, $tsfp_file, $tsfp_fp))
&&
 (return)) ;
 print STDERR "$section\t$keyValue\t$tstResult", "\n" ;
 &tsfp::tsfp_update_key($tsfp_head, $section , $keyValue, $tstResult) ;
 &tsfp::tsfp_write($tsfp_head, $tsfp_fp) ;

Interactive Media Group, Rex Black Consulting Services Copyright

Software Quality Week Europe Nov. 1-5 Brussels 15

 &tsfp::tsfp_clear_lock($tsfp_head, $tsfp_file, $tsfp_fp) ;
 1 ;
}

Figure 3.0: TSFP.ini template
[Registration]
RegistrationMethod=
Product=
Region=
VoiceApproval=
ServiceAgreement=
UANGeneration=
VoicePrintWaitTimeout=
CMVoiceApprovalSuccess=
IVRSuccess=
CSASuccess=
CSAStartTime=
IVRStartTime=
CMStartTime=
CSAEndTime=
IVREndTime=
CMEndTime=
CMWarn=
CSAWarn=
IVRWarn=
IVRError=
CSAError=
CMError=

[UpdateMemberInfo]
Method=
ChangeUAN=
ChangePPC=
ChangeZIP=
ChangeUANPPC=
NewUAN=
NewPPC=
NewZip=
IVRSuccess=
CSASuccess=

[Content]
Segment=
ExpectedResult=

Interactive Media Group, Rex Black Consulting Services Copyright

Software Quality Week Europe Nov. 1-5 Brussels 16

Timeout=
CMSuccess=
CSASuccess=
IVRSuccess=
CSAStartTime=
IVRStartTime=
CMStartTime=
CMEndTime=
CSAEndTime=
IVREndTime=

[State]

IVR_State=
CSA_State=
CM_State=

[Data]
Gender=
PostalZip=
BirthDate=
MemberUAN=
UAN=
PPC=
PreTestIVRBalance=
PreTestCSABalance=

Management Considerations
In addition to the technical challenges facing the IMG Test Team, a number of complex

management considerations arose. Many of these arose in three main areas: logistics, staffing the team, and
tracking bugs and test cases. The following paragraphs discuss some of these challenges and how we
managed them.

Logistics
The IMG facilities are located in two areas of the Greater Toronto Metropolitan Area. The headquarters
are on King Street West in downtown Toronto, just blocks from the financial district. The call center,
though, is located in Etobicoke near the Lester Pearson Airport. These two locations are about fifteen
kilometers apart, which is usually fifteen minutes’ drive during non-peak traffic hours. Because of the
hardware requirements of the testing (see below), some testing took place in each location. This lead to a
distributed testing approach. ‘
Having two test teams separated by only fifteen kilometers may seem trivial. It would appear less
challenging than some test efforts one of the authors, Rex Black, has managed, which spanned the Pacific
Ocean and involved participants in Taiwan, Japan, Northern California, Southern California, and Utah.
However, in this case, the expected results of a test in one location depended heavily on the testing and
status in the other. For example, if an IVR server went down on King Street, this could affect what the
testers were seeing at Etobicoke. Likewise, CSA server crashes could delay and even lose data sent to the
IVR server via the Send/Listen mechanisms provided by TIBCO.
The information transfer challenges created by this tight coupling of components were made even more
difficult by the fact that we performed both manual and automated testing. The manual testing involved
large teams who had to be able to start and stop within moments. The automated tests, likewise, needed

Interactive Media Group, Rex Black Consulting Services Copyright

Software Quality Week Europe Nov. 1-5 Brussels 17

precision control based on an accurate picture of the current status of all the hardware, software, and
network components. Single points of failure and latency made the status even less clear-cut.
The complex hardware, software, and network test environment simulated an even more complex
hardware, software, and network field environment. We had a pair of IVR servers acting as deployed
systems with two more IVR servers driving them with automated tests downtown, and a handful of various
servers and telephony components, along with almost 100 client systems, at the call center. The IVR
servers ran Unix, as did some of the telephony and database components. However, other servers and the
client desktop systems ran Windows. Custom, customized, and COTS software ran throughout the
environment. Finally, the network itself was a custom amalgamation of Ethernet, ISDN, and WAN
elements. At least we only had a couple IVR servers located in the same town as the call center. The
deployed system would have dozens of IVR servers, located singly and in pairs throughout North America,
Australia, and, ultimately, Europe.
Information transfer challenges were dealt with three ways. First, the test team managers and the engineers
spent a fair amount of time at each site, regardless of their direct responsibilities. This lead to rapid
resolution of communication breakdowns and sympathy for each other’s problems. Second, cell phones
were issued to key players, individual contributors and managers, to make sure that escalation of problems
and communication hurdles could happen instantly. Finally, shared bug and test tracking tools allowed
each team to see the concrete results of the other’s testing, even between detailed test status review
meetings. The network complexity issues were dealt with by careful monitoring of status and instant
escalation to outside system administration support when problems arose.

Test Team Size and Composition
The team was composed of a mixture of IMG full-time employees, IMG part-time employees, and RBCS
consultants. About fifty people participated in the test effort at one point, though the core team was
comprised of about fifteen people. The RBCS consultants between them have over 50 years of test
experience, while the IMG employees tended to be new to software development projects or testing
specifically. Therefore, the consultants served as both implementers and transferors of knowledge.
The exception to the IMG test team experience levels was the permanent IMG test manager, Torsten
Baumann, who has a degree, hands-on management experience, and software testing experience. He
brought his familiarity with test automation and relational databases to bear in a technical capacity, too,
designing and implementing the Customer Service Application and Customer Data Repository tests, both
manual and automated. Rex Black, the RBCS consultant test manager, got the process going initially,
developing a budget, schedule, and plan for System and Integration Test. Once in Integration Test, he
served primarily to assist Torsten in his efforts.
In addition to the test management professionals, a total of five test engineers worked on the project. One,
Barton Layne, worked specifically on designing and implementing IVR testing. Another, Gordon Page,
worked primarily on Content Management testing, especially automation of these tests and “marrying” that
automation—as described in this paper—to the automation on the IVR side. Yet another test engineer,
Serban Teodorescu, worked on the integration testing, addressing not only the intercommunicating pieces
but also the testing of the “glue”-the Publish/Subscribe mechanism-that allowed the components to talk.
All three of these engineers are RBCS consultants. Two more test engineers-at the time students at the
University of Toronto-worked creating test tools such as the telephony load and traffic generator, CallSim,
and the CallSim Test System Fake Pipe library.
Supporting both automated and manual testing were eight test technicians, a mixture of students and full-
time professionals. At the peak of the manual testing, about a dozen temporary workers were brought in
from a local staffing agency to run tests over a sixteen-hour-per-day period. Also, about two or three dozen
IMG employees augmented the testing. Some of the Customer Service Representatives performed their
jobs but with simulated IVR users who were actually testers. Other IMG employees simulated IVR use to
generate load and to surface interface usability problems.

Interactive Media Group, Rex Black Consulting Services Copyright

Software Quality Week Europe Nov. 1-5 Brussels 18

Such a test team may strike some as eclectic, but the approach is an unfortunately underutilized but
excellent way to bootstrap a test organization into existence. Getting an independent test team off the
ground is tough, and around 25 percent of such groups are disestablished within two years of their creation.
It’s important to build a solid foundation for future growth and to produce visible results immediately. By
using seasoned professional test consultants, the test team was able to avoid many dangerous pitfalls,
perform valuable testing right away, and design a solid test system architecture for the team going forward.
Once the initial hurdles were passed, the consultants phased out, leaving behind the experienced test
manager and a team of less experienced but now battle-proven testers who had now seen the job done
properly and had inherited a professional-quality test system.
We did suffer from some drawbacks related to the non-test staff participation, namely trouble with writing
decent bug reports. The test engineers and technicians used a review process to improve bug reports, but
they had a common set of expectations about what constituted a “good” bug report, including detailed steps
to reproduce and proper isolation. Amateur testers had no idea how to communicate problems effectively
to development. In cases where the test team supervised and reviewed the amateurs’ test results,
considerable time was spent getting the reports in a usable format. In cases where the test team did not
screen bugs reports, the reports were generally useless to development.

Test Team Leader
Test Manager/

Consultant

Lead Test
Engineer/

Consultant

Lead Test
Engineer/

Consultant

Lead Test
Engineer/

Consultant

Test
Engineer/
Student

Test
Engineer/
Student

Test
Technician

/Student

Test
Technician

/Student

Test
Technician

/Student

Test
Technician

/Student

Test
Technician
/Full Time

Test
Technician
/Full Time

Test
Technicia

n/Full
Time

Test
Technician
/Full Time

Temporary workers (12) iMG employees (36)

Interactive Media Group, Rex Black Consulting Services Copyright

Software Quality Week Europe Nov. 1-5 Brussels 19

Bug and Test Tracking
An important challenge facing any test organization is the orderly tracking and management of the tests
performed the bugs found, and the risks to quality addressed and abated by these results. Various
commercial-off-the-shelf-software tools exist to perform these roles, but, since none were perfect fits for
the complex, heterogeneous environment discussed in this paper, IMG decided to license a customizable
solution from RBCS. The three components of this solution provide an integrated, quantitative test
management system for bugs, tests, and risks to quality. As part of the test effort, the test team adapted
these tools to handle these essential tasks.
The foundation of any well-engineered test system is a risk-based approach to test development. Which
problems, if they occur, will seriously harm the users’ experiences of quality, and which other bugs
constitute mere nuisances? A quantitative approach to answer this question was provided by the Failure
Mode and Effect Analysis technique.1 The toolkit extended this technique by measuring test case coverage
against the risks to quality identified through FMEA, and, by applying numerical ratings to coverage,
giving management a yardstick for benchmarking quality testing.
As tests are developed, one must have a standard approach to documenting them. Once execution starts,
one must track the results and status of each test case, and be able to report summary information on all the
test suites across each test effort. A three-tiered method, based on Excel worksheets, provided information
at the test step, test case, and test suite level. The lowest-level documentation provided the exact steps
required for the test technicians to set up, run, and tear down each test case. At the higher levels, this
information was summarized for precise management control and presentation. To measure quality, test
cases were assigned pass, block, or fail status initially, with blocked tests eventually being run, passed or
failed, and failed tests, when the underlying failure was addressed, becoming closed. Other information,
such as the tested hardware, software, and network configuration variables, was also captured.
The final, but in many ways most important, component was the bug tracking database. This was a
distributed system, with a graphical, VBA-driven, Access-based front-end available on each development
team participant’s desktop, and the data tables stored in a universally accessible area of the network. File
read and write abilities were controlled based on the permissions of the table and the Access workgroup
file, and on the user groups: developer, manager, tester, and so forth. The database was state-driven,
supporting review, rejected open, assigned, test, closed, deferred, and reopened states, with appropriate
ownership assigned in each state. The database also supported the generation of various reports, project
metrics, and charts such as the bug summary and the opened/closed graph.

Conclusion

 In this paper, we have introduced the reader to various approaches that Interactive Media Group
find valuable to successfully test one of the most complex test projects the authors have worked on. From
simply testing a Call Center application, to testing an integrated telephony application, to testing a CT
application, to testing for data quality and reporting, to testing all these components together, we hope that
our experiences are as valuable to the reader as it was to the authors.

 From Unit Component Test right through to Customer Acceptance Test, the most valuable lesson
learned by the authors is that inter-team communications be that by way of an issue tracking log, e-mails or
telephone, is invaluable. Also, we hope that the learnings and explanations provided with respect to the
Test System Fake Pipe are found as useful as we have found them to be. This is a simple approach to a very
complex test project that can be used anywhere and with any tools.

1 For more information on applying this technique, see Failure Mode and Effect Analysis, by D. H.
Statamis, or, for a software-specific discussion, see Managing the Testing Process, by Rex Black, one of
the authors of this paper.

Interactive Media Group, Rex Black Consulting Services Copyright

Software Quality Week Europe Nov. 1-5 Brussels 20

Recommended Readings

Rex Black: Managing the Testing Process (1999), Microsoft Press, Seattle, WA.
Boris Beizer: Software System Testing and Quality Assurance (1996), International Thomson Computer
Press, Boston, MA.
Kelly C. Bourne: Testing Client/Server Systems (1997), McGraw-Hill, New York, NY.
Roger S. Pressman: Software Engineering A Practitioner’s Approach, McGraw-Hill, New York, NY.

Biographies

Torsten Baumann

 Torsten Baumann has spent five years in the Software Testing and Quality Assurance field. He is
currently the Test Team Leader at Interactive Media Group, a leading international telephony applications
company, based in Toronto, Canada. Prior to this he worked as a Software Test Analyst and Team Leader
of Testing/Applications Development with Speedware corporation in Montreal, Canada. His work has
taken him to the U.S, Germany, Switzerland and Canada. He is currently working on a book to be titled,
Manual Testing or Test Automation: What is the correct approach?
 At Speedware corporation, Mr. Baumann was the primary responsible for the testing of an Object
Class Library, a 4GL Web Development tool, as well as several Case Tools for Visual Basic and 4GL. By
use of Test automation he created several test suites to cover the above-mentioned products. He recently
has been working at iMG in managing and automating the testing process of a complex, multi-faceted IVR
Telephony/Client Server project.
 Mr. Baumann attended Concordia University’s Bachelor of Commerce Program, as well as
graduated from John Abbot College’s Programmer/Analyst program. He is currently pursuing certification
with the Quality Assurance Institute as well as his Masters of Business Administration.

Rex Black:

Rex Black has spent sixteen years in the computer industry, with twelve years in testing and
quality assurance. He is the President and Principal Consultant of Rex Black Consulting Services, Inc., an
international software and hardware testing and quality assurance consultancy. His clients include Dell,
SunSoft, Hitachi, Motorola, Tatung, NetPliance, General Electric, Pacific Bell, IMG, Renaissance
Worldwide, DataRace, Omegabyte, Strategic Forecasting, and Clarion. His work with these clients has
taken him to Taiwan, Hong Kong, Japan, the U.K., Canada, Germany, Holland, France, Spain, Switzerland,
and Italy, along with locations throughout the United States. He authored Managing the Testing Process,
published by Microsoft Press in its Best Practices series.

Before becoming a consultant in 1994, Mr. Black worked as Quality Assurance Manager at Locus
Computing and IQ Software, doing operating system testing for IBM and database and data warehouse
query and analysis tool testing. He also spent three years as a Project Manager at XXCAL-now owned by
National Technical Services-a computer testing lab. Prior to that, he worked as a programmer and system
administrator.

Mr. Black holds a B.Sc. in Computer Science and Engineering from UCLA. He belongs to the
Association for Computer Machinery and the American Society for Quality.

Serban Teodorescu:

Serban Teodorescu holds a Masters Degree in Electrical Engineering from the Polytechnic
Institute in Bucharest, Romania from 1989 as well as a Computer Science Certificate from Herzing Institue
in Montreal.

Before entering the software industry he worked in nuclear power plants automation in Romania
(1989-1990) as well as Locomotive drives automation in Holland(Netherlands) (1990-1993). Here he
decided to enter the computer industry as a Windows System Administrator in the Netherlands from 1991

Interactive Media Group, Rex Black Consulting Services Copyright

Software Quality Week Europe Nov. 1-5 Brussels 21

to 1993. Mr. Teodorescu then consulted as a Database developer from 1993 to 1996 after which he became
a Programming instructor in Montreal. It was at this point that he pursued his career as a Software Test
Analyst with Speedware Corporation in Montreal. He is currently working as a consultant with Interactive
Media Group with the Test Team.

Gordon Page:

Gordon Page has worked in the software industry for 21 years as a developer and QA/test
engineer. For the past 6 years he has worked in Quality Assurance and Test for IQ Software, Intersolv
PVCS, MedicaLogic, BMC Software, and as a QA consultant specializing in GUI test automation.

The authors of this paper can be reached in any of the following ways:

Torsten Baumann
Phone: +1 (905) 816 0074
Fax: +1 (416) 640 1905
E-mail: TBaumann1@compuserve.com
 Torsten_baumann@interactivemedia.com

Mail: Torsten Baumann
 905 King Street West Suite 500
 Toronto, Ontario MGK 3G9

Rex Black:
Phone: +1 (210) 696-6835
Fax: +1 (210) 696-8788
E-mail: Rex_Black@RexBlackConsulting.com
Mail: Rex Black

Rex Black Consulting Services
7310 Beartrap Lane
San Antonio, TX 78249

Serban Teodorescu:
Phone: +1 (416) 2636300/3403

+1 (416) 677-1351
Fax: +1 (416) 263-6308
E-mail: steo@netcom.ca
Mail: Serban Teodorescu

905 King Street West Suite 500
Toronto, Ontario MGK 3G9

Gordon Page:
Phone: +1 (512) 656 8069 cell
E-mail: gordonpage@earthlink.net
Mail: Gordon Page
 10610 Morado circle #1301
 Austin, TX 78759

Interactive Media Group, Rex Black Consulting Services Copyright

Telephony applications testing using
simulated phone calls 1

1

Integrated Testing of TelephonyIntegrated Testing of Telephony
and Call Center applicationsand Call Center applications

z Torsten Baumann
z Rex Black
z Serban

Teodorescu
z Gordon Page

2

SUT ArchitectureSUT Architecture

N x T1

PBX

ACD

ACD

Telephone

Telephone

Telephone

CSA Workstation

CM Workstation

CSA Workstation

IVR

CT-Connect
Server

Voice Repository

CM Server Pub/Su

City
IVR

WAN

 City IVR

CSA-Server

Interactive Media Group, Rex Black Consulting Services Copyright

Telephony applications testing using
simulated phone calls 2

3

Discussion TopicsDiscussion Topics

z Client Server GUI (CSA)
z CTI Client Server (CM)
z IVR applications using multi-tools
z Product Wide Integration
z Management consideration

4

Product Wide IntegrationProduct Wide Integration
Testing Using Multi-toolsTesting Using Multi-tools

zCreate a Test Software and
Hardware Infrastructure That
Allows Automated Testing of a
Heterogeneous Enterprise Wide
System

Interactive Media Group, Rex Black Consulting Services Copyright

Telephony applications testing using
simulated phone calls 3

5

Problems to overcome:Problems to overcome:

z The subsystems involved in the project run each
on different platform using different operating
systems. Each subsystem has a different kind of
interface based on a different set of paradigms,
and different type of test tools for test purposes.

z Testing must be non-intrusive, therefore the
target applications are running in production
mode (no debug and/or test configurations) as
much as possible.

z The subsystems under test interact widely and
continuously; therefore we must be able to test
the system as a whole.

6

SolutionsSolutions

z We must find a way to make the test
drivers for each subsystem talk to each
other outside the (sub)system(s) under
test.

z The test feedback loop must be able to
follow all the data transformations as the
information flows across the system
under test.

Interactive Media Group, Rex Black Consulting Services Copyright

Telephony applications testing using
simulated phone calls 4

7

ImplementationImplementation I I
z For each test thread, we establish a pool of data

containing information about the state of each test
driver involved as well as the associated test data.
Each test driver is aware of the states of all the other
test drivers involved, and is responsible to make
correct test decisions based on this information.

z The integrated test applications use a state driven
architecture:
– The first test driver launches the tests and prepares the

state information pool. It then drives its target
subsystem through the programmed test flow, and
posts the associated state transition info and test data
to the state information pool. It pauses and waits for
the next test driver to execute.

8

ImplementationImplementation II II
– The second test driver was monitoring the state

information pool. It senses the state transitions,
drives its target subsystem through the
programmed test flow, and posts the associated
associated state transition info and test data to the
state information pool. It then waits for the next
test driver to execute.

– For the purposes of this presentation, we assume
there are only three subsystems under test
involved. The first test driver senses the state
transition, wakes up and drives its subsystem into
a “verification of the results” operation. It posts
the info and exits.

– The second test driver senses the state transition,
wakes up, and executes a similar operation for its
target subsystem and exits.

Interactive Media Group, Rex Black Consulting Services Copyright

Telephony applications testing using
simulated phone calls 5

9

Other ConsiderationsOther Considerations

z Each integrated test thread is independent. Any
number of them, subject to resource availability, can
execute simultaneously, enabling us to execute
realistic test scenarios for the system under test.

z The implementation is very flexible. We use an .ini file
structure with a general section, and a particular
section for each subsystem (and its test driver) under
test. Any type of test tool that can access text files
over a TCP/IP network can be part of this test
harness.

z The implementation is highly scalable. We can add
any number of subsystems to our integrated test
infrastructure by extending the state info pool with a
corresponding section.

10

Test System Fake Pipe (TSFP)Test System Fake Pipe (TSFP)
[Data]
Gender=
PostalZip=
BirthDate=
MemberUAN=
UAN=
PPC=
PreTestIVRBal=
PreTestCSABal=
PostTestIVRBal=
PostTestCSABal=
CCType=
CCNum=
CCExpMonth=
CCExpYear=

Interactive Media Group, Rex Black Consulting Services Copyright

Telephony applications testing using
simulated phone calls 6

11

Test System Fake PipeTest System Fake Pipe
[Registration]
RegistrationMeth=
Product=
Region=
UANGeneration=
IVRSuccess=
CSASuccess=
CSAStartTime=
IVRStartTime=
CMStartTime=
CSAEndTime=
IVREndTime=
CMEndTime=
CMWarn=
CSAWarn=
IVRWarn=
IVRError=
CSAError=
CMError=

12

Post Test Run Results FilePost Test Run Results File

[] Fake Pipe TestCase Status Error Warning

[] 4900006675_11313_TSFP.ini Registration PASS (CSA) NA
[] PASS (IVR) NA

[] --
[] Login PASS (IVR) No Error
[] --
--
[] UpdateMember FAIL (CSA) CSA Error
[] FAIL (IVR) IVR Error
[] --
--
[] InitialPurchase PASS (IVR) Manual Authorize

Interactive Media Group, Rex Black Consulting Services Copyright

Telephony applications testing using
simulated phone calls 7

13

LogisticsLogistics

z Distributed test teams
– Two locations about 15 kilometers apart

• Downtown Toronto

• Airport area
z Manual and automated testing approaches
z Complex test environment simulating an even more

complex field environment
– Hardware (dozens of servers, about 100 clients)
– Software

• Unix (2 variants), Windows, call center, and telephony
• Custom, COTS, and customized COTS

– Network (100BT E’net, PRI IDSN, WAN, PSTN)

14

Test Team Size andTest Team Size and
CompositionComposition

z IMG employees and RBCS consultants
z Two Test Managers

– One consultant
– One employee

z Five Test Engineers
– Three contractors for IVR, CM, and Integration

– Two employees for IVR and Integration

z Eight Test Technicians
– All contract IMG employees

– About two each for IVR, CM, CSA, and Integration

z About 12 temps for manual testing
z About 30 CSRs, other IMG employees ran manual

tests

Interactive Media Group, Rex Black Consulting Services Copyright

Telephony applications testing using
simulated phone calls 8

15

Bug and Test TrackingBug and Test Tracking

z Integrated test management system from RBCS
z Quantitative management of risks to quality through

FMEA failure and test coverage analysis
z Test tracking

– Customized Excel spreadsheets
– Automatic test case and suite summarization
– Test case details included in subordinate worksheets

z Bug tracking
– Customized GUI, VBA-driven, Access-based database
– Distributed to each tester’s desktop w/ shared tables
– State-based, with ownership for management to

closure

HHooww ttoo IImmpplleemmeenntt aann EEffffeeccttiivvee
RReeqquuiirreemmeennttss MMaannaaggeemmeenntt PPrroocceessss ––
AA RReeaall LLiiffee FFrraammeewwoorrkk ffoorr DDeevveellooppiinngg
YYoouurr OOwwnn AApppprrooaacchh

DDaavvee LLoocckkee,, RRaattiioonnaall SSooffttwwaarree

R

A Rational Software white paper

Table of Contents

Software and System Development in the Age Process ..1

Why Manage Requirements?..1

What is a Requirement?..2

What is Requirements Management?...2

The Problems of Requirements Management ..2

Requirements Management Skills ..3

Key Skill 1: Problem Analysis ...3
Key Skill 2: Understanding Stakeholder Needs ..4
Key Skill 3: Defining the System...4
Key Skill 4: Managing the Scope of the Project..5
Key Skill 5: Refining the System Definition ..5
Key Skill 6: Managing Changing Requirements...5

Important Requirements Concepts...6

Requirement Type ...6
Cross-Functional Teams ..7
Traceability ...7
Multi-Dimensional Attributes ..7
Change History ...9

Putting Requirements Management to Work...9

Requirements Management Workflows ...10

Workflow: Problem Analysis...10
The Activities in Problem Analysis..11
Workflow: Understanding Stakeholder Needs ..12
Activities in Understanding Stakeholders Needs ..13
Workflow: Defining the System...14
Activities in Defining the System...14
Workflow: Managing Scope ..15
Activities in Managing Scope ..15
Workflow: Refining the System...16
Activities in Refining the System...17
Workflow: Managing Requirement Change ...18
Activities in Managing Changing Requirements...19

Summary ...19

How to Implement an Effective Requirements Management Process

1

Software and System Development in the Age Process

For most software and system∗ development teams, the 1990s have been process-intensive when compared to the
more freewheeling days of the past. Standards for measuring and certifying effective software development process
have been introduced and popularized. Many books and articles on software development process and related
material on business process modeling and re-engineering have been published. Increasing numbers of software
tools have helped define and apply effective software development process. The global economy’s dependence on
software accelerated in the decade, enabling development processes and improving system quality.

So how do we explain the high incidence of the software project failure today? Why are many, if not most, software
projects still plagued by delays, budget overruns, and quality problems? How can we improve the quality of the
systems we build as our businesses, national economies, and daily activities become increasingly dependent on
them?

The answers, as always, lie in the people, tools, and processes applied to our profession. Requirements management
is often proposed as a solution to the ongoing problems of software development, yet relatively little attention has
been focused on improving the practice of this discipline.

This paper presents the elements of an effective requirements management process and highlights some of the
obstacles to its successful implementation.

Why Manage Requirements?

Simply put, system development teams who manage requirements do so because they want their projects to succeed.
Meeting their project’s requirements defines success. Failing to manage requirements decreases the probability of
meeting these objectives.

Recent evidence is supportive:

• The Standish Group’s CHAOS Reports from 1994 and 1997 established that the most significant contributors to
project failure relate to requirements.1

• In December 1997, Computer Industry Daily reported on a Sequent Computer Systems, Inc. study of 500 IT
managers in the U.S. and U.K. that found 76 percent of the respondents had experienced complete project
failure during their careers. The most frequently named cause of project failure was “changing user
requirements.”2

Avoiding failure should be sufficient motivation to manage requirements. Increasing the probability of a successful
project and other benefits of managing requirements may be equally motivational. The Standish Group’s CHAOS
report further established that managing requirements well was the factor most related to successful projects.

∗Requirements management applies equally to software-only projects and to projects in which software is only a part of the end result or not
included at all. For convenience, the paper will hereafter use the term “system” to mean any or all of these things. However, it is the abstract
nature of software development, alone or in combination with hardware that complicates requirements management, and is therefore the primary
focus of the paper.

1 CHAOS, The Standish Group International, Inc., Dennis, MA, 1994,1997
2 Computer Industry Daily, December 12, 1997

How to Implement an Effective Requirements Management Process

2

What is a Requirement?

The first step towards understanding requirements management is to agree on a common vocabulary. Rational
defines a requirement as “a condition or capability to which the system [being built] must conform.” The Institute of
Electronics and Electrical Engineers uses a similar definition.

Well-known requirements engineering authors Merlin Dorfman and Richard H. Thayer offer a compatible and more
refined definition that is specific – but not necessarily limited – to software:

“A software requirement can be defined as:

• A software capability needed by the user to solve a problem or achieve an objective.
A software capability that must be met or possessed by a system or system component to satisfy a contract,
specification, standard, or other formally imposed documentation.”3

What is Requirements Management?

Since requirements are things to which the system being built must conform, and conformance to some set of
requirements defines the success or failure of projects, it makes sense to find out what the requirements are, write
them down, organize them, and track them in the event they change.

Stated another way, Requirements Management is:
• a systematic approach to eliciting, organizing, and documenting the requirements of the system, and
• a process that establishes and maintains agreement between the customer and the project team on the changing

requirements of the system.

This definition is similar to Dorfman and Thayer’s and the IEEE’s “Software Requirements Engineering.”
Requirements Engineering includes elicitation∗, analysis, specification, verification, and management4. All of these
activities are incorporated in the definition of requirements management presented here and taught by Rational
Software. The difference lies mainly in the choice of the word “management” rather than “engineering.”
Management is a more appropriate description of all the activities involved, and it accurately emphasizes the
importance of tracking changes to maintain agreements between stakeholders and the project team.

The Problems of Requirements Management

So what might be difficult about a process intended to ensure that a systems conforms to the expectations set for it?
When put into practice on real projects, difficulties come to light. Figure 1 displays the results of a 1996 survey of
developers, managers, and quality assurance personnel. It shows the percentage of respondents who experienced the
most frequently mentioned requirements-related problems.

3 Dorfman, M. and R. Thayer, Software Engineering, IEEE Computer Society Press, Los Alamitos, CA, 1997 pp.79

∗For those unfamiliar with the term “elicitation,” it is defined as the set of activities that teams employ to elicit or discover stakeholder
requirements.

4 Dorfman, M. and R. Thayer, Software Engineering, IEEE Computer Society Press, Los Alamitos, CA, 1997 pp.79

How to Implement an Effective Requirements Management Process

3

Figure 1: Common Requirement Problems

A more comprehensive list of problems includes:

• Requirements are not always obvious and have many sources.
• Requirements are not always easy to express clearly in words.
• There are many different types of requirements at different levels of detail.
• The number of requirements can become unmanageable if not controlled.
• Requirements are related to one another and to other deliverables of the process in a variety of ways.
• Requirements have unique properties or property values. For example, they are neither equally important nor

equally easy to meet.
• There are many interested and responsible parties, which means requirements need to be managed by cross-

functional groups of people.
• Requirements change.
• Requirements can be time-sensitive.

When these problems are combined with inadequate requirements management and process skills, and the lack of
easy-to-use tools, many teams despair of ever managing requirements well.

Requirements Management Skills

To resolve the problems mentioned above, Rational encourages the development of key skills. These skills are
presented below in what appears to be sequential order, but in an effective requirements management process they
are applied continuously in varied order. Here they are presented in the sequence one would likely apply to the first
iteration of a new project.

Key Skill 1: Problem Analysis

Problem analysis is conducted to understand business problems, target initial stakeholder needs, and propose high-
level solutions. These acts of reasoning and analysis find “the problem behind the problem.”

During problem analysis, agreement is gained on a statement of the real problems and the stakeholders are
identified. Initial solution boundaries and constraints are defined from both technical and business perspectives. If
appropriate, the business case for the project analyzes return on investment that is expected from the system.

Common Requirements Problems

#1 Can’t track changes 71%

#2 Difficult to write 70%

#3 Feature creep 67%

#4 Not well organized 54%

August 1996 Survey by REQUISITE Inc.
Use by permission only.

How to Implement an Effective Requirements Management Process

4

Figure 2: Steps in Problem Analysis

Key Skill 2: Understanding Stakeholder Needs

Requirements have many sources. They may come from anyone with an interest in the outcome of the
project. Customers, partners, end users, and domain experts are some sources of requirements. Management, project
team members, business policies, and regulatory agencies can be others.

It is important to know how to determine who the sources should be, how to get access to those sources, and how to
elicit information from them. The individuals who serve as primary sources for this information are referred to as
“stakeholders” in the project.

If you are developing an information system to be used internally within your company, you may include people
with end-user experience and business domain expertise in your development team. Very often you will start the
discussions at a business-model level rather than at a system level. If you are developing a product to be sold to a
marketplace, you may make extensive use of your marketing people to better understand the needs of customers in
that market.

Techniques for eliciting requirements include interviews, brainstorming, conceptual prototyping, questionnaires, and
competitive analysis. The result of requirements elicitation is a list of requests or needs that are described textually
and graphically, and that have been given priority relative to one another.

Key Skill 3: Defining the System

To define the system means to translate and organize the understanding of stakeholder needs into a meaningful
description∗ of the system to be built. Early in system definition, decisions are made on what constitutes a
requirement, documentation format, language formality, degree of requirements, request priority and estimated
effort, technical and management risks, and scope. Part of this activity may include early prototypes and design
models directly related to the most important stakeholder requests.

The outcome of system definition is a description of the system that is both natural language and graphical. Some
suggested formats for the description are provided in later sections.

∗ We use the word “description” rather than “document” to avoid the perceived limitation inherent in the common use of the latter. A description
may be a written document, electronic file, a picture, or any other representation meant to communicate system requirements short of the system
itself.

2-7
Requirements Management with Use Cases, v21.0 (beta)
 1998 Rational Software Corporation

Steps in Problem Analysis

Step 1 - Gain agreement on
the problem being
solved.

Step 2 - Identify the
stakeholders

Step 3 - Define the system
boundaries

Step 4 - Identify constraints
to be imposed on
the system

How to Implement an Effective Requirements Management Process

5

Key Skill 4: Managing the Scope of the Project

The scope of a project is defined by its requirements. Managing project scope to fit the available resources (time,
people, and money) is key to managing successful projects. Managing scope is a continuous activity that requires
iterative or incremental development, which breaks project scope into smaller more manageable pieces.

Using requirement attributes, such as priority, effort, and risk, as the basis for negotiating the inclusion of a
requirement is a particular useful technique for managing scope. Focusing on the attributes rather than the
requirements themselves helps desensitize negotiations that are otherwise contentious.

Key Skill 5: Refining the System Definition

With an agreed-upon high-level system definition and a fairly well understood initial scope, it is both possible and
economical to invest resources in more refined system definitions. Refining the system definition includes two key
considerations: developing more detailed descriptions of the high-level system definition, and verifying that the
system will comply with stakeholder needs and behave as described.

The descriptions are often the critical reference materials for project teams. Descriptions are best done with the
audience in mind. A common mistake is to represent what is complex to build with a complex definition,
particularly when the audience may be unable or unwilling to invest the critical thinking necessary to gain
agreement. This leads to difficulties in explaining the purpose of the system to people both inside and outside the
project team. Instead, you may discover the need to produce different kinds of descriptions for different audiences.
This paper includes suggested formats for detailed natural language, formal text, and graphical descriptions. Once
the description format is established, refinement continues throughout the project lifecycle.

Key Skill 6: Managing Changing Requirements

No matter how carefully you define your requirements, they will change. In fact, some requirement change is
desirable! It means that your team is engaging your stakeholders. Accommodating changing requirements is a
measure of your team’s stakeholder sensitivity and operational flexibility – team attributes that contribute to
successful projects. Change is not the enemy, unmanaged change is.

A changed requirement means that more or less time has to be spent on implementing a particular feature, and a
change to one requirement may have an impact on other requirements. Managing requirement change includes
activities such as establishing a baseline, keeping track of the history of each requirement, determining which
dependencies are important to trace, establishing traceable relationships between related items, and maintaining
version control. As Figure 3 illustrates, it is also important to establish a change control or approval process,

Principle 55
Write Natural Language Before A More Formal Model

If you write the formal model first, the tendency will be to write natural language that describes the model
instead of the solution system. Consider the following examples:

TO MAKE A A DIAL TONE. THE USER SHOULD DIAL A “9”. THE SYSTEM SHALL RESPOND WITH A DISTINCTIVE

DIAL TONE…

THE SYSTEM CONSISTS OF FOUR STATES: IDLE, DIAL TONE, DISTINCTIVE DIAL TONE, AND CONNECTED. TO

GET FROM THE IDLE STATE TO THE DIAL TONE STATE, LIFT THE PHONE. TO GET FROM THE DIAL TONE STATE

TO THE DISTINCTIVE DIAL TONE STATE, DIAL A “9.”

Note that in the latter example, the text does not help the reader at all.

- Alan M. Davis, 201 Principles of Software Development, 1995

How to Implement an Effective Requirements Management Process

6

requiring all proposed changes to be reviewed by designated team members. Sometimes this single channel of
change control is called a Change Control Board (CCB).

Figure 3: Process for Managing Change

Important Requirements Concepts

To apply requirements management skills to a project, certain requirements management concepts are useful for
everyone on the project to understand. They include:

Requirement Type

The larger and more intricate the system, the more types of requirements appear. A requirement type is simply a
class of requirements. By identifying types of requirements, teams can organize large numbers of requirements into
meaningful and more manageable groups. Establishing different types of requirements in a project helps team
members classify requests for changes and communicate more clearly.

Usually, one type of requirement can be broken down, or decomposed, into other types. Business rules and vision
statements can be types of high-level requirements from which teams derive user needs, features, and product
requirement types. Use cases and other forms of modeling drive design requirements that can be decomposed to
software requirements and represented in analysis and design models. Test requirements are derived from the
software requirements and decompose to specific test procedures. When there are hundreds, thousands, or even tens
of thousands of instances of requirements in a given project, classifying requirements into types makes the project
more manageable.

8-4
Requirements Management with Use Cases, v21.0 (beta)
 1998 Rational Software Corporation

Customer and
End-User Inputs

Marketing
New

Feature

New
Requirement

Bug

Help Desk
End-User Inputs

Approved
Decision
Process
(CCB)

Change requests come from many sources
throughout the product lifecycle

A Process for Managing Change
All Requests Go Through a Single Channel

Single Channel
for Approval

Coders inputs
Testers inputs

Change
Request (CR)

CR

Test

Code

SRS

PRD

QA & Test

Dev. Mgrs &
Proj. Mgrs

Corp
Mgmt.

RequirementsAnalysts
Tech

writers& docs

Developers
& Designers QA & Test

Dev. Mgrs &
Proj. Mgrs

Figure 4: Cross Functional Teams

How to Implement an Effective Requirements Management Process

7

Cross-Functional Teams

Unlike other processes, such as testing or application modeling, which can be managed within a single business
group, requirements management should involve everyone who can contribute their expertise to the development
process. It should include people who represent the customer and the business expectations. Development managers,
product managers, analysts, systems engineers, and even customers should participate. Requirements teams should
also include those who create the system solution – engineers, architects, designers, programmers, technical writers,
and other technical contributors. Testers and other QA personnel should be counted as important team members.

Often, the responsibility for authoring and maintaining a requirement type can be allocated by functional area,
further contributing to better large project management. The cross-functional nature of requirements management is
one of the more challenging aspects of the discipline.

Traceability

As implied in the description of requirement types, no single expression of a requirement stands alone. Stakeholder
requests are related to the product features proposed to meet them. Product features are related to individual
requirements that specify the features in terms of functional and non-functional behavior. Test cases are related to
the requirements they verify and validate. Requirements may be dependent on other requirements or they may be
mutually exclusive. In order for teams to determine the impact of changes and feel confident that the system
conforms to expectations, these traceability relationships must be understood, documented, and maintained. While
traceability is one of the most difficult concepts to implement in requirements management, it is essential to
accommodating change. Establishing clear requirement types and incorporating cross-functional participation can
make traceability easier to implement and maintain.

8-12
Requirements Management with Use Cases, v21.0 (beta)
 1998 Rational Software Corporation

Requirements Traceability
Establish Traceability Paths

1. Trace top level
requirements into detailed
requirements

2. Trace requirements into
design

3. Trace requirements into
test procedures

4. Trace requirements into
user documentation plan

 Design

Software Design
Descriptions

Object Models

Test Suites

 Test

2 3

Req A

1

Product
Requirements

(Features)

Detailed
Requirements
(Use Cases)

 Req B

Documentation
Plan

User Docs

4

Figure 5: Requirements Traceability Established

Multi-Dimensional Attributes

Each type of requirement has attributes, and each individual requirement has different attribute values. For example,
requirements may be assigned priorities, identified by source and rationale, delegated to specific sub-teams within a
functional area, given a degree-of-difficulty designation, or associated with a particular iteration of the system. To
illustrate, Figure 6 displays attributes for a Feature Requirement Type from a Learning Project in Rational’s

How to Implement an Effective Requirements Management Process

8

RequisitePro requirements management tool. As implied by the title of the screen, the requirement type and
attributes for each type are defined for the entire project, ensuring usage consistency across the team.

Figure 6: Feature Requirement Type from a Learning Project

In Figure 7, instances of feature requirements are displayed for a specific project in RequisitePro. Note that even
without displaying the entire text for each requirement, we can learn a great deal about each requirement from its
attribute values. In this case, its priority and difficulty – no doubt assigned by different members of the team – will
help the team begin to scope the project to available resources and time, taking into account both stakeholder
priorities and a very rough estimate of effort reflected in the difficulty attribute value. In more detailed types of
requirements, the priority and effort attributes may have more specific values (e.g., estimated time, lines of code,
etc.) with which to further refine scope. This multi-dimensional aspect of a requirement, compounded by different
types of requirements – each with its own attributes – is essential to organizing large numbers of requirements and to
managing the overall scope of the project.

 Figure 7:

Figure 7: Feature Requirements for a Specific Project in RequisitePro

How to Implement an Effective Requirements Management Process

9

Change History

Both individual requirements and a collection of requirements have histories that become meaningful over time.
Change is inevitable and desirable to keep pace with a changing environment and evolving technology. Recording
the versions of project requirements enables team leaders to capture the reasons for changing the project, such as a
new system release. Understanding that a collection of requirements may be associated with a particular version of
software allows you to manage change incrementally, reducing risk and improving the probability of meeting
milestones. As individual requirements evolve, it is important to understand their history: what changed, why, when,
and even by whose authorization.

Putting Requirements Management to Work
Requirements management employs the key skills and concepts presented above to identify and resolve the
problems successfully. To build a system that truly meets customers’ needs, the project team must first define the
problem to be solved by the system. Next, the team must identify stakeholders from whom business and user needs
are elicited, described, and prioritized. From this set of high-level expectations or needs, a set of product or system
features should be agreed upon.

Detailed software requirements should be written in such a form as can be understood by both the customers and the
development team. We have found that using the language of the customer to describe these software requirements
is most effective in gaining the understanding and agreement. These detailed software requirements are then used as
input for the system design specifications as well as for test plans and procedures needed for implementation and
validation. Software requirements should also drive the initial user documentation planning and design.

Figure 8: Requirements Management Overview

To facilitate this, the project team should:

• Agree on a common vocabulary.
• Develop a vision of the system that describes the problem to be solved by the system, as well as its primary

features.
• Elicit stakeholders needs in at least five important areas: functionality, usability, reliability, performance and

supportability.
• Determine what requirement types to use.

1-6
Requirements Management with Use Cases, v21.0 (beta)
 1998 Rational Software Corporation

Introduction to Requirements Management
Overview

Needs

Product
Features

Software
Requirements

Test
Procedures

Problem

Solution
Space

Design User
Docs

Traceability

Problem
Space

TheThe
ProductProduct
To BeTo Be
BuiltBuilt

How to Implement an Effective Requirements Management Process

10

• Select attributes and values for each requirement type.
• Choose the formats in which requirements are described
• Identify team members who will author, contribute to or simply view one or more types of requirements.
• Decide what traceability is needed.
• Establish a procedure to purpose, review, and resolve changes to requirements.
• Create progress and status reports for team members and management.

These essential requirements management activities are independent of industry, development methodology, or
requirements tools. They are also flexible, enabling effective requirements management in the most rigorous and the
most rapid application development environments.

Requirements Management Workflows

Requirements management can follow an infinite number of domain-specific paths. The following approach
prescribes six detailed workflows that apply to each of the key requirements management skills but can be applied to
any domain.∗

Workflow: Problem Analysis

In the Problem Analysis workflow, the primary activity is vision development. Output from this activity is a vision
document that identifies the high-level user or customer view of the system to be built. The vision expresses initial
requirements as key features the system must possess in order to solve the most critical problems. The system
analyst has the primary role in this workflow. The system analyst should have problem domain expertise and an
understanding the problem, and should be able to describe a process that he or she believes will solve the problem.
Active involvement from various project stakeholders is required.

To begin managing dependencies, features should be assigned attributes such as rationale, relative value or priority,
and source of request. As the vision develops, the analyst identifies users and systems (the actors) of possible use

∗ The following workflow diagrams are from the Rational Unified Process Requirements Workflow. The workflows are
expressed in terms of workers, activities and artifacts (input or output). The accompanying text in this paper describes each
workflow briefly, in the hopes of stimulating your thoughts and interest in improving your requirements management process.

A Few Words about Documents
The decision to describe requirements in documents deserves some thought. On one hand, writing is a widely accepted form of
communication and, for most people, a natural thing to do. On the other hand, the goal of the project is to produce a system, not documents.

Common sense and experience teach that the decision is not whether but how to document requirements. Document templates provide a
consistent format for requirements management. Rational’s RequisitePro offers these templates and the additional feature of linking
requirements within a document to a database containing all project requirements. This unique feature allows requirements to be documented
naturally while being made more accessible and manageable in a relational database.

How to Implement an Effective Requirements Management Process

11

cases. Actors are the first element of the use-case model, which will define the system’s functional and non-
functional technical requirements.

Figure 9: Problem Analysis

The Activities in Problem Analysis

Initiation: One or more stakeholders who perceive a problem will initiate the workflow.

One or more system analysts in a development team conduct a session to help the initial stakeholders describe the
problem they want solved. The elements of the vision document are organized in the following table:

The problem statements succinctly explain the purpose of the project. Problem analysis stimulates further
investigation into all stakeholder needs and the initial business case including compelling benefits and roughly
estimated costs. In parallel with defining problem statements, you should also compile a glossary by keeping track
of commonly used terms and agreeing on their definitions.

Problem analysis also identifies the main system actors. Actors are users of the system or any other system that will
exchange information with it. At this stage, problem analysis should briefly identify some obvious ways that the
actors will interact with the system. Descriptions should be oriented towards business process rather than system

Find Actors
and Use Cases

Capture a
Common

Vocabulary

System
Analyst

Develop
Vision

Vision

Glossary

Use-Case Model
(actors only)

Customer

End User

Stakeholder

Manage
Dependencies

Requirements
Attributes

Stakeholder
Needs

Requirements
Attributes
Guidelines

Problem Define the problem

Affected Stakeholders
List the stakeholders affected by the problem

Impact Describe the impact of the problem

Successful Solution List some key benefits of a successful solution

How to Implement an Effective Requirements Management Process

12

behavior. For example, a budgeting program may allow one type of actor to “Create departmental budget,” while
another actor will be able to “Consolidate departmental budgets.” The system analyst may later break them into
additional use cases that align more meaningfully with specific system behavior. For example, “Create departmental
budget” could result in system use cases such as “Import spreadsheet information” and “Create budget views.”

The problem analysis session described above is often performed more than once, maybe with different
stakeholders, and intermingled with internal development team sessions. The system analyst who conducted the
meeting with the stakeholders will lead a session with members of the development team to envision a technical
solution to the problems, derive features from the initial stakeholder inputs, and draft the vision description, the first
definition of the system to be built. To facilitate understanding of the proposed solution among the initial
stakeholders, the system analyst may use modeling tools or manual drawing techniques to complement the vision
description.

The initiating stakeholders are consulted at multiple points to help refine the problem description and constrain the
number and scope of possible solutions. Stakeholders and system analysts manage dependencies in this workflow by
negotiating the priority of key features and gaining a general understanding of the resources and effort needed to
develop them. While priority and effort/resource estimates inevitably change, managing dependencies early
establishes an important pattern that continues throughout the development lifecycle. It is the essence of the scope
management and an early predictor of project success.

After several drafts, the vision reaches a point when the team must decide whether to invest in additional
requirements elicitation. By the same time, the business case approval process has been initiated separately.
Although not addressed further in this paper, the business case describes:

• The context (product domain, market and scope),
• The technical approach,
• The management approach (schedule, risk, objective measure of success), and the financial forecast.

Workflow: Understanding Stakeholder Needs

If the initial vision justifies additional investment, the Understanding Stakeholder Needs workflow begins in
earnest. The key activity is eliciting stakeholder needs. The primary outputs are collections of prioritized
stakeholder needs, which enable refinement of the vision document, as well as a better understanding of the
requirements attributes. Also, during this workflow you may start discussing the system in terms of its use cases and
actors. Another important output is an updated glossary of terms to facilitate common vocabulary among team
members.

Use-Case Model Introduction

Model Introduction

A use-case model consists of actors, use cases, and relations among them. Actors represent everything that must
exchange information with the system, including what are typically called users. When an actor uses the system, the
system performs a use case. A good use case is a sequence of transactions that yields a measurable result of value
for an actor. The collection of use cases is the system’s complete functionality.

Jacobson I., Christerson M., Jonsson P., Overgaard G., Object-Oriented Software Engineering – A Use Case Driven
Approach, Addison Wesley – ACM Press, 1992

How to Implement an Effective Requirements Management Process

13

Figure 10: Understanding Stakeholders Needs

Activities in Understanding Stakeholders Needs

The system analyst and key stakeholders identify additional stakeholders and elicit their needs via interviews,
workshops, storyboards, business process use cases, and other techniques. One or more system analysts facilitate
these sessions. Requirements are among the most useful elicitation techniques. The process includes users, help-desk
personnel, business owners, testers, and others who have a stake in the outcome of the proposed project. Stakeholder
needs are often ambiguous, overlapping, and even extraneous. In addition to formal elicitation results, stakeholder
needs may be expressed in well-formatted documents, defect and enhancement requests from databases, or e-mail
and groupware threads. System analysts record, categorize, and prioritize stakeholder needs.

Based on a better understanding of stakeholders needs, the system analysts in the development team refine the vision
document, paying special attention to the product position statement. In two or three sentences, this statement
establishes the compelling value of the project. The statement should include intended users, the problems it solves,

Understanding Stakeholder Needs: Where “Delighting Customers” Begins

Stakeholder needs are a type of proposed requirement captured as much as possible in the language and format of the
submitting stakeholder. Unlike subsequent requirement types that are usually authored by process-educated and technically
proficient project team members, stakeholder needs are often expressed poorly. They are duplicated or overlap. They can be
expressed on anything from slips of paper to enhancement-request databases.

The analyst (or team representing the analyst role) must review them all, interpreting, grouping, perhaps retyping (without
rewriting), and translating them into features in the vision description. Depending on the rigor applied in your development
and the availability of tools, traceability between some or all stakeholder needs and features can be applied to help stakeholders
understand how their needs were taken into account.

Demonstrating serious concern for eliciting and satisfying stakeholder needs by applying the Understanding Stakeholder Needs
Workflow can be critical to establishing stakeholder confidence in your team’s abilities.

Architect
Prioritize Use Cases

Use-Case Model

Software Architecture
Document

(use-case view)

Supplementary
Specifications

Iteration Plan
(refined)

Iteration Plan

System
Analyst Manage

Dependencies

Vision
(refined)

Requirements
Attributes

(refined)

Requirements
Attributes

Vision Use Case

Requirements
Attributes
Guidelines

Develop
Vision

Customer

End User

Stakeholder

How to Implement an Effective Requirements Management Process

14

the benefits it delivers, and the competitors it replaces. All team members should understand this project theme.
System analysts also update the glossary to facilitate common understanding of terms.

Key stakeholders are consulted at multiple points to negotiate priority of new features derived from understanding
stakeholder needs and gain a current understanding of resources and effort needed to develop them. As with problem
analysis, managing dependencies in this workflow helps manage scope. It also establishes traceability between
stakeholder needs and vision features, so stakeholders can be sure their inputs were considered.

Workflow: Defining the System

The Problem Analysis workflow and the Understanding Stakeholder Needs workflow create early iterations of
key system definitions, including the vision document, a first outline to the use-case model, and the requirements
attributes. The Defining the System workflow completes the description of the system-level requirements with the
addition of new actors, use cases, and supplementary specifications.

.

Figure 11: Defining the System

Activities in Defining the System

The glossary is updated to reflect current understanding about the terms used to describe features and the use-case
model.

The system analyst uses the refined vision to derive and describe the use cases that elaborate on the system’s
expected behavior. The use-case model serves as a contract between the customer, the users, and the system
developers. It defines expectations for system developers and helps customers and users to validate that the system
will meet these expectations.

The system analyst describes requirements that do not fit well in use cases in a supplementary specification.
Usability, reliability, performance, and supportability requirements often end up here. It should be noted that many
non-functional requirements of these types are specific to a single use case. It is better for use case authors to place
these requirements in the use case specification itself (see the Refining the System workflow), leaving the
supplementary specification for global non-functional requirements.

In this workflow, the system analyst creates attributes for the supplementary requirements (such as priority and
related use cases). In addition, the system analyst adds and updates attribute values for the initial and new use cases.
Finally, the system analyst manages dependencies by tracing important user needs and critical features to related use
cases and supplementary specifications.

Find Actors
and Use CasesSystem

Analyst

Capture a
Common

Vocabulary

Use-Case Model
(refined)

Use-Case
Modeling

Guidelines

Supplementary
Specifications

Glossary
(refined)

GlossaryStakeholder
Needs Use-Case Model

Requirements
Attributes
(refined)

Requirements
Attributes

Manage
Dependencies

Requirements
Attributes
Guidelines

Vision

How to Implement an Effective Requirements Management Process

15

Workflow: Managing Scope

Identifying most actors, use cases, and supplementary specifications allows the system analyst to apply priority,
effort, cost, and risk values to requirements attributes more accurately. This better understanding also enables the
architect to identify the architecturally significant use cases.

The iteration plan, developed in parallel by project and development management, first appears in the Managing
Scope workflow. Also known as a development plan, the iteration plan defines the number and frequency of
iterations planned for the release. The highest risk elements within scope should be planned for early iterations.

Other important outputs from the Managing Scope workflow include the initial iteration of the software architecture
document∗ and a revised vision that reflects analysts and key stakeholders’ increased understanding of system
functionality and project resources.

Figure 12: Managing Scope Workflow

Activities in Managing Scope

Architects prioritize use cases for their risk coverage, architectural significance, and architectural coverage. While
the system may be defined with many use-case and supplementary specification requirements, only a subset of use
cases are usually critical to good system architecture. With prioritized use cases, architects refine the iteration or
development plan and model a use-case view of the system architecture in tools such as Rational Rose.

∗ Like the business case earlier and first issue of the iteration plan, the software architecture document is not an artifact of
requirements management workflows, although it is related and is part of Rational Unified Process. It is not the subject of this
paper.

Experience teaches that the keys to managing scope successfully are the well-considered attribute values assigned to
stakeholder needs, use cases, and supplementary specifications; and regular, open, and honest interaction with
representative stakeholders.

Architect
Prioritize Use Cases

Use-Case Model

Software Architecture
Document

(use-case view)

Supplementary
Specifications

Iteration Plan
(refined)

Iteration Plan

System
Analyst Manage

Dependencies

Vision
(refined)

Requirements
Attributes
(refined)

Requirements
Attributes

Vision Use Case

Requirements
Attributes
Guidelines

Develop
Vision

Customer

End User

Stakeholder

How to Implement an Effective Requirements Management Process

16

System analysts manage dependencies by refining requirements attributes for features in the vision. They also refine
requirements in use cases and supplementary specifications. System analysts ensure that appropriate traceability∗
exists for stakeholder needs, features, use-case requirements, and supplementary specification requirements.

System analysts negotiate revised project scope and vision with key stakeholders. This step is among the most
important in the entire project. For the first time the breadth of knowledge about the proposed system is available to
make serious commitments on requirements, project resources and delivery dates. At the same time, it must be
understood that these requirements will change as the depth of knowledge increases. If dependencies have been
managed in the previous three workflows, this step is much easier, and future changes will be easier.

Managing scope to match available resources is successful only if stakeholders and development team members
view this step as a natural progression – not an ambush on users’ expectations or an attempt to blackmail the
organization for more time and money. This workflow will need to be repeated at major milestones in the project to
assess whether new insight into the system and its problems requires change to the scope. While committed
requirements, budgets, and deadlines are hard to change, an in-depth understanding of prioritized use cases,
supplementary specifications, and early system iterations inevitably lead to scope reconsideration.

Once again, it is critical that the project team engages in habitual scope management before reaching the refinement
stage. Representative stakeholders must understand and trust that their priorities and interests are taken seriously
during increasingly difficult scope negotiations. By the time system requirements are refined, only important
requirements remain to be negotiated or modified. Unless effective scope management habits have been established,
your project may be doomed as a “death march” – a hopelessly over-scoped project moving inexorably towards
delays and cost overruns.

Workflow: Refining the System

The Refining the System workflow assumes that system-level use cases have been outlined and actors have been
described, at least briefly. Through managing the project scope, the features in the vision have been re-prioritized
and are now believed to be achievable by fairly firm budgets and dates. The output of this workflow is a more in-
depth understanding of system functionality expressed in detailed use cases, revised supplementary
specifications, and early iterations of the system itself∗.

∗ The term “appropriate traceability” is deliberate. See the inset text on Traceability later in this paper.
∗ Obviously, not all systems will have user interfaces and not all early iterations will include GUI elements.

We use them here only as an example of an early iteration. Other examples include prototypes, models, and
storyboards.

How to Implement an Effective Requirements Management Process

17

Figure 13: Refining the System Workflow

Activities in Refining the System

The use-case specifier details the definition of the flow of events, pre- and post-conditions, and other textual
properties of each use case. To minimize the effort and enhance the readability, it is advisable to use a standard
document format or a use case specification template, to capture textual information about each use case. Creating
well-thought-out use case specifications is critical to the quality of the system. This specification development
requires a thorough understanding of the stakeholder needs and features related to the use case. It is desirable to
have several members of the project team (such as software engineers) participate in creating the use cases.

In parallel, the use case specifier revises the supplementary specification with additional requirements that are note
specific to the use case.

The user-interface designer models and prototypes the user interface of the system. This work is highly correlated
to the evolution of the use cases.

The use-case specifier and the system analyst revise the effort, cost, risk, and other attribute values for each
requirement that is understood better.

The result of this system refinement is submitted to another round of the Managing Scope workflow. Once you
know more about the system, you may want to change the priorities.

Use-Case
Specifier

Detail a
Use Case

Use Case
(described)

Glossary

Use Case
(outlined)

Supplementary
Specifications

Stakeholder
Needs

Supplementary
Specifications

(detailed)

User-Interface
Designer

User-Interface
Prototyping

User-Interface
Prototype

Use-Case
 Storyboard

Boundary
Class

Requirements
Attributes
(refined)

Requirements
Attributes

User-Interface
Modeling

Actor
(characterized)

Actor
(briefly described)

Use-Case
Modeling

Guidelines

Requirements
Attributes
Guidelines

Vision

How to Implement an Effective Requirements Management Process

18

Workflow: Managing Requirement Change

Like the Managing Scope workflow, the Managing Requirements Change workflow should be applied
continuously. The output of this workflow can cause modification to every artifact, which requires effective
communication with all project team members and stakeholders.

In this workflow we introduce additional artifacts that are affected by requirements workflows. Changes to
requirements naturally affect the system models that represent them in the analysis and design workflows.
Requirement changes also affect tests created to validate the proper implementation of the requirements∗.
Traceability relationships identified in the process of managing dependencies are the keys to understanding these
impacts.

Another important concept for Managing Requirements Change Workflow is requirement history tracking. By
capturing the nature and rationale of requirements changes, reviewers (anyone on the software project team whose
work is affected by the change) receive the information needed to respond to the change properly.

Manage
Dependencies

Glossary

System
Analyst

Use-Case Model
(restructured)

Supplementary
Specifications

Review
RequirementsRequirements

Reviewer

Structure the
Use-Case Model

Use-Case Model

Requirements
Attributes
(refined)

Test ModelDesign
Model

User-Interface
Prototype

Customer

End User

Stakeholder

Requirements
AttributesUse Case Vision

Risk List

Iteration Plan

Requirements
Attributes
Guidelines

Use-Case
Modeling

Guidelines

Figure 14 : Managing Requirements Change Workflow

∗ As in earlier examples, these artifacts are part of the Rational Unified Process but are not the subjects of this paper.

Traceability

Much is made of traceability in the requirements field. Many promote the virtue of tracing individual customer
requirements to each related specification, test, model element, and ultimately source code files.Certainly, some
traceability is the key to successful requirements change management.

Be forewarned, however, that all forms of traceability require an investment to set up and maintain during the life of the
project. Like all investments, traceability has diminishing points of return depending on your specific situation. This
paper emphasizes the value of tracing between types of requirements. This is a good place to start and can be automated
by tools such as Rational’s RequisitePro. We believe you will find some level of requirements traceability to be a good investment

How to Implement an Effective Requirements Management Process

19

Activities in Managing Changing Requirements

Changes to requirements are initiated by any stakeholder or project team member for an infinite number of reasons.

The system analyst initiates a review activity, assimilating all change requests, and classifies them as:

• defects in implementation that do not affect requirements,

• modifications to existing requirements of some type, and

• new stakeholder needs or enhancement requests.
Once classified, the proposed changes to requirements are assigned attributes and values as described in other
requirements workflows.

In reviewing changes, the system analyst presents proposed prioritized requirement changes to a change control
board comprised of representative stakeholders and project team members. Scope modifications that exceed
resources should be rejected or elevated to stakeholder representatives that are empowered to approve required
changes to date and budget commitments.

The change control board approves or rejects changes to requirements.

The system analyst communicates requirements changes to requirements authors or makes changes directly to
requirements in the vision, use cases, or supplementary specification documents.

The requirements reviewers (developers, testers, managers, and other project team members) evaluate the impact
of changes to requirements on their work by reviewing requirement history. Finally, they implement the change and
make appropriate changes to related requirements for which they have authority.

Summary
The need to manage requirements is not new. So, what makes the preceding information worth considering now?

First, if your projects are not regularly satisfying customers, meeting deadlines, and staying within budget, you have
reason to reconsider your development approach. If in doing so, you determine that requirements-related problems
are undermining your development efforts, you have reason to consider better requirements-management practices.

Second, the requirements management practices summarized in this paper embody the collective experience of
thousands, and are the well-considered opinions of a number of individuals who have spent years working with
customers in the field of requirements management.

The chronic, pervasive problems of requirements management are solvable. And that, ultimately, may be the best
reason to start practicing excellence in requirements management today.

Corporate Headquarters
18880 Homestead Road
Cupertino, CA 95014
Toll-free: 800-728-1212
Tel: 408-863-9900
Fax: 408-863-4120
E-mail: info@rational.com
Web: www.rational.com

For International Offices: www.rational.com/corpinfo/worldwide/location.jtmpl

Rational, the Rational logo, and Rational Unified Process are trademarks or registered trademarks of Rational
Software Corporation in the United States and in other countries. All other names are used for identification
purposes only and are trademarks or registered trademarks of their respective companies. ALL RIGHTS
RESERVED. Made in the USA.

© Copyright 1999 by Rational Software Corporation.

R

1

How to Implement an Effective
Requirements Management Process

How to Implement an Effective
Requirements Management Process

Dave Locke, Director of Requirements Management Products,
Rational Software

Dave Locke, Director of Requirements Management Products,
Rational Software

High Cost of Requirements Errors

� Requirements errors are the most expensive
errors

� Requirements errors are the most common
errors

� Rework consumes 40 - 50% of project budget
� Requirements errors consume the majority

(>70%) of rework costs
� Requirements errors consume 30 - 40% of the

total project budget!

2

Tips and Techniques

� The Methods of Managing Requirements…
� To find, document, organize and track requirements,

you must develop five basic skill areas:
Problem Analysis

Understanding the true business need

Elicitation
Techniques for discovering stakeholder requirements

System Definition
Techniques in problem analysis and documentation

Scope Management
Techniques to “objectify” the effort to match resources to project scope

Change Management
Mechanisms to accommodate change

� Step 1 - Gain agreement on the problem being
solved

� Step 2 - Build a common vocabulary
� Step 3 - Identify the stakeholders (they are

materially affected by outcome of the system)
� Step 4 - Define the system boundaries
� Step 5 - Identify constraints to be imposed on the

system

Steps in Problem Analysis

3

Typical Sources of Requirements

Analyst

Customer

Business plans
Personal goals

Problem Domain

Domain Experts
Industry Analysts
Site Visits
Competitive info

Partners

Users

Bug Reports
Change Requests

Several Elicitation Techniques

� Interviews
�Questionnaires
� Requirements Workshops
� Brainstorming & Idea Reduction
� Storyboarding
� Role Playing
� Prototyping
� Use Cases (Scenarios)

4

Gause & Weinberg, 1989

Interviews - The Context-Free Question

� The context-free question is a high level, abstract
question that can be posed early in a project to obtain
information about global properties of the user’s
problem and potential solutions

� Context-free questions:
• Are always appropriate
• Help you understand stakeholder perspectives
• Are not biased with solutions knowledge

Gause & Weinberg, 1989

Types of Context-Free Questions

User
� Who is the customer?
� Who is the user?
� Are their needs different?
� What are their backgrounds,

capabilities, environments?

Product
� What business problems could this

product create?
� What environment will the product be

used in?
� What are your expectations for

usability, reliability, performance?

Process
� What is the reason for wanting

to solve this problem?
� What is the value of a

successful solution?
� How do you solve the problem

now?

Meta-Questions
� Am I asking too many questions?
� Do my questions seem relevant?
� Are you the right person to answer

these questions?
� Are your answers requirements?
� Can I ask more questions later?
� Is there anything else I should be

asking you?

5

Davis ‘95

Prototypes

Throw away
� Validates technological feasibility; exposes potential

risks
� Throw away everything except knowledge gained

Evolutionary
� Demonstrates a proposed solution
� Throw away some (save core technologies)

Operational Prototype
� Final form, function and fit, as well as technology
� Throw away as little as possible

Applicability of Elicitation Techniques

DEVELOPER EXPERIENCE

C
U

S
T

O
M

E
R

/U
S

E
R

E
X

P
E

R
IE

N
C

E

LOW HIGH

LOW

HIGH

“Fuzzy problem”
Brainstorming
Role Playing
Storyboarding
Interviewing
Requirements Workshops

“Catch Up”
Interviewing
Research
Storyboarding
Requirements Workshops

“Mature”
Object Oriented Analysis
Requirements Specifications
Prototyping
Use Cases
Business Process Reengineering
Requirements Workshops

“Selling/Teaching”
Evolutionary Prototyping
Requirements Specifications
Storyboarding
Use Cases
Business Process Reengineering
Requirements Workshops

Adapted from Alan Davis

6

Learn to Like Your Users!

Users tend to be inarticulate, inconsistent, unavailable,
non-technical

BUT
We must learn to understand our users

BECAUSE
If we don’t get the USERS’ requirements RIGHT,

we can’t deliver QUALITY systems.

The users are not the enemy!

Problem
Space

Solution
Space

TheThe
SystemSystem
To BeTo Be
BuiltBuilt

Elicitation

The Requirements Management View

User
Needs

Product or
System

Requirements

Software
Requirements

Test
Requirements

& Tests

Tr
ac

ea
bi

lit
y

7

FURPS

Functionality Feature Set
Capabilities

Generality
Security

Usability Human Factors
Aesthetics

Consistency
Documentation

Reliability Frequenc y/Severit y
of Failure
Recoverability

Predictability
Accuracy
MTBF

Performance Speed
Efficiency
Resource Usage

Throughput
Response Time

Supportabilit y Testability
Extensibility
Adaptability
Maintainability
Compatibility

Configurability
Serviceability
Installability
Localizability
Robustness

What vs. How

� A requirement should allow more than one design
option. A design is a choice among options.

� A requirement that leaves no options is a design
constraint
� Should be distinguished from a requirement
� Sources of each should be identified
� The rationale for each should be documented

Is it a requirement or a design?

8

Standardize Your Document Format

� Leverages the work of others
� Documents appear familiar and unintimidating
� Documents are easier to write

� Standard chapters and sections
� Tips provided to help the writer

� Documents are easier to read
� Know exactly where to look for information

� Ensure that important topics are covered
� Mandatory sections act as checklist

� Ensure that things don’t fall through the cracks

Use a standard look and feel for all
documents of a specific type

Establish Requirement Hierarchies

User/Business Needs

Product/System Requirements

Software Requirements

Test Requirements

More AbstractMore Abstract

More DetailedMore Detailed

Product/System Requirements

9

Establish Requirement Hierarchies

User/Business Needs

Product/System Requirements

Software Requirements

Test Requirements

More AbstractMore Abstract

Software Requirements

More DetailedMore Detailed

Adapted from Alan Davis

Roles of the Software Requirements Specification

� Basis of communication between all parties
� Contractual agreement between parties
� The software manager’s reference
� Input to design team
� Input to software test and

quality assurance
� Controls evolution of system

10

Adapted from Alan Davis

What’s not in a SRS?

� Design information - How to accomplish the
requirements
� Design describes a sub-component of a system

and/or its interfaces with other sub-components

� Project information
� Schedules, verification and validation plans,

configuration management plans, etc.

� How you’ll know the requirements have been met
� Test procedures
� Acceptance procedures

Test Procedure

 Test Design Specifications

 Test Plan

Software Test Documentation

 Test Case

Test Plan = Testing methodology,
 resources, etc.

Test Design = Test structure,
automation design

Test Case = Requirement to be
verified

Test Procedure = Specific test path,
step-by-step instructions

11

User
Needs

Product
Features

Product
Specifications

Test
Procedures

Development
Team

Work vs. Resources

User /
Customer

FeaturesFeatures

S
chedule

S
cheduleQ

ua
lit

y
Q

ua
lit

y

Establish a Requirements Management Process

� Management education
� Requirements training
� Infrastructure support:

� People
� Repository
� Tools
� Network / Email

� Process support
� Requirement reviews
� Change management policy

12

189%

Gain Control Early in the Process

Customer Requests
Requirements

Use Cases
Feature Requests

Marketing Department
R&D

Bug Reports
Competitive Analysis

100 %

Communicate Requirements

� Document all requirements
� Itemize to an appropriate level of detail
� Make visible to all stakeholders
� Ensure that the requirements are reasonably stable
� Understand the rationale and benefits for each

requirement
� Allow change - analyze impact of change before accepting

requirement modification
� Maintain “living” documents that are easy to adapt to

requirement changes
� Establish requirement relationships to indicate both

dependencies and refinement

13

Understand Your Requirement Attributes

Requirement
100

Origin

Cost

StatusPriority

StabilityRisk

Requirement ATTRIBUTES and RELATIONSHIPS
are a Rich Source of Management Information

Requirement
201

Requirement
302

Difficulty

Objectively Decide What to Do

Requirements Priority Difficulty Risk Stability Action
REQ1: Save and restore sort and filter criteria. Med High Low Low High
REQ2: Ability to save a Requisite document as a Word
document.

Med High Low Low High

REQ3: Ability to see deleted requirements in a view window. Medium Med High Medium Medium
REQ4: Support for Cu rrency datatype attributes. Medium Medium Med Low Medium
REQ5: Support the “All” document type (provides an easy way
to define common attributes across multiple document types).

Med High Medium Medium Med High

REQ6: Ability to select requirement in a view and GoTo in
Word document.

Med High Medium Medium Med High

REQ7: Display a requirements attribute in the text of the
requirements document.

Medium Medium Medium Med High

REQ8: New project wizard Med High High Med High Medium
REQ9: Fast creation of a requirement (avoid the requirement
dialog on creation).

Med High Med Low Med Low High

REQ10: Autosave of a project (project archive). Medium Med Low Medium Medium
REQ11: Change one or more attributes for a selected set of
requirements.

Medium Med High Medium Medium

REQ12: Ability to Clone a project’s structure to allow users to
easily create new projects from old.

High Medium Medium Low

REQ13: Performance enhancements for printing, requirement
identification.

High Med High Medium Med High

REQ14: Windows95 Port. High Medium High High

14

Use Requirements Traceability

Customer’s Business Needs

drive

Customer Needs

which drive

User Needs

which demand

Product Features

that drive

Software Requirements

that we, developers,

Implement

and

Test. E . Magaziner ‘96

What is Traceability?

� Requirements tracing is the linking of a
requirement to other requirements and to other
lifecycle elements

� The purpose of requirements tracing is to:
� Verify that all requirements of the system are fulfilled by the

implementation
� Verify that the application does only what it was intended to

do
� Help manage change

� A proven technique for understanding the impact
of changes

� A proven technique for assuring quality

15

CR

Test

Code

SRS

PRD

Customer and
End-User Inputs

Marketing
New

Feature

New
Requirement

Bug

Help Desk
End-User Inputs

Approved
Decision
Process
(CCB)

Change requests come from many sources
throughout the product lifecycle

Route All Requests Through the RM Process

Single Channel
for Approval

Coders inputs
Testers inputs

Change
Request (CR)

Watch-Out For Requirement Churn

� Requirement Churn = Excessive semantic changes to a
requirement

� Visible if requirement’s changes are tracked
� Sign of a poorly understood, ill-defined requirement
� Often the source of scope problems
� Measured by a requirement’s stability

Do NOT work on unstable requirements!

16

Use Cases and Requirements

� The next generation???
� Notation
� Benefits of use cases
� Use case example
� Use case documentation
� Use cases promote requirements reuse
� Use cases and documentation

Use Case Notation

A

B

C

Jacobson ‘94

An actor is someone or something
outside the system that interacts
with the system.

A use case is a sequence of
actions a system performs
that yields an observable
result of value to a particular
actor.

System
BoundaryUse Case

Actor

17

Use Case Example - Warehouse Automation

Office
Personnel

Acme Warehouse
Management System

Warehouse
Worker Truck Driver

Legacy
Database

Use Case
Use Case

Use CaseForeman

Use Case Example - Identified Use Cases

Some Identified Use Cases

Manually distribute items
within a warehouse Customer ordered

withdrawal

Insertion of
new items

Search for obsolete
inventory

Move parts
between

warehouses

18

Use Case Model Survey

� Move parts between warehouses
Used by warehouse workers to initiate the selection and transfer of
warehouse parts from the central warehouse facility to satellite facilities.

� Insert new warehouse items
Used by warehouse personnel to add new warehouse items after they
have been purchased and placed into item holding areas in area 10.

� Search for obsolete inventory
Used by the foreman to manually program the movement of a part from
one area of the warehouse to another.

� Manually distribute items within a warehouse
Used by the foreman to manually program the movement of a part from
one area of the warehouse to another.

Use Case Specification

Name: Manually distribute items within a
warehouse

Description: Used by the foreman to manually program
the movement of a part from one area of the
warehouse to another.

Flow of Events: The foreman gives a command for
redistribution within a warehouse.
The Window in Figure 3 is presented to the
foreman.
The items can be ordered a number of ways.
This is selected with the ORDER menu
item. Choices are: Alphabetical, Index,
Storing

 In the "From Place" table, the foreman can
view either all Places within the current ….

Alternative Flow A: If the foreman is not authorized for manual
 distribution …

19

Benefits of Use Cases

� Provide context around requirements by expressing
sequences of events

� Most efficient communication mechanism with end users
and domain experts

� Identify users and system boundaries
� Identify system interfaces
� Help us concentrate on the WHAT (rather than the

HOW)
� Reusable in test and user documentation
� Good fit for all (OO or not) design methods

PRD
Features

SRS
Functions

How is this used?

Product Manager

How to explain?

Documentation

How does this work?

Software Developer

How to test?

QA Engineer

Use Case
SpecificationUse Case

Surveys

Test
Requirements

Restate

Use Cases Promote Requirement Reuse

Refine Reuse

Test
Scenarios

Res
ta

te

Step-by-Step
Instructions

Reu
se

20

Summary

Requirements and requirements management are
GOOD!

Not adequately addressing requirements
and requirements management is

BAD!

� There are a variety of useful tips and techniques at
your disposal

Beware of the Dark Side...

Modelling Dynamic Behaviour Based
on Use Cases

Peter Fröhlich and Johannes Link 1

ABB Corporate Research
Speyerer Straße

Heidelberg, Germany
Email: peter.froehlich@decrc.mail.abb.com,

johannes.link@andrena.de

Keywords
UML, Requirements Analysis, State Machine, Use Case, Test Automation.

Abstract
In most object-oriented software development methods use cases are in the cen-
tre of the requirements analysis phase. We argue that a controlled process
requires a formal mapping of use cases to a representation with stricter semantics.
In this paper we describe a method to transform use cases into state machines.
Our method considers all elements usually specified in a use case and integrates
all its scenarios into a single state chart.

1 The role of use cases in the software development process
Use Cases [6] are a popular formalism for capturing functional requirements and busi-
ness requirements. Use cases are a good means to communicate with a customer.
They are the unit of work in incremental object-oriented software processes like the
Rational Unified Process. Furthermore, they are a good basis for systematic testing.
In [8] Rumbaugh et al. define a use case as "the specification of sequences of actions,
including variant sequences and error sequences that a system, subsystem or class
can perform by interacting with outside actors”. While the advantages of use cases for
requirements engineering are widely accepted, the impact of use cases on software
design is less clear. The UML meta model [11] offers three different notations for
designing dynamic system/subsystem/class behaviour based on use cases, as dis-
cussed in [12]:

• Activity diagrams interpret use cases as branching processes.

• Interaction diagrams (sequence diagrams and collaboration diagrams) can be
used to formalize single scenarios contained in use cases.

• State diagrams specify the behaviour of a system/subsystem/class in reaction to
events from actors. In contrast to interaction diagrams they visualize multiple
scenarios, e.g. the hierarchy of scenarios described by a use case.

1. Now employed at Andrena Objects GmbH
Modelling Dynamic Behaviour Based on Use Cases 1

2 Previous Work

2.1 Use Cases to Activity Diagrams

Activity diagrams have recently been added to UML and act as a variant of state
diagrams. While state diagrams describe the lifecycle of an object using state tran-
sitions caused by operation invocations, activity diagrams show workflows, i.e.
here the state transitions are caused by the termination of an action [8]. Some authors
[13] recommend the use of activity diagrams for the formalization of use cases. More-
over, activity diagrams are a good means to communicate with the customer, espe-
cially if the customer is used to flow diagrams.

However, the disadvantages of using activity diagrams for formalizing use cases
are considerable. First, state diagrams correspond directly to the object-oriented
paradigm (states are caused by events, i.e. operations on a class), whereas activ-
ity diagrams model the control flow of a program. Thus they provide the same
means for creating a spaghetti control-structure as do flow diagrams. Second, the
distinction between normal and abnormal behaviour, which is one of the benefits of
use case analysis is lost when using activity diagrams. The user has to consider all
the choices in the control structure without being guided through the intended
behaviour of the system first.

2.2 Use Cases to Interaction Diagrams

In OMT [7] Rumbaugh proposes to start dynamic modelling with scenarios in text
form. These scenarios are then more formally expressed as sequences of events and
shown in interaction diagrams, which are subsequently merged into state diagrams
showing the complete lifecycle of an object. This approach is still feasible in UML and
also available in the UML meta model [11].

Nevertheless, it seems a rather unnatural approach for formalizing use cases.
Since a use case is a hierarchical collection of scenarios, these would have to be
separated, formalized separately in interaction diagrams and then merged again
into a single state diagram.

3 Use Case Documents

3.1 Examples

The structure of the following use case was inspired by Alistair Cockburn’s use
case template [2] . The example serves to clarify the points we make below.

Name Borrow Book
Goal This use case describes how a library user selects and

then borrows a book from the library.
Preconditions None
Postconditions The user is registered as the borrower of the book in the

library system.
TABLE 1. Borrow Book Use Case
Modelling Dynamic Behaviour Based on Use Cases 2

Main Success
Scenario

1. The user selects the search function from the main
menu.

2. The system displays the search form.

3. The user enters the title of a book (possibly using wild-
cards).

4. The library system presents a list of all matching
books

5. The user selects a book.

6. The system displays the detail view for this book.

7. The user selects borrow from the menu for this book.

8. The user is already logged in. The system issues a
message to the archive that the book is reserved for
the user.

Extensions 4a) There are no matches to the query.

4a1) The system returns to the main screen.

8a)The user is not logged in.

8a1)The user logs in as described in Log in.
Variations 3a) The user enters the name of the author.

3b)The user selects the author from an author list.

3b1)The clicks on “select author”.

3b2)The system displays a selection list of all authors.

3b3)The user selects an author from the list.
Included Use
Cases

Log in

Name Log in
Goal This use case describes how a library user logs into the

system to prove his identity.
Preconditions None
Postconditions The user is logged in
Main Success
Scenario

1. The user selects log in from the main menu.

2. The system asks the user for his login name.

3. The user enters his login name.

4. The system verifies login and password. They are ok.

5. The system logs the user on.
TABLE 2. Log in use case.

TABLE 1. Borrow Book Use Case
Modelling Dynamic Behaviour Based on Use Cases 3

4 Use Cases to State Machines
Recent versions of UML [8] include a powerful state machine concept inspired by
Harel’s state charts [3, 4, 5]. Especially the abstraction mechanisms in the UML state
machine formalism, e.g. nesting of states and stubs, allow us to map all the important
elements of the use case template introduced in section 3 to state machines.

4.1 Main Success Scenario

First, let’s consider the main success scenario of our use case. Each step in a use
case corresponds to a message sent by an actor to the system or vice versa. The
interval between two messages sent to the system is an abstract state of the sys-
tem. As proposed by Rumbaugh [7], we denote all messages sent by the system as
actions of the state. Each message sent by an actor is denoted as an event, causing a
transition between two states of the system. The beginning of the use case is mod-
elled by an initial state, the use case ends in a final state of the state machine. As
intended in use case analysis, the main success scenario ends with the successful
achievement of the goal [2]. Thus, the final state reached after the last step of the use
case corresponds to successful completion. In section 4.3, we will model failures of
the use case. The whole state diagram is encapsulated in a super state named after
the use case for later reuse - to model relationships to other use cases. Figure 1
shows the state diagram corresponding to the Borrow Book use case.

Figure 1: Basic state diagram capturing the main success scenario.

Extensions 4a) The combination of login and password is not ok.

4a1) If the number of retries is not exceeded, repeat the
use case from step 2.

Variations None
Included Use
Cases

None

TABLE 2. Log in use case.

Borrow Book

Search screen

do: Show search form

Reservation

Reservation2

exit: Send msg to archive

Results List

do: Display results list
Book Detail

entry: Display Book Attributes

Search screen

do: Show search form

Reservation

Reservation2

exit: Send msg to archive

Results List

do: Display results list
Book Detail

entry: Display Book Attributes

Search screen

do: Show search form

Reservation

Reservation2

exit: Send msg to archive

Reservation2

exit: Send msg to archive [logged in]logged in

Results List

do: Display results list

Enter Title

Book Detail

entry: Display Book Attributes

Borrow Book

Select Book
Modelling Dynamic Behaviour Based on Use Cases 4

Each UML state diagram corresponds to an object. Since use cases describe the
externally visible behaviour of the system as a whole, the state diagram corre-
sponds to an abstract system object, e.g. the Library. The events shown in the
state diagram, e.g. Enter Title and Select Search, are not necessarily methods of a
concrete class - Library will probably be implemented by a large number of classes
- but events the system understands. These map to statements in a test script for
automatic system testing.

4.2 Variations

Variations in use cases are usually local alternatives for executing a step in the
use case. In a state diagram these can be modelled as multiple paths connecting
two states. In the simplest case, a variant can be represented as an additional link
between the two states delimiting the corresponding step in the main success sce-
nario. Intermediate states may be needed to model more complex variants.

In our example, Enter Author Name is an additional transition from Search Screen
to Results List formalizing variant 3a). Variant 3b) needs more elaborate treatment,
since an intermediate action of the system (displaying the Authors List) is required.
This variant is modelled by the transitions Select Authors List and Select Author
and the intermediate state Authors List. The modifications are shown in Figure 2.

4.3 Extensions

An extension usually describes a backup action for completing a subgoal in a use
case, in case the default action for reaching that goal fails. A special case of this is
when a subgoal fails, because a precondition does not hold as in the example’s
extension 8a). A modular way to handle extensions is to specify them using substates
of the state representing the corresponding step in the main success scenario. Exten-
Modelling Dynamic Behaviour Based on Use Cases 5

sion 4a) is an exception, where we abandon the goal of the use case. No book is
found and the library system goes into an error state.

Figure 2: State diagram with variations and extensions. The Log in state is currently a
placeholder. In section 4.5 we will describe how the invocation of the Log in process is

modelled.

4.4 Preconditions and Postconditions

The Preconditions and Postconditions sections of the use case template allow to
specify the contract of the use case [1]. Preconditions describe verifiable conditions,
which must hold before the execution of the use case. In our use case template [2]
postconditions are divided into Success end condition and Failed end condition.
These sections define constraints which must hold upon successful or unsuccessful
completion of the use case, respectively. We model the preconditions of the use case
as constraints on the first state representing the use case. The upper part of Figure 3
shows how a precondition on a state can be modelled in UML using a superstate with
two substates. We model postconditions of the use case as constraints on the final

Borrow Book

Search screen
do: Show search form

Reservation

Reservation2
exit: Send msg to archive

Log in

Book Detail
entry: Display Book Attributes

Authors List
entry: Display author names

Book Search

Results list
do: Display results list

Search
exit: Search Book

Abandon

Search screen
do: Show search form

Reservation

Reservation2
exit: Send msg to archive

Log in

Book Detail
entry: Display Book Attributes

Authors List
entry: Display author names

Book Search

Results list
do: Display results list

Search
exit: Search Book

Search screen
do: Show search form

Reservation

Reservation2
exit: Send msg to archive

Log in

Reservation2
exit: Send msg to archive

[logged in]logged in

Log in

[not logged in]

[logged in]

Book Detail
entry: Display Book Attributes

Borrow Book

Authors List
entry: Display author names

Select authors list

Book Search

Results list
do: Display results list

Search
exit: Search Book

Results list
do: Display results list

Select Book

Search
exit: Search Book

[matches found]

Select author

Enter Title
Enter Author Name

Abandon

[no matches found]
Modelling Dynamic Behaviour Based on Use Cases 6

state representing the use case. The lower part of Figure 3 shows how a precondition
on a state can be modelled using a superstate with two substates.

Figure 3: Modelling Pre- and Postconditions using UML State Diagrams

4.5 Subordinate Use Cases

UML defines a mechanism for including one use case as a subfunction in another
use case. In use case diagrams this is expressed by a use case relationship of
stereotype include [8]. The same information is present in the subordinate use case
section of our template. In our example, the Borrow Book use case includes the func-
tionality of the Log In use case. Figure 4 shows the state diagram for the Log In use
case. The Log In use case has a successful final state where the user is logged in,
and an unsuccessful end state, where the user has exceeded the maximum number
of attempts to enter the valid password. To integrate the Log In use case with the Bor-
row Book use case we use two techniques from the UML state diagram notation:

• A submachine reference state allows to copy the state machine formalizing the
subordinate use case (Log in) into the enclosing use case (Borrow Book).

• Stub states allow to connect the states in the submachine (Log In) to the right
states in the enclosing machine (Borrow Book).

Figure 5 shows how the use case Log In is embedded into Borrow Book. If the user is
not logged in at the beginning of the reservation state, the transition to the Login
Prompt state is activated. This transition to an internal state of Log In is shown with
the stub notation. The default (successful) exit of the login substate is connected to
Reservation2 and achieves the logged in condition needed by that state. Now that the
logged in condition is assured, we can remove the label [logged in] from the transition.

X

{Precond: C}

X’

 X X[C]

Y

{Postcond: C}

Y’

 Y Y [C]
Modelling Dynamic Behaviour Based on Use Cases 7

The unsuccessful exit of login, formalized by the Login Failed stub is connected to the
error state of the Borrow Book use case, which is called Abandon.

Figure 4: State machine corresponding to the log in use case.

Figure 5: State machine extension showing the included use case login.

5 Integration of Use Cases
In scenario-based approaches to dynamic modelling it is a difficult task to integrate
all the scenarios correctly into a state machine, because those states from the dif-
ferent scenarios must be identified which can be merged into a single one in the
overall state diagram. Desharnais et al. have recently described a fully formal
approach for scenario integration [10], which is however only applicable, if the states
are fully characterized by formulae, a rather unrealistic assumption in applied software
engineering.

Login

Login Prompt

do: Ask user for login

Password Prom pt

entry: Ask use r for pass wd

Password Check

Check

exit: Check Password

Login failed

Login Prompt

do: Ask user for login

Password Prom pt

entry: Ask use r for pass wd

Password Check

Check

exit: Check Password

Login Prompt

do: Ask user for login

Password Prom pt

entry: Ask use r for pass wd

Enter Login

Password Check

Check

exit: Check Password

Check

exit: Check Password

[Passwd invalid]

[not Re tries exceeded]

[Retries exceeded]

Enter Password

[Passwd valid]

Abandon

Reservation2

exit: Send msg to archive

Log in

Reservation2

exit: Send msg to archive

Log in [logged in]

[not logged in]

[logged in]

Login Failed

Login Prompt

Reservation

{Postcond: logged in}
Modelling Dynamic Behaviour Based on Use Cases 8

We have shown in section 4 how a state machine can be constructed directly from a
use case description. This leads us immediately to a consistent state machine for all
scenarios covered by the use case. Thus, the direct transition from use cases to state
machines has eliminated a large fraction of the necessary integration effort.

6 Using State Machines for Test Automation
An important step within thorough testing of object-oriented applications is the
transition from testing individual methods to classes and subsystems. When focus-
ing only on the individual method’s input and output parameters you start missing
important aspects of the overall behaviour of a class. State machines often
describe the overall dynamic behaviour of a class or a system.

Schneider and Winters [13] describe how use case modelling can be applied on differ-
ent levels of detail in system design, i.e. both the description of functional require-
ments from the user’s perspective and the specification of a class or subsystem’s API
(application programming interface). Since we show how to derive state machines
from use cases in general, the resulting state machines can be used as test models in
several contexts:

• In functional requirements testing events in the state chart usually correspond to
concrete user actions, e.g. “Enter Password”. The test cases derived from the
state chart can then easily be used to produce written test descriptions or to trig-
ger the recording of GUI tests with a GUI test automation tool.

• In unit or subsystem testing events map directly on to function or method calls in
most cases. If the syntax for events, actions and their signatures is specified
accordingly, executable test cases could be derived automatically or semi-auto-
matically from state machines.

The creation of test cases from state machines in its basic form is straightforward:
Events and actions map on user actions or method calls, respectively. Siegel [15, pp.
195] describes a few rules for checking state-transition models before using them for
testing. After applying these rules the state machine can be used to produce a
sequence of test cases with a given coverage criteria, e.g. “every transition in the
chart must be covered by at least one test”.

If we apply the above coverage criteria on the state machine from figure 2 (ignoring
the substates), we can derive the following three test cases:

1. Test case 1:
• Select Authors List
• Select Author
• Select Book
• Borrow Book

2. Test case 2:
• Enter Title
• Select Book
• Borrow Book

3. Test case 3:
• Enter Author Name
• Select Book
• Borrow Book
Modelling Dynamic Behaviour Based on Use Cases 9

In this example it can be seen that the test cases so far do not differentiate
between obvious and important cases: Entering search strings for titles or authors
can result either in a matches found or no matches found state. This leads to what
we have seen in section 4: semantic conditions must be included in the state machine
which are meaningful to the user (e.g. logged in or matches found). The state machine
model thus contains transitions labelled by these conditions. While we can have the
system check the condition and thereby record coverage of a given test series, it is
not trivial to enforce these conditions to create a set of test scenarios leading to a
given coverage level. However, if we model explicitly, that a state achieves a certain
condition, we can plan sequences which guarantee to traverse a certain transition with
that condition. This is a topic we are currently investigating.

7 Conclusion
In our paper we have discussed various approaches to transform use cases into
formal representations with strict semantics. Unlike interaction and activity dia-
grams state machines - represented as state charts - have the necessary qualities
to be easily used for dynamic software design and test automation. Our approach
to map use cases onto state charts shows the following properties:

• It integrates scenarios of a use case into one state chart.

• It allows to map all relevant elements of a use case into the chart.

State charts are a powerful means for modelling dynamic behaviour and deriving
test cases; use cases are an essential tool in today’s requirements analysis. Ena-
bling the transformation between the two can be another step towards a repeata-
ble and traceable software development process.

8 References

[1] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.

[2] Alistair Cockburn. Structuring Use Cases with Goals. Journal of Object-Ori-
ented Programming, September and November 1997 issues.

[3] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming, Vol. 8, 1987.

[4] D. Harel. On Visual Formalisms. Communications of the ACM, Vol. 31, No. 5,
Pages 514-531, May 1988.

[5] D. Harel, Michal Politi. Modeling Reactive Systems With Statecharts: The
STATEMATE Approach. McGraw-Hill, New York, N.Y., 1998.

[6] Ivar Jacobson, Magnus Christerson, Patrick Jonsson, Gunnar Övergaard.
Object-Oriented Software Engineering: A Use Case Driven Approach. Addison-
Wesley, Wokingham, England, 1992.

[7] James Rumbaugh, Michel Blaha, William Premerlani, Frederick Eddy, William
Lorensen. Object-Oriented Modeling and Design. Prentice Hall, Englewood Cliffs,
N.J., 1991.
Modelling Dynamic Behaviour Based on Use Cases 10

[8] James Rumbaugh, Ivar Jacobson, Grady Booch. The Unified Modeling Lan-
guage Reference Manual. Addison-Wesley, Reading, Mass., 1999.

[9] Martin Fowler. Use and Abuse Cases. Distributed Computing, April 1998.

[10] Jules Desharnais, Marc Frappier, Ridha Khèdri, and Ali Mili. Integration of
Sequential Scenarios. IEEE Transaction on Software Engineering, Vol. 24, No. 9,
September 1998.

[11] Object Management Group. Unified Modeling Language Specification. Fram-
ingham, Mass., 1998.

[12] Russell R. Hurlbut. The Three R’s of Use Case Formalisms: Realization,
Refinement, and Reification. Technical Report XPT-TR-97-06, Expertech, Ltd,
1997.

[13] Geri Schneider, Jason P. Winters. Applying Use Cases: A Practical Guide.
Addison-Wesley, 1998.

[14] Brian Marick. The Craft of Software Testing. Prentice Hall, 1995.

[15] Shel Siegel, Robert J. Muller. Object-Oriented Software Testing: A Hierarchi-
cal Approach. John Wiley and Sons, 1996

Modelling Dynamic Behaviour Based on Use Cases 11

1

Modelling Dynamic Behaviour Based on Use Cases

Peter Fröhlich and Johannes Link

ABB Corporate Research

Speyerer Straße 4

69115 Heidelberg, Germany

Email: peter.froehlich@de.abb.com,

johannes.link@andrena.de

Motivation

• Use Cases
– Hierarchical collection of scenarios describing functional

requirements

– Commonly used for Requirements Capture

– Vision: Development process driven by use cases
• From Use Cases to Design

• Testing based on Use Cases

⇒ Controlled process requires formal mapping to
representation with stricter semantics

• Possible Target Formalisms
– Interaction Diagrams

– Activity Diagrams

– State Machines

• State machines seem the most suitable approach

2

Previous Work

• Use Cases to Activity Diagrams
– Activity Diagrams

• Recent addition to UML

• Good means for communication with customer

– Disadvantages of Activity Diagrams
• Missing connection to OO-Paradigm

• Models central control structure instead of message-based interaction

• No distinction between normal and abnormal behaviour

• Use Cases to Interaction Diagrams
– Interaction Diagrams

• Already in OMT

– Disadvantages of using Interaction Diagrams
• One Interaction Diagram is one scenario

⇒ Scenarios which are related in the use case are separately modelled in
different diagrams

⇒ Must be merged formally later: “Scenario integration” is necessary

Use Cases to State Machines

• Advantages
– Expressive, hierarchical formalism

– Integration of all scenarios of a use case in one state chart.
Relationships among scenarios are defined by the formalism.

– Nested states allow to model include-Relation among use cases
explicitly

– Conditional transitions allow to model Pre- and Post-conditions

– Events in state charts map to methods in class definitions

• Application Areas
– Design of dynamic object behaviour

– Easy derivation of test cases

3

Example
• Borrow Book

– Main Success Scenario

1. The user selects “ search” from the main menu.

2. The system displays the search form.

3. The user enters the title of a book.

4. The system presents a list of all matching books.

5. The user selects a book.

6. The system displays a detail view for this book.

7. The user selects borrow from the menu.

8. (User logged in). The system reserves the book.

– Extensions

4a) There are no matches to the query.

4a1) The system returns to the main screen.

8a) The user has to “Log in” to borrow the book.

– Variations

3a) The user enters the name of the author.

3b) The user selects the author from an author list

– Included use case: Log in

• Log in

– Pre-condition: not Logged in

– Post-condition: Logged in

Mapping to State Machines (1)
Main Success Scenario

– Use case -> State (with further internal states)

– Use case start -> Initial state

– User step -> Event (e.g. “Select Book”)

– System step -> Action of a state (e.g. “Show search form”)

– End of use case -> Final state

– Step with precondition -> Substate with conditional transition (e.g.
“logged in”)

Borrow Book

Search screen
do: Show search form

Reservation

Reservation2
exit: Send msg to archive

Results List
do: Display results list

Book Detail
entry: Display Book Attributes

Search screen
do: Show search form

Reservation

Reservation2
exit: Send msg to archive

Results List
do: Display results list

Book Detail
entry: Display Book Attributes

Search screen
do: Show search form

Reservation

Reservation2
exit: Send msg to archive

Reservation2
exit: Send msg to archive [logged in]logged in

Results List
do: Display results list

Enter Title

Book Detail
entry: Display Book Attributes

Borrow Book

Select Book

4

Search screen
do: Show search form

Authors List
entry: Display author names

Book Search

Results list
do: Display results list

Search
exit: Search Book

Abandon

Search screen
do: Show search form

Authors List
entry: Display author names

Book Search

Results list
do: Display results list

Search
exit: Search Book

Search screen
do: Show search form

Authors List
entry: Display author names

Select authors list

Book Search

Search
exit: Search Book

Results list

do: Display results list

Select Book

Search

exit: Search Book
[matches found]

Select author

Enter Title
Enter Author Name

Abandon

[no matches found]

...

Mapping to State Machines (2)
Variations & Extensions

– Variations -> Alternative transitions
• Simple Transition (e.g. “Enter Author Name”)

• Complex Transition with intermediate states (e.g. Author List)

– Extensions -> Substates with conditional transitions depending on
success or failure

• Additional error states (e.g. “Abandon”)

Mapping to State Machines (3)
Pre- and Post-conditions

– Pre-condition of a use case -> Pre-condition of the first state

– Split state with pre-condition as in (a)

– Post-condition of a use case -> Post-condition of the last state

– Split state with post-condition as in (b)

X

{Precond: C}

X'

 X X[C]

Y

{Postcond: C}

Y'

 Y Y [C]

(a)

(b)

5

Mapping to State Machines (4)
Subordinate Use Cases

– Assume, state machine for Log in exists

Abandon

Reservation2
exit: Send msg to archive

Log in

Reservation2
exit: Send msg to archive

Log in [logged in]

[not logged in]

[logged in]

Login Failed

Login Prompt

Reservation

{Postcond : logged in}

– Include statement -> Submachine reference state

– Stub states are used to connect the enclosing state machine (for
Borrow Book) to the included state machine (for Log in)

Test Automation

• State machine describes the overall dynamic behaviour
– State machines as test models for Functional Requirements Testing

and Subsystem Testing

– Events: user actions or method calls

– Algorithms exist to systematically derive tests with given coverage
level

– Possible Extension based on Pre- and Post-conditions: Make sure
the test sequence satisfies preconditions of all involved states

• Use Cases can be formally mapped to state machines
– The mapping allows for the integration of all elements of a typical

use case document

– In contrast to previous approaches, the relationships among all
scenarios of a use case are represented formally

• The resulting state machines can be used in design and
testing

Conclusions

A post-mortem analysis of a semi-successful
client server system test project.

Mats Grindal, Enea Test
Enea Data AB
www.enea.se

Box 232, S-183 23 Täby, Sweden
Tel: +46-8-50 714 000
Fax: +46-8-50 714 040
E-mail: magr@enea.se

 ©1999 Enea Data AB
All rights reserved

Abstract

Using the results and experiences from a client server system test project, this
paper tries to answer the questions "What worked well?", "What didn't work?"
and "What can be done to improve the next project?".

The planned duration of the system test project was 10 months, from the first
planning to the delivery of the last customer system. The contents of the project
included a Y2K test, a number of new features for old customers and the
customization of the system for one new customer. Each one of the customers
should receive a unique configuration but some of them differ in only minor
parts, leaving a total of four clearly different configurations that were to be
tested.

A typical customer site includes a server or a group of clustered servers. Via
some kind of network up to a few thousand clients are connected to the server.
The clients are distributed geographically.

The major issues for this system is security, reliability and load handling.
Although speed is also important, the manual part of the transaction is more
than 5 times longer than the system part.

The key lessons learned from this study are that integration test organisation
and the use of a test co-ordinator to help optimise test effort will help system
test greatly. The hand over of deliveries from integration test to system test also
is of great importance to the end result.

 2 (17)

© Enea Data AB A post-mortem analysis... 1.0 990919 Mats Grindal 3 (17)

Contents:

1. Disposition...4

2. Scope and background...4

3. Organisation and procedural issues ...5
3.1 Integration test..5

3.2 Test co-ordinator ..6

3.3 Delivery Projects ..7

3.4 Resource allocation ..7

3.5 The role of system test..7

4. Planning phase..8
4.1 System test time budget..8

5. Preparation phase...9
5.1 Non-frozen requirements..10

5.2 Quality of test cases..11

5.3 Inspection ...12

6. Execution phase ..12
6.1 Hand-over meeting ...12

6.2 Regression strategy...13

6.3 Non-functional testing..14

7. Reporting phase..15
7.1 Error reporting process...15

7.2 Basis for delivery recommendation..16

8. Conclusions ...16

9. References ...17

© Enea Data AB A post-mortem analysis... 1.0 990919 Mats Grindal 4 (17)

1. Disposition
The disposition of the paper is to first give some background information on
the project itself in order to put this study in perspective. Then follow five
areas of study, the first related to the organisation of the project and the
remaining four each related to each one of the four phases of the system test
project i.e. planning, preparation, execution and reporting. For each area of
study relevant results of the project are discussed and where appropriate
improvements are outlined. The last section of this paper summarises the most
important improvements suggested throughout the paper.

2. Scope and background
The studied system is a client server system. A typical customer site includes a
server or a group of clustered servers. Via some kind of network up to a few
thousand clients are connected to the server.

For server HW, off-the-shelf mainframe computers are used. Operating system
and database applications are bought externally and only the application SW
(10 million lines of code) is developed in house. Both client HW and SW (1.2
million lines of code) are developed in house. But the use of standard HW
products facilitates buying external operating systems.

The goal of the development project of which the studied system test project
belongs to was to build a new release of an already existing client server
system. Functions and features in this new release included:
- Securing the millennium shift for the system.
- Developing a new custom-designed version of the system for one

completely new customer.
- Totally re-designing one old sub-system.
- Adding of a few pieces of old functionality to new customers.
- Making a number of small improvements across the whole system
- Performing error corrections on errors in previous releases.
- Improving the boot code of the client.
- Building a HW prototype of a new client.

The whole system was affected by these changes so from a system testing
perspective there were no obvious shortcuts. However, the transaction engine
and large parts of the other core functionality in the server came out almost
untouched.

© Enea Data AB A post-mortem analysis... 1.0 990919 Mats Grindal 5 (17)

Apart from functionality the major issues for this system are security, reliability
and load handling. Although speed is also important it is not so critical because
the manual part of the transaction takes more than 5 times longer than the
system part.

Each one of the customers should receive a unique configuration but some of
them contain only minor differences, leaving a total of four clearly distinct
configurations. Although each customer configuration should be tested, the
emphasis of the testing could be concentrated on these four different
configurations.

In the original time plan there were 10 months allocated for the system test.

3. Organisation and procedural issues

Fig. The overall structure of the project

As can be seen in the picture above, the system test sub-project was one of four
sub-projects within the development project. Customers to the development
project were four delivery projects, which in turn served the customers.

3.1 Integration test

The only organisation dedicated solemnly to testing was the system test sub-
project. Module testing was performed within the implementation projects with
the sub-project managers responsible. For the integration testing the test co-
ordinator was responsible since the activities involved resources from both
implementation sub-projects. The idea was that the test co-ordinator in co-

Development
Project

Delivery Projects

Design Server
Impl.

Client
Impl.

System
Test

Test Co-ordinator
Project Administrator

© Enea Data AB A post-mortem analysis... 1.0 990919 Mats Grindal 6 (17)

operation with the sub-project managers of the implementation sub-projects
should build integration test groups, which should be led by the test co-
ordinator. This scheme had two major drawbacks. Resources for integration
testing were not always available due to prioritising of implementation
activities, and those that were available were not always motivated to perform
testing. The result was that the integration tests were not always well
performed, which in turn affected system test progress.

One way to solve this problem would be to create a separate integration test
sub-project with its own resources. People working with integration test will be
better motivated since they will have integration as their primary task. With this
solution, testing skills can also be permanently associated with integration
tests. This solution has yet another advantage, as will be explained in chapter
6.1 the role of system test can be better focused.

3.2 Test co-ordinator

On the positive side, the existence of the test co-ordinator gave the system test
sub-project a single speaking partner for plans and results of tests of all levels
of the whole project. For instance it was possible to identify areas where the
amount of system testing could be adjusted, depending on the results from
integration tests. As been mentioned in the previous section, integration tests
were not always performed according to plan adding more tests to be
performed in system test.

To some extent the test co-ordinator also offered the opportunity to exchange
test cases beforehand between the integration and system test phases in a
controlled way. But as integration test resources were not always secured, the
exchange of test cases almost always was to the disadvantage of system test,
with planned integration tests being moved to system test.

It is my belief that it is an important, although difficult role of the test co-
ordinator to find ways of cutting test time by exchanging test cases over the
traditional testing phases. For instance some activities traditionally referred to a
system test activities could very well be performed during integration tests if all
required system components already are in place. Correspondingly some
module tests could very well wait until system test if the cost of implementing
the extra testware required i.e. stubs and drivers, exceeds to the cost of waiting
until the real functions are implemented. The idea behind these thoughts is
presented in [1].

© Enea Data AB A post-mortem analysis... 1.0 990919 Mats Grindal 7 (17)

3.3 Delivery Projects

Another positive aspect of the organisation used was the use of delivery
projects. Each customer had a delivery project acting as interface between the
customer and the development project. This approach gave the system test sub-
projects as well as the other sub-projects an opportunity to work without being
constantly interrupted by customers asking for help, expressing opinions and so
on. Another positive thing was that the same persons handled the whole
information flow between the development project and the customer.
Conflicting decisions could thus be discovered early and kept to a minimum.

3.4 Resource allocation

For the system test sub-project the resource allocation worked well.
A project-planning tool was used to communicate the resource needs to the line
organisation. There were several different projects competing for the same line
resources. Each week the needs of all the various projects were added up in the
project planning tool and the result was returned both to the line organisation
and the different project managers.

The total resource need more than five weeks ahead was used by the line
manager to plan training, vacation, new employments etc. No explicit granting
of resources were made on these “long term needs”. For “short term needs” i.e.
resource needs within a five week time frame, these needs were discussed and
negotiated between the line and the project managers at a weekly meeting right
after the result from the resource need summation was available. The choice of
a five-week time window, is a balance between looking as far ahead as possible
and the correctness of each project's needs. Several of the parallel test projects
competing for the same resources have had frequent and major re-plannings.
The benefit of using longer time frames is therefore questionable. A successful
combination of managers (both project and line) demonstrated the ability to see
the overall picture, thus in consensus dividing resources among the projects.

3.5 The role of system test

The last thing to be commented on regarding the organisation, is the fact that
system test was part of the development project. This led to a severe conflict of
interest. As part of the development project system test automatically became
partly responsible for the product quality. On the other hand system test was
also expected to act as an independent quality controlling body. During of the

© Enea Data AB A post-mortem analysis... 1.0 990919 Mats Grindal 8 (17)

two first customer deliveries system test made the mistake of going along with
the rest of the project adopting a “constructive” thinking. After some weeks of
system test the number of open error reports had been reduced which was
interpreted as a sign of good system quality. The system quality measured in
open error reports together with the assumed quality responsibility gave the
testers no incentive to look for problems beyond the obvious. This led to a
recommendation of delivery for these two customer systems, but when the
systems reached the customers the false conclusion was soon evident. The
customers soon found several grave problems that had been subsequently
missed by testers. System test learned from its mistake, not recommending
further customer deliveries. Which in turn caused the undesired situation that
systems were eventually delivered to the customers without the
recommendation from system test.

To solve this conflict of interest, the same solution as outlined above,
integration test being a separate sub-project, can be used. The advantage would
be that the integration sub-project could take the product quality responsibility,
maintaining a constructive approach and system test can focus mostly on the
auditing function, where a more destructive approach is beneficial. For further
comments see also chapter 7.2 where this issue is further commented on.

4. Planning phase
The most important factor in the planning phase of the whole project affecting
the result of the project, is the method of identifying the work to be performed
and estimating the time needed to do this.

4.1 System test time budget

The method used by this company for creating a time budget for a project,
starts with customers ordering new features and other work to be done. These
orders are refined into work orders. A work order can also originate within the
company. The redesign of one of the sub-systems and the correction of error
reports from previous releases are examples of internal work orders. System
specialists then analyse each work order to assign a time budget for all the
necessary work. This time budget includes time for project management,
design, implementation and test. When there is enough total time worth of
pending work orders or for any other reason a good collection of work orders
awaiting implementation, a new development project is formed.

© Enea Data AB A post-mortem analysis... 1.0 990919 Mats Grindal 9 (17)

The rule of thumb to determine the amount of time available for system testing
is that 15% of the total time for a work order should be used for system testing.
In addition to these 15%, extra time should be allocated for regression testing
of old functionality. The amount of time budgeted for regression test is a
function primarily of how many customers that are included in the project.
For the system test sub-project covered in this report this rule of thumb was
violated resulting in only 10% of the total time for the work orders being
available for system test. If the extra time for regression testing is included the
total time available for system testing was 14 %. The reason behind this
violation was primarily lack of understanding of testing issues from the system
specialists' part. The consequence of this is naturally that testers need to be
involved earlier in the time budget process and/or testing knowledge of the
system specialists' needs to be improved.

Besides participating early in the time budget process, improvements can also
be made on the rule of thumb itself. It is obvious that a software change that is
isolated requires less testing effort than an equally big change that is distributed
over the whole system. Trying to find suitable criteria to classify the degree of
isolation and thus indicating testing effort have to be performed.

The actual result i.e. the ratio of system test time to total time used was 10.6%.
The main reason for this being such a low figure was that the implementation
projects grew but due to lack of available resources on the system test side the
corresponding growth of system test could not be maintained.

It is however hard to draw any valid conclusions from the low number. It is
evident that system test would have benefited from more time but it is
impossible to say how much more time that would have been needed. The main
reasons are that much of the system test time was spent on integration testing
and that the system tests in general were inefficient.

5. Preparation phase
The preparation phase of the system test project was mainly aimed at writing
test cases, test instructions and preparing test data. Out of the 10 calendar
months planned project duration, 4 calendar months were planned for test
preparation. The planning phase was completed on time with only minor
deviation from the original budget.

As far as the quality of the work is concerned it was maybe at little worse that
expected but that can be explained by the large number of inexperienced testers
involved, which suggests that the ratio in calendar time of 4/10 = 40 % is

© Enea Data AB A post-mortem analysis... 1.0 990919 Mats Grindal 10 (17)

roughly OK. Noteworthy is also that there was roughly the same amount of
people involved throughout the whole project, even though more overtime had
to be used in the execution phase. By lowering this ratio somewhat this
conclusion should be fairly right even if “man-time” is used.

The three key areas related to the preparation phase that will be discussed in
this paper are requirements and change request handling, test case quality and
reviews. There are of course many more aspects that could be dealt with but
these three areas are judged to be the biggest contributors to the end result.

5.1 Non-frozen requirements

The largest problem encountered during the preparation phase was non-frozen
input documents. Even at the end of the design project there were still a
number of requirement specifications, which had not been approved.
The immediate consequence of this kind of problem is that constructed test
cases will be incomplete and/or incorrect. During the course of test execution a
large number of error reports have been written only to end up in a “No
Action” state due to this. Unfortunately it has also happened a few times that
tests have been missed or passed on incorrect grounds. These problems were
then found and reported by customers.

It is inevitable that requirements and the corresponding test cases need to be
modified after the preparation phase is finished, so we need to develop a way
of handling such cases. A way to improve matters is as a first step to schedule
the finish (release) dates of new/modified requirement specifications.
This document release plan is then made public and used for planning
dependant activities in later sub-projects. All changes to the plan must be
announced as soon as they are known so dependent activities can be
rescheduled. Step number two is that the release of each requirement
specification must be communicated and used as signal “go ahead”. The third
part of the improvement includes some tuning (and clarification) of parts of the
change request routine.1

• Each change request must clearly indicate which requirements are
concerned.

• No change to an already released document is allowed unless there is an
approved change request describing the change.

• Change requests need to be approved both by the project and by a
representative of the concerned customer(s).

1 At this company there exists a seemingly working change request routine, but approved changes takes very long
time to be entered into the requirements specifications, and the traceability is not working completely

© Enea Data AB A post-mortem analysis... 1.0 990919 Mats Grindal 11 (17)

• As soon as a change request has been approved, the requirements
specification should be updated to a new preliminary version with a note in
the revision history indicating that there is an approved change request
overriding parts of the requirements, unless the change itself is entered in
the document

5.2 Quality of test cases

For several testers this project was their first meeting both with testing and
with this particular system. As there was not enough time to teach both testing
skills and system knowledge, the latter was focussed on under the assumption
that it is better to have testers that can work the system than having an
optimised test suite that no one can run. The end result was that around 1600
test cases were written which roughly had a one-to-one correspondence whit
the new and changed requirements in this project. From a testing perspective
this test suite had several weaknesses:
• Simple techniques like boundary value analysis were not used, leading to

“inefficient” test cases.
• As requirements were mostly about functionality, several important system

characteristics such as security, load handling, stress, reliability etc. were
totally or partly missed during preparation.

• No regression tests were prepared.

When these problems surfaced during test execution phase, some measures
were taken to compensate for these weaknesses. Boundary value analyses was
discussed with the testers and the testers were asked to change test cases on the
fly. This was a feasible solution as each test case contained the original
requirement text. In the absence of clear performance requirements, some
rudimentary benchmark tests were developed, and a checklist for a regression
test was produced. The checklist contained no specific test cases instead it
listed some base functions that were to be checked for each system.
As a result of the lack of testing skills a whole education package has been
planned and will be held this autumn. First a regular test course will be held
and then a number of workshops will be run in which company specific
problems will be addressed. The result from each workshop will form the
framework of improvements that is needed in the system test organisation.

© Enea Data AB A post-mortem analysis... 1.0 990919 Mats Grindal 12 (17)

5.3 Inspection

The last key area to be discussed within the preparation phase is inspection.
Although inspections were expected to be performed, the inspection activity
was never visualised explicitly in the time plan. As a result a tough inspection
race had to be performed during the last two weeks of preparation, which
meant that at the end of the two-week period reviewers were less motivated to
do a good job. The inspections also consumed more time than what was left,
leading to the need for overtime work as described earlier. As testers were
quite unfamiliar with the system external help during the inspections would
have been valuable. By the time the inspections were started the pressure on
the design and implementation sub-projects was very high resulting in great
trouble finding such external help.

Improvements on these issues start with including testers in the requirement
process; this both strengthens the requirements process itself and educates the
testers. Review activities need to be started earlier to even out the workload
and increase the chance of participation of developers in the inspection
process. Finally improvements should also be done in the inspection process
itself; for instance more elaborate checklists and the start of data collection for
future use.

6. Execution phase
The execution phase of the system test sub-project was originally planned to
last 6 calendar months but due to a number of factors the actual time spent in
the execution phase was increased to 9 calendar months. The most important
reason for this was the low quality of the system when it was delivered to
system test. Since large parts of the integration test had been missed, many
more errors than anticipated remained in the code, hampering system test
progress. Not only there was an extra overhead in finding and reporting errors
but there were also a large number of extra deliveries performed. These extra
deliveries put focus on the lack of regression strategy.

6.1 Hand-over meeting

The most important lesson from this is that system test needs to control what is
delivered to it. Hand-over meetings were held once for each customer system at
the first delivery of that system from integration to system test, but the
information presented at these meetings was far from complete. There were no
specified quality criteria to meet, so when system test tried to execute the right

© Enea Data AB A post-mortem analysis... 1.0 990919 Mats Grindal 13 (17)

to reject the delivery, there were big discussions which ended in system test not
formally accepting the delivery but starting testing anyway.

The main purpose of the delivery meeting should be to judge the quality of the
delivery thus being able to decide whether or not it is worthwhile to start the
next phase. To increase the control two simple measures are to improve the
written information passed from integration test to system test and to define
acceptance criteria better. Valuable information about the deliverable include:
• What was planned to be implemented and what really was
• What was planned to be tested and what really was
• Outstanding errors
• Other information

It is my belief that a strong delivery acceptance process cannot rely only on
information from the supplier. Instead the receiver needs to be more active.
Therefor a trial period of 1-2 days is suggested. Thus the acceptance from the
meeting is changed to an acceptance to start a system test trial period. The
same fixed set of test cases is then used at every delivery, adding objectivity to
the acceptance decision. Not until all test cases in the trial period have passed
has the delivery been formally accepted and the real system test can start. A
spin-off effect is that this set of test cases is also the first candidate for
automation.

6.2 Regression strategy

The large amount of deliveries that has passed through system test is too large
for almost any testing organisation to handle with good quality of testing. The
number of deliveries needs to be significantly reduced but even then good
regression test strategy is crucial to success. In this project there were no
automated tests and no real definition of regression tests. To cope with the
situation, a checklist was developed including only the most basic functionality
that could be tested manually by one person during one day. This checklist was
used on all deliveries going out to customers. It caught a few errors but given
the time to prepare, a much better strategy inspired by [2] would be to create
three sets of tests.

The first set of tests should include testing of all basic functionality that should
be checked every time. Examples of such functionality are loading of new
applications, exercising basic functions, running common transaction types,
production of standard lists etc. All test cases in this set should be run for each
new delivery. If it is possible, this set of tests should be automated or at least

© Enea Data AB A post-mortem analysis... 1.0 990919 Mats Grindal 14 (17)

semi-automated. This set of tests can be the same set of tests as described in the
trial run in section 6.1.

The second set of tests is a large set of test cases from which different test
cases are chosen different times. Before the regression test is started a
reasonable amount of test cases across the whole system should be identified
and prepared. If automation is considered the total amount of test cases within
this set should be divided into subsets were each subset is automated
independently. One or several subsets are then identified to be run, during each
regression test. The key idea is that after the whole project all test cases in the
whole original set have been executed at least once.

The third set of tests changes dynamically over time and focuses on areas
where large changes/corrections have been made recently. Relevant test cases
are taken from the test case specification and executed manually. Since the
contents of this set changes over time it is not a good investment to automate
them unless this task is easy.

Another important lesson from this is that the quality of integration testing
needs to be improved, which again suggests integration tests being run in a
separate sub-project.

6.3 Non-functional testing

As have been mentioned earlier, the focus of system test was on functionality.
Issues like reliability, load handling, stress, performance and security were not
dealt with to a necessary extent from a testing perspective. The main reasons
for this incorrect focus were lack of requirements on these issues,
inexperienced testers and the combination of initial bad quality and lack of
time.

Some minor benchmarking activities have been performed. The results will be
used in later projects to compensate for the lack of requirements. An education
program has been launched for the testers and there are activities in other parts
of the company to support the quality question. So in terms of learning from
mistakes all these things will be improved in the future.

As far as the final result, we were in the fortunate situation that system core
remained virtually untouched by this development projects so issues like
reliability, load handling, stress, performance, security etc were areas that were

© Enea Data AB A post-mortem analysis... 1.0 990919 Mats Grindal 15 (17)

working well from the beginning. This claim is also supported by the fact that
no major problems within these fields have been found by the customers so far.

7. Reporting phase
There are three main reporting tasks to be carried out by the system test sub-
project.
• Supply the project with continuous information on the quality of the test

object. This information is used by the project management to make tactical
development decisions. The key sources of information are the error
reporting tool and the weekly status report from the system test sub-project.

• Supply the delivery projects with information on the quality of a particular
customer system at the time of delivery. This information is used by the
delivery project to make a decision about actual customer system delivery.
Key sources of information are the error reporting system and test reports.

• Supply the line organisation and the project management with information
on the results of the project not only in terms of product quality but also
economy, efficiency etc. This data is used in the continuous improvement
program.

All these three functions worked well but there are two issues connected to the
reporting functions that require more attention.

7.1 Error reporting process

The error reporting process at this company had been built around a small in-
house developed tool. This tool was never intended for this type of large
projects so the consequence was that "work-arounds" have been invented
locally to get around the shortcomings of the tool. At the moment there are six
different documents existing at the company describing parts of the error
reporting process and the use of the tool. These documents lack some vital
information and even contain some minor contradictions, leading to
misunderstandings. In the studied project the problems with the error reporting
tool and the associated process was soon evident so a separate log was kept by
the system test sub-project to ensure that no error report would be lost. The
lesson learned here is that the company has outgrown the small tool that once
was enough for its needs. When a new tool has been acquired the error
reporting process also needs to be adjusted to the needs of large projects as
well as the abilities of the acquired tool

© Enea Data AB A post-mortem analysis... 1.0 990919 Mats Grindal 16 (17)

7.2 Basis for delivery recommendation

In the test report used at the delivery meetings the system test project should
give a recommendation whether or not to go ahead and deliver the software to
the customer. This recommendation should be the view of system test and
reflect the system quality experienced during testing. As system test prior to the
delivery meeting had been working in close co-operation with the
implementation projects trying to make things work, the mental effort of
suddenly being the independent quality judge became too large. In retrospect
the recommendations of the two first customer deliveries were not accurate.

This problem has also been discussed in chapter 3.5 and in that chapter some
organisational changes were suggested. However there is also a need for more
objective metrics. At the moment the only measured variable is the number of
outstanding error reports. Coverage metrics also needs to be used in order to
relate the number of errors to the test effort. Metrics should also be used to
indicate the total impact of the outstanding errors for the customer. The
company has acknowledged the need for metrics but the actual choice of
metrics is under investigation.

8. Conclusions
A quick evaluation of the system test results will probably not show so much
on the positive side, but if root causes are examined more closely, a different
picture emerges. It is true that there is a large room for improvement in the
within the system test department and in future system test projects, but many
of the causes for the delays are beyond the control of system test. If taken into
account that most of the system test resources were very inexperienced in the
beginning of the test project, the end result actually looks quite good. Of course
such a claim should not be made outside the testing department in an attempt to
cover the situation, but instead it should be used inside the testing department
to show that the testers actually have done more than what could be expected
of them with their starting points.

As many of the issues affecting the result of system test lie outside the control
of the testing project, the lessons learned will also include several things
outside the normal scope of system testing. This paper is concluded with a list
of the most important lessons learned from the system test perspective.

© Enea Data AB A post-mortem analysis... 1.0 990919 Mats Grindal 17 (17)

• Delivery projects are good, as they act as buffers between customers and
development/test projects.

• The strategic role of the test co-ordinator should be emphasised to make
most out of the possible co-operation between the different levels of testing.

• Integration test should be a separate sub-project to visualise this activity and
improve the resource allocation.

• 30-40 % of the total test time should be planned for preparations.
• Inspections need to be started earlier and should be visualised in the test

plan.
• The delivery process to system test should allow for a trial period before

system test is started, and should grant system test the authority to reject a
delivery.

• A thorough regression strategy is needed which deals both with basic
functionality and recently changed areas of the code.

• More test focus is needed on stress, performance, load handling, security etc.
• A new tool for error reporting needs to be acquired. It should be designed

for more complex projects and easily adaptable to changed project
requirements.

9. References
[1] Marick Brian – New Models for Test Development.

Conference Proceedings Software Quality Week 1999.
[2] Kaner, Falk, Nguyen – Testing Computer Software, 2nd edition

ISBN 0-442-01361-2

1

© Enea Data AB A post-mortem analysis... 1.0 990919 Mats Grindal 1 (11)

A Post-Mortem Analysis of a
Semi-Succesful Client Server

System

Mats Grindal, Enea Test
ENEA Data AB
www.enea.se

email: magr@enea.se

© Enea Data AB A post-mortem analysis... 1.0 990919 Mats Grindal 2 (11)

Outline

• Project Scope
• Organisational issues
• Planning Phase
• Preparation Phase
• Test Execution Phase
• Reporting Phase

2

© Enea Data AB A post-mortem analysis... 1.0 990919 Mats Grindal 3 (11)

Scope

• Server
– Standard HW, OS and dB application
– Application 10 000 Kloc

• Client
– Standard OS
– HW based on standard components
– Application 1 200 Kloc

© Enea Data AB A post-mortem analysis... 1.0 990919 Mats Grindal 4 (11)

Project Goals

• Y2K
• Redesign of one sub-system
• Add old functionality to new

customers
• Small improvements across the

system
• New boot code and HW prototype
• Error corrections

3

© Enea Data AB A post-mortem analysis... 1.0 990919 Mats Grindal 5 (11)

Organisational issues

Development
Project

Test Co-ordinator
Project Administrator

Design Server
Impl.

Client
Impl.

System
Test

Delivery
Projects

© Enea Data AB A post-mortem analysis... 1.0 990919 Mats Grindal 6 (11)

Organisational issues

• Integration test
– Own subproject

• Test Co-ordinator
– Help optimise test efforts

• Customer Projects
– Prevent unnecessary noise

4

© Enea Data AB A post-mortem analysis... 1.0 990919 Mats Grindal 7 (11)

Organisational issues

• Resource Allocation
– Two different schemes

• Role of System Test
– Quality assessments

© Enea Data AB A post-mortem analysis... 1.0 990919 Mats Grindal 8 (11)

Planning Phase

• System Test Time budget
– Rule of thumb 15%
– Budget result 10% (14%)
– Final result 10.6 %

5

© Enea Data AB A post-mortem analysis... 1.0 990919 Mats Grindal 9 (11)

Preparation Phase

• Time consumption
– 40% of system test time

• Non-frozen requirements
– Prepare for changes

• Quality of test cases
– Three areas of knowledge crucial

• Inspection
– Needs to be planned

© Enea Data AB A post-mortem analysis... 1.0 990919 Mats Grindal 10 (11)

Execution Phase

• Hand-over meeting
– System test gains control

• Regression strategy
– Three sets of tests

• Non-functional testing

6

© Enea Data AB A post-mortem analysis... 1.0 990919 Mats Grindal 11 (11)

Reporting Phase

• Error Reporting Process
– Process and tool

• Basis for delivery recommendation
– Metrics

Slide 1

A model for analysis of software testingA model for analysis of software testingA model for analysis of software testing
metrics for process improvementmetrics for process improvementmetrics for process improvement

T Ashok(ash_t1@verifone.com)
Hema Gollamudi(hema_g1@verifone.com)

Piyali Biswas (piyali_b1@verifone.com)

VeriFone India Ltd., Bangalore, INDIA
A division of Hewlett-Packard

Slide 2

Quality Week Europe ‘99

Agenda

• The motivation to analyze data
• The model of data analysis
• Metrics analysis
• Prediction model
• Conclusions
• References

Slide 3

Quality Week Europe ‘99

Motivation

• Performance improvement by improving processes
• The ‘Goal-Question-Metrics’ paradigm followed in identifying

goals and metrices needed
• The metrics collected, analyzed are towards this end of satisfying

the goals identified

Slide 4

Quality Week Europe ‘99

Data analysis model

• Data from projects over 2 years
• As data is not all available in one place, ‘Data Collection Sheet’

was created to collect information
• Data gathered through

– Defect Control System
– Test Plans
– Test Summary Reports
– Data Collection Sheet having test cycle-wise data on effort and

resources
– Personal interviews

Slide 5

Quality Week Europe ‘99

… Data analysis model

• Sheet is filled at start of project and to be updated
regularly

• DCS is updated with each defect
• Test plans and Test Summary Report created at start

and end of project
• Data from all sources collected and analyzed to give

information
• In most cases trends are observed for metrics
• Process improvements are suggested

Slide 6

Quality Week Europe ‘99

Some common terms

• Normalization of defects/effort/time : The total is taken as
100% and data at a point in time is taken as a percentage of the
total

• Mean/Median of metrics taken by taking mean at each data
point

• Standard deviation of metrics is taken at each data point
• Large projects have more than 5 testing cycles
• Small projects have less than 5 testing cycles
• Defects and time is always calculated from the start of system

test phase
• For each of the metrices there are exception values which are

discounted in calculating

Slide 7

Quality Week Europe ‘99

Defects arrival trend

• Median and standard deviation across projects taken
• Company-wide trend noticed
• Analyze - Is trend acceptable/ Improvement needed?
• Release date can be planned accordingly
• Can use for prediction of defects based on effort and time

 Defects Arrival trend

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

%Elapsed Time

%
D

ef
ec

t
A

rr
iv

al

Effort-Defects large projects

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

Effort %

D
ef

ec
ts

 %

Slide 8

Quality Week Europe ‘99

Defects classification

• Average across projects for each severity level taken
• Values 1-5 are varying severity levels of defects
• Defects classification could be subjective
• Ideal project would have less high severity defects
• Trend acceptable/improvement needed?

D e f e c t s S t r a t i f i c a t i o n

0 . 0 0 %

5 . 0 0 %

1 0 . 0 0 %

1 5 . 0 0 %

2 0 . 0 0 %

2 5 . 0 0 %

3 0 . 0 0 %

3 5 . 0 0 %

4 0 . 0 0 %

1 2 3 4 5

S e v e r i t y

%
 d

ef
ec

ts

Slide 9

Quality Week Europe ‘99

Defect repair rate

• Median and standard deviation across projects taken
• Trends noticed company-wide
• Prediction of open defects at release can be made
• Decision on releasing product on date can be made
• Trend acceptable/ Improvement needed ?

C los u r e T r e n d

0 %

1 0 %

2 0 %

3 0 %

4 0 %

5 0 %

6 0 %

7 0 %

8 0 %

9 0 %

1 0 0 %

0 % 1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 6 0 % 7 0 % 8 0 % 9 0 % 1 0 0 %

% E l a p s e d T i m e

%
D

ef
ec

t
C

lo
su

re

I D E A L

u - 2 (S T D E V)

u + 2 (S T D E V)

Slide 10

Quality Week Europe ‘99

Weighted lifetime of defects

• Weights assigned to varying severities
• Average across projects taken for each severity level
• Company-wide averages noted as baselines
• Are ranges acceptable / improvement needed
• Guidelines on maximum lifetime to be made

Weighted Average life t ime o f de fec ts

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 2 3 4 5

S e v e r i t y

W
ee

ks

Slide 11

Quality Week Europe ‘99

Defects volumes/ Cost of defect
• Code size or function points can be used for defect volumes analysis
• U.S industry standards show direct correlation in code size and total

defects
• Cost of a defect is total effort/total defects * labour cost
• Person hours per defect per project is plotted
• Range of Cost of defect is noted in control chart
• Ideal value for cost to be analyzed over projects
• Low value shows a poor quality product, effective testing
• High value could mean ineffective testing, good quality product

• Analyze no. of projects with extreme values in defect volumes
• Analyze range of values in a control chart
• Analyze overall and selected averages
• Baseline company-wide averages
• Study further projects for updates on baselines

Slide 12

Quality Week Europe ‘99

Defect origins

• Defects are normalized
• Analyze reasons for maximum defect
• Improve processes in areas of maximum defects

D e f e c t O r ig in s

0

2 0

4 0

6 0

8 0

1 0 0

0 1 2 3 4 5 6 7

O r i g i n s

D
ef

ec
ts

 %

Slide 13

Quality Week Europe ‘99

Defects distribution per cycle

• Ideal and standard deviation plotted
• Trends analyzed
• Is development lifecycle spiral model, waterfall model,...?
• Trends acceptable / Improvement needed ?

D e f e c t s D i s t r i b u t i o n p e r C y c l e l a r g e p r o j e c t s

- 1 0

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

0 % 1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 6 0 % 7 0 % 8 0 % 9 0 % 1 0 0
%

E f f o r t %

D
ef

ec
ts

 %

I D E A L

u - S t d e v

u + s t d e v

Slide 14

Quality Week Europe ‘99

Effort Vs. Elapsed time

Project Elapsed time
PH

Effort
PH

Effort/Elapsed
time

Project A 2340 756 0.32
Project B 420 420 1.00
Project C 612 325 0.53
Project D 2232 1980 0.89
Project E 90 90 1.00
Project F 792 372 0.47
Project G 630 433 0.69
Project H 2534 1728 0.68

• Analyze the range of ratio, prepare control chart
• Analyze the average value
• Is the value acceptable / improvement needed?
• Have the schedules to be planned and monitored better?

Slide 15

Quality Week Europe ‘99

Feature wise defects distribution
Defects by feature

0%

10%

20%

30%

40%

50%

60%

Con
fig

ur
at

ion

Set
 co

m
pli

an
ce

Setu
p

Con
fig

ur
at

ion M
IP

P
CIP

P
CM

I

Doc
um

en
ta

tio
n

Usa
bil

ity
SOBI

M
ult

ipl
e

pa
ym

en
t

Bat
ch

 A
dm

ini
str

at
ion

Gro
up

 ca
pt

ur
e

In
te

rn
at

ioa
nli

za
tio

n

Set
 tr

an
sa

cti
on

SSL
Tra

ns
ac

tio
n

Non
e

M
isc

D
ef

ec
ts

 %

• Analysis done for each product over various versions
• Defects are normalized
• Features with maximum defects in all versions observed
• Root cause analysis done for maximum defects
• Are high defects due to requirements/design/…?

Slide 16

Quality Week Europe ‘99

#Testcases Vs. Defects
T o t a l T e s t c a s e s N o . o f D e f e c t s R a t io

2 5 6 4 . 1 7
1 0 0 4 7 2 . 1 3
2 0 0 4 6 4 . 3 5
2 7 0 4 2 6 . 4 3
3 7 5 1 1 3 3 . 3 2

1 2 3 5 6 6 1 8 . 7 1
2 8 4 5 5 0 8 5 . 6 0

• Analyze the ratio of testcases to defects
• Analyze exceptions
• Prepare a company-wide baseline based on the average
• Analyze process improvements for improving the value
• Better test cases vs. better quality product

Slide 17

Quality Week Europe ‘99

Defects removal by severity

Severity >= 4 weeks >=3 weeks >=2 weeks >=1 week <=1 weeks
1 16.99% 20.05% 17.85% 16.34% 32.13%
2 6.54% 20.62% 14.47% 14.81% 45.82%
3 7.31% 14.87% 11.49% 11.93% 56.52%
4 8.03% 24.11% 9.48% 11.61% 49.86%
5 9.26% 8.39% 12.81% 15.06% 55.63%

• Analyze defects removal intervals for each defect severity
• Are the values acceptable?
• Are appropriate response times for varying severities followed
• Process improvement needed for improving data?

Slide 18

Quality Week Europe ‘99

Prediction model

• Based on code size, defects in code can be predicted
• Based on effort estimated, the total testing time can be predicted
• Based on effort estimated, total defects can be estimated
• Based on total defects estimated, total open defects at end of

testing can be predicted
• Based on total open defects, release date can be predicted

Slide 19

Quality Week Europe ‘99

Conclusions

• Individual projects give variant data. Normalize across projects
• Arrival and closure rates of defects are analyzed and improved
• Utilization of time and effort are explained and improved
• Company- wide baselines are created and improved
• Predictions on behaviour of projects in the SDLC model can be

made
• Main process improvement areas are noted and worked on

Slide 20

Quality Week Europe ‘99

References

• Applying Software Metrics by Paul Oman and Shari Lawrence Pfleeger
• Applying Software Measurement: Assuring Productivity and Quality by

Capers Jones
• Software Metrics: A rigorous approach by Norman A Fenton
• Metrics and Models in Software Quality Engineering by Stephan H. Kan
• Software Metrics:Establishing A Company-Wide Program by Grady and

Caswell

Page 1

Error Trending
Why and How

Niels Bruun Svendsen
B-K Medical A/S, Denmark

nbs@bkmed.dk

Introduction

How do you waste your money? Do you make the perfect error free product and loose
the market while doing so or do you get your product out "first thing" and drown in
error corrections, patches and possibly field updates?
When developing systems and software an inevitable management question is: "When
is the system ready for release?". On the bottom line the answer on when to release a
new product for production and sales is a matter of being able to estimate the cost of
releasing, as well as the cost of postponing the release.
In calculation of the cost of releasing a product the number of remaining unknown
errors is a major factor. In that respect error detection trends during the system-testing
phase are interesting as means of estimating the number of remaining unknown errors.
This paper will share the experiences gained and the lessons learned from introducing
error trending as an estimation tool and highlight the benefits found as well as the
problems encountered.
The results includes not only experiences with the precision of the estimates but also,
and not less interesting, the impact of error trending on the organization. It was found
that the error trend had a great value during all of the system-testing phase, and for all
groups involved:
• Top-management get a more objective estimate on remaining unknown errors
• Project managers gets a management and planning tool and arguments (against

sales and top-management) for not being able to release "tomorrow"
• System test staff gets a planning tool and the arguments for extra resources
• The developers get the argument for not being able to start on another project

"tomorrow", i.e.: “When this many errors are suspected to be found, we need time
to fix them!”

In short this means that one simple curve gives input and insight for top-management,
project management, QA function and developers, i.e. becomes the common reference
on system state.

Error Trending, Why and How

Page 2

Company Context

B-K Medical develops, produces and markets ultrasound
systems for medical diagnostic imaging. The systems are sold
throughout the world with the major markets being Europe, USA
and Asia. B-K Medical has 250 employees with 166 located in
Denmark. The development department consists of 60 employees
where 20 are involved in software development. B-K Medical is
ISO 9001 certified and most of the products have FDA market
clearance and are CE-Medical Device certified. Therefore
external audits are performed accordingly. No formal
assessment against a model has been performed, but an informal
self-assessment using the BootCheck tool from ESI has been
performed. This assessment gave maturity ratings between 2.5
and 3.25, indicating some areas in need of improvement to get to
the Defined (3) level, and a general lack of metrics as required in
the Managed (4) level.

Project Initiation

The introduction of error trending at B-K was initiated by a management request for an
improved basis for making the release decision, i.e. to decide whether or not to release
a new product for production and sales. As part of the initiatives taken in order to
pursue this goal, Error Trending was introduced. By using Error Trending to estimate
the number of remaining unknown errors rather than using pure intuition, the
objectivity of the basis for the release decision is increased.
Although aiming primarily on an estimate of remaining errors at the time of the release
decision, error trending was introduced in the system-testing group as a tool to be used
from the beginning of system test execution until the product is released. Beginning
error trending early in the system-testing phase gave a lot of good experiences as
described later in this paper.

The initial steps with error trending were done on error data from a scanner that had
been on the market for a year and therefore the number of reported error after release
was known. Error reports from the last part of the system-testing phase were used and
plotted as seen in fig.1. The y-axis shows the accumulated number of errors reported,
and the x-axis shows the number of test days. A test day is equal to a calendar day
except that only calendar days where test were performed are included.

Error Trending, Why and How

Page 3

Fig.1 : Accumulated no. of errors for released product

Despite the fact that the test effort pr. test day was not known in any great detail, the
plotted error data gave a quite clear trend with a distinct convergence in the last part of
the trend. To start off with, very simple functions were tried out, using the trending
functions in the MS Excel spreadsheet. None of the experiments using all data gave
any trustworthy results. Our criterion for a result to be trustworthy, were that the
estimated trend had a good correlation with the last converging part of the data, and
that it gave an estimated total number of errors higher than the number of errors
already found.

Finally it was decided to focus only on the latter part of the error data, and using the
exponential function on those data as shown on fig. 2. It gave a perfect match with the
number of errors actually found after release.

Although this was very well affected by the fact that we knew the result we should get,
it did give some confidence in that here was something useful. Fig. 2 was used for
raising internal interest in error trending, with the argument that:

Based on data with a great deal of uncertainty you can apparently still draw
and extrapolate a trend using the data from the final stage of system test and
get a very good estimate on remaining errors.

The conclusions on the work with the data from the released product was that although
limited in amount and precision it gave a good initial interest in error trending and was
a kick-off for going further into the subject.

Error Trend

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40
Test Days

N
o

. o
f

er
ro

rs

R
el

ea
se

Error Trending, Why and How

Page 4

Fig. 2 : Exponential Error Trend for released product

The Model

When searching for experiences on error trending the name of SATC (Software
Assurance Technology Center) at NASA is very likely to pop up. SATC has published
articles that mentions their work on an Error Trending Model, ref.[1] & ref.[2]. The
Error Trending model was also mentioned by Linda Rosenberg, SATC at a QWE’98
tutorial. As we did not find any further description of this model, Linda Rosenberg was
contacted. We got a very quick response saying that work was still in progress on the
model and they were working on a tool to support the model. We were also invited to
send our data to SATC to have them analyzed.
We decided to send data from the first part of system testing on a new scanner. They
returned a spreadsheet with our data analyzed by a Weibull variate. This was actually
not the model used by the tool, but our data performed better in this model. It differed
slightly from the Weibull function in relation to the manpower utilization, but as this
did not influence the estimate on the number of remaining errors, we decided to
proceed with a model based on the Weibull function itself. The 2-parameter Weibull
function has the form:

−−∗=

max

exp1
t

tKtf
p

Error Trend

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40
Test Days

N
o

. o
f

er
ro

rs Fitted Trend

Actual

Estimated Remaining Errors: 16

R
el

ea
se

Error Trending, Why and How

Page 5

where t is the test effort, p is the shape parameter, tmax is the scale parameter and K is
the scale-up constant (total number of estimated errors).
With p = 1, we have the exponential function and with p = 2, we have the Rayleigh
curve. When used for trending, the parameters K, tmax and p are optimized to get the
minimum sum-of-difference-squared. The spreadsheet included set-up for using the
MS Excel solver to analyze additional data, and has formed the basis of our further
work with error trending. We are therefore very thankful for this valuable input from
SATC.

In fig. 3 the use of the Weibull function on the data from the released scanner is shown.
The estimated number of errors remaining is 5. A total of 15 error reports have been
made since release, including also change request, so although a bit low, it is still a
good estimate, based on data with some uncertainty.

Fig. 3 : Weibull Error Trend for released product

Error Trending during System Test

As mentioned earlier, data from the first part of system test on a new scanner were
analyzed by SATC, NASA. The results, based on the Weibull function, gave a very
high estimate on the number of remaining errors, as well as a high number of days to
find the remaining errors.
When presented for the project manager we had the first direct impact on the project:

With that many test days left, we need more test objects

The presented error trend and estimates were the direct cause for additional test objects

Error Trend

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40
Test Days

N
o

. o
f

er
ro

rs Fitted Trend
Actual

Estimated Remaining Errors: 5

Error Trending, Why and How

Page 6

to be arranged for. The fact that the calculations on our data were made by NASA was
used to increase confidence in the estimate.

A good reference gives confidence

From this point in the system test phase, daily updates of the trend and estimates
were made, i.e. yesterdays reported errors were entered and new parameters for the

Weibull function were calculated. The test days are here counted as test man-days, Fig.

4 : Weibull Error Trend for new product

e.g. 3 testers working one day, results in 3 test days. This way we account for the
changes in test effort.

The new trend and estimates were presented on the “project wall”, and on the Intranet,
see fig. 4. A lot of internal interest were gained and although not all understood that the
error trend curve were optimized every day, it gave opportunities to discuss the state of
system under test as well as error trending in general.

During the last part of the system test phase the project manager had a demonstration
of the system for the top-management. A full functioning scanner was demonstrated
and as often in these situations the comment that the project manager receives is: “This
scanner looks complete. Why don’t we release tomorrow or at least at the end of the
week?”. The standard answer to this question is that “we still need a little optimization
on the quality of the image” and “we haven’t got all parts in production quantities”.
But this time the project manager had another argument, i.e. the error trend and the
estimate of remaining errors and test days. So he showed the error trend saying: “See
we estimate the need for another 100 test days. With the number of test objects and
testers we have, that means we’re finished in 30 days, and that is exactly the planned
release date. That was very convincing and made the end of that discussion. Of cause
the input from SATC at NASA again played a role in the creation of confidence in the
estimate.

Error Trend

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90 100

Test Days

N
o

. o
f

er
ro

rs

Fitted Trend
Actual

Estimated Remaining Errors: 94
Estimated Remaining Days: 100

F
u

n
ct

io
n

al
 t

es
t

st
ar

t

B
u

ild
 5

B
u

ild
 6

B
u

ild
 7

B
u

ild
 8

Error Trending, Why and How

Page 7

The product is finished. Why not release “tomorrow”?
The Error Trend holds the answer

This time it was the top-management, but next time it could be the sales staff asking
for a release “tomorrow”. The visualization of the Error Trend makes it easy to
communicate the probability for further errors to all types of staff in the company.

Not only the project manager, but also the developers can make use of the Error Trend
in this stage of the project. Typically another project is crying out for development
resources as soon as they have finished their work on the current project. And there is a
strong tendency for developers to be almost finished, i.e. “I have only a few more
(known) errors to correct, then I’m finished”. Here the Error Trend is a great help too
as it is easy to take the number of estimated remaining errors and divide by the number
of developers and you have an estimate on how many more errors there are to correct
for each developer. In our case and probably for many others, this will mean a
considerable amount of time to be planned for before the resources are ready for the
next project.

You have implemented it all. Why can’t you start on a new project
“tomorrow”?

The Error Trend holds the answer

The value of the Error Trend and the estimates in the mentioned situations naturally
depends on the precision of the estimates. However we find that the normal
expectations are that far from any reality, that almost any estimate is better than none.
The benefit is there if just you can show that there is “a lot” of errors left and not just
“a few”.

Fluctuations of the Error Trend

Fluctuations in the trend was expected, as new builds, new test techniques and the start
of test in previously untested areas are very likely to initially increase the number of
errors found. And when you test on the same build with the same test technique fewer
and fewer errors will be found. This phenomenon is seen in fig. 4, where the first 24
test days constitutes its own “S” curve and a large increase in error detection rate is
seen as we enter what is referred to as functional test.

So fluctuations are seen:
§ When test of new features is started
§ When changing test techniques
§ When new builds are introduced

Error Trending, Why and How

Page 8

In our case the largest fluctuations were seen when entering test of new feature and the
smallest fluctuation seen when introducing new builds.

Fig. 5 : Evolvement of estimated total no. of errors

As the estimated total number of errors were calculated every day these fluctuations
had an impact on the estimated total number of errors. Therefore there was a need for
visualization of the evolvement of this estimate. A trend for the estimated total number
of errors was added as seen in fig. 5. The first estimate of 530 errors in total was the
estimate received from SATC’s analysis of our data and the figure used to get
additional test objects. As seen the estimate was reduced somewhat during the first
period where Error Trending was used and we saw the estimate stabilize around
approx. 350 errors. But then around the 65th test day suddenly the estimates of the
total number of errors increased drastically. This was caused by the fact that we had
entered test of 2 previously untested areas that were found to have a much higher error
density than what had been tested so far.

This increase in the estimated number of errors in the system naturally imposed a
problem on the project, both in getting development resources to correct the errors and
the extra time needed for both the correction and the verification of the corrections.
When discussing the situation we could see that this was not a new problem, but rather
a problem many projects has suffered from. It is a result of the way we plan the system
test, where we execute the test sequentially, function by function. The problem is
visualized in fig.6. The illustration shows a set of functionalities, where
the “F” functionality is significantly more error prone than the others. The first case

0

100

200

300

400

500

600

30 40 50 60 70 80 90

Test Days

E
st

im
at

ed
 T

o
ta

l N
o

. o
f

E
rr

o
rs

Estimated Total Errors
Found Errors

Error Trending, Why and How

Page 9

Fig. 6 : Test Sequences

is how we traditionally have covered the test of such a system with test suites for
each functionality and executing the test suites sequentially. This means that we will
not have any knowledge of the, in this case, high error density of “F” until late in the
system test execution phase.
Therefore we have changed the strategy for test planning slightly, making a test suite
that covers all functionalities. This test suite will not cover any functionality in depth,
but just enough to get an impression of the error density of the functionality. Use Cases
will be used for designing this test suite. By executing the Use Case based test suite as
the first test suite, we will get valuable data for planning the execution of the remaining
test suites. We will also get the possibility to reject functionalities early in the test
process, limiting the time spend on system testing features that are not ready for system
test. This way of planning the execution of the system test will be applied in two new
upcoming projects.

Common Sense has to be triggered

This change in the system test execution is not directly connected to the Error
Trending. But the visualization of the problem that the Error Trend caused was the
trigger needed to realize it and to have a broader group of people discussing the
problem and possible solutions.

In the final stage of the system test it was found that the estimated total number of
errors remained at a very high level, even with many test days having no or very few
errors found. When looking at the trend curve it was apparent that it was not following

A B C D E F G H

Funtionality

C D E F G

Funtionality

A B H

Test
Suite

1

Test
Suite

2

Test
Suite

3

Test
Suite

4

Test
Suite

5

Test
Suite

7

Test
Suite

8

Test
Suite

2

Test
Suite

3

Test
Suite

4

Test
Suite

5

Test
Suite

6

Test
Suite

8

Test
Suite

9

Test Suite 1

Problem !

Solution ?

Test
Suite

6

Test
Suite

7

Error Trending, Why and How

Page 10

the actual error findings in the final stage of the system test very well. Therefore the
initial part of the system test, where new features were still added to the system, was
omitted from the trend calculations in the final stage of the system test. The lesson
learned here is that:
− Error Trending had valuable impact from early in the system test, even though not

all of the system was ready
− Estimates to be used in the latter part of system test had to be based solely on data

starting at the time where the total system is available.

Summary

The experiences with the work performed with Error Trending can be summarized in
the following Why’s and How’s:

Why:
• It triggers the use of common sense

− It highlights the need for process improvements
• It’s a valuable tool implemented by simple means
• It works as a common reference on system state

− Managers gets valuable knowledge
− Developers gets valuable knowledge
− Testers gets valuable knowledge

• It improves the release decision support

How:
• Find and plot available data
• Select an error trend approach

− Ideas can e.g. be found in literature by SATC, J.D.Musa, Grove Consultants
and S.H.Kan

• Apply it during system test
− Make it visible to all involved in the project
− Monitor the trend and learn from the questions and discussions it generates

• Do not initially expect high-precision estimates
− Increase accuracy by process improvement actions

Error Trending, Why and How

Page 11

Conclusions

We started off aiming at a technique to estimate the number of remaining errors at the
time of possible release. What we found was a technique that apart from doing that
were able to trigger common sense in several processes related to the system test phase.
Improvement was triggered in relation to:

§ Being realistic about when development resources are ready for the next project
§ Getting an easily communicable argument for not releasing “tomorrow”
§ Planning the system test for early error density overview

So far we have limited data on the precision we can obtain, but we have found that
even with a limited precision there’s a lot of benefit in collecting and presenting data
which in many cases are fairly easy to get hold of.
Apart from the mentioned models we also tried using 3rd order polynomial
approximation as suggested by Grove, but had some problems getting estimates we
believe in. And the trust in the model is a key issue when the idea is to be “sold”
internally. Also a good reference play a key role too in that respect. But whatever
model you choose, don’t trust it blindly. Keep your common sense and professional
knowledge, but let Error Trending help you stay objective and use it as a mean of
communicating between personnel groups.

Get your Error Trending started – You won’t regret it

References

[1] Robert E. Waterman, Lawrence E. Hyatt : ”Testing - When Do I Stop?”
International Testing and Evaluation Conference, Washington, DC - October,
1994

[2] Dr. Linda Rosenberg, Ted Hammer, Jack Shaw: “Software Metrics and
Reliability”
9th International Symposium on Software Reliability Engineering Germany -
Nov 1998

[3] Stephen H. Kan: “Metrics and Models in Software Quality Engineering”,
Addison Wesley, ISBN 0-201-63339-6

Error Trending
Why and How

Niels Bruun Svendsen
B-K Medical A/S
email: nbs@bkmed.dk

Error Trending, Background

• How do you waste your money?
– Release too early ⇒ error corrections
– Release too late ⇒ loose market share

• Support for the release decision needed
– How many unknown errors are left?
– …………………

Error Trending, Initiation

• Analyzing available data
– Plotting the data gives overview

Error Finding Trend for Released Product

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40

Test Days

N
o.

 o
f e

rr
or

s R
el

ea
se

Error Trending, Initiation

Error Finding Trend for Released Product

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40

Test Days

N
o.

 o
f e

rr
or

s

Fitted Trend
Actual

Estimated Remaining Errors: 16

R
el

ea
se

• Analyzing the available data
– Adding a trend that looks right gives interest

Error Trending, Initiation

• SATC, NASA
– Waterman error trending model
– New tool called SETT, SW Error Trending Tool

• Analysis on our data
– Suggested a Weibull variate

• Returned spreadsheet with our data

• Proceeded with Weibull

Error Trending, Initiation

• Analyzing the available data
– The Weibull model gave confidence

Error Finding Trend for Released Product

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40
Test Days

N
o.

 o
f e

rr
or

s Fitted Trend
Actual

Estimated Remaining Errors: 5

Error Trending, in system test

Error Trend

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90 100

Test Days

N
o.

 o
f e

rr
or

s

Fitted Trend
Actual

Estimated Remaining Errors: 94
Estimated Remaining Days: 100

• Analyzing data during system test
– Using the Error Trend as common reference on

system state

Error Trending, in system test

• Testers:
– With that many errors left we need another test object

• Project Manager:
– With that many errors left we do not release

“tomorrow”

• Developers:
– With that many errors left we do not start on a new

project “tomorrow”

Error Trending, in system test

• Analyzing data during system test
– Evolvement of the Error Estimate

0

100

200

300

400

500

600

30 40 50 60 70 80 90

Test Days

E
st

im
at

ed
 T

ot
al

 N
o.

 o
f E

rr
or

s

Estimated Total Errors
Found Errors

Error Trending, in system test

• Analyzing data during system test
– Evolvement of the Error Estimate

0

100

200

300

400

500

600

30 40 50 60 70 80 90

Test Days

E
st

im
at

ed
 T

ot
al

 N
o.

 o
f E

rr
or

s

Estimated Total Errors
Found Errors

Error Trending, Test sequence

A B C D E F G H

Funct ional i ty

C D E F G

Funct ional i ty

A B H

Test
Suite

1

Test
Suite

2

Test
Suite

3

Test
Suite

4

Test
Suite

5

Test
Suite

7

Test
Suite

8

Test
Suite

2

Test
Suite

3

Test
Suite

4

Test
Suite

5

Test
Suite

6

Test
Suite

8

Test
Suite

9

Test Suite 1

Prob lem !

Solut ion ?

Test
Suite

6

Test
Suite

7

Error Trending, Conclusions

Why:
• Trigger use of common sense

– Highlights need for process improvements

• Valuable tool by simple means
• Common reference on system state

– Managers gets valuable knowledge
– Developers gets valuable knowledge
– Testers gets valuable knowledge

• Improves release decision support

Error Trending, Conclusions

How:
• Find and plot available data
• Select an error trend approach

– SATC, J.D.Musa, Grove, S.H.Kan

• Apply it during system test
– Make it visible to all involved in the project
– Monitor the trend and learn from the

questions and discussions it generates

• Do not expect high-precision estimates
– Increase accuracy by process improvement

actions

Slide 1

How we Implemented a ChangeHow we Implemented a Change
Control ProcessControl Process

QWE99-v3.ppt

Slide 2

SanlamSanlam

Software Engineering ProgrammeSoftware Engineering Programme

QWE99-v3.ppt

ll Corporate projectCorporate project

ll Focus on processesFocus on processes

ll Use of International Best PracticeUse of International Best Practice
ww CMMCMM
ww ISO 15 504ISO 15 504

ll My focus on QualityMy focus on Quality

ll Change control - a key issueChange control - a key issue

Company CultureCompany Culture

ll ConservativeConservative

ll NormingNorming

ll New culture beingNew culture beingcreatedcreated

ll ISO 15504 MaturityISO 15504 Maturitylevel 0 - 2level 0 - 2

ll DemutualisedDemutualised

ll UnbundledUnbundled

ll Head Office in Cape Town South AfricaHead Office in Cape Town South Africa

ll 2nd largest supplier of Assurance Products2nd largest supplier of Assurance Products

ll 81 years old81 years old

ll Computer systems up to 30 year oldComputer systems up to 30 year old

ll Many different Information TechnologiesMany different Information Technologies

Information about the companyInformation about the company

How we Implemented a ChangeHow we Implemented a Change
Control ProcessControl Process

Slide 3

Transition ManagementTransition Management

Emotional StagesEmotional Stages

Shock
Disbelief
Sadness
&
Loneliness

Anger

Bargaining

Fa
ls

e
H

op
es

D
espair

Depression

Acknowledgement Acceptance

Relief

New Self Knowledge

Creativity

Renewal

Loss
Control Regained

QWE99-v3.ppt

Phases in TransitionPhases in Transition

ll UnFreezingUnFreezing
ww DisconfirmationDisconfirmation
ww Survival AnxietySurvival Anxiety
ww SafetySafety

ll TransitionTransition
ww Cognitive redefinitionCognitive redefinition
ww Imitation of a role modelImitation of a role model
ww ScanningScanning

ll StabilisingStabilising
ww CongruenceCongruence

Phases in TransitionPhases in Transition

Unfreezing

Transition

Stabilising

Why Transition is so DifficultWhy Transition is so Difficult

The hidden,
 total effect
of past
experience

What you see

Slide 4

Transition ManagementTransition Management

Three Requirements for TransitionThree Requirements for Transition

ll Reason to MoveReason to Move
ww AuditAudit
ww HistoryHistory

ll VisionVision
ww Action ResearchAction Research

ll First StepsFirst Steps
ww ProcessProcess
ww PeoplePeople
ww ProjectProject

QWE99-v3.ppt

Planning the TransitionPlanning the Transition

Empathy

Space

Pressure

Time

Managing ExpectationsManaging Expectations

Change

Time

What you wish for

What you plan for

What you get

Slide 5

Building the VisionBuilding the Vision
Action ResearchAction Research

Prepare

Collect
Information

Understand
Information

Feedback

Identify
Actions

Implement
Actions

Contract

Evaluate

QWE99-v3.ppt

Action Research - cycle 1Action Research - cycle 1
ll Contracting - the gauntletContracting - the gauntlet

ll Interviews - anybody and everybodyInterviews - anybody and everybody

ll Digestion - endless discussionDigestion - endless discussion

ll Feedback - the day of the bun-fightFeedback - the day of the bun-fight

ll Actions - Processes, People, ProjectActions - Processes, People, Project

Action Research - cycle 2Action Research - cycle 2

ll Contracting - the false startsContracting - the false starts

ll Interviews - the executivesInterviews - the executives

ll Digestions - more endless discussionDigestions - more endless discussion

ll Feedback - the slick sellFeedback - the slick sell

ll Actions - OK guys now go and do it!Actions - OK guys now go and do it!

Slide 6

First StepsFirst Steps
The Process - Production Change ControlThe Process - Production Change Control

Finalise
Production

Change Date

Migrate to
Production

Project/Task
completion
& reporting

Production
Change
Sign off

Enter/Change
Provisional

Change date on
Enterprise

Change Log

Roll-back

Initiate Root Cause
Analysis

Implementation

Project
Manager

Domain Change Meeting

Enterprise Change Meeting

Enterprise
Change
Manger

Domain
Change
Manager

Scheduling
Meetings

Project
Planning

Deployment
Planning

Verify
Deployment

Plan

Acceptnce
Xlist

Deployment
Plan

Succesful

Processes

Production
Change
Control

Enterprise
Change
Manager

Verify
Migration

Emergency
Fix

Change Request
Management

Not Succesful

Development
and Test

Acceptnce
Xlist

QWE99-v3.ppt

Slide 7

First StepsFirst Steps
The Process - Change Control AdministrationThe Process - Change Control Administration

Enter/Change
Provisional Change
date on Change Log

Work
Planning

Implementation

Production
Change
Control

Project
Manager

Enterprise
Change
Manager

Domain Change Meeting

Enterprise Change Meeting

Enterprise
Change
Manager

Domain
Change
Manager

Responsibilities

Scheduling
Meetings

Change Request - Tracking - and - Closure

Submit
Change
Request

Perform Impact
Analysis

Register
Change
Request

Verify
Change
Request

Prepare
Impact
analysis

Evaluate
Change

Futher impacts
Defined

Accept
Change

Reject
Change

Defer
ChangeCollect more information

Evaluate deferred
Change

Define
Actions

Processes

 Change
Request
Management

 Domain
Change
Manager

QWE99-v3.ppt

Slide 8

First StepsFirst Steps

ProjectProject

ll PhasesPhases

ww Environment- ScopeEnvironment- Scope

ww ProcessesProcesses

ww ToolsTools

ww ImplementationImplementation

ll What the project deliveredWhat the project delivered

ww ProcessesProcesses

ww OrganisationOrganisation

ww Administration toolAdministration tool

ww Implementation sub-projectsImplementation sub-projects

ww Clarity and MomentumClarity and Momentum

QWE99-v3.ppt

People - OrganisationPeople - Organisation

ll Central StructureCentral Structure

ww Enterprise Change ManagerEnterprise Change Manager

ll Decentralised StructureDecentralised Structure

ww Team Change ManagerTeam Change Manager

Slide 9

LessonsLessons

QWE99-v3.ppt

Other LessonsOther Lessons

ll Parallel developments are OKParallel developments are OK

ll People are an exponential factorPeople are an exponential factor

ll A thing worth doing is worth doing…?A thing worth doing is worth doing…?

ll You You MUST MUST have Panache have Panache

Critical RequirementsCritical Requirements

ll SponsorshipSponsorship

ll Shared VisionShared Vision

ll Shared Mental ModelsShared Mental Models
ww No surprises in the project board meetingsNo surprises in the project board meetings

ll Communication - don’t rely on e-mailCommunication - don’t rely on e-mail
ww Discussion crucial for shared mental modelsDiscussion crucial for shared mental models

ll PersistencePersistence
ww Victory and DefeatVictory and Defeat

People - the key rolesPeople - the key roles

ll The EvangelistThe Evangelist
ww Sets the sceneSets the scene
ww Creates the energyCreates the energy
ww Pushes the processesPushes the processes

ll The Project ManagerThe Project Manager
ww Admin and documentationAdmin and documentation
ww Co-ordinationCo-ordination

ll The Enterprise Change ManagerThe Enterprise Change Manager
ww ContinuityContinuity
ww FoundationFoundation

Slide 10

Transition Management is Transition Management is VITALVITAL
So, have you...So, have you...
ll Defined the Change?Defined the Change?

ll Assessed the climate (to remove barriers)?Assessed the climate (to remove barriers)?

ll Identified your approach to change?Identified your approach to change?

ll Identified the sponsors for the change?Identified the sponsors for the change?

ll Prepared the personnel for the change?Prepared the personnel for the change?

ll Assessed the culture?Assessed the culture?

ll Developed the change agents?Developed the change agents?

ll Established a motivation plan?Established a motivation plan?

ll Established a communication plan?Established a communication plan?

ll Established an implementation plan?Established an implementation plan?

1

+RZ�ZH�,PSOHPHQWHG�D�&KDQJH
&RQWURO�3URFHVV

4:(���Y��SSW

6DQODP

6RIWZDUH (QJLQHHULQJ 3URJUDPPH

4:(���Y��SSW

z &RUSRUDWH SURMHFW

z)RFXV RQ SURFHVVHV

z 8VH RI ,QWHUQDWLRQDO %HVW 3UDFWLFH
� &00
� ,62 �� ���

z 0\ IRFXV RQ 4XDOLW\

z &KDQJH FRQWURO � D NH\ LVVXH

&RPSDQ\ &XOWXUH

z &RQVHUYDWLYH

z 1RUPLQJ

z 1HZ FXOWXUH EHLQJFUHDWHG

z ,62 ����� 0DWXULW\OHYHO � � �

z 'HPXWXDOLVHG

z 8QEXQGOHG

z +HDG 2IILFH LQ &DSH 7RZQ 6RXWK $IULFD

z �QG ODUJHVW VXSSOLHU RI $VVXUDQFH 3URGXFWV

z �� \HDUV ROG

z &RPSXWHU V\VWHPV XS WR �� \HDU ROG

z 0DQ\ GLIIHUHQW ,QIRUPDWLRQ 7HFKQRORJLHV

,QIRUPDWLRQ DERXW WKH FRPSDQ\

+RZ ZH ,PSOHPHQWHG D &KDQJH
&RQWURO 3URFHVV

2

7UDQVLWLRQ�0DQDJHPHQW

(PRWLRQDO 6WDJHV

6KRFN
'LVEHOLHI

6DGQHVV
	
/RQHOLQHVV

$QJHU

%DUJDLQLQJ

)
DO
VH

+
RS
H
V

'
H
VS

DLU

'HSUHVVLRQ

$FNQRZOHGJHPHQW $FFHSWDQFH

5HOLHI

1HZ 6HOI .QRZOHGJH

&UHDWLYLW\

5HQHZDO

/RVV

&RQWURO 5HJDLQHG

4:(���Y��SSW

3KDVHV LQ 7UDQVLWLRQ

z 8Q)UHH]LQJ
� 'LVFRQILUPDWLRQ
� 6XUYLYDO $Q[LHW\
� 6DIHW\

z 7UDQVLWLRQ
� &RJQLWLYH UHGHILQLWLRQ
� ,PLWDWLRQ RI D UROH PRGHO
� 6FDQQLQJ

z 6WDELOLVLQJ
� &RQJUXHQFH

3KDVHV LQ 7UDQVLWLRQ

8QIUHH]LQJ

7UDQVLWLRQ

6WDELOLVLQJ

:K\ 7UDQVLWLRQ LV VR 'LIILFXOW

The hidden,
 total effect
of past
experience

What you see

7UDQVLWLRQ�0DQDJHPHQW

7KUHH 5HTXLUHPHQWV IRU 7UDQVLWLRQ

z 5HDVRQ WR 0RYH

� $XGLW

� +LVWRU\

z 9LVLRQ

� $FWLRQ 5HVHDUFK

z)LUVW 6WHSV
� 3URFHVV
� 3HRSOH
� 3URMHFW

4:(���Y��SSW

3ODQQLQJ WKH 7UDQVLWLRQ

(PSDWK\

6SDFH

3UHVVXUH

7LPH

0DQDJLQJ ([SHFWDWLRQV

&KDQJH

7LPH

:KDW \RX ZLVK IRU

:KDW \RX SODQ IRU

:KDW \RX JHW

3

%XLOGLQJ�WKH�9LVLRQ
$FWLRQ 5HVHDUFK

3UHSDUH

&ROOHFW
,QIRUPDWLRQ

8QGHUVWDQG
,QIRUPDWLRQ

)HHGEDFN

,GHQWLI\
$FWLRQV

,PSOHPHQW
$FWLRQV

&RQWUDFW

(YDOXDWH

4:(���Y��SSW

$FWLRQ 5HVHDUFK � F\FOH �

z &RQWUDFWLQJ � WKH JDXQWOHW

z ,QWHUYLHZV � DQ\ERG\ DQG HYHU\ERG\

z 'LJHVWLRQ � HQGOHVV GLVFXVVLRQ

z)HHGEDFN � WKH GD\ RI WKH EXQ�ILJKW

z $FWLRQV � 3URFHVVHV� 3HRSOH� 3URMHFW

$FWLRQ 5HVHDUFK � F\FOH �

z &RQWUDFWLQJ � WKH IDOVH VWDUWV

z ,QWHUYLHZV � WKH H[HFXWLYHV

z 'LJHVWLRQV � PRUH HQGOHVV GLVFXVVLRQ

z)HHGEDFN � WKH VOLFN VHOO

z $FWLRQV � 2. JX\V QRZ JR DQG GR LW�

)LUVW�6WHSV
7KH�3URFHVV���3URGXFWLRQ�&KDQJH�&RQWURO

Finalise
Production

Change Date

Migrate to
Production

Project/Task
completion
& reporting

Production
Change
Sign off

Enter/Change
Provisional

Change date on
Enterprise

Change Log

Roll-back

Initiate Root Cause
Analysis

Implementation

Project
Manager

Domain Change Meeting

Enterprise Change Meeting

Enterprise
Change
Manger

Domain
Change
Manager

Scheduling
Meetings

Project
Planning

Deployment
Planning

Verify
Deployment

Plan

Acceptnce
Xlist

Deployment
Plan

Succesful

Processes

Production
Change
Control

Enterprise
Change
Manager

Verify
Migration

Emergency
Fix

Change Request
Management

Not Succesful

Development
and Test

Acceptnce
Xlist

4:(���Y��SSW

4

)LUVW�6WHSV
7KH�3URFHVV���&KDQJH�&RQWURO�$GPLQLVWUDWLRQ

Enter/Change
Provisional Change
date on Change Log

Work
Planning

Implementation

Production
Change
Control

Project
Manager

Enterprise
Change
Manager

Domain Change Meeting

Enterprise Change Meeting

Enterprise
Change
Manager

Domain
Change
Manager

Responsibilities

Scheduling
Meetings

Change Request - Tracking - and - Closure

Submit
Change
Request

Perform Impact
Analysis

Register
Change
Request

Verify
Change
Request

Prepare
Impact
analysis

Evaluate
Change

Futher impacts
Defined

Accept
Change

Reject
Change

Defer
ChangeCollect more information

Evaluate deferred
Change

Define
Actions

Processes

 Change
Request
Management

 Domain
Change
Manager

4:(���Y��SSW

)LUVW�6WHSV

3URMHFW

z 3KDVHV

� (QYLURQPHQW� 6FRSH

� 3URFHVVHV

� 7RROV

� ,PSOHPHQWDWLRQ

z :KDW WKH SURMHFW GHOLYHUHG

� 3URFHVVHV

� 2UJDQLVDWLRQ

� $GPLQLVWUDWLRQ WRRO

� ,PSOHPHQWDWLRQ VXE�SURMHFWV

� &ODULW\ DQG 0RPHQWXP

4:(���Y��SSW

3HRSOH � 2UJDQLVDWLRQ

z &HQWUDO 6WUXFWXUH

� (QWHUSULVH &KDQJH 0DQDJHU

z 'HFHQWUDOLVHG 6WUXFWXUH

� 7HDP &KDQJH 0DQDJHU

5

/HVVRQV

4:(���Y��SSW

2WKHU /HVVRQV

z 3DUDOOHO GHYHORSPHQWV DUH 2.

z 3HRSOH DUH DQ H[SRQHQWLDO IDFWRU

z $ WKLQJ ZRUWK GRLQJ LV ZRUWK GRLQJ«"

z <RX 0867 KDYH 3DQDFKH

&ULWLFDO 5HTXLUHPHQWV

z 6SRQVRUVKLS

z 6KDUHG 9LVLRQ

z 6KDUHG 0HQWDO 0RGHOV
� 1R VXUSULVHV LQ WKH SURMHFW ERDUG PHHWLQJV

z &RPPXQLFDWLRQ � GRQ·W UHO\ RQ H�PDLO
� 'LVFXVVLRQ FUXFLDO IRU VKDUHG PHQWDO PRGHOV

z 3HUVLVWHQFH
� 9LFWRU\ DQG 'HIHDW

3HRSOH � WKH NH\ UROHV

z 7KH (YDQJHOLVW
� 6HWV WKH VFHQH
� &UHDWHV WKH HQHUJ\
� 3XVKHV WKH SURFHVVHV

z 7KH 3URMHFW 0DQDJHU
� $GPLQ DQG GRFXPHQWDWLRQ
� &R�RUGLQDWLRQ

z 7KH (QWHUSULVH &KDQJH 0DQDJHU
� &RQWLQXLW\
�)RXQGDWLRQ

7UDQVLWLRQ�0DQDJHPHQW�LV�9,7$/
6R��KDYH�\RX���
z 'HILQHG WKH &KDQJH"

z $VVHVVHG WKH FOLPDWH �WR UHPRYH EDUULHUV�"

z ,GHQWLILHG \RXU DSSURDFK WR FKDQJH"

z ,GHQWLILHG WKH VSRQVRUV IRU WKH FKDQJH"

z 3UHSDUHG WKH SHUVRQQHO IRU WKH FKDQJH"

z $VVHVVHG WKH FXOWXUH"

z 'HYHORSHG WKH FKDQJH DJHQWV"

z (VWDEOLVKHG D PRWLYDWLRQ SODQ"

z (VWDEOLVKHG D FRPPXQLFDWLRQ SODQ"

z (VWDEOLVKHG DQ LPSOHPHQWDWLRQ SODQ"

1

&OHDQ�0DQDJHPHQW�EHJLQV�ZLWK
&OHDQ�$SSOLFDWLRQV

.LVKRU�%DSDW

(:2�6RIWZDUH�,QF�

&OHDQ�0DQDJHPHQW��
'HILQLWLRQ

• A practice of managing the hardware,
operating system, applications, and network
components to ensure once a system has
been fully tested, future changes in any
system component are also analyzed and
tested as appropriate. "

2

&OHDQ�0DQDJHPHQW
���&RUROODU\

• A practice of ensuring that applications
contain all and only the components needed
for them to function and to be properly
maintained.

• All the components will be correctly
identified and their inter-relationships will
be correctly documented and maintained.

&OHDQ�0DQDJHPHQW

� (YHU\�'DWD�&HQWHU�QHHGV�WR�IROORZ�FOHDQ
PDQDJHPHQW�SUDFWLFHV�

�)RU�WRR�ORQJ��DSSOLFDWLRQV�KDYH�EHHQ
SRRUO\�FRQVWUXFWHG�DQG�PDLQWDLQHG�

� <�.�DQG�(XUR�KDYH�UHLQIRUFHG�WKH�QHHG�

� $SSOLFDWLRQ�FKDQJH�QHHG�QRW�EH�WKH
QLJKWPDUH�LW�FXUUHQWO\�LV�

3

&OHDQ�0DQDJHPHQW���%DVLFV

� 1RW�D�QHZ�FRQFHSW

� &RPPRQ�6HQVH

� 7LPLQJ�LV�SHUIHFW

� 1RW�D�VLPSOH�SURFHVV

� 1HHGV�IXOO�FRPPLWPHQW

:K\�LV�LW�QHHGHG�"

� %XVLQHVV�DV�XVXDO�LV�QRW�DFFHSWDEOH
DQ\PRUH

� &RVW�RI�HUURUV�LV�DVWURQRPLFDO

� <�.�DQG�(XUR�KDYH�VKRZQ�WKH�QHHG

� %HVW�RSSRUWXQLW\�LV�QRZ

� ,PSRUWDQW�<�.�DQG�(XUR�LPSOLFDWLRQV

4

%HQHILWV���,PPHGLDWH

� $FFXUDWH�DQG�FXUUHQW�LQIRUPDWLRQ

� 3UHYHQW�DSSOLFDWLRQ�PDLQWHQDQFH�HUURUV

� 6LPSOLI\�FRGH�FKDQJHV

� ,PSURYH�WHVWLQJ�SURFHGXUHV

� 6LPSOLI\�DSSOLFDWLRQ�DXGLWV

%HQHILWV���/RQJ�7HUP

� 6LPSOLI\�PLJUDWLRQ�WR�RWKHU�SODWIRUPV

� 7UDQVIRUP�DSSOLFDWLRQV�E\�LQFRUSRUDWLQJ
QHZ�WHFKQRORJLHV

� 6LPSOLI\�SODQQLQJ�IRU�ODUJH�VFDOH
DSSOLFDWLRQ�UHQRYDWLRQ�PDLQWHQDQFH

5

&RVW�6DYLQJV

� +DUG�'ROODU�6DYLQJV�DUH�GLIILFXOW�WR
TXDQWLI\

� 6RIW�'ROODU�6DYLQJV

± 6PDOOHU�DSSOLFDWLRQ�SRUWIROLR

± $FFXUDWH�LQYHQWRU\

± 5HGXFHG�LPSOHPHQWDWLRQ�HUURUV

:KDW�LV�QHHGHG�"

� &OHDQ�$SSOLFDWLRQV

� (IIHFWLYH�&KDQJH�0DQDJHPHQW

� &RQWLQXRXV��0RQLWRULQJ

� 3HULRGLF�5HYLHZ

6

6WDUW�ZLWK�&OHDQ�$SSOLFDWLRQV

� $SSOLFDWLRQV�PXVW�EH�FOHDQ

± 2WKHUZLVH�JDUEDJH�LQ�JDUEDJH�RXW

± %XLOGLQJ�D�KRXVH�RQ�D�VKDN\�IRXQGDWLRQ

� 5HPRYH�XQQHHGHG�FRPSRQHQWV

± %HWZHHQ��������RI�FRGH�LV�XQXVHG

± 8QXVHG�FRGH�LV�XVHOHVV�DQG�H[SHQVLYH

� 0DQXDO�LQYHQWRU\�LV�LPSRVVLEOH

0\WKV

� $�SURGXFWLRQ�DSSOLFDWLRQ�LV�³FOHDQ´

± �&DQ�FRQWDLQ�PLVVLQJ�FRGH

± �&DQ�FRQWDLQ�XQXVHG�SURJUDPV

± �0LVPDWFKHG�SURJUDPV��ODWHQW�ERPEV�

� <�.�RU�(XUR�UHPHGLDWHG�DSSOLFDWLRQV�DUH
³FOHDQ´

± �6HH�DERYH

± 0D\�QRW�EH�WKH�DFWXDO�DSSOLFDWLRQ���0D\
FRQWDLQ�LQFRUUHFW�SRLQWHUV�WR�FRPSRQHQWV�

7

0\WKV��FRQWLQXHG�

� $SSOLFDWLRQ�KDV�EHHQ�WHVWHG��WKHUHIRUH�LW
LV�³FOHDQ´

± ,PSRVVLEOH�WR�WHVW�FRPSOHWHO\

± VRPH�FRPSRQHQWV�PD\�RQO\�EH�XVHG
LQIUHTXHQWO\

± 0LVPDWFKHG�FRPSRQHQWV�FDQ�JLYH�\RX
JRRG�UHVXOWV

± 3DUDOOHO�WHVWLQJ�LV�SDUWLFXODUO\��³PLVOHDGLQJ´

0\WKV��FRQWLQXHG�

� &KDQJH�PDQDJHPHQW�ZLOO�VDYH�XV

± &KDQJH�PDQDJHPHQW�FDQQRW�HQVXUH�WKDW
DSSOLFDWLRQ�LV�FOHDQ�WR�EHJLQ�ZLWK�

± 'HSHQGHQFLHV�KDYH�WR�EH�PDQXDOO\
GHWHUPLQHG�

8

5HDO�/LIH�([DPSOHV

� ����RI�����PLOOLRQ�OLQHV�RI�FRGH�DW�D
PDMRU�XWLOLW\�FRPSDQ\�LQ�&DOLIRUQLD�ZHUH
VKRZQ�WR�EH�XQXVHG

� $W�D�PDMRU�EDQN��LW�ZDV�GLVFRYHUHG�WKDW
VXEURXWLQHV�ZHUH�EHLQJ�H[HFXWHG�IURP
D�OLEUDU\�WKDW�ZDV�QR�ORQJHU�LQ
SURGXFWLRQ�

� �$W�DQ�HOHFWULF�FRPSDQ\�<�.�SURJUDPV
ZHUH�FDOOLQJ�SUH�<�.�VXEURXWLQHV�

5HDO�/LIH�H[DPSOHV��FRQW���

� $W�D�JRYHUQPHQW�DJHQF\��LQ�D�WHVW�RI
RQH�SURGXFWLRQ�DSSOLFDWLRQ�PDGH�XS�RI
���MREV�DQG����SURJUDPV�

± ��SURJUDPV�RI�DQ�DSSOLFDWLRQ�LQ�SURGXFWLRQ
ZHUH�VKRZQ�WR�EH�PLVVLQJ�VRXUFH�FRGH

± ��SURJUDPV�XVHG�RXW�RI�GDWH�FRS\ERRNV

± ��SURJUDPV�H[HFXWHG�ROG�VXEURXWLQHV

9

%DWWLQJ������

� $W�ILYH�GDWD�FHQWHUV�ZKHUH�DQDO\VLV�ZDV
SHUIRUPHG��SUREOHPV�ZHUH�GHWHFWHG�DW
HYHU\�VLQJOH�RQH�

� 6R�IDU�QRW�D�VLQJOH�FOHDQ�RQH�KDV�EHHQ
IRXQG�

� (YHQ�LI�\RX�DUH�FOHDQ��KRZ�ZRXOG�\RX
NQRZ�DQG�KRZ�ZRXOG�\RX�SURYH�LW�"

&RPSRQHQW�5HODWLRQVKLSV

� ,PSRUWDQW�WR�XQGHUVWDQG�GLIIHUHQW�W\SHV
RI�UHODWLRQVKLSV�DQG�WKHLU�LPSOLFDWLRQV
ZLWK�UHJDUG�WR�FOHDQ�DSSOLFDWLRQV�

� $VVXPSWLRQV�FDQ�EH�GDQJHURXV

� 1DPLQJ�FRQYHQWLRQV�FDQ�OXOO�\RX�LQWR�D
IDOVH�VHQVH�RI�VHFXULW\

10

'LVFXVVLRQ�)RFXV

� &OHDQLQJ�XS�DSSOLFDWLRQV

± *HW��QHZ�DQG�FXUUHQW�DSSOLFDWLRQV�LQWR�D
FOHDQ�VWDWXV

± 'RFXPHQW�DSSOLFDWLRQ�UHODWLRQVKLSV

� 3HULRGLF�UHYLHZ

± 9HULI\�WKDW�DSSOLFDWLRQV�DUH�FOHDQ

� 6LPSOH�&KDQJH�0DQDJHPHQW�FDQQRW
HQVXUH�WKDW�DSSOLFDWLRQV�VWD\�³FOHDQ´

&OHDQ�$SSOLFDWLRQ�&KDUDFWHULVWLFV

� 7KH�VWDUWLQJ�SRLQWV��GULYHUV��DUH�NQRZQ�

� $OO�WKH�FRPSRQHQW�W\SHV�DUH�NQRZQ�

� $OO�LQGLYLGXDO�FRPSRQHQWV�LGHQWLILHG�

� $OO�NH\�LQIR�RQ�FRPSRQHQWV�DYDLODEOH

� 2QO\�³SHUPLWWHG´�FRPSLOHU�RSWLRQV�XVHG

� $OO�LQWHU�UHODWLRQVKLSV�EHWZHHQ
FRPSRQHQWV��H[SOLFLW��LPSOLFLW�DQG
DVVXPHG��DUH�NQRZQ�DQG�WUDFNHG��

11

&OHDQ�$SSOLFDWLRQ�&KDUDFWHULVWLFV
�FRQWLQXHG�

� 1R�H[WUDQHRXV�FRPSRQHQWV�SUHVHQW

� ,QIRUPDWLRQ�DXGLWHG�

� ,QIRUPDWLRQ�FHUWLILHG�WR�EH�FRUUHFW�

&UHDWLQJ�&OHDQ�$SSOLFDWLRQV

� ,GHQWLI\�DSSOLFDWLRQV�WR�EH�UHWDLQHG�

� ,GHQWLI\�DOO�DSSOLFDWLRQ�GULYHUV�

� &KRRVH�WKH�ULJKW�6RIWZDUH�WRRO�

� 7DVN�FDQQRW�EH�GRQH�PDQXDOO\�

12

'RLQJ�WKH�&OHDQXS

� 5HPRYH�XQXVHG�FRPSRQHQWV��%H
³UXWKOHVV´�DERXW�LW�

� 5HFRPSLOH�SURJUDPV�LI�QHFHVVDU\�WR�JHW
WKHP�³LQ�V\QF´

� 5HFUHDWH�PLVVLQJ�VRXUFH�FRPSRQHQWV�

� 5HUXQ�VRIWZDUH�WRRO�³DJDLQ´�WR�YHULI\�

� 0DNH�VXUH�DOO�FRPSRQHQWV�KDYH
³FRUUHFW´�GDWH�WLPH�VWDPSV�

6RIWZDUH�7RRO�5HTXLUHPHQWV

± 7RRO�VKRXOG�VLPXODWH�H[HFXWLRQ�SDWKV�RI
DSSOLFDWLRQV�

± 7RRO�VKRXOG�WUDFN�LQWHUUHODWLRQVKLSV�

± 7RRO�VKRXOG�EH�DEOH�KDQGOH�H[SOLFLW��LPSOLFLW
DQG�DVVXPHG�UHODWLRQVKLSV�

± 7RRO�VKRXOG�SURYLGH�GHWDLO�DQG�VXPPDU\
GRFXPHQWDWLRQ�

13

.HHS�LW�&OHDQ

� 8VH�D�³&KDQJH�0DQDJHPHQW´�SURGXFW�WR
WUDFN�DOO�FKDQJHV�

� 3HULRGLFDOO\�UXQ�WKH�FOHDQXS�WRRO�WR
YHULI\�³FOHDQ´��VWDWXV�RI�DSSOLFDWLRQV�

6XPPDU\

� &OHDQ�0DQDJHPHQW
LV�YLWDO�

� 7KH�ULJKW�ZD\�LV�WR
VWDUW�ZLWK�FOHDQ
DSSOLFDWLRQV�

� 3HULRGLFDOO\�YHULI\�DQ
DSSOLFDWLRQV�³FOHDQ´
VWDWXV�

� .QRZ�ZKLFK
DSSOLFDWLRQV�\RX
ZDQW�WR�NHHS�

� <RX�QHHG�WKH�ULJKW
WRRO�

� 6LPSOH�³FKDQJH
PDQDJHPHQW´�LV�QRW
VXIILFLHQW�

1

Achieving Customer Satisfaction through Requirements
Understanding

John Elliott and Peter Raynor-Smith

(c) Copyright 1999 by Defence Evaluation and Research Agency, UK. All Rights Reserved.

Abstract
Customer satisfaction is one of the key drivers in systems development. However, widespread

customer satisfaction is not attained largely due to problems of inadequate 'requirements
understanding'. This paper describes a process improvement theme and case study that has been
directed towards better customer satisfaction through improved through-life requirements
engineering and management.

1. Introduction
One key goal of all businesses is to achieve a continuous and high level of customer

satisfaction in the delivery of services and/or products. Such satisfaction is believed to be the
basis of long term profitability and business growth. In the sphere of computer based system
products, customer satisfaction is dependent on how system development projects evolve to
build operational product systems that satisfy the perceived and actual customer need and
associated system requirements.

Ultimately, successful customer satisfaction depends upon the depth of 'through-life'
understanding about the business need and associated user requirements for a future system, and
the ability to communicate those requirements to the system developer. In addition, customer
satisfaction and confidence depends upon the level of system assurance offered throughout the
system development lifecycle. Requirements understanding problems inevitably lead to poor
customer-supplier relationships, unnecessary re-works, and overruns in cost and/or time.

This paper discusses the concepts underpinning customer satisfaction and requirements
understanding relevant to software-based system development. In addition, the design of
customer-oriented development processes is described together with a process improvement case
study and associated experiment. The process improvement experiment was EU project number
23893, REJOICE, whose Final Report [17] can be found at the ESSI VASIE website [18]. The
REJOICE experiments and their results have been summarised in Section 5 of this paper.

2. Customer Satisfaction and Requirements Understanding
Customer satisfaction is dependent upon many factors that are associated with the business

need, the development project and resultant system product quality. Ultimately the customer is
looking for added value to benefit the business operations within a defined timeframe but at an
affordable price; hence the customer priority is for an overall successful business. The system
supplier perspective is to deliver a system within the agreed cost plans to satisfy the customer
requirements, thus contributing to the supplier's profit and reputation; hence the supplier priority
is for a successful project. These different perspectives are typically controlled through inflexible
and formal contract management arrangements in the pursuit of a successful project for both
customer and supplier. The cornerstone to such 'success' involves an appropriately rigorous
approach to 'quality' by customers and suppliers.

2

Quality may be loosely inferred to mean 'satisfying requirements' embracing the provision of
added capability (i.e. improved business function and performance) and any associated
trustworthiness or integrity (i.e. continuously performs as intended without harmful 'side-effects'
on business services). One key aspect of the quality perspective concerns the customer and
supplier agreeing upon a required level of quality to be achieved within defined and understood
cost and time constraints. In addition, the quality level must be defined and be subject to some
agreed measurement to monitor attainment. Figure 1 highlights the various project viewpoints
affecting quality.

Figure 1- Balancing the development achievements

The remaining development project consideration is the level of risk and uncertainty
associated with the attainment of the required and agreed quality level; the risk perspective
depends upon the available knowledge about the project constraints and their implications.
Hence both customer and supplier need to understand the level of risk each is taking within their
quality level agreement. In practice, the notion of risk sharing between customers and suppliers
is a difficult area that influences the nature of any supporting legally binding contractual
arrangements. In summary, both customers and suppliers need to plan and implement compatible
quality and risk strategies for the development project. These strategies will need to be reflected
in any contractual agreements.

Returning to quality within the customer satisfaction arena, customers need to be assured that
defined and measurable final product quality attributes demonstrate that their defined needs and
associated requirements are satisfied. Achieving defined product quality depends upon 'getting
the system requirements right' and then 'building the product right' to meet these requirements.
This is not easy to achieve especially within traditional contracting processes that tend to
encourage the communication of requirements through formal documents and review activities.
This inflexible and formal approach to agreement and communication is often the main reason
why customer and supplier teams fail to be effective in achieving continuous levels of
understanding, which is sometimes coloured by a culture of disrespect and mistrust.

The necessary criteria for customer satisfaction are provided below to further demonstrate the
relationship with requirements understanding. Such criteria provide the basis for defining
measurement schemes from which to systematically argue and justify whether customer needs
and requirements have been adequately satisfied.

• The business need for supporting necessary or desirable (process and information) change must be clearly defined.
• The system requirements must be clear (and error-free) and related to the business need.
• The supplier's development process (for all management, engineering and quality activities) must be consistent with best

practice.

Business need/
development time

Capability (function &
performance)

COST

QUALITY

TIME

RISK
CONTROL

Budgeted
funds

Level of
quality

3

• The supplier processes must closely interface with the customer's processes in executing the acquisition and system creation
activities.

• The competence and performance of the supplier teams must be of a high standard.
• There must be high visibility of the executing development processes and of the product evolution.
• There must be an ability to change the product development as the requirements are better understood and refined (or even

changed due to business reasons).
• The final system product must be compliant with the agreed and understood requirements.
• The final system product must meet defined business needs and added value to the customer's business operations.
• The final system product must have high levels of usability and be easily integrated into customer processes.
• There must be sufficient demonstration regarding the satisfaction of business needs, system requirements and product

quality (i.e. overall fitness for purpose).
• The agreed project schedule must be met ensuring that the final system delivery and in-service dates are achieved.
• The project costs must not be changed without full agreement and justification in customer terms.

Partly derived from the criteria above, the customer satisfaction problem domain has four key
dimensions, see Figure 2: business need, system requirements, product quality and confidence in
quality. This is the basis of a customer satisfaction model.

Figure 2 – Four Domains of Customer Satisfaction

This customer satisfaction model above implies that customer satisfaction is analogous to
overall project success. Garrity [1] found that development project success is more than customer
satisfaction as success largely reflects a further two considerations of usability and adaptability.
Usability concerns the wider process considerations beyond system delivery and acceptance
embracing the operational experience; this involves different perspectives when applying the
new system for individual task support and business organisation performance enhancement.
Adaptability has a cycle (of planning, doing, filtering and learning) to adjust development
progress and direction based on business and development feedback and interaction.

Both success notions of usability and adaptability are vital to achieve longer-term customer
satisfaction. Usability, through process analysis, should be a part of the analysis of business
need. The design and implementation of customer-oriented processes should be based on an
adaptive system model, similar to the Viable Systems Model [2], to represent a flexible and
dynamic development approach based on different levels and orders of system-environment
learning, feedback and adjustment.

Those parts of the customer satisfaction model that address business need and requirements
understanding [13], must ensure that all aspects of user and system requirements are considered.
For example, the overall system requirement needs to include the system product requirements as

System
Requirement

Customer Satisfaction

Confidence
in Quality

Product
Quality

Business
Need

Need for change
Strategy
Operation
IT support
Usability

Product requirements
(User requirements
System specification)
Requirements management
Quality levels
Risk Levels
Process criteria
System constraints

Confidence that
product
requirements met
Argument/
evidence about
quality

Development process
Assurance process
Process risks
People competence

Depends on
Depends on

Business criteria for
success

Reflected as

Technical criteria for
success

Supports

Influencing
approach to

Contributes to

4

well as those requirements addressing quality and risk levels, development process criteria and
the project constraints, e.g. interoperability with existing systems, timescales and costs.

Of key importance to customer satisfaction is the central product quality concept, which
loosely means ‘satisfying the customer requirements or need’ throughout the product life cycle,
from ‘birth to death’. The product quality requirements will describe a range of external and
internal system product attributes; external attributes include its functionality and performance
(e.g. speed, reliability, maintainability, safety, security, etc) whereas internal attributes include its
architectural structure, portability etc. Different authors such as Fenton and Gillies [3, 4] describe
and review different quality models including that developed for the ISO 9126 standard [5].

The key achievement of actual product quality can only be measured by reference to a quality
profile [6] that is a weighted representation of each system product attribute. The attribute
weights are derived through customer analyses at the beginning and throughout the development
project. The satisfaction of product quality is judged by the combined final weighted attributes
achieved against that required through prudent use of project resources to address attributes
within designs, trade-offs reviews and their validation.

The product quality achievements depend on the required quality and risk target levels, and
the design and execution of development (i.e. creating) and assurance (i.e. checking) processes.
The relationship between product quality, customer requirements, and system development and
assurance processes are emphasised in Figure 3.

Figure 3 - Impact of Product Quality

Assurance involves checking all levels of the design and provides the argument and
supporting evidence, (i.e. as system measurements of 'fit for purpose') that the need and
requirements have been addressed to the required quality and risk levels. All processes need to
follow consensus best practice that has been suitably tailored to the specific development project
needs, while taking into account all associated quality and risk levels. These levels are related to
the appropriate process and product criteria. The process criteria reflect the degree of
development and assurance rigor to be adopted. The product criteria reflect the design criteria to
be adopted in system architectures and detailed design. The customer's confidence in the final
system product is affected by the visible degree of thoroughness by which the defined and
planned processes were followed and executed; this confidence is also affected by the
competence and performance of the development (and customer) teams.

System
Development
(Process)

Customer
Requirements

Product Assurance (Process)

Product Quality

Expectation for

Provides confidence in

Aims to satisfy

Achieves a level of

5

3. Customer-oriented Lifecycle Processes Design Attributes
The aim has been to define a technical strategy based upon the fundamental understanding

embodied in the customer satisfaction model. The strategy enhances the level of customer
satisfaction through improved customer-developer process design with an emphasis on
requirements and their understanding. There are three questions to be considered in forming an
appropriate technical strategy and in designing a customer-oriented process:

• What are the attributes of a customer-oriented lifecycle process?
• How does the customer-oriented process fit relate to current lifecycle models?
• What techniques are appropriate to be used within a customer-oriented lifecycle process?

Customer-oriented lifecycle process attributes. Based on the concepts in Section 2, the
following are the key requirements on which to design a new approach to customer satisfaction.
The required attributes are below.

• Through-life treatment of system requirements and business need; this will focus attention on the ultimate project goals and
success criteria

• Need to be flexible to changing customer needs and perspectives; this will encourage effective contracting and working
arrangements to be in place that are based on the premise that such change is inevitable and technical agreements will need
to change.

• Must be fast to react to changing customer perspectives about system requirements; this assists customers to quickly see the
impact of their desired changes.

• Enable executable system prototypes to be visible and allowing user 'play back'; this enables the customer team to see the
evolving product in concrete terms and respond accordingly.

• Need to be able to roll the current system solution both forwards and backwards; this assists the speed at which changes
(using new or old perspectives) can be played back.

• Need to embrace the whole system evolution lifecycle; this will ensure that systems are not viewed as totally new but rather
as add-ons or modifications to existing, albeit larger, systems.

• Need to ensure that customers get operational systems as a series of increments to meet shorter-term priority needs; this will
enable customers to get useful employable systems as a series of incremental deliveries formed within an well-founded
overarching business system architecture.

• Need for customer-supplier teams to work in partnership; this will enable both parties with separate overall business aims to
share a more focused and explicit common project goal within a trusted contractual and working relationship that involves
more risk and information sharing, and joint decision making.

• Need effective communication between customer and supplier teams; this enables a common and shared understanding
about the business need, system requirements, and the development processes and products.

• Need customers and suppliers to be regularly interactive about key business and development changes affecting the
partnership; this enables an on-going approach to holism, learning and adaptability throughout system evolution.

• Need frequent customer feedback to design concepts and system increments prior to final acceptance and in-service use; this
will ensure that customers declare timely change based on business use perspectives.

• Need to manage the customer needs and requirements and their satisfaction through a flexible yet controllable approach to
system planning and its execution; this will focus both parties on the theme of customer satisfaction and project success by
on-going requirements understanding.

• Need to provide effective risk and quality control mechanisms to decide about system fitness; this will enable customers and
suppliers to understand their shared risk and views about fitness prior to in-service-use.

Customer-oriented processes and current lifecycle models. There is much written about
development lifecycle strategies, for example, see Somerville, McConnell and Pressman [7, 8,
9]. The main lifecycle variant labels are: Waterfall; V-model; Spiral; Evolutionary prototyping;
Incremental/staged delivery; Design to schedule; Design to tools; Commercial of the shelf; and
Evolutionary delivery. These variants differ in their attempt at imposing different engineering
structures for project management purposes based on implicit premises about flexibility and
degree of change, speed of delivery, reuse and integration, and system delivery strategies. The
overall conclusion is that these lifecycle variants only partially address the above requirements

6

for a customer-oriented lifecycle process and a new approach is required to fully encompass
customer orientation. The main lifecycles tend to be sequential, static and prescriptive in nature,
and assume all projects need the same process structure. No lifecycle adequately represents the
real-world dynamic activities between customer and developer, partly a result of their variability
and complexity.

Customer-oriented lifecycle techniques. The major techniques need to support the goals for
customer satisfaction and in particular requirements understanding. These techniques cover the
following process areas: Business analysis; Communication and interaction; Requirements
management and engineering; Project and risk management; Quality assurance; Rapid
development; Process assessment, e.g. SPICE and CMM; Project and software measurement.

The aim is to populate a customer-oriented lifecycle with a set of relevant techniques, selected
from a 'customer-oriented toolkit'. All techniques need to help facilitate the achievement of
customer satisfaction and requirements understanding.

4. Proposed Customer-oriented Lifecycle Processes

The customer-oriented lifecycle processes have been based on a technical strategy that, in
turn, has been founded on the customer satisfaction understandings in Section 2.

Customer-oriented technical strategy. The proposed strategy is to:
• Define a customer-oriented lifecycle process with the above attributes; that will place an

emphasis on well-founded through-life ‘requirement understanding’ processes.
• Integrate the proposed lifecycle processes into established project, risk and quality

management practices; this will involve identifying the tailoring issues surrounding the
introduction if a customer-oriented approach into established software practices and local
cultures.

• Propose a set of techniques to support the new lifecycle that is appropriate to a project
situation.

• Define a means of measuring the effectiveness of the new lifecycle and supporting
techniques in business and project terms; this will focus on the cost-effectiveness using
criteria about identifying need, communication/interaction and requirements control.

• Ensure that the new customer-oriented approach is focusing on business benefits and be
widely applicable; this directs the approach to be geared towards the non-software
specialists, needing no specialist tools, knowledge or equipment.

Customer-oriented process overview. The aim is to establish an improved process and set of
techniques that will assist customer and supplier to gain a better understanding of initial and
changing requirements so that systems are delivered on time, to cost and actually meeting the
customer’s real need. These techniques will also need to address accomplishing and preserving
product quality throughout the product life cycle. The approach combines and utilises techniques
from separate strands:
• A customer-oriented lifecycle process supported by fundamental system models that describe

requirements understanding concepts and system 'fitness' measurement.
• Use of business analysis techniques such as those exploited in Business Process Re-

engineering (BPR) [10] to guide the way in which the customer’s real needs are articulated
and understood.

7

• Interactive and iterative approaches such as JAD (Joint Application Development) [11] and
RAD (Rapid Application Development) [8, 12] to assist communication and exploration.

• Formalised approaches to capture the statement of requirements, support their management
and allow traceability, etc.

The customer-oriented lifecycle process has been based on an adaptation [14] of the Dynamic
Systems Development Method (DSDM) [15, 16] framework. DSDM offers a generic lifecycle
framework that is geared to being more flexible, faster reacting and dynamic practices involving
joint customer-developer working. Figure 4 shows the five DSDM-based customer-oriented
lifecycle process phases. The proposed process adaptations to DSDM, as used within the
REJOICE process improvement case study, are described further in section 5; these combine and
refine Phases 1 and 2 activities.

Figure 4 - DSDM Based Customer-Oriented Lifecycle Process Framework and Principles

• Phase 1 - Feasibility Study; An assessment is made as to whether or not the DSDM approach
is correct for the anticipated project. [This is not a conventional form of feasibility, i.e.
whether the system concept is achievable.]

• Phase 2 - Business Study; Provides the foundations on which all subsequent work is based
and provides an understanding of the business and technical constraints. [This study is
intended to be relatively short with the aim to describe a 'first-cut' high level requirement.]

• Phase 3 - Functional model; this activity is broadly equivalent to a functional specification,
but expressed using an executable prototype with some documentation support.

• Phase 4 - Design and build; this activity is refining the functionality to reflect non-functional
and other quality/integrity requirements; the detailed designs are as executable prototypes but
with improving quality attributes, supported by essential documentation.

• Phase 5 - Implement: this activity applying the product within a series of systems trials
ultimately being accepted in the operational environment.

Phase 2 Business Study

Feasibility

Agree Schedule
Create

functional
prototype

Identify
functional
prototype

Review prototype

FUNCTIONAL
MODEL

Identify design prototype

Agree
schedule

Review
design

prototype

Create design prototype

DESIGN AND
BUILD

Phase 3 Phase 5

Phase 4

IMPLEMENT

Implement

Review
business

Train
users

User approval /guidelines

I. Active user involvement is imperative.
II. DSDM teams must be empowered to

make decisions.
III. The focus is on frequent del ivery of

products.
IV. Fitness for business purpose is the

essential criterion for acceptance of
deliverable

V. I terat ive and incremental development is
necessary to converge on an accurate
business solution.

VI. All changes during development are
reversible.

VII. Requirements are basel ined a t a h igh
level.

VIII. Testing is integrated throughout the
lifecycle.

IX. A co l l abo rat ive and co-operat ive
approach between all stakeholders is
essential.

DSDM FRAMEWORK
DSDM PRINCIPLES

Phase 1

8

The essence of this approach is for the customer and developer to work in partnership
ensuring that the needs and requirements are well understood by all. The system is allowed
evolve in terms of refining prototypes resulting in useable increments. The strategy is to be
flexible and adaptive to changing requirements and to progressively build quality into the
evolving product. The customer-development interactions occur throughout allowing for
learning, feedback and adapting to influence development directions. The risk of the flexibility
offered needs to be countered through the application of sufficient management and quality
assurance practices incorporating process and product checks with sufficient traceable
documentation. This approach is to some extent dependent on effective tool-sets in order to gain
the customer satisfaction benefits.

5. Process Improvement Case Study
A case study to examine the effectiveness of the new proposed approach to customer

satisfaction and requirements understanding was undertaken as an EU funded process
improvement experiment (PIE), referred to as REJOICE, ESSI Project 23893. The purpose of
the PIE was to demonstrate whether the new customer-oriented process could provide the
business benefits sought as improvement goals.

There are various elements to the experiment:

• Business context.
• Improvement goals.
• Proposed process.
• Experimental considerations.
• Results and assessment.

Business context. The experiment was set in the UK Defence Evaluation and Research
Agency's (DERA's) System and Software Engineering Centre (SEC). The SEC is an autonomous
development and consultancy business that largely serves the defence system businesses within
DERA and the UK Ministry of Defence. The SEC is associated with a very wide range of
systems for high technology research, system requirements and design modelling, tool
development and operational activities. The SEC operates within a highly controlled business
management culture (based on the ISO 9000 series) and its activities are regularly subjected to
process assessments (e.g. ISO, CMM, SPICE, EFQM-BEM). The SEC has a ‘maturing’ software
culture supported by its DERA Software Practices, as highlighted in Figure 5. The DERA
practices incorporate an in-built measurement system.

9

Figure 5 - DERA SEC Software Practice Structure

INTRODUCTION TO THE DERA SOFTWARE PRACTICES

PROCEDURE FOR
SOFTWARE PLANNING
how to plan and manage

software development

SOFTWARE TECHNICAL PROCEDURES

how to use specific methods and tools

G
U

ID
E

S
, E

X
E

M
P

L
A

R
S

 &
 T

E
M

P
L

A
T

E
S

(s
u

p
p

o
rt

in
g

 a
d

vi
ce

)

SOFTWARE CONTROL PROCEDURES
how to control and document the development,

four levels to choose from:
low-medium-high-critical

select
from

PROCEDURE FOR
SOFTWARE PRACTICES

MANAGEMENT
how the practices are

managed and improved

feedback for
process

improvement

PLAN,
MEASURE &

IMPROVE

Le
ve

l 3
 <

<
Le

ve
l 2

 <
<

Le
ve

l 1

SATISFY THE
CUSTOMER

STANDARDS &
CONTROLS

MANAGE
CAPABILITY

DERA MANUAL

select
from

LINKS TO OTHER
DERA

PROCEDURES

SOFTWARE PRACTICES - SCOPE

LOCAL PROCEDURES
how to carry out local processes

(e.g. coding standards, system management procedures,
security operating procedures)

select
from

Improvement goals. The SEC is striving to achieve the highest levels of CMM maturity
(currently achieving Level 3 in some areas) for all its widespread activities supported by the use
of SPICE to develop excellence in particular project domains. There were a number of
improvement areas identified from various process assessments. This included those concerned
with customer relations and ensuring that the SEC met customer needs and requirements. The
relevant ‘customer-related’ goals to be satisfied through an improved approach to requirements
understanding were:

• 20% more customer satisfaction.
• No extra effort on requirements activities.
• 15% decrease in requirements generated problem (i.e. less reworks).

Proposed process. The customer-oriented lifecycle process, an adaptation of DSDM as shown in
Figure4, was applied within specific development projects. The adaptation was to combine
Phases 1 and 2 of DSDM into a single phase, 'User Requirements Study'. The reason was to
remove the DSDM suitability analysis (less important to the REJOICE goals than to rapid
application development objectives) and to increase the focus on the feasibility and definition of
user requirements against a real, and rigorously studied, strategic need for business change.
Hence, this new phase focuses on the communication, understanding, elicitation and high level
capture of business needs and requirements. In addition, before the adapted DSDM lifecycle
process (referred to as the REJOICE process) can be applied, further DSDM 'tailoring'
considerations need to be addressed:
• How can the flexible proposed process be utilised within a high-control business and quality

management culture?
• What standardisation process details should be defined and to what level of detail?
• How do you define the exact process incorporating methods and tools to apply to a specific

project?

It should be stressed that the new customer-oriented process represents a major shift in
development culture, a major issue for the REJOICE experiment. In support of the new process,
a set of specific methods and tools were selected from which the experiment process details were
selected. There was an emphasis on business analysis (e.g. BPR), interaction management and

10

facilitation (e.g. JAD), design methodology (e.g. object-orientation) and requirements
management support (e.g. procedures and tools).

Experimental considerations. The experimentation was divided into four parts:
• Experiment 1 - Defining, tailoring and introducing the new customer-oriented ‘REJOICE’

process.
• Experiment 2 – Partial Application of the REJOICE process to the development of a

Requirements Modelling Tool.
• Experiment 3 - Applying and measuring the impact of the ‘REJOICE’ process during the

development of a DERA Intranet based CMM Self-Assessment Tool.
• Experiment 4 - Comparing the ‘REJOICE’ process with the existing development process

during the development of a DERA Intranet based CMM Self-Assessment Tool.

Each experiment had its own design that included a number of specific hypotheses to be
tested and an associated measurement scheme, each of which was linked to the improvement
goals. Overall the measurement strategy included maximising the use of qualitative observations
backed up by argument based on valuable experience identifying the issues, in addition to
collecting quantitative measures. The data collection involved a combination of surveys,
interviews, project resource extracts and tracking what processes were being implemented in
some measurable detail. The major experimental part was the application of the new process to
be applied to two tool development projects. Each project had specific and well-informed
customer teams; one project was a requirement modelling tool and the other was a CMM
assessment support tool. The outline measurement scheme to examine the new process is shown
below (more details are described in [17]).

Goal Area/Factor Metrics:
• 20% increase in

satisfying customer
needs

 Customer Satisfaction:
 meet need;
 confidence in product;
 confidence in
process/people

 Product Effectiveness:
 product quality claimed;
 demonstration of quality

 Satisfaction (score) with project, product, process, people
 No. of prototype releases - planned, actual
 No. of the original satisfied/unsatisfied requirements

 No of requirements changed
 No of requirements priority changes
 No of evolution’s of requirements

• No change in costs
of requirements
activity

 Project efficiency:
 process definition;
 process cost;
 people impact

 Time spent in customer interactions
 Number of customer interactions
 Time spent demonstrating models/prototypes

• 15% decrease in
problems due to
poor requirements
understanding

 Project efficiency:
 requirement defects;
 people interaction;
 process cost impact

 Number of requirements not satisfied
 Effort spent satisfying incorrect requirements

Experimental Results. The main results of the four experiments are detailed in the REJOICE
Final Report [17] that provides detailed qualitative and quantitative (measurements) evidence
presented in a form that argues about the validity of the various customer-oriented process
hypotheses. The overall results are now briefly summarised in the following table.

11

Experiment Description Main Results:
Experiment 1
Defining, tailoring and
introducing the customer-
oriented process.

• Successive levels of tailoring are involved - they are difficult to clearly define
• The DSDM based customer oriented framework is ‘loosely' defined and requires

further refinement and instantiation to be employable
• The new DSDM based process does not fit easily with existing Quality Systems
• Detailed DSDM based processes cannot be fully prescribed due to the highly iterative

processes involved that is dependent on actual product development progress
• Detailed project planning cannot be achieved: plans need to stay at a high level or they

will lag behind the actual development
Experiment 2
Applying and measuring the
impact of the new customer-
oriented process:
 Requirement Tool Project

• The pragmatic use of principles leads to a ‘fit for purpose’ product
• ‘High level’ user requirements are difficult to resolve and manage contractually
• The use of prototyping techniques are very effective
• The contract requirements would not have been met if traditional processes used

Experiment 3
Applying and measuring the
impact of the new customer-
oriented ‘REJOICE’ process:
CMM Assessment Tool
Project

• There was good ‘buy-in’ by the development team
• There were high levels of user involvement
• There was a high level of user satisfaction with the final product
• The users sometimes resented the demands on their time
• The team emphasis on development of product means documentation/testing suffers

unless control exercised; this may be a problem for longer term customer satisfaction
• Any organisation and culture changes are non-trivial
• It was difficult to control and plan prototyping
• It was difficult to monitor project progress with traditional management techniques
• The development team was not used to empowerment and they tended to perceive a

lack of direction and management

Experiment 4
Comparing the new
customer-oriented
‘REJOICE’ process with the
existing traditional
development process.

• It is difficult to compare results with ‘traditional’ methods due to non-equivalence with
stages in ‘waterfall’ and variants.

• Customer surveys provided evidence of improved satisfaction
• The REJOICE process was found to be more efficient than traditional methods in

terms of required functionality achieved for developer effort
• If the development had followed the existing traditional process, that may have led to

the development of an altogether different tool, not taking into account real business
need

• The longer term customer satisfaction advantages are more difficult to assess
• The REJOICE process developed products may be more difficult to maintain and

evolve

The collective evidence from all these experiments provides the basis for deriving the lessons
that have been learnt within the REJOICE process improvement case study in terms of the
technological and business impact of the new DSDM-based REJOICE process. As in the
REJOICE Final Report [17], these lessons are now described in terms of these technological and
business viewpoints.

Lessons learnt - technological viewpoint. This viewpoint assesses the impact of the new
process in relation to current software practices and their evolution. The lessons are:
• Adoption by the SEC of a new, evolutionary yet controlled lifecycle approach (where

appropriate to the projects) is expected to lead to improved customer satisfaction.
• DSDM offers a useful set of concepts (sensible principles, flexible requirements philosophy,

strong user and end product focus) that will advance the SEC best practices.
• DSDM is not only suitable for ‘RAD type’ projects but its concepts can be integrated, in full

or in part, into more traditional lifecycle approaches.

12

• The integration of the DSDM based process within a traditional ISO 9000 quality controlled
software development operation is non-trivial, unless DSDM is used to do RAD
developments only.

• Commonly available tools generally support the basic DSDM based REJOICE process
although more sophisticated model based tools are needed that facilitate effective user-
modelling interaction (to study requirements and acceptance testing issues).

Overall, the technological lessons about the DSDM based REJOICE processes are
fundamental. More radical software lifecycles are designed to improve customer-developer
relations. These require new ways of thinking about project control and tool based cultures.
There is clear evidence that the REJOICE process is sufficiently mature and does indeed enhance
customer satisfaction, assuming that a joint product-focused management approach is taken by
both customers and developers. In short, the REJOICE process offers clear claimed benefits
when used in part or in full, but there are a number of non-trivial project and quality management
issues to overcome.

Lessons learnt - business viewpoint. This viewpoint assesses the impact of the new process in
relation to business goals and activities. The lessons are:
• Customer satisfaction and the attendant advantages are likely to be achieved by the using the

DSDM based REJOICE Process.
• The REJOICE process is likely to provide cost saving gains in the efficiency of requirements-

based activities, dependant on project complexity and associated implementation issues.
• The REJOICE process requires a co-operative product focused management approach.
• Definition and management of contractual boundaries will be challenging.
• Cultural changes may be difficult to manage.
• Consider applying DSDM techniques to smaller projects until confidence is gained.
• A REJOICE type process will increase business opportunities through improved customer

relations.

Overall, many software businesses, often Small Medium Enterprises, should benefit from the
DSDM-based REJOICE concepts, process and techniques in terms of customer satisfaction and
requirements efficiencies. However, the degree of success will depend upon the organisation and
customer culture, the appropriate application to suitably complex projects and an effective use of
available software technologies. In short, the REJOICE process framework is well founded but
its success critically depends on the management of people and technical resources during any
development project implementation.

6. Summary
This paper has described the underpinnings and development of a customer and requirements

focused ‘REJOICE’ process that has been adopted from DSDM. The underpinning arises from
the evolving development of an innovative customer satisfaction and requirements understanding
model that has a key system measurement component. A new customer oriented lifecycle
process has been defined and examined within an EU funded process improvement experiment,
REJOICE. REJOICE has focused on the business impact of a requirements-oriented process
improvement geared to improve customer satisfaction; the business goals include improved
customer satisfaction and cost effective requirements management. The experimental findings
support the main hypothesis that the flexible process should yield the business benefits

13

suggested; however a careful approach to process introduction is required as a new cultural
approach to customer-supplier partnerships is critical. If implemented well, both customers and
suppliers should reap major benefits.

7. Acknowledgements and Disclaimers
The authors would like to acknowledge the European Commission for funding the Process

Improvement Experiment, REJOICE, Project 23893, supplemented by internal Defence
Evaluation and Research Agency funding on the general concepts underpinning requirements
understanding.

The views expressed in this paper are entirely those of the authors and do not represent the
views, policy or understanding of any other person or official body. Further details can be
requested from the Defence Evaluation and Research Agency (DERA Malvern), Systems and
Software Engineering Centre, Tel: +44 1684-895161, E-Mail: jjelliott@dera.gov.uk.

8. References
[1] Garrity, E.J., Saunders, G.L., "Information Systems Success Measurement", IDEA Group, 1998.
[2] Beer, S., "Decision and Control", John Wiley and Sons, 1966.
[3] Fenton, N. E., Pfleeger S. L., "Software Metrics", 2nd Ed, Thomson Computer Press, 1997.
[4] Gillies, A., "Software Quality - Theory and Management", Chapman and Hall, 1992.
[5] ISO 9126, "Software Product Evaluation", 1992
[6] Van Ekris, J., "Towards business oriented questionnaires for the specification of software product

quality", ESCOM-ENCRESS 1998 Proceedings, May 1998, pp230-238.
[7] Somerville, I., "Software Engineering", Addison Welsey, 1996.
[8] McConnell, S., "Rapid Development", Microsoft Press, 1996.
[9] Pressman, R. S., "Software Engineering - A Practitioner’s Approach", McGraw Hill, 1997.
[10] MacDonald, J., "Understanding Business Process Re-engineering", Hodder & Stoughton, 1995.
[11] Bell, S., Wood-Harper, T., "Rapid Information Systems Development - System Development in an

Imperfect World", Second Ed., McGraw-Hill, 1998.
[12] Martin J., "Rapid Application Development", New York: Macmillian, 1991.
[13] Elliott, J. J., "System Understanding Reference Model", DERA Report, 1999.
[14] Raynor-Smith, P. M., "REJOICE Process", DERA Report, 1998.
[15] DSDM Consortium , "DSDM Manual", 1996.
[16] Stapleton J., "Dynamic Systems Development Method", Addison-Wesley, 1997.
[17] Raynor-Smith, P. M., Elliott J. J., REJOICE Final Report, Version 1.0, May 1999
[18] ESSI VASIE website: http:// www.cordis.lu/esprit/src/stessi.htm

QWE’ 99

Nov 1999

SEC
DERA Systems & Software Engineering Centre

V1.1

Achieving Customer SatisfactionAchieving Customer Satisfaction
through Requirements Understandingthrough Requirements Understanding

John Elliott and Peter Raynor-Smith,

Systems and Software Engineering Centre
Defence Evaluation & Research Agency (DERA), UK

QWE’99 Presentation, Nov’ 99

For further info - Email:jjelliott@dera.gov.uk, pmrsmith@dera.gov.uk

SEC
DERA Systems & Software Engineering Centre

V1.2

Structure

❚ Introduction
❚ Concepts
❚ Customer-oriented Process
❚ Experiment Design
❚ Experiment Conclusions
❚ Lessons and Progress
❚ Summaries

QWE’ 99

Nov 1999

SEC
DERA Systems & Software Engineering Centre

V1.3

Introduction-1

❚ Process Improvement Study consisting of:
–REJOICE - EC PIE (Process Improvement Experiment)
–Internal ‘requirements understanding’ research

❚ Objective: To measure the effectiveness of a new
customer and requirements-oriented approach
designed to provide key business improvements

❚ Process improvement driven by business needs
❚ Completed May 1999

SEC
DERA Systems & Software Engineering Centre

V1.4

Introduction-2
❚ The Systems and Software Engineering Centre

(SEC) is an autonomous system and software
development and consultancy business division

❚ Diverse software applications
– technological research, system requirements and

design modeling, and operational activities
❚ Operates within a highly controlled business

management culture (based on ISO 9000)
❚ Regularly assessed ‘maturing’ software practices

and culture, e.g. ISO, CMM, SPICE, EFQM-BEM

QWE’ 99

Nov 1999

SEC
DERA Systems & Software Engineering Centre

V1.5

Introduction-3
❚ Process improvement strategy includes:

– customer management

– requirements management
❚ The ‘customer-related’ goals include:

– improved customer satisfaction

– no extra effort on requirements activities

– less requirements generated problems

SEC
DERA Systems & Software Engineering Centre

V1.6

Concepts

❚ Customer satisfaction is achieved by providing
usable and added-value services and products
to meet the full expectations of customers to
provide known and predicted benefits

❚ Requirements understanding is ensuring that
all parties linked to customers and suppliers
(e.g. all stakeholders) establish, define, maintain
and deliver the same valid understanding about
customer need throughout the life-time of the
service or product

❚ Both are closely related to the notion of quality

QWE’ 99

Nov 1999

SEC
DERA Systems & Software Engineering Centre

V1.7

Need for change
Strategy
Operation
IT support (process/information)

User requirements
Technical specification
Requirements management
Quality & risk levels
Process criteria
System constraints

Confidence that requirements met
Argument/evidence about quality

Development process
Assurance process
Process risks
People competence

Customer Satisfaction

Customer Satisfaction Customer Satisfaction

Confidence in Quality Product Quality

Business Need System Requirements

Depends on Depends on

Business criteria for success

Reflected as

Technical criteria for success
Influencing
approach to

Contributes to

Supports

SEC
DERA Systems & Software Engineering Centre

V1.8

Requirements Understanding

acquisition,
roles,

viewpoints,
objectives

needs for change,
benefits,

new technology,
human factors

business concepts
context, culture & mission

strategy & market

system concepts,
system of systems,

modeling,
product systems

requirements concepts,
engineering

management,
modeling & analysis

interaction &
negotiation,

 information &
knowledge sharing

through-life
feedback,

increments

evidence,
measurement

data

RequirementsRequirements
UnderstandingUnderstanding

Business

Systems
Requirements

Stakeholders

Communication

Evolutionary
lifecycle processes

Assurance

Need

QWE’ 99

Nov 1999

SEC
DERA Systems & Software Engineering Centre

V1.9

Customer-oriented Process (CoP)
❚ The customer-oriented process achieved by :

– better requirements understanding

– more efficient and effective requirements management

– wide applicability not requiring specialised skills
❚ Need to consider:

– process criteria as CoP requirements
– appropriate lifecycle and techniques

SEC
DERA Systems & Software Engineering Centre

V1.10

Customer-oriented Process Criteria

System fitness
 assessment

Managing
customer needs

and requirements

Interaction/
feedback

Communication
Partnership

Incremental operational
systems within a business

system architecture.

Whole system
evolution lifecycle

Visible playback
executable system

prototypes

Rollback/forward
the system solution

Reactive to change

Through-life
requirements
understanding

Risk and quality
control

Customer-orientedCustomer-oriented
ProcessProcess

Need/requirements
& lifecycles Team-working

Assurance

Techniques

QWE’ 99

Nov 1999

SEC
DERA Systems & Software Engineering Centre

V1.11

Customer-oriented Process Lifecycle

❚ Dynamic Systems Development Method
(DSDM) framework offers a generic lifecycle
geared to flexible and dynamic practices
involving joint customer-developer working
– common lifecycle variants tend to be inadequate -

sequential, static and prescriptive
❚ DSDM is a customer-oriented process

– through-life ‘requirement understanding’
– supports need identification, communication and

requirements control
– concepts are widely applicable

SEC
DERA Systems & Software Engineering Centre

V1.12

DSDM Lifecycle

Phase 3 Phase 5

Review prototype

Agree Schedule

Create
functional
prototype

Identify
functional
Identify

prototype
FUNCTIONAL

MODEL DESIGN

Phase 4
Create design prototype

Identify design prototype

Agree
schedule

Review
design

prototype

DESIGN AND BUILD
ITERATION

Train
users

User approval and
user guidelines

Implement

Review
business

IMPLEMENTATION

Feasibility

Business StudyPhase 2

Phase 1

QWE’ 99

Nov 1999

SEC
DERA Systems & Software Engineering Centre

V1.13

DSDM Phases
❚ Phase 1- Feasibility Study - use DSDM?
❚ Phase 2 - Business Study - understand

business and technical constraints to determine
high level user requirements

❚ Phase 3 - Functional model - develop functional
specification using executable prototypes

❚ Phase 4 - Design and build - refine the
functional model to reflect non-functional
requirements

❚ Phase 5 - Implement - install and use system(s)
with user training

SEC
DERA Systems & Software Engineering Centre

V1.14

DSDM Principles
❚ User involvement
❚ Team empowerment
❚ Frequent delivery
❚ Fitness for business purpose
❚ Iterative and incremental development
❚ All changes reversible
❚ Requirements are at a high level
❚ Testing is through-life
❚ Collaborative and co-operative approach

QWE’ 99

Nov 1999

SEC
DERA Systems & Software Engineering Centre

V1.15

Experiment Design-1

❚ To assess the impact of a new DSDM-based
REJOICE process [small adaptation] on
meeting customer-oriented business goals

❚ Experimental framework developed to define
and test/measure hypotheses about:
– introducing DSDM
– partial use of DSDM (e.g. principles)
– full use of DSDM (e.g. process)
– comparisons with traditional lifecycle approaches

SEC
DERA Systems & Software Engineering Centre

V1.16

Experiment Design-2

❚ Measurement of the process impact on
business goals
– customer satisfaction and product effectiveness

– project/process efficiency about requirements
❚ Mixed measures:

– experience/argument, quantitative, qualitative
❚ Data

– survey/interview, project resources, process tracking

QWE’ 99

Nov 1999

SEC
DERA Systems & Software Engineering Centre

V1.17

Area/Factor Metrics:
• Increase in

satisfying
customer needs

Customer Satisfaction:
meet need;
confidence in product;
confidence in
process/people

Product Effectiveness:

product quality claimed;
demonstration of quality

 Satisfaction (score) with project, product,
process, people
 No. of prototype releases - planned, actual
 No. of the original satisfied/unsatisfied
requirements

 No of requirements changed
 No of requirements priority changes
 No of evolution’s of requirements
 • No change in

costs of
requirements
activity

Project efficiency:

process definition;
process cost;
people impact

 Time spent in customer interactions
 Number of customer interactions
 Time spent demonstrating models/prototypes

• Decrease in
problems due to
poor requirements
understanding

Project efficiency:

requirement defects;
people interaction;
process cost impact

 Number of requirements not satisfied
 Effort spent satisfying incorrect
requirements

Goal

SEC
DERA Systems & Software Engineering Centre

V1.18

Experiment Conclusions - Business

❚ The DSDM-based process is expected to lead
to improved cost-effective customer satisfaction

❚ The DSDM-based process is likely to provide
cost savings in through-life requirement
activities depending on project and stakeholder
complexities

❚ Definition and management of contractual
boundaries will be challenging

❚ DSDM-based process requires a co-operative
product-focus

❚ Cultural changes may be difficult to manage

QWE’ 99

Nov 1999

SEC
DERA Systems & Software Engineering Centre

V1.19

Experiment Conclusions - Technical-1

❚ DSDM offers a new, evolutionary yet controlled
lifecycle approach

❚ DSDM offers a useful set of concepts and
techniques to be used in whole or part to
advance traditional best practice beyond RAD

– Concepts: good principles, flexible requirements
philosophy, strong user and end product focus

– Techniques: facilitation, time-boxing, prototyping

SEC
DERA Systems & Software Engineering Centre

V1.20

Experiment Conclusions - Technical-2

❚ Tailoring DSDM into a local development project
environment presents key difficulties

❚ DSDM integration within a traditional ISO 9000
quality controlled software is non-trivial

❚ Commonly available tools generally support the
basic DSDM-based process

– enhanced model based tools are needed that
facilitate effective user-modelling interaction (to study
requirements and acceptance testing issues)

QWE’ 99

Nov 1999

SEC
DERA Systems & Software Engineering Centre

V1.21

Lessons for SMEs-1

❚ The DSDM process is so radically different that
the scope (size) of the project should be kept
small until confidence is gained

❚ Can the organisation tolerate and support the
concepts of empowerment and cultural change?

❚ Will the customers and users be amenable to
the process?

SEC
DERA Systems & Software Engineering Centre

V1.22

Lessons for SMEs-2

❚ Depending on the culture, keep the
development to involve controllable familiar
organisations, thus avoiding complicated
contractual arrangements and inflexible working
practices

❚ Introduce facilitated workshops, time-boxing and
more rigorous requirement prioritisation as
techniques to enhance more traditional
lifecycles

❚ Iterative and incremental processes are difficult
to manage and monitor

QWE’ 99

Nov 1999

SEC
DERA Systems & Software Engineering Centre

V1.23

Progress towards Business Goals

❚ Customer satisfaction improved
– collaborative product focus fundamental

❚ Through-life requirements efficiency likely
– requirements largely represented by models and

prototypes not documentation

– leads to same effort depending on project complexity
and associated DSDM implementation approach

– flexible lower cost approach to rework through closer
joint working and product monitoring

SEC
DERA Systems & Software Engineering Centre

V1.24

Business Summary - Final Report….
“Overall, many software businesses, often Small Medium
Enterprises, should benefit from the DSDM-based
concepts, process and techniques in terms of customer
satisfaction and requirements efficiencies. However, the
degree of success will depend upon the organisation and
customer culture, the appropriate application to suitably
complex projects and an effective use of available
software technologies. In short, the DSDM process
framework is well founded but its success critically
depends on the management of people and technical
resources during any development project
implementation. “

QWE’ 99

Nov 1999

SEC
DERA Systems & Software Engineering Centre

V1.25

Technical Summary - Final Report….
“Overall, the technological lessons about the DSDM
processes are fundamental. More radical software
lifecycles are designed to improve customer-developer
relations. These require new ways of thinking about
project control and tool based cultures. There is clear
evidence that the DSDM process is sufficiently mature
and does indeed enhance customer satisfaction,
assuming that a joint product-focused management
approach is taken by both customers and developers. In
short, the REJOICE process offers clear claimed
benefits when used in part or in full, but there are a
number of non-trivial project and quality management
issues to overcome.”

1

Automated Code Inspection

A practical approach to improve code inspection
efficiency
Banco Río de la Plata work experience

Marcelo Dalceggio mdalceggio@intranet.bancorio.com.ar

Alvaro Ruiz de
Mendarozqueta

aruizdemendarozqueta@intranet.bancorio.com.ar

Banco Río de la Plata S.A. Grupo Banco Santander Central Hispano

Executive Summary
Banco Rio de la Plata is one of the major private banks of Argentina, with 250 branches
executing one million transactions a day and providing universal banking services to local,
regional, and international customers.

In 1997 it faced the challenging Y2K problem. It contracted different service providers to
assess and remediate the code using automated tools. Some applications were replaced and
others were solved in-house by manual process. The code was fixed using the ‘windowing’
technique (This solution carries a long term risk. ‘Windowing’ logic changes program code
but not data). It performed Y2K baseline (regression) testing and post-Y2K testing. More
than 7.000 kloc of Cobol and Assembler code were reviewed and a lot of new code was
added to the legacy system making it vulnerable to the introduction of new defects, because
those changes made the code larger and more complex. In this context, QA staff had the
mission to provide a process that would let the Bank ensure that maintenance activities
(changes and enhancements) wouldn’t infect the programs. This process was called ‘Y2K
Contamination Control’.

It was almost impossible to perform this activity manually. A tool-based inspection process
was developed in order to achieve the goal. Good results encouraged QA staff to extend it
to address other common defects (not only correct date processing) such as code standards
& good coding practices violations.

This paper summarizes this process and how it was enhanced to become part of the ongoing
software quality process, increasing productivity and reducing costs.

How the idea originated
Code Inspections advantages are very well known but
they are very hard to implement, cost a lot, and
critical projects not always have the opportunity to
apply them.

During Y2K project we developed a ‘Process’ in order
to control code contamination within the maintenance
activities

Both experiences triggered the original idea

The Company

Grupo Santander has been for years the leader financial group in Spain and with the last
merger with Banco Central Hispano has become the new Grupo BSCH, one of the biggest
financial groups in the unified Europe today.
In Latin America, it has the major foreign bank commercial net with banks in many
countries of the region. Two years ago, Grupo Santander acquired Banco Rio de la Plata in
Argentina, one of the major private banks in the country, which with its 250 branches
executing one million transactions a day provides universal banking services to local,
regional, and international customers.
Since its acquisition, Banco Rio de la Plata has been continuously creating new and
sophisticated financial products, demanding legacy systems transformations while
increasing productivity and reducing costs to maintain a competitive edge and operational
excellence in today’s business world. Best software engineering practices are helping the
organization to achieve these goals.

Y2K Experience

YY22KK PPrroojjeecctt

The Y2K Conversion Project applied windowing technique in order to solve the two-digit
data for the year. This technique reduced costs and allowed an easier implementation but
one of its major problems is the risk associated with maintenance. During the modification

activities the modified code with windowing technique could easily be changed undoing the
Y2K fix.
With the goal of reducing those risks we developed what we call ‘Y2K Contamination
Control Process’

CCoonnttaammiinnaattiioonn CCoonnttrrooll

We established code revisions to detect possible violations to the Y2K fix during
maintenance activities. We did a survey looking for different ways of introducing a defect
within the code or certain situations that might be a risk for future modifications.
These few Y2K compliance rules had to be applied in all the programs, not only at the end
of Y2K conversion project, but also during the everyday maintenance work. This was the
real challenge and for that volume of work was impossible to apply code inspections in the
‘Fagan style’. Manual code inspections were unfeasible.
We developed a software-assisted inspection process with a very simple tool. We parsed
the programs with it and in every situation of a probable ‘fix violation’, a QA staff analyzed
the very nature of the problem.
We obtained very satisfactory outcomes and the results presented the following
characteristics:

§ Every system was reviewed and the results were reported to the managers.

§ A weekly revision is being performed for all the new and modified programs.

§ The final costs are cheaper than those of the consultant firms running in the
market.

§ Some findings were checked with manual code inspections and with
consultant firms. The results were optimal.

§ The contamination control process has to continue as long as windowing
fixes remain within the code.

§ The following picture shows how we moved from the manual code
inspections (many rules in one program) into a software-assisted
contamination control (few and stable rules in all the programs).

Programa

Code Inspection

Y2K Contamination Control

Program
Rules

1, 2, 3, 4, 5, 6, n

Rules
1, 2, 3

Program

Program

Program

Program

Some problems with the manual code inspections

Code Inspections advantages are very well known but very hard to implement, cost a lot,
and critical projects not always have the opportunity to apply them.
These are the main advantages:

§ Defects are detected before the testing process, saving time and money.

§ Identifies defects that testing misses.

§ Gives complete code coverage.

§ Finds root cause defects (no symptoms).

§ Additional advantages: Improvement opportunities, Good & Bad practices
are finally learned.

OOtthheerr ddiiffffiiccuullttiieess wwiitthh ppeerrssoonnnneell

§ Programmers are not used to sharing code, neither during inspections, nor
during coding activities.

§ Programming as an artistic activity prevails.

§ Managers encourage heroic programmers and schedule-driven results.

§ Standards are not usually used. Programs are very big and count on no
documentation.

DDiiffffiiccuullttiieess iinn MMaannuuaall CCooddee IInnssppeeccttiioonnss

In manual code
inspections the well-
known authors
recommend the following
components:
the program that will be
the object of the
inspection, the design
document that originated
the program, the
construction rules taken into account during the programming activities, the checklists for
the inspection, the author's program and the inspectors.
In our environment we have very old programs. It is very hard to find the design
documents. The author may no longer belong to the bank or may be doing other activities
rather than programming. (He might not even remember the program structure). It is also
very difficult to trace the rules applied during programming. Some of them depend on
projects or individual criteria. Checklists include a lot of ambiguity.
Inspectors candidates are assigned to critical projects. They have demanded skills which
makes it impossible to assign them to inspections.

InspectionProgram Report

Design Construction
Rules

Checklists

Author

Ambiguous
Missing

InspectionProgram Report

Design Construction
 Rules

Checklists

Few
Inspectors

Big
Old
No documentation

Missing

Legacy

Author

Missing

DDiiffffiiccuullttiieess rreellaatteedd ttoo oouurr wwoorrkk eennvviirroonnmmeenntt

Our System Department creates or modifies and average of 900 programs per month. Each
program has an average size of 1000 lines of code (LOC).
The monthly demand for inspections is:

900 pgms * 1KLOC/pgm = 900.000 LOC monthly

Taking into account that industry considers an average inspection rate of 100 lines of code
reviewed per hour, the total amount of hours needed in our case is:

900.000 LOC / 100 LOC/hour = 9.000 hours

Assuming that we would like to inspect the total amount of programs we need:

9.000 hours / 160 hours/staff = 56 staff

This clearly shows it is economical unfeasible to inspect all the programs. Assuming only
10 percent of the total amount would demand 6 staff per month leaving the 90 percent
without revisions.

The idea

With the aim of inspecting the total number of programs, we combined
our experience with the automated part of ‘Y2K Contamination Control
Process’, with the one from ‘Manual Code Inspections’.
We merged both ideas and wondered if we could check the total number
of rules known in all the programs.

We developed what we called ‘Automated Code Inspection Process’.

Programa

Automatic Code Inspection

Rules
1, 2, 3, 4, 5, 6, n

Program

Program

Program

Program

5, 6, n

1,2

Automated Code Inspection
Implementation Process
The process followed to get ready for the inspection.

 It doesn’t matter the way you are going to inspect the
code, the most important thing is to recognize which
elements make your code vulnerable to the
introduction of defects.

Depending on the level of accuracy you expect from
the automation is the level of sophistication you need
from the tool you buy or build.

Source rules identification

The first task to fulfill is the search of all the sources from where you can obtain the rules to
be controlled. All the rules should be written and well known by everybody in the
company.
Some of the sources identified are the following:

§ Code Standards: They’re the most important sources. Language std. (Cobol),
transactional monitor std. (Cics), database std. (DB2), security issues std.,
etc… .

§ Library of reusable modules: Transforming code to allow a migration that
requires important code changes often need to maintain modules that are
going to be discontinued and new ones that are going to be used gradually.
This information is managed by SCM and it’s the source of several controls
that have to ensure that the new written code is not ‘legacy code’ and that
each program that’s taken out of Production environment is returned to it
working with the new modules.

§ Failure Tracking System: It’s another important source. There are a lot of
simple defects that could be easily identified. For example, a typical case is
the lack of end-of-file checks. It’s very important to find the root cause of the
defect, as in this way we can develop a rule and verify its compliance in the

rest of the programs, because of the new tendency to create new code by
using ‘cut & paste’ technique.

§ Classic Code Inspection (‘Fagan style’): Although they’re not performed
frequently, they always allow us to identify new defects.

Rules development and construction

After identifying all the sources, they should be analyzed so as to define the rules to be
controlled. We should avoid ambiguity. Rules like “… Cobol paragraphs should not be
long … ” or “… SQL commands should be simple … ” are useless.

Those rules which can be identified could have different formats. For example:

§ Prohibited commands: such as ALTER, GO TO, SELECT *.

§ Interface: such as the lack of return code checks.

§ Data handling: such as the lack of I/O return codes.

§ Exception handling: such as WHEN OTHER clause in EVALUATE
statement, AT END clause in SEARCH statement.

§ Configuration Management: such as the use of a module that is no longer
supported.

§ Performance: such as the JOIN of four tables or more.

§ Cosmetic: such as how to indent certain commands.

§ Naming convention: such as the minimal length of characters in variable
names.

§ Module size: such as the maximum number of statements it should contain.

§ Etc.

A rule violation doesn’t mean avoiding a defect, but if violated it makes the code more
susceptible to the introduction of new defects during maintenance activities. In some cases
there is the assertion about a potential defect, but it can also be a process improvement
suggestion or a matter that requires attention. (Remember that the code must be correct, but
it should also be understandable, efficient and maintainable).

Each rule belongs to a certain domain. This means that the control of the rule can be
performed over the programs that belong to that domain. For example, there are certain
commands that are allowed in a batch environment but they’re not in an on line
environment. Or, naming convention standard has to be followed by all the programs
developed in the organization but cannot be demanded to third party developments already
built.

Examples of different domains are:

§ Batch & On Line

§ New programs & Legacy programs

§ In-house development & Third party developments

§ DB2 / DLI / Vsam files

Once the rules have been developed and their domains identified, they should be validated
with the people in charge.

Finally, the rules should be recorded in the Compliance Database (specifying their source
and the date they come into effect).

Violated rules detection

The different ways in which rules could be broken within the code have to be evaluated.
This task is not easy, and depending on the rules to be controlled, special skills to perform
the task will be needed.
The ideal profile of the analyst is:

§ Rule domain expertise

§ Not less 3 years development experience’

§ Survived a bad implementation of an application (Understands the pain of a
poor quality application)

Some defects are easy to catch while others are extremely difficult. The language syntax
should be well known in order to identify all the situations.

Implementation decision

Taking the decision which rules will be automated with what tool.
Two different kinds of inspection were identified.

§ Automated: when a defect is identified without needing any later human
analysis.

§ Assisted: when a defect is identified but it needs later human analysis. For
example, the code can be scanned for certain defined wild card search criteria
(pattern-matching technique based) that finds potential defect candidates and
then the final decision is made by the analyst through manual intervention.
(Some defects can only be found by looking at every line of code and
understanding the flow of logic and data within and between programs).

Many rules are controlled through assisted inspection. Sometimes this is because the
information obtained from the program is not enough and some environment information is
needed to decide if the rule is violated or not. This is the case of DB2 performance related
rules. Depending on the number of files of the tables, there will be SQL commands that will
be prohibited or not. In these cases, these commands are first detected and later the analyst
will decide if there’s a problem.

There are other cases when the author’s program is needed. For example, this was the
situation while searching date related fields in the Y2K conversion project. Variables were
analyzed by name, definition and use. If the name of a field referred to ‘date’, ‘year’,
‘yymmdd’ or other such clue, it became a potential suspect. But unfortunately, it is well
known that programmers use a great variety of reasonable and unreasonable names for their
variables. Correctly finding all true candidates required knowledge about all ways that a
date could enter a program and a thorough analysis of everything that could happen to those
dates within the program.

So, not everything can be automated. But even less sophisticated tools (developed or
bought) are faster and more accurate than performing the same task manually.

To buy or build your own tool is a personal decision that depends on a lot of factors (staff
skills, time, money, etc..). The market offers a great variety of tools that help to identify
defects accurately which could cause application failure, data corruption or unpredictable
results (such as arithmetic overflow, unintialized variables). Selecting a tool is a hard
activity. The difference in product cost is often due to product quality and reliability,
vendor experience and level of available support (it’s important to pay attention to
capabilities rather than price). Depending on the level of accuracy you expect from the tool
is the level of technique sophistication you will need from the tool (scanning, parsing,
control flow analysis).

Automated Code Inspection
Execution Process
A four-step process to execute the inspection.

Candidate programs identification

Several ways to select the programs to be inspected were identified.

§ New programs / Modified programs: Every program that is taken into
Production environment (either a new or an existing one with enhancements),
should be inspected. This is the criteria used to perform the activity daily and
to ensure that Production environment is not going to be contaminated.

§ Programs belonging to a certain domain: In this case, all the programs that
belong to a certain domain are inspected. This criteria is often applied when a
rule is discovered and we want to ensure than there are not existing programs
in Production environment that violate it.

§ Reported as fixed: Each program that is reported as fixed is inspected in order
to verify the defect removal and that no new defect has been added.

§ On demand: Key projects ask for revisions early in the construction phase of
the life cycle in order to evaluate quality and standard compliance during the
construction phase (validating code from the very beginning is helpful)

§ Random: Programs are often selected at random from Production
environment in order to ensure programs remain defect-free.

Inspection execution

Once the set of programs to be reviewed has been selected, the inspection is executed. First,
program’s domain should be identified so as to perform the appropriate rules. Analysts start
the inspection process, running the tools which automate the different rules.
After the inspection has been completed, analysts check the tool-generated results,
reviewing defects with the application owner and making adjustments if necessary. Then,
only defects (statements that violates the rules) are recorded in the defect tracking DB.

Defect reporting

Defects are reported to the ones in charge. Reporting date and responsible name should be
recorded perform later tracking activities.
The report contains the following data:

§ Inspection date

§ Analyst

§ Program name

§ Reason for inspection selection

§ Incident description

§ Line number

§ Violated rule description

§ Program statement/s that violate the rule

§ Comments

Tracking

A defect is completely removed only when the program is returned to Production
environment and analysts verify it has been fixed satisfactory.

Unsolved defects are periodically requested to be fixed.

Metrics collections are performed to help the company to control, monitor and assess its
software quality goals.

Where it fits in project life cycle
Inspection should be executed before testing, saving
time and money.

The Development Cycle

Code is inspected prior to testing stage. All common and identified defects should be
removed before a program leaves QA stage. In this way, inspection ensures that fewer
trivial defects will delay the application testing, saving time and money (they are found
faster and at a lower cost than in the testing environment).

Production
Development

QA Testing

Conclusions
Code Inspection is such a good practice that, even
applying it partly, lets you obtain good results.
Inspection is the most useful and cost-effective form of error removal. Everybody agrees
consistently in the value of inspections.
We experimented an alternative to classic inspection (Fagan style). The Y2K challenge and
our today’s schedule driven projects force us to find another approach that lets us reach
inspection well known benefits. But this kind of inspection doesn’t replace ‘Fagan style’
one. It complements it.
Detecting certain classes of defects in all the existing programs instead of searching for all
the possible defects in one program gave us very satisfactory outcomes.
This is our experience. We know that the process has weaknesses and we have to continue
improving. But we gave an important step and we came to the conclusion that there is no
excuse for not doing inspections. We hope you agree.

1

$XWRPDWHG�&RGH�,QVSHFWLRQ

A practical approach to improve codeA practical approach to improve code
inspection efficiencyinspection efficiency

Banco Rio de la Plata work experienceBanco Rio de la Plata work experience

Marcelo Dalceggio
Alvaro Ruiz de Mendarozqueta

November 1999 ~ Argentina

2

3UHVHQWDWLRQ�2YHUYLHZ

❚ Who we are
❚ Y2K Experience
❚ Manual Code Inspection
❚ How the idea originated
❚ Automated Code Inspection Implementation Process
❚ Automated Code Inspection Execution Process
❚ Where it fits in project life cycle
❚ Conclusions & Achievements

2

3

:KR�ZH�DUH

❚ Banco Rio de la Plata is one of the major private
banks of Argentina and belongs to Banco
Santander Central Hispano

❚ IBM mainframe based core systems
❚ COBOL & Assembler, CICS, VSAM, DB2
❚ 250 branches executing one million transactions a

day and providing universal banking services
❚ The goal: Reduction of costs in the software

development and maintenance

4

<�.�([SHULHQFH

❚ Y2K Contamination Control
❙ Windowing technique solution
❙ Code revision to detect possible violations

to the Y2K fix
❙ Few Y2K Compliance rules to be applied

in all the programs
❙ Code-assisted inspection process
❙ Very satisfactory outcomes

3

5

&RGH�,QVSHFWLRQ

❚ There’s no doubt of its advantages
❙ Defects are detected before the testing

process, saving time and money
❙ Identifies defects that testing misses
❙ Gives complete code coverage
❙ Finds root cause defects (no symptoms)
❙ Additional advantages

❘ Improvement opportunities
❘ Good & Bad practices are finally learned

6

0DQXDO�&RGH

,QVSHFWLRQ

❚ Code Inspection formal outline

InspectionProgram Report

Design
Construction

Rules
Checklists

Author

4

7

0DQXDO�&RGH

,QVSHFWLRQ

❚ Everyday problems

InspectionProgram Report

Design
Construction

 Rules
Checklists

Few
Inspectors

Big
Old
No documentation

Ambiguous
Missing

Missing

Legacy

Author

Missing

8

0DQXDO�&RGH

,QVSHFWLRQ

❚ Environment difficulties
❙ Staff Size

❘ 900 pgms * 1KLOC/pgm = 900.000 LOC per month
❘ 900.000 LOC / 100 LOC/hour = 9.000 hours
❘ 9.000 hours / 160 hours/staff = 56 staff

❙ Inspector candidates
❘ ‘Key projects’ demand best resources
❘ Without formal training
❘ Not used to team work

5

9

0DQXDO�&RGH

,QVSHFWLRQ

❚ Environment difficulties
❙ Programs

❘ COBOL & Assembler, 1KLOC average size
❘ Lack of program documentation
❘ 10/15 year-old programs
❘ No design documentation

❙ Inspection rules
❘ Too many rules to be taken into account
❘ Ambiguous
❘ Application domain rules not well defined

10

0DQXDO�&RGH

,QVSHFWLRQ

❚ Most common scenario

Inspection Report

Design
Construction

Rules
Checklists

Author

Ambiguous

6

11

+RZ�WKH�LGHD�RULJLQDWHG

Programa

Code Inspect ion

Y2K Contaminat ion Contro l

P rogram
Rules

1, 2, 3, 4, 5, 6, n

Ru les
1, 2, 3

Program

Program

Program

Program

12

+RZ�WKH�LGHD�RULJLQDWHG

Programa

Automat ic Code Inspect ion

Rules
1, 2, 3, 4, 5, 6, n

Program

Program

Program

Program

5, 6, n

1,2

7

13

$XWRPDWHG�&RGH�,QVSHFWLRQ

,PSOHPHQWDWLRQ�3URFHVV

❚ Process applied
❙ Source rules identification
❙ Rules development & construction
❙ Violated rules detection
❙ Implementation decision

14

$XWRPDWHG�&RGH�,QVSHFWLRQ

,PSOHPHQWDWLRQ�3URFHVV

❚ Source rules identification (I)
❙ Code Standards
❙ SCM

❘ Library of Reusable Modules
❘ Existing /Discontinued Modules

❙ Good practices
❙ Failure tracking system
❙ Classic Code Inspections (Fagan style)
❙ Development area ‘feedback’

8

15

$XWRPDWHG�&RGH�,QVSHFWLRQ

,PSOHPHQWDWLRQ�3URFHVV

❚ Rules development & construction (II)
❙ Identify rules from each source
❙ Identify application domain from each rule
❙ Avoid ambiguities

❘ “... Cobol paragraphs should not be long ...”

❙ Validate rules with those in charge
❘ Sponsor’s support is very important

❙ Record rules in the Compliance DB

16

$XWRPDWHG�&RGH�,QVSHFWLRQ

,PSOHPHQWDWLRQ�3URFHVV

❚ Violated rules detection (III)
❙ Discover different ways in which rules

could be violated within the code

❚ Implementation decision (IV)
❙ Evaluate detection method

❘ Scanning, parsing, control flow analysis, etc..

❙ Define automated/assisted detection
❙ Tool: Buy or build ?

9

17

$XWRPDWHG�&RGH�,QVSHFWLRQ

([HFXWLRQ�3URFHVV

❚ Process applied
❙ Candidate programs identification
❙ Inspection execution
❙ Defect reporting
❙ Tracking

18

$XWRPDWHG�&RGH�,QVSHFWLRQ

([HFXWLRQ�3URFHVV

❚ Candidate programs identification (I)
❙ Criteria definition

❘ New & Modified
❘ Belonging to a certain domain
❘ After or Before a given deadline
❘ Reported as fixed
❘ On demand
❘ At random

""

10

19

$XWRPDWHG�&RGH�,QVSHFWLRQ

([HFXWLRQ�3URFHVV

❚ Inspection execution (II)
❙ Program domain checking
❙ Rules compliance verification to each

identified domain
❙ Record defects in the defect tracking DB

20

$XWRPDWHG�&RGH�,QVSHFWLRQ

([HFXWLRQ�3URFHVV

❚ Defect reporting (III)
❙ Inform the ones in charge
❙ Record the report delivery

❚ Tracking (IV)
❙ Request unsolved defects
❙ Verify the ones solved
❙ Metrics collection

11

21

:KHUH�LW�ILWV�LQ�SURMHFW�OLIH

F\FOH

P roduction
Developm ent

Q A Testing

22

&RQFOXVLRQV

❚ This kind of Inspection...
❙ is a good alternative in today’s schedule-

driven projects
❙ is more scalable than manual inspections

❘ More rules and more programs
❘ Few resources
❘ Adding rules do not affect inspection efficiency

❙ does not require ‘special’ skills

❙ does not replace ‘Fagan Style’ inspections

12

23

&RQFOXVLRQV

❙ Once a new type of defect has been
detected it is possible to...

❘ prevent it from happening again, and
❘ get rid of it from the existing programs

❙ Inspection ensures fewer trivial defects
will delay the application testing

❙ Code quality & reliability metrics could
be defined

24

$FKLHYHPHQWV

❚ 157 rules identified
❚ 750 KLOC per month with 3 QA reviewers

❙ Includes full Automated Code Inspection Process

❚ > 1650 defects detected
❚ Reporting ‘on demand’ for different critical

projects
❚ Reporting ‘on demand’ for third party

developments

 Getronics Software Solutions

Software Project Evaluation as a vehicle for SPI

Hanna Luden

Getronics Software Solutions

Abstract

Once an organization begins with the software process improvement adventure, a long-term path is
entered. Already during the assessment software professionals and their managers are encouraged to
discuss and evaluate their current practices, with their pros and cons in order to improve them. The long
lasting silence following the assessment activities, due to the need to carefully analyze and plan the
improvements, forms a risk of loosing the gained momentum.
This paper discusses project evaluation as a simple - almost obvious - tool that can effectively help
preserve the gained momentum. It is also a means to spread awareness for the need for change and to
exchange information about best practices.
We discuss our experience with qualitative project evaluations (QPE). QPE must be carefully planned,
carried out following a script, and documented in the broadly accessible project evaluation database.
Thus, the evaluation serves as an important vehicle for continuous improvement, providing the organiza-
tion with direct information about its actual practices. It offers early evaluation of relevant aspects of the
software process, helps set priorities for improvement actions, allows monitoring the effects of already
introduced improvements and of culture, and bridges the gap between software professionals and the
software process improvement program.

Introduction

Software process improvement (SPI) programs typically begin with an assessment of the organization.
People with different roles in the software organization participate in the assessment and generate ideas
for improvement and change based on their experience, knowledge and insight in the current practices.
The assessments is usually the start of a long lasting Software Process Improvement Program. After the
assessment has been carried out and the results have been summarized and presented, plans for improve-
ments, related to the business goals, need to be set and realized.

Careful SPI-planning costs time, and before the improvements show results, even more time elapses. Yet,
it is of major importance to preserve the momentum initiated by the assessment. The challenge for every
SPI program is to gain and maintain that momentum.

This paper discusses a technique for qualitative project evaluation (QPE). QPE can be introduced
quickly, and does not demand much effort or time while allowing high leverage. If planned carefully and
carried out correctly QPE can become an effective organisational SPI tool and reduce the risk of loosing
the painfully gained momentum.

Objectives

Software Project Evaluation
as a vehicle for SPI

 Getronics Software Solutions
Referentie: Qwe99.5m_Pap.Doc –1
Datum: 16 September, 1999

page 5/2

Having identified the risks of a long silence from the SPI-initiative after the assessment, we have
searched for ways to preserve the existing enthusiasm and involvement. A working group was appointed,
and the following objectives were set:

• Introduce an instrument for continuous improvement, in line with awareness and will to act gained
during the assessment, and maintain the visibility of the SPI program in the organization.

• Use best practices: allow projects effective re-use of (work) products, tools, methods and techniques
from other projects. In particular, identify potential ‘SPI-instruments’ and ‘SPI-products’ generated by
the project which could be upgraded and offered to the organization as a whole.

• Provide a platform for individual employees to express their opinions and share their experiences in a
constructive and open manner for their own learning as well as for the organizational learning.

• Provide the management with information about the practitioners’ experiences and opinions.
• Institutionalize an instrument for communicating these experiences to the management (and back),

and stimulate a culture of openness about those issues.
• Gain insight into the effectiveness and efficiency of the current processes and practices, and in par-

ticular into the (new) improvements, thus monitoring the SPI-program itself.
• Provide the SPI-program with direct information about the practitioners’ experiences and opinions

regarding the SPI program and thus enabling eventual fine-tuning (or bigger changes if necessary) of
the SPI-program. In other words, indirect evaluation of the SPI-program itself.

Qualitative Project Evaluation

Project evaluation is no news. Which organization does not have an evaluation-form to be filled-in (after
project completion, sometimes at other moments)? Yet, in how many organizations a serious evaluation
is actually carried out? Does everyone participate, or is it a burden to the project manager which prevents
him or her from neatly rounding up the project, while the horrors of the new project already take 150% of
their time? And what do organizations do with the outcome of evaluations?

Qualitative project evaluation (QPE) was introduced to meet the objectives mentioned above. We have
chosen to make the project evaluation a defined process within the software development process. At the
same time we believe that it should become a second nature, and be used in all relevant situations. Once
people have experienced its added value, they do not let go!

In given moments in a project’s life (not just after completion!), we take as a team a break - time-out - to
reflect1. The QPE is carried out in a meeting, which is thoroughly prepared and planned, and which is
carefully documented.

Everything may be evaluated, and evaluation can (and should) have unexpected results. After all, it is not
the obvious and common knowledge we are after.

1 The qualitative evaluation is carried out next to the obvious collection and evaluation of quantitative information.
QPE is a change-management instrument. Among other things, the qualitative information provides more insight into
- and a better understanding of - the collected data.

Software Project Evaluation
as a vehicle for SPI

 Getronics Software Solutions
Referentie: Qwe99.5m_Pap.Doc –1
Datum: 16 September, 1999

page 5/3

Qualitative Project Evaluation: The process

Having recognized the flaws of current state project evaluations, we looked for a different approach. An
effective evaluation needs good preparation, and a good process underlying it.

Our Quantitative Project Evaluation process has the following stages:

Preparation:
• Determine motivation for the evaluation (end of project, end of phase, x months further,

change of course, change of leadership, etc.),
• Determine objectives and select the focus point(s) for the evaluation (process, methodology,

use of a certain tool, a Key Process Area, external factors, etc.),
• Tailor the general script to suite the objectives and focus points.

Other relevant parameters are the project’s stage, the number of participants, etc. Review the
script with a project member.

Execution:
• This is the actual evaluation session, led by a moderator assisted by a scribe. Both are exter-

nal to the evaluation team, and need only to focus on the process. As mentioned above, the
meeting is carried out according to the script. During the session the project members discuss
the successful aspects and the problems, they analyze the causes, and generate ideas about
improvement actions needed on individual, project and organization levels.

• Determine follow-up actions to be taken. This is a very important point. The participants can
use the evaluation’s output to improve their own work, and if the evaluation is not at the end
of the project, the project can and should benefit from it. Many aspects are relevant for the
management and for the organization as a whole, and it is important that the participants and
their colleagues see that follow-up actions as a result of the evaluation actually take place.

• Evaluate the meeting: a short evaluation at the end of the meeting, (a questionnaire to be
filled in). We use this to improve the QPE process.

Documentation and follow-up:
• It is the scribe’s responsibility to document the meeting in such a way that the participants

recognize their input. At the same time the evaluation (as a group’s result!) should be under-
standable and relevant for others in the organization, while individual-inputs should not be
identifiable to others.

• The participants review the evaluation-document.
• The evaluation is made available to the organization as a document, and in a database (the so-

called project evaluation database).
• The follow-up actions defined should be carried out; the project-evaluation coordinator tracks

the follow-up actions.
• Provide feedback about the outcome of the actions to all participants.

The Project Evaluation Database

Software Project Evaluation
as a vehicle for SPI

 Getronics Software Solutions
Referentie: Qwe99.5m_Pap.Doc –1
Datum: 16 September, 1999

page 5/4

This database, accessible to the organization, contains the relevant outputs of all the evaluations. It also
contains (pointers to) quantitative information about the project (such as plans vs. actuals), and a so-
called ‘project-profile’. The project-profile is the characterization of the project in terms of size (small,
medium, large, very large), form (fixed price, fixed date, etc.), technical profile (platform, methods and
tools used, programming languages, etc.), and other characteristics.

The Project Evaluation Database serves several purposes:
• It is a simple means of communicating about projects as well as about the outcome of project evalua-

tions to a wide population.
• It serves as a simple information provider for new members in teams and for new people in the

organization and provides a flavor of the organizational culture.
• It can be used as a knowledge-base.
• Also it allows insight into trends in the organization’s behavior, and about its strengths and weak-

nesses. The information is relevant for prioritization and decision-making regarding improvement
actions (next to periodical SQA-reports, change requests, etc.).

Qualitative Project Evaluation: some hints

Be critical. It is easy to say what everybody else should have done better or different. External groups or
individuals, existing procedures and the like, can obviously be addressed. But, what could we, as indi-
viduals and as a team, have done to stimulate better results? Make people realize they can influence the
process by changing their own behavior.

Communicate the evaluation output. Remember that the audience is not only the participants, but also
others who know little about the project’s ins and outs. Make sure the evaluation is understandable to all!

Make sure that feedback by (line) management and other external groups is provided. The biggest risk is
that all the findings remain within the evaluating groups, put on paper, and little or no improvement
actions are taken or made visible. The management’s actions, as well as a positive and open attitude is a
prerequisite for the sustaining success of evaluation activities. There is no bigger demotivator than the
feeling of not being taken seriously, especially by one’s superiors.

Do not forget that evaluations only identify needed change. The changes still need to be realized! Re-
sources - both financial and human – must be made available in order to make the changes really happen.

Actual actions should be agreed upon before closing the evaluation session, to be carried out by the
participants, in order to ensure that ‘things really get done’. When we go back to our daily activities, we
tend to forget. A ‘project evaluation coordinator’ should remind people about their commitments made
during the evaluation session. Defining deadlines for actions is very helpful.

The Project Evaluation Database need not be too ambitious. Start simple, and add key words and (extra)
structure while going. Use the limited resources for evaluation and communication. Our experience is
that carrying out the evaluations is the best promotion. Individuals are stimulated to take more initiatives.
Make sure, though, that the database can be extended in a controlled and economical manner.

Software Project Evaluation
as a vehicle for SPI

 Getronics Software Solutions
Referentie: Qwe99.5m_Pap.Doc –1
Datum: 16 September, 1999

page 5/5

Stimulate early phase evaluations, long before the project is finished. The project members can then
directly apply the evaluation’s results in their work. This is an important cultural stimulator, seeding the
notion of evaluation in peoples’ minds, rather than in the process only.

Moderators must be well trained! Moderating a session seems deceivingly simple, but it is not. The
effectiveness of the meeting and the level of the results depend on both a well-prepared and carried out
process, and on the critical attitude of the moderator.

Conclusions

A carefully prepared and planned project-evaluation, carried out in meetings to discuss qualitative as-
pects, is an excellent instrument to create an open and constructive culture and to support continuous
improvement. Commitment from people in different functions and levels in the organization is effec-
tively gained. Organized evaluation meetings, following a script, carefully documented and communi-
cated, significantly contribute to Software Process Improvement programs. The evaluations create a
platform to discuss issues, which are experienced as ‘the real problems’. The good practices of projects
are offered to others in the organization.

Project evaluations provide the SPI program continuous insight into the actual practices and ´hot issues´
in the organization. They allow monitoring the effect of improvement actions and provide information
for prioritization and planning of improvements. It is an ideal vehicle for creating and sustaining an open
culture needed for the learning organization and for change.

Documenting the output and making it broadly available – in combination with the quantitative and
technical project information - provides the organization with simple, directly accessible knowledge base
for individuals, projects and managers.

Visible management involvement and commitment is essential for success, and contributes significantly
to the success of the SPI-program as a whole.

1

Software Project Evaluation
as a vehicle for

Software Process Improvement

Hanna Luden
Getronics Software Solutions

Content

yContext;

yChallenges;

yProject evaluation;
Ö What;

Ö When;

Ö The process;

Ö Example;

yThe Project Evaluation Database;

yOur experience with project evaluation;

yConclusions.

Context

Challenges

…

2

Context
SPI Programmes take long to deliver…
y Awareness;

y Decision making;

y Preparations;

y Assessment;

y GAP analysis;

y Improvement plans;

y Task forces;

y Action planning ….

y …….

Context (cont.)
SPI Programmes take long to deliver …
y Getting everyone on board takes long, and costs a lot of effort;

y People have seen prior improvement actions fail;

y “Yet another improvement action????”

3

Context (cont.)

Sustain momentum and gained commitments:

 something small, effective, and quickly

realisable is needed!

Challenges

ySustain the momentum gained with the

assessment;

yMaintain visibility of commitment;

yProvide a platform for the exchange of knowledge,

experience, ideas and tools;

y>>

4

Challenges (cont.)

yStimulate individual and organisational

involvement and learning;

yProvide management insight into professionals´

views;

yReuse existing knowledge, experience, ideas, etc.;

y>>

Challenges (cont.)

yGain insight in effectiveness current processes;

yCreate input for prioritisation of improvement

actions;

yCreate an instrument for ongoing improvement

actions;

y Identify potential SPI-instruments and SPI-

products;

yStimulate open culture.

5

Project evaluation

yProject evaluation is not new;

yProject evaluation is not the Solution to all

problems and risks;

yProject evaluation is very effective in helping the

organisation grow ;

yProject evaluation must be institutionalised for

best results.

Project evaluation: What

yProject evaluation is a defined process ;

yLessons-learned for individuals and groups;

yQualitative (´soft´) aspects in focus;

yGenerate and collect common knowledge and

experience;

y>>

6

Project evaluation: What (cont.)

yMonitor the software process, work, achievements,

faults and weaknesses;

yEvery process can be evaluated and learned from;

ySearch for the unexpected !

yDo it!!!

Project evaluation: When
yClassically: at project end

BUT the group cannot directly apply results;

yDuring the project at set moments
(milestones, change of course, change of leader,
some crisis, etc….):

Findings are directly applicable for the project;

Ö At least twice in the life
of a project,
or every 4 months .

7

Project evaluation: The process

yThe process evaluation is carried out during a
special meeting of the project group;

yThe meeting is facilitated by a moderator and a

scribe , external to the project group;

yThe process is defined, supporting facilities are

used;

yGood preparation ensures effective results;

y>>

Project evaluation: The process (cont.)

Evaluation process phases:

step 1 : Preparation;
step 2: Execution: the evaluation meeting;
step 3: Documentation and follow-up.

8

Step 1: Preparation

yDetermine motivation for the evaluation;

yDetermine objectives;

ySelect focus points;

yTailor the general script

(motivation, objectives, project stage,

number of participants, etc.);

yReview the script with project representative.

Step 2: Execution

This is the actual evaluation meeting:
yTakes typically 4 hours;
yParticipants: all project members;
yExternal moderator+scribe: focus on process

only;
yAll project members are actively involved;
yMake the meeting enjoyable;

9

Step 2: Execution (cont.)

The evaluation meeting phases:

1.Evaluate:
Ö Good, bad, causes, how could we have acted/ act differently,

what could others do differently and how can we achieve this?

2.Determine follow-up actions (what, who, when);

3.Evaluate the meeting.

Step 3: D ocumentation & follow-up

yScribe documents the meeting:

Ö Recognisable for participants;

Ö Understandable for outsiders;

Ö Individual input not traceable.

yParticipants review;

yEvaluation made generally available:

Project Evaluation Database;

yFollow-up actions carried out (and tracked!),

including feed-back to the project group.

10

Project evaluation: An example

yMotivation : Change of 2 major requirements;

yObjectives :
Ö Understand customer expectations;

Ö Better requirements management;

Ö Grip on commitments to the customer.

y>>

Project evaluation: An example (cont.)

yFocus :
Ö Project planning;

Ö Requirements management;

Ö Communication with customer.

yProject group size : 10 members;

yScript is tailored and reviewed with 2 members of the
project;

y (Dinner scheduled after evaluation meeting);

y>>

11

Project evaluation: An example (cont.)

yFollow up actions agreed upon:

Ö Project leader schedules a meeting with the customer to

better understand the customer´s business goals; all project

members attend;

Ö Project estimates will be reviewed by entire project group;

Ö Account manager + line manager will be presented the

project´s achievements monthly;

Ö >>

Project evaluation: An example (cont.)

yFollow up actions agreed upon:

Ö “Risk management” and “Requirements management” added

to project meetings agenda;

Ö Hans is appointed the “requirements manager”;

Ö Thursday lunch hour introduced for project group, customer &

future users.

12

The Project Evaluation Database

yEasily accessible for the organisation

yContents:

Ö Project profile (technical and other);

Ö Quantitative information (metrics);

Ö Evaluation(s) results;

Ö Any other relevant information.

yOwner: the Project evaluation co-ordinator .

Our experience with project evaluation

y “Its fun, and we learn a lot”;

y A platform to discuss the `real issues`;

y “What will be done with the results of the

evaluation? Will something actually change?”

Ö Feed-back by management is vital!

y>>

13

yFollow up must be taken seriously, people want to

feel their opinions and ideas count;

Actions must be noticed: Visibility;

yMany follow-up actions cost little and have a big

leverage;

yReserve resources to carry out actions;

y>>

Our experience with project evaluation (cont.)

Our experience with project evaluation (cont.)

yProjects could learn and use a lot from other

projects;

yThe Project Evaluation Database : start simple!

yEarly phases evaluations have more impact, the

project group is in ´control´;

y>>

14

Our experience with project evaluation (cont.)

yModerator´s role is important;

Moderators must be well trained (it seems so

simple...);

yThe critical moderator sharpens the conclusions.

Conclusions

yProject evaluations help understanding and improving
the way we work as
individuals, groups and organisations;

yThe projects evaluation database allows the
organisation insight into its performance, the hot
issues and is a `knowledge management` instrument;

yProject evaluations must become part of the
organisation´s culture;

yProject evaluations help reduce risks of SPI initiatives;

y>>

15

Take project evaluations seriously or
don´t start with it!

Conclusions (cont.)

QuestionsQuestions

16

Where to find us

Hanna Luden
Getronics Software Solutions
P.O Box 22678
1100 DD Amsterdam
The Netherlands

Tel +31 20 430 6360
fax +31 20 430 6032

e-mail: H.Luden@getronics.com

 1999 Gitek nv pagina 1 van 7

How to implement structured testing in narrow time boxed projects:

Rushing from chaos to structure?

Lieven Schouwaerts

Gitek nv - interaction through software

St. Pietersvliet 3, B-2000, Antwerpen, Belgium

Tel: +32 3 231 12 90 - Fax: +32 3 226 10 83

E-mail: ls@gitek .be

1 Introduction

With this paper, I would like to share my experience in introducing structured testing in narrow time boxed
projects.

1.1 Background

The paper is based on the introduction of structured testing at a large Belgian bank. This introduction took
place at the time this bank merged with another Belgian bank. The merger led to a lot of relatively small
projects with a lot of interfaces. Over different releases various projects had to be released simultaneously.
It concerned applications of different types on a variety of platforms.

Extra risk factors were:

• A lot of resources shared by the different projects and the different releases.
• Due to the merger:

♦ people with a different “culture” had to work together;
♦ there was a knowledge problem;
♦ there was a terminology problem;
♦ there were structural changes within the organisation;

• Fixed time boxes (release dates) due to dependencies and commitment to the business;
• Different usage and management of the IT environments.

1.2 Rushing from chaos to structure?

Although the title might suggest so, it’s not about a rush from chaos to structure because:
• Rushing is not good: More haste less speed. Experience learns that hasty changes in company

processes usually result in uncontrolled initiatives, waste of time and frustration rather than in quality
improvement of the end product;

• Start from chaos? No! : The existing approach for developing applications already contained a certain
structure. The V-model was applied to this structure when introducing the new test approach;

• Structure? Yes! : We tried to structure things as effective as possible, based on the available time and
resources.

How to implement structured testing in narrow time boxed projects.

September 1999

 1999 Gitek nv pagina 2 van 7

2 Possible approaches

When you want to structure your test process, but haven’t got time or resources to do it in one go, there are a
lot of approaches one can follow.

To explain why certain approaches were or were not chosen, I drew the following scheme, representing a
flow of activities and products through a network of which each part can have different properties. The
scheme doesn’t include all dependencies and properties of actions and products that emerge from a project,
it only includes the necessary elements to explain the following reasoning.

The different elements represent the following properties:
• The size of the section (A) determines the speed. A larger size represents a faster process but doesn’t

tell you anything about the quality;
• The roughness (B) of the surface determines the smoothness of the activity and the quality of the

resulting product;
• The overlap of the small plate (C) determines the possibility of something going wrong. The smaller

the overlap, the easier things can go wrong. This is not equal to the risk because the overlap doesn’t
tell you how bad things will be when something goes wrong;

• The position of the stop (D) determines the end severity or final damage when things go wrong and no
corrective actions are taken in time. This position usually determines the priority when people have to
decide about risk factors in a haste, although that does not always lead to the right decision;

• The spring and plunger (E) determine how fast things will change when something goes wrong and
how easy it will be to fix it.

In fact (A), (B), (C), (D) and (E) together determine the total risk that is linked to a process because they all
influence the end quality or timing of the project, and those are the two things that usually matter when one
discusses the success of an activity.

How to implement structured testing in narrow time boxed projects.

September 1999

 1999 Gitek nv pagina 3 van 7

2.1 We didn’t choose to Structure one part of the process

You could start to structure only the infrastructure of your process (setting up test environment and data) or
only the test techniques, organisation or planning, but the “unstructured” parts of your process will probably
undo the effort spent on the one part.

Putting a quality product through a rough section (B), will lower the quality and create a stress situation
between the ones who deliver the quality product and those who “destroy” it.

Using low quality input for a good quality activity will give poor quality results and usually people don’t put

Widening a section (A) of an activity that is used as input for in a smaller section (A’) will not speed up the
entire process, it only enables you to get that specific activity off the critical path.

2.2 We didn’t choose to structure everything a bit

This is focusing on the company objectives only. An equal focus on project objectives and objectives of
individuals as well, has more chance of surviving the introduction of a new methodology.

The differences in maturity or quality of the different parts remain, so the losses caused by these differences
stay the same. This causes the same people to be responsible for the “less than average” parts of the process
over and over again and can result in even worse functioning of the concerning unit, enlarging the quality
gap and worsen the situation in stead of improving it.

Especially in parts where there’s a lot of work to do, it will take a long time before results will show and
people will notice the effect of the effort spent on structuring. Meanwhile negative feedback of depending
components will remain. This usually results in giving up.

2.3 We chose to set priorities according to risks, objectives and current level of maturity

This enabled us to create a balance in the maturity level of the different processes and align them in an
efficient way.

Concentrating on bottlenecks and weak links in the chain of activities immediately results in improvements.
It is not only advantageous for the concerning part, but for all parts depending on it.

It also allows using the limited available time and resources as efficiently as possible. This is very important
in small time boxed projects, preventing to get the “drop in the ocean” effect.

3 Extra activities: going and growing concern

Next to the introduction of the new test approach, a lot of other activities (existing and new) have to take
place. Focusing too much on introducing what’s new may result in neglecting other activities.
• “Business as usual” activities: maintenance, customer support, fixes, … ;
• Changing of roles and responsibilities due to the merger;
• Y2K testing;
• Euro follow-up;
• QA: The introduction of structured testing had to fit in the Quality Assurance program;

How to implement structured testing in narrow time boxed projects.

September 1999

 1999 Gitek nv pagina 4 van 7

4 How to bring this into practice?

4.1 Define priorities for the general approach

In our case the following priorities and objectives were defined:
• Changing the existing waterfall model into V-model (essential).

VT: Preparation
IA: Information analysis: defining user requirements; test preparation for acceptance testing
FO: Functional design: defining specifications; test preparation for functional and end-to-end testing
TO: Technical design and test preparation for unit testing
BT: Coding and Unit testing
FET: Functional and end-to-end testing
IMPL: Acceptance testing and Implementation
GAR: Maintenance

• Focusing on functional and end-to-end Testing (FET), because this part has got the lowest maturity
compared to the other test types;

• In first instance, the scope of the new methodology is limited to the merger projects;
• Project leaders are supported by test consultants who help to translate theory into practice. These

consultants are dedicated to one Bank Program (a group of projects linked to a certain bank product or
activity). These consultants should have good knowledge of both structured testing and the concerning
financial activities (these white crows are still hard to find). All testing activities, including all
preparation is done by project members and business personnel of the concerning application.

4.2 Set up the new methodology

Different test types can be described and linked to the V-model, for each test type a life cycle has to be
followed. For functional and end-to-end testing the following phases were described:
• Test Plan;

How to implement structured testing in narrow time boxed projects.

September 1999

 1999 Gitek nv pagina 5 van 7

• Test Requirement Hierarchy (TRH);
• Test Design;
• Test Cases;
• Test Procedures;
• Test Execution;
• Defect Tracking;
• Test Report.

A toolkit with templates and examples was set up to help the project leaders save valuable time and to
assure consistency between the different projects.

4.3 Sell the new methodology

Just handing over instructions with new procedures to project leaders doesn’t work. In our case
presentations were given to all project leaders, technicians, etc. to create awareness and to make them
familiar with the new methodology.

One or two test consultants were assigned to each bank program. One bank program contains 20 to 40
projects over different releases. Test consultants personally contacted every project leader within their
program to discuss the specific approach that could be applied in their project, using those parts of the
toolkit that led to the best efficiency/effort rate.

Because the project leaders have very different backgrounds (due to the merger), a personalised approach is
required. With this personal approach almost each project leader can be convinced of the added value.
Getting tasks off your critical path, reusability of documents (effort), possible quick wins, manageable
process (metrics) and quality improvement are some of the advantages of structured testing that make it
possible to get project leaders to accept the extra workload they will have to take on.

Although following the new methodology is compulsory for all merger projects, test consultants have to sell
it to the project leaders. As long as they are not convinced of the added value, they will follow a look alike
way of working that will slow them down rather than helping them. This selling requires the necessary
skills and patience. A lot of techniques used to sell physical products were applied.

4.4 Outline of the new methodology in the individual projects

All the following activities are carried out by project members with the support of a test consultant. The
project leader is responsible for all the test activities.

4.4.1 Start of testing activities: Test plan

As soon as possible test consultants invite project leaders to write the Test Plan(s) to get them to THINK
ABOUT THINGS (Who’s going to do what, where, when and how?). In the test plan the project specific
approach and priorities for testing activities are defined. The project leader has to decide how he will
spread the available resources over the different test activities, setting priorities according to risk and added
value analysis.

4.4.2 Create a Test Requirement Hierarchy (TRH) and assign Business and IT priorities to it

On the TRH, which is the functional breakdown of the system under test, business and IT assign a priority
or risk factor to each requirement. These priorities are used to define the detail in which requirements will
be worked out into test designs, test cases and procedures.

A good design and scoring of the TRH is essential to achieve good test results because it is used as a base
for most of the following testing activities. But sometimes this is easier said than done because business
commitment and knowledge are not always available, especially in an organisation with a recently changed
structure.

How to implement structured testing in narrow time boxed projects.

September 1999

 1999 Gitek nv pagina 6 van 7

4.4.3 Writing test designs, test cases and test procedures

According to the priorities on the TRH, test designs, test cases and test procedures are written for the
concerning requirements. The level of detail of these deliverables also depends on the type of project, the
availability and stability of test data and the knowledge of the testers.

4.4.4 Test execution

Project leaders are responsible for test execution and management of test results and defects. They are
supported by test consultants for tasks that go beyond their own project, especially during end-to-end
testing.

4.4.5 Defect tracking and reporting

Follow up of defects and reporting test results within each project. Different tools are available to support
project leaders with this.

Consolidation of test results, reporting and escalation of problems for items exceeding project limits are
tasks of the test consultants.

4.4.6 Evaluation

To be able to improve the test process evaluation of the project is necessary. Not only test activities are
scrutinised here, also test support, co-ordination and business participation are looked at.

Test consultants consolidate the results of the different projects, discuss them and determine adaptive
actions.

4.5 Organisation

4.5.1 Responsibilities must be known and taken

End responsibility of the testing activities stays with project leaders who define commitments to be taken in
the test plans. Test consultants give training and advice, they organise attunement meetings during which
the evolution of test activities is discussed and deliverables are approved (after co-reading) and they bundle
the testware of the different programs to be used as examples for future projects.

4.5.2 Co-ordination must be set up
• Test consultants

They support the co-ordination of end-to-end tests within their program, co-ordinate end-to-end tests that
involve projects from different programs, they consolidate questions and solutions to build a knowledge
base that can be used in current and in future projects and they check project interfaces and alignment of
projects with release calendars.

• Environment support

A project was started to set up and manage the test environments. Due to the merger this includes a lot of
extra effort. When this project finishes, the activities will be continued within the new (merged)
organisation.

• Global Test co-ordination

A global test co-ordination team was set up to consolidate test results of all the programs, support daily and
weekly escalation of problems and set up the Test forum to get everyone involved together on a weekly
basis. They also co-ordinate the overall planning during end-to-end testing and assisting in the setting up
and reservation of test data.

How to implement structured testing in narrow time boxed projects.

September 1999

 1999 Gitek nv pagina 7 van 7

5 Lessons Learned

5.1 Setting up the methodology
• Keep templates generic, as they should be applicable to different types of projects. But beware,

templates that are too generic tend transform easily in unrecognisable forms that start to live a life of
their own.

• Therefore it is important to use the original template every time you start a new “run”.

5.2 Selling the methodology
• When working with people that have different testing backgrounds, special attention must be paid to

terminology. The same word may mean something completely different to two people coming from
different companies;

• Sell the concept of structured testing first, next discuss the different activities as the projects make
progress rather than trying to teach them everything in one go;

• Let test consultants be pragmatic, don’t let them sell pragmatism.

5.3 Test process improvement
• Time and resources must be available to manage the methodology, otherwise it will start to live a life of

it’s own, being changed continuously by different people, without keeping track of the changes;
• Manage your change process and use correct information and interpretation to define changes;
• Don’t forget co-ordination of the co-ordination: steering and alignment of test consultants is necessary;
• TPI and test follow-up should be beard in mind from the beginning: you need to know what figures you

will need at the end of your life cycle before you start producing templates.

5.4 Test execution management
• When time pressure increases, reduce your scope by setting new priorities rather than starting to rush

things. To be able to do this, structured and well documented testing with the necessary metrics is
required.

Biography
Lieven Schouwaerts is an engineer who started his career in the early 90’s as a teacher at a technical university, teaching
informatics, mechanics, electricity etc. After one year he started structuring logistic processes and implementing quality
assurance systems for international companies. In the beginning of 1997 he joined GiTek nv where he has participated
in projects as test-analyst, test co-ordinator and is currently test consultant for the implementation of structured testing at
a large Belgian Bank. He is also responsible for the in-house support of Gitek’s test engineers and consultants.

1

November 1999, How to implement structured testing in narrow time boxed projects - 1 -

How to implement structured testing in
narrow time boxed projects:

Rushing from chaos to structure?

Lieven Schouwaerts
Gitek nv - LQWHUDFWLRQ WKURXJK VRIWZDUH

St. Pietersvliet 3, B-2000, Antwerpen, Belgium

Tel: +32 3 231 12 90 - Fax: +32 3 226 10 83

E-mail: ls@gitek .be

November 1999, How to implement structured testing in narrow time boxed projects - 2 -

Agenda

• Introduction
• Possible approaches
• Extra activities: going and growing concern
• How to bring this into practice?
• Lessons Learned

2

November 1999, How to implement structured testing in narrow time boxed projects - 3 -

Introduction

• Background
• Rushing from chaos to structure?

November 1999, How to implement structured testing in narrow time boxed projects - 4 -

Possible approaches

3

November 1999, How to implement structured testing in narrow time boxed projects - 5 -

Possible approaches

November 1999, How to implement structured testing in narrow time boxed projects - 6 -

- Structure one part of the process

- Structure everything a bit

Possible approaches

• We didn’t choose to

4

November 1999, How to implement structured testing in narrow time boxed projects - 7 -

• We didn’t choose to

- Structure one part of the process

- Structure everything a bit

Possible approaches

• We chose to
set priorities according to risks,

objectives and current maturity level

November 1999, How to implement structured testing in narrow time boxed projects - 8 -

Extra activities:
Going and growing concern

• BAU activities
• Y2K testing
• Euro follow-up
• Quality Assurance

5

November 1999, How to implement structured testing in narrow time boxed projects - 9 -

How to bring this into practice?

• Define priorities for the general approach
– Changing the existing waterfall model into V-model

(essential)

November 1999, How to implement structured testing in narrow time boxed projects - 10 -

How to bring this into practice?

user requirements

specifications

design

code

systeemtechnische testen
prod-acceptatietesten

end-to-end testen

programmatesten

functionele testen

VT

IA

FO

TO

B-T
B-T

FET

IMPL

GAR

testvoorb.

testvoorb.

testvoorb.

testvoorb.

6

November 1999, How to implement structured testing in narrow time boxed projects - 11 -

How to bring this into practice?

- Support by test consultants

• Define priorities for the general approach

- Changing the existing waterfall model into V-model

- Focusing on Functional and End-to-end Testing- Focusing on Functional and End-to-end Testing

- Merger projects

November 1999, How to implement structured testing in narrow time boxed projects - 12 -

- Test Plan

- Test Requirement Hierarchy (TRH)

- Test Design

- Test Cases

- Test Procedures

- Test Execution

- Defect Tracking

- Test Report

How to bring this into practice?

• Set up methodology

7

November 1999, How to implement structured testing in narrow time boxed projects - 13 -

How to bring this into practice?

• Sell methodology

November 1999, How to implement structured testing in narrow time boxed projects - 14 -

- Start of testing activities: Testplan

- Create a Test Requirement Hierarchy

- Score TRH by Business and IT

- Writing test designs, test cases and test procedures

- Test execution

- Defect tracking and reporting

- Evaluation

How to bring this into practice?

• Work out activities in the individual projects

8

November 1999, How to implement structured testing in narrow time boxed projects - 15 -

- Responsibilities must be known and taken

- Co-ordination must be set up

• Test consultants

• Environment support

• Global Test co-ordination

How to bring this into practice?

• Organisation

November 1999, How to implement structured testing in narrow time boxed projects - 16 -

- Keep templates generic

Lessons Learned

• Setting up the methodology

9

November 1999, How to implement structured testing in narrow time boxed projects - 17 -

• Selling the methodology

- Terminology

- Sell the concept first, next discuss activities

- Consultants can be pragmatic, not sell pragmatism

• Setting up the methodology

Lessons Learned

November 1999, How to implement structured testing in narrow time boxed projects - 18 -

• Setting up the methodology

• Selling the methodology

• Test process improvement

- Time and resources to manage the methodology

- Manage your change process

- Don’t forget co-ordination of the co-ordination

- TPI and test follow-up

Lessons Learned

10

November 1999, How to implement structured testing in narrow time boxed projects - 19 -

• Setting up the methodology

• Selling the methodology

• Test process improvement

• Test execution management

- When time pressure increases

Lessons Learned

November 1999, How to implement structured testing in narrow time boxed projects - 20 -

Copyright © 1999 IQUIP Informatica B.V. page 1

Risk Based Test Strategy

Rob Baarda

Tim Koomen

IQUIP Informatica B.V.

P.O. Box 263, 1110 AG Diemen, The Netherlands

Tel: +31 20 660 6600

Fax: +31 20 695 3298

E-mail: baardaro@iquip.nl

koomenti@iquip.nl

1. Introduction

In recent years we have seen splendid opportunities (mostly Y2K projects) for the
further development and implementation of test strategies. A test strategy is, in
short, the choice which aspects of a (sub)system will be tested with what testing
depth. We were able to combine theory on business risks with the existing theory
of test strategy as described in TMap® (see references). This lead to a straight line
of thinking from business risks into detailed testing depth per function.

One of the opportunities to implement ideas on test strategy came out of the Y2K
projects. In Y2K projects large numbers of programs had to be tested. Due to
limited resources not all programs could be tested. How to make the choice which
programs to test and which not? We used the test strategy as an approach to make
these choices.

Some organisations started in parallel to change from the intuitive way of making
a test strategy into a more rational one based on business risks.

In this paper we first describe the theory from business risk unto test techniques,
followed by two concise case-stories of the previous described situations.

We will make clear that the described manner to define a test strategy has the
advantage of:
− better test coverage on the right spot;
− improved communication between the tester and other parties concerned.

Risk Based Test Strategy

Copyright © 1999 IQUIP Informatica B.V. page 2

2. Test strategy and risks

The development of a test strategy is a means of communication with the
customer commissioning the test on such matters as the organisation of testing
and the strategic choices that go with it. The test strategy indicates how testing is
to be carried out. In order to make the best possible use of resources and time, it is
decided on which parts and aspects of the system the emphasis should fall. The
test strategy forms an important basis for a structured approach to testing and
makes a major contribution to a manageable test process.

The customer who commissions the test will expect specific qualities of the
system when in production, and wants to know whether the released system will
meet these requirements. If the system qualitatively does not meet the
requirements or only to a limited extent, this implies high damage for the
organisation, for instance since high rework costs will be needed or clients/users
will be unsatisfied. Therefore, this situation forms a risk for the organisation.
'Risk' in this paper is defined as:

A risk is the chance of an error1 occurring (chance of failure) related to the damage

expected when this error does occur

Testing covers such risks by giving insight into the extent to which the system
meets the quality demands. When quality turns out to be insufficient timely
measures can be taken, e.g. rework by developers. If the shipping of the system
implies many risks for the organisation, better testing is obvious as a solution.
And the reverse also holds:

No risk, no test

Although in the above we refer to quality and risks in a general sense, there may
be large differences depending on the situation. It is of great importance to discuss
this with the customer, and to translate the customer's wishes in this respect into
the way testing will be performed. Thus, the test strategy is directed towards
finding the optimal balance between the test effort to be exerted and the coverage
required for the risks. To this purpose the risks are specified up to the level of
quality characteristics and separate subsystems. In doing so it becomes possible to
find a suitable test coverage for the assessed risks. Here a higher test coverage
usually results in more test effort. In order to reach at the variation in test
coverage needed, the use of more than one test specification technique (test design
technique), each offering a specified test coverage, is crucial.

An analogy with insurance industry may clarify this matter a bit more. A person
wants to cover a relevant risk and takes an insurance with a coverage fitting this
risk as best as possible. This insurance takes a certain premium. If the person
wants to pay less, an insurance with a lower coverage is bought. The consequence
is that there will be no payment if the uncovered risk occurs. On the other hand, if
coverage was too large, then too much premium is paid, since a situation has been
insured which is unlikely to occur for this person.

1 The terms error, defect and failure are not used as exactly as IEEE advocates. In this paper error
= fault or mistake; failure = the result or manifestation of one or more errors.

Risk Based Test Strategy

Copyright © 1999 IQUIP Informatica B.V. page 3

budget
risk

coverage

The balance between budget and risk coverage

3. Risk Assessment

Test strategy is based on risk assessment. This means assessing the damage of the
consequences of failures, both undetected prior to operation and occurring during
operation.

Risk assessment takes place on the basis of quality characteristics and subsystems.
For instance, if the system is insufficiently user-friendly, what will be the negative
consequences. And what will be the damage when the salary calculation module
in a payroll system does not work correctly.

In order to be able to perform this assessment well, the separate aspects of a risk
are considered:

Risk = chance of failure x damage,

where chance of failure is related to aspects including frequency of use and the
chance of an error occurring.

These aspects are listed below:

• Frequency of use
In a function which is used dozens of times each day the chance of an error
demonstrating itself is much bigger than with a function used once a year.
• Chance of error
For the assessment of the chance of errors the following list can be helpful. It
presents the locations where errors tend to cluster. It is partly based on H.
Schaefer, 1996 (Surviving under time and budget pressure, in: Conference
Proceeding EuroSTAR1996, Amsterdam, the Netherlands):

◊ Complex functions;
◊ Completely new functions;
◊ (Especially frequently) adjusted functions;
◊ Functions for which certain tools or techniques were employed for the

first time;

Risk Based Test Strategy

Copyright © 1999 IQUIP Informatica B.V. page 4

◊ Functions which were transferred from one developer to another during
development;

◊ Functions that were realised under extreme time pressure;
◊ Functions which had to be optimised more frequently than on average;
◊ Functions in which many errors were found earlier (e.g. in previous

releases or during earlier reviews);
◊ Functions with many interfaces;
◊ Inexperienced developers;
◊ Insufficient involvement of users;
◊ Insufficient quality assurance during development;
◊ Insufficient quality of low-level tests;
◊ New development tools and development environment;
◊ Large development teams;
◊ Development teams with sub-optimal communication (e.g. owing to

geographical spread or personal causes);
• Damage
If and when the error manifests itself, what will be the damage for the
organisation. Aspects are costs of repair (both of the system and of the
consequences), forgone income and loss of clients or of confidence. Usually the
damage increases if the error has its impact on other functions or systems. In the
case of errors occurring in batch processes there may be a possibility to prevent
them from hampering users, so that the eventual damage will be smaller than with
similar on-line processes. Of course, this only holds if errors are detected on time.

Because of the complexity of the matter, it is impossible to assess risks with
complete objectivity and in detail: it is a global assessment. It is therefore
important for the risk assessment not to be carried out by the test manager alone.
A large number of people involved in the scheme should contribute: customer,
users, development team, accountants, IT auditors and so on. This not only
increases the quality of the strategy, but it also has the advantage that the different
parties are more aware of the risks and the extent to which testing contributes to
making these risks manageable in a better way.

The developer of the test strategy should realise that 'users' are the best people to
assess the damage and the frequency of use when valuing the risks (end-users,
system managers and application managers, line management), whereas project
team members are best to assess the chance of error (project managers, designers,
programmers, project quality staff, test manager).

The focus in risk assessment is on product risks, or, in other words, what is the
risk for the organisation if the product does not demonstrate the expected quality.
In addition to this, there are also (test) project risks. If the system must be in
production on January 1st, if functional specifications are produced too late, if no
experienced testers are available, or if the test infrastructure is not ready on time,
then we speak of (test) project risks. These are not taken into account in
determining the test strategy; they do play a role in the test plan.

In developing a test strategy the aim is to see to it that the test will be organized in
such a way that with a certain extent of reliability
• the most important problems will be found;
• the problems will be found in an early stage;
• the problems that require the most rework time will be found first:
• efficient use is made of resources;
• and eventually an accurate quality advice can be given.

Risk Based Test Strategy

Copyright © 1999 IQUIP Informatica B.V. page 5

This can be summarised as:

Test strategy aims at finding the most important errors as early as possible against the

lowest costs

In practice, the development of a test strategy is often planned to coincide with
preparing the budget, for example with the help of test point analysis. The
advantage is that the consequences of the adopted strategy are immediately
translated into time required for testing, and consequently the cost of testing,
which makes the strategic choices manageable. If the time available for testing is
more or less fixed, it is also possible to use test strategy combined with test point
analysis to determine what is achievable within the time limits. It is probably even
more important to make it clear at this time which parts cannot be tested, or
cannot be fully tested, and what risks will therefore be incurred.

4. Quality Characteristics

The quality characteristics we distinguish can be divided into dynamic and static
quality characteristics. The dynamic quality characteristics deal with features of
the information system in use; examples are security, usability, continuity,
traceability, functionality, userfriendliness, suitability, efficiency, performance.
The static are concerned with intrinsic characteristics of the information system
and the documentation, as considered from the standpoint of developers and
future system managers. Examples are manageability, maintainability,
connectivity, reusability, portability, testability.

5. Steps

The development of a test strategy is not something that can be done purely
methodically or formally. The below steps are aids and indicators. Experience and
skills of the performer of this activity in the area of testing is a major success
factor for a sound test strategy.

One should also realise that test strategies arise as a result of iterative processes
and in connection with other activities for a test plan. If the first test strategy
produces an amount of test effort needed or a certain time schedule which is
unacceptable for the customer, the strategy should be adjusted. The lack of test
skills or suitable infrastructure can also result in adjustments of the test strategy.

The stepwise defining of the test strategy can be used for any test level and also
for an overall strategy (master test plan), including and co-ordinating all test
levels and even inspections. The steps differ for both situations.

5.1 Strategy in Master Test Planning

The steps to be taken for a test strategy are:
• Decide on the quality characteristics;
• Determine relative importance of quality characteristics;
• Attribute quality characteristics to test levels.

Risk Based Test Strategy

Copyright © 1999 IQUIP Informatica B.V. page 6

5.1.1 Step 1: Selection of Quality Characteristics

In close liaison with the customer and other parties involved a selection of quality
characteristics is made on which the tests must focus. In doing so one should take
risks for the business into account as well as aspects including system
requirements, business objectives concerning the information system, directions
and standards set by the computer centre. These quality characteristics are also
used for reporting to the customer during test execution and completion.

Some characteristics are difficult to test. There may be a wish for a system to be
user-friendly and flexible, for instance, but these wishes turn out not to have been
translated into measurable requirements. That is why a substantial part of the
effort here is devoted to formulating the relevant quality demands as measurably
and unambiguously as possible. It is also the case that some quality characteristics
demand relatively much effort in testing. Since it is not useful to offer possibilities
which cannot be fulfilled, it should be determined beforehand what will be the
estimated effort needed for a decision made.

For non-IT people our quality characteristics may be hard to handle. It helps when
we translate them to the conceptual environment of our conversational partners.
This can be done by finding illustrative examples of problems or errors that may
occur in production and the damage that would be caused by this. This is one of
the most difficult aspects of the formulation of a test strategy.

5.1.2 Step 2: Relative Importance of Quality Characteristics

On the basis of the results from Step 1 the importance of the selected quality
characteristics is determined in relation to one another. This is done in the Matrix
of Weights (see below), by weighing the relative risks per quality characteristic.
Here the relative importance is indicated (in percentages). Note that it is not of
importance to have exact percentages: the objective is to arrive at a general
picture of the relative importance of the various quality characteristics. The filling
in of the matrix helps evaluating the risks.

The customer should be forced to make choices. Therefore, as a directive we ask
for a percentage of 5 as the minimum. The sum of all percentages should not
exceed 100. An example of a Matrix of Weights is given below:

 Quality characteristic Relative
importance

Manageability 5

Security 5

Usability -

Connectivity -

Continuity 10

Traceability -

Flexibility -

Functionality 50

Userfriendliness 10

Risk Based Test Strategy

Copyright © 1999 IQUIP Informatica B.V. page 7

Reusability -

Infrastructure -

Suitability 10

Maintainability 5

Performance 5

Portability -

Testability -

Efficiency -

Total 100%

The Matrix of Weights

The high percentage for functionality in this matrix may strike the reader. This is
in conformance with practical experience: generally 50% of the importance or
more is attributed to this characteristic. The reason for this is that risks usually are
larger for incorrect performing systems (Functionality) than for slow systems
(Performance) or awkward systems (Userfriendliness).

5.1.3 Step 3: Quality Characteristics Attributed to Test Levels

With the aim of spending the total test effort as efficiently as possible, during test
strategy development it is decided with which test level or combination of test
levels the various selected quality characteristics will be tested. Also inspections
may fall under the scope of the master test plan and under the test strategy. In the
remaining sections when 'test' is used, inspections are also included.

In this way the various test levels within a project are brought into balance. It is
obvious that the different responsibilities and authorities remain intact.

A +-sign in a matrix (for an example, see matrix below) indicates whether the test
strategy takes a quality characteristic into account. '++' or '+++' indicate that
relatively much attention is to be paid to the quality characteristic for the specified
test level. It is obvious that one quality characteristic can be in effect for more
than one test level, but depth will often vary. If structured test specification
techniques are used, the acceptance test, for example, may use results of previous
tests levels, on the basis of which it may be decided to test with less depth.

Insp
RQMS

Insp
Specs

Insp
Design

PT IT ST FAT PAT Relative
importance

Manageability + + ++ + 5

Security + + + + + 5

Usability -

Connectivity -

Continuity + + ++ 10

Risk Based Test Strategy

Copyright © 1999 IQUIP Informatica B.V. page 8

Traceability -

Flexibility -

Functionality ++ ++ + + +++ ++ 50

Userfriendliness ++ ++ 10

Reusability -

Infrastructure -

Suitability + ++ ++ 10

Maintainability + + 5

Performance + + + 5

Portability -

Testability -

Efficiency -

100%

Example of a Test Strategy for Test Levels

Legenda:

Insp RQMS Inspection of Requirements
Insp Specs Inspection of Functional Specification
Insp Design Inspection of Technical Design
PT Program Test
IT Integration Test
ST System Test
FAT Functional Acceptance Test
PAT Production Acceptance Test

Risk Based Test Strategy

Copyright © 1999 IQUIP Informatica B.V. page 9

5.2 Strategy for a Test Level

The steps to be taken for a test strategy for a specific test level are:
1. Decide on the quality characteristics;
2. Determine relative importance of quality characteristics;
3. Divide the system into subsystems;
4. Determine relative importance of subsystems;
5. Specify test importance per subsystem and quality characteristic;
6. Establish test techniques to be used.

The strategy determination for a specific test level naturally has the master test
plan strategy as a precondition and a starting point. If a master test plan, including
a test strategy, is there, step 1 can be omitted and step 2 will be an easy and fast
performed activity. Nevertheless, all steps are worked out below.

5.2.1 Step 1: Decide on Quality Characteristics

In collaboration with the customer and perhaps other parties concerned the quality
characteristics are determined on which the test will focus, in relation to business
risks. During the test and in the completion phase, results are reported on the basis
of these quality characteristics.

5.2.2 Step 2: Determine Relative Importance of Quality Characteristics

Based on the results of step 1 the relative importance of the selected quality
characteristics is determined. Determination of the importance takes place by
weighing the risks per quality characteristic. This is shown in a Matrix of Weights
by a percentage in the column Relative importance. In order to force the customer
to make choices, a percentage of 5 is the minimum.

An example of a matrix for a functional acceptance test is given below:

 Quality characteristic Relative
importance

Security 5

Functionality 60

Userfriendliness 10

Performance 5

Suitability 20

Total 100%

The Matrix of Weights for a Functional Acceptance Test (Example)

Risk Based Test Strategy

Copyright © 1999 IQUIP Informatica B.V. page 10

5.2.3 Step 3: Divide System into Subsystems

During this step and the following steps the test strategy is refined more and more.
This implies that the quality characteristics and their relative importance as
indicated in the Matrix of Weights are to be broken down for the combination of
test specification technique and subsystem, later even for test specification
technique and test unit.

The information system is divided into subsystems. The reason for this is that the
same quality demands do not have to be valid for each subsystem. Moreover, the
various subsystems may have different risks for the organisation. In principle the
division is the same as given in the design documentation. If we deviate from this
one, we must clearly indicate the motivation for this. Examples of alternative
divisions are on the basis of extent of risk or on the basis of order of release by the
developer. If a conversion module is there, this is to be treated as a separate
subsystem. Often the subsystem 'Total system' is distinguished. This serves the
purpose of indicating that some quality characteristics can be evaluated effectively
only with the help of an integral test, testing the coherence of the various
subsystems.

In a later stage the various subsystems are further divided into independent test
units. E.g. in a logistics system the subsystem Sales may be divided into the test
units Quotations (all functions regarding quotations) and Orders.

5.2.4 Step 4: Determine Relative Importance of Subsystems

On the basis of the result of the previous step the relative importance (in
percentages) of the subsystems should be indicated in the Matrix of Weight. This
is done by weighing the risks per subsystem. It is not a matter of exact
percentages; rather it is a matter of getting a general image of the importance of
the subsystems as seen through the eyes of the customer and other parties
concerned. This step helps in asking people to form an opinion of this.

The relative importance is determined of each subsystem within the information
system. In the Matrix of Weights this is indicated with a percentage in the column
Relative importance.

An example of a Matrix of Weight for a functional acceptance test (based on the
Strategy Matrix for test levels in the master test plan, shown above) is given here:

Relative
importance

Subsystem 1 30

Subsystem 2 15

Subsystem 3 20

Conversion 15

System 20

Total 100%

Relative Importance of Subsystems for a Functional Acceptance Test (Example)

Risk Based Test Strategy

Copyright © 1999 IQUIP Informatica B.V. page 11

5.2.5 Step 5: Specify Test Importance per Subsystem and Quality Characteristic

Finally a refinement is made by assessing the importance of the combination
quality characteristic - subsystem. E.g., a refinement may be that userfriendliness
is important (relative importance of 10), but this holds predominantly for
subsystem 1 and not at all for subsystem 3. Again it is emphasised that test
strategy determination is not a mathematical affair: it is meant to get an image of
the relative test importance of the various subsystems and quality characteristics.
This is also the reason why we choose +, ++ and +++ as notation symbols, rather
than opting for the pseudo-certainty of a mathematical formula. An example of
this is the following: suppose both userfriendliness and a specific batch subsystem
are very important, a mathematical formula would probably result in large test
effort to be spent on the userfriendliness of the batch procedure. The Matrix of
Weight may look like this:

Subsystem
1

Subsystem
2

Subsystem
3

Con-
version

Total
system

Relative
importance

Security + + 5

Usability -

Continuity -

Traceability -

Functionality ++ + + ++ + 60

Userfriendliness ++ + 10

Performance + + 5

Suitability + + + ++ 20

Efficiency -

Relative
importance

30 15 20 15 20 100%

Relative Importance of Subsystem x Quality Characteristic (Example)

5.2.6 Step 6: Establish Test Techniques to be Used

The final step in test strategy involves the selection of the test specification
techniques that will be used to test the combination of the selected quality
characteristics and subsystems. A high importance implies the use of techniques
with a high coverage or the use of more techniques, a low importance implies the
use of techniques with a lower coverage or the use of fewer techniques.

In choosing the techniques one should also take into account various other factors,
a number of which are listed below.

• Quality characteristic to be tested
 A technique is fit for testing one or more quality characteristics. Some quality

characteristics can best be tested with one (set of) techniques, others with another
one.
• Area of application

Risk Based Test Strategy

Copyright © 1999 IQUIP Informatica B.V. page 12

Some techniques are specifically suitable for testing the interaction (screens,
reports, on-line) between the system and the users, others are better in testing the
processing of systems (batch processes). There is a relation with the type of error
to be found with a technique, e.g. false input checks, incorrect processing or errors
of integration.
• Availability of test basis

 Each techniques starts from a certain test basis. This may be the functional specification,
the technical design, program code or descriptions of the end-user organisation.
The exact form of the test basis is also relevant to the choice of a technique, e.g.
decision tables, pseudo-code, structured language or unstructured prose.
• Extent of formality
Informal test specification techniques offer more freedom for the tester in making
the test cases than do formal techniques.
• Use of resources
The application of a techniques requires a specific amount of resources, in terms
of man capacity as well as machine capacity. The use of resources has a direct
relation with costs.
• Required knowledge and skills
Not each tester is equipped for each technique. For the useful application of some
techniques much business knowledge is needed. For other techniques more
analytic talent is required. Therefore, the knowledge and skills of the test staff
also influences the choice for techniques.

For practical reasons one should attempt to cover all selected quality
characteristics with a minimal set of test specification techniques.

The selection of the test specification techniques should be done in an early stage
of the test process, for then the test team can take the appropriate actions in
training for techniques and the necessary checklists can be made or adjusted for
the specific situation.

As a result of this step the techniques that will be used per subsystem are defined.
Optionally, especially with large test projects, this last step in the test strategy is
performed slightly later in the process, namely during the preparation phase. As a
part of this the priority order of the tests to be performed is determined. The aim
of this is to have the most important tests take place as early as possible.

6. Case-stories

The case-stories are an illustration of some parts of the presented theory. In both
situations the organisations have chosen for the quality characteristic
functionality. The test level is in both cases system (regression) testing.

The case-stories are simplified and not extensive.

6.1 Y2K case-story

Situation

A large financial institute, with more than 100 (sub)systems, wants the systems to
be Y2K-compliant. One of the tests to be passed is the system regression test after
the Y2K-adaptation. There is a limitation on the number of systems that can be
tested due to lack of infrastructure.

Which systems have to be tested?

Risk Based Test Strategy

Copyright © 1999 IQUIP Informatica B.V. page 13

Detailed risk analysis

The answer was found in making a prioritisation of the (sub)systems based on a
risk analysis. The risk analysis is based on the formula:

Risk = Chance of failure * Damage

The damage component of the (sub)system was rated by the impact of a failure for
the business process using a scale from1(small impact) to 5 (large impact).

In this project the definition of the chance of failure was based on attributes which
are relevant in Y2K:

Chance of failure = [Size of system] * [Complexity and size of Y2K-adaptation]

The size of the system could not easily be measured but was estimated (between 1
and 5) based on data like:
− lines of code
− number of function points
− number of files
− number of interfaces

The complexity and size of the Y2K-adaptation was judged between 1 and 5 using
data as:
− number of (expected) changes, related to the number of dates
− quality of the system documentation
− available knowledge about the (sub)system

If the number of changes was zero, the Y2K-adaptation size was zero. This leads
to a zero chance of failure and to zero risk, so regression testing was not
necessary.

Result

It was possible to rate each (sub)system with a risk number. Of course the
(sub)systems with a high risk number were regression tested in the regression test
infrastructure, and the (sub)systems with a low number were not. Intermediate
systems were only tested if infrastructure resources were left.
All participants, management, users, testers, felt comfortable because all choices
were made clear for everybody.
The risk based thinking helped to make an objective choice which systems had to
be tested.

6.2 Testing depth case-story

Situation

An organisation introduced test tools and wanted all functional tests to be
automated for regression test purposes. The organisation used a certain test
specification technique based on decision tables for the design of the test cases.
This technique can be applied with a variable testing depth. The larger the testing
depth, the larger the coverage of the test cases, but also the higher the test effort.
A first planning based on the maximum testing depth showed that the effort to test
was larger than the available budget.

Choices had to be made: which testing depth to apply on which function?

Risk Based Test Strategy

Copyright © 1999 IQUIP Informatica B.V. page 14

Detailed risk analysis

It was decided to break down the system into functions. For each function the
chance of failure was estimated by the programming staff, the expected damage
was decided by the user organisation. Both scales were 1 to 3, so the calculated
risk varied from 1 to 9.

To cover risk number 9, it was decided to give a full testing depth; e.g. if there
were 8 test cases possible, they were all realised.

Functions with risk number 6 were tested with 4 out of 8 test cases, and functions
with lower risk numbers got only one or two test cases out of the 8.

Result

The regression test set was put together in the described way, sometimes after
long discussions between users and programmers. In production there were no
high damage failures, so it looks like that there were no test cases missing.

Management, testers, users and programming staff had the idea that the available
budget was used in an optimal way.

7. Conclusion

The testing of information systems can be based on the business risks which the
organisation will experience in using these information systems if the system is
not tested. In practice, test managers often take the steps to come from risks to test
coverage in an intuitive manner. In this paper, the steps needed for the definition
of a test strategy are made explicit. The result of such a test strategy is better
insight for all parties involved and a sound basis for negotiating testing depth.

Good risk assessment is a part of these steps. It is essential to realise that this
explicit way of looking at risks cannot be done by a test manager or tester alone. It
is necessary to ascertain for the involvement of users and managers of the client
organisation, of auditors, and of project people such as developers, testers, QA
staff and project managers. In practice, the discussion of risks and related testing
strategies in this way proves to be a real eye-opener for all parties concerned. It
also enables negotiation of testing depth by having the customer decide which
elements should be tested how thoroughly.

The stepwise definition of the test strategy can be used for any test level (e.g.,
system test, acceptance test) and also for an overall strategy (master) test plan,
including and co-ordinating all test levels and inspections/reviews.

8. References

In English with a short description of test strategy
Pol, Martin and Veenendaal, Erik van, Structured Testing of Informations
Systems (1998), Kluwer Deventer The Netherlands, ISBN 90-267-2910-3,

In Dutch with an extensive description of test strategy
Pol, Martin, Teunissen, Ruud and Veenendaal, Erik van, Testen volgens TMap
(1995), Tutein Nolthenius, s' Hertogenbosch The Netherlands, ISBN 90-72194-
33-0;
In December1999 this book will be available in a new version describing the
above theory. ISBN 90-72194-58-6.

Risk Based Test Strategy

© IQUIP Informatica B.V. 1999 1

IQUIP
98 nr Be 1

Risk Based Test
Strate gy

Rob Baarda baardaro@iquip.nl
Tim Koomen koomenti@iquip.nl
IQUIP Informatica B.V.
The Netherlands

IQUIP
98 nr Be 2

Agenda

• Test strategy
• Risk analysis
• Procedure
• How to apply
• Case
• Conclusion

Risk Based Test Strategy

© IQUIP Informatica B.V. 1999 2

IQUIP
98 nr Be 3

Test Strategy

Aim: To detect the most important defects
 as early as possible at the lowest costs!
Aim: To detect the most important defects
 as early as possible at the lowest costs!

What are the most
important defects?

IQUIP
98 nr Be 4

Risk thinking: an introduction

• Business reasons

• No risk, no test

• Risk analysis approach

budget coverage
risk

Risk Based Test Strategy

© IQUIP Informatica B.V. 1999 3

IQUIP
98 nr Be 5

Risk: definition

Frequency of use

Chance of error

Chance
of

failure

Damage

Risk

IQUIP
98 nr Be 6

Risk definition details

• Damage
– financial, loss of faith of customers, damage to

corporate identity
– impact other functions and/or systems
– detection and repair time

• Chance of error
– global = size * complexity
– detailed = knowledge of development quality

Risk Based Test Strategy

© IQUIP Informatica B.V. 1999 4

IQUIP
98 nr Be 7

Risk analysis practical

• Applicable on the level of:
– system
– subsystem
– individual function (e.g. interest calculation)

• Risk analysis should lead to a limited number of
classes of (more or less) equal risks

• Applicable on quality characteristics, what is the
damage and the chance that it will happen:

– functional defects
– low performance
– low maintainability
– ...

IQUIP
98 nr Be 8

Parties involved
Damage
Frequency of use

 System
management

 Data
centre

Accountanc
y

CM & CC

Technical
design

Project

TEST

QA
DBA

Business

Functional
design

Chance of error

management

Programmer

Functional

management

Risk Based Test Strategy

© IQUIP Informatica B.V. 1999 5

IQUIP
98 nr Be 9

Steps

Master Test Plan
• selection of quality characteristics
• relative importance of quality characteristics based

on risks
• quality characteristics attributed to the test levels
For one test level
• determine (relative importance) of system parts

based on risks
• specify test importance per system part and quality

characteristic
• choose test techniques (TT) and testing depth

IQUIP
98 nr Be 10

Procedure visualised
 Relative

 importance
%

 5

 75

 20

 0

 100 %

 System part/Risk class
 1 2 3 System

40 25 15 20

 +

++ ++ + +

 + + +

TT1 TT1 TT2 TT2

Quality
characteristics

Security

Functionality

Usability

…

 TT2

TT3 TT3 TT3

Risk Based Test Strategy

© IQUIP Informatica B.V. 1999 6

IQUIP
98 nr Be 11

How to apply

A documented Risk Based Test Strategy helps:
• to be complete in assessing the risks
• discussions between parties
• to get commitment of the customer
• later to:

– have documented proof if needed
– make a switch in test manager postion easier
– do a re-planning
– use in the maintenance situation

IQUIP
98 nr Be 12

Case-story Y2K

• Situation
– large financial institute
– > 100 (sub)systems going for Y2K-compliance
– limited regression test capacity

• Which systems to choose?
• Approach: Risk based
• Risk = Chance of failure * Damage

– chance of failure for Y2K adaptations [1-5]
– damage = importance for business process [1-5]

Risk Based Test Strategy

© IQUIP Informatica B.V. 1999 7

IQUIP
98 nr Be 13

Case-story Y2K: example

System Chance Damage Risk
of failure

Debt mgt 5 5 25
Cash mgt 3 2 6
Stock transactions 1 5 5

great risk (25): regression test
middle risk (6-7): regression test if is capacity left

IQUIP
98 nr Be 14

Case-story Y2K: results

• all parties involved in time
• with a good communication about the estimations
• optimal use of the regression test infrastructure
• most risky systems tested in time

Risk Based Test Strategy

© IQUIP Informatica B.V. 1999 8

IQUIP
98 nr Be 15

Case-story testing depth

• Situation
– card issuing organization
– building a regression test for more systems
– limited budget

• Which functions to test thoroughly?
• Risk based!

IQUIP
98 nr Be 16

Case-story testing depth: example

• risk for each function = chance of failure * damage
• chance from 1 to 3 by programming staff
• damage from 1 to 3 by users
• possible risk numbers: 1, 2, 3, 4, 6, 9
• test technique based on decision tables
• risk number = 9: all combinations
• risk number = 4 till 6: 50% of combinations
• risk number = 1 till 3: some combinations

Risk Based Test Strategy

© IQUIP Informatica B.V. 1999 9

IQUIP
98 nr Be 17

Case-story testing depth: results

• good communication between users and
programming staff (after some time)

• in production no high damage failures occured
afterwards

• a manageable test process for the test manager

IQUIP
98 nr Be 18

Conclusion

Risk Based Test Strategy
• applicable for different test levels
• supports users to make choices
• is a medium to have communications between

users, programmers, test management
• makes the test process manageable

K . D i n e s h
P a n k a j J a l o t e
M . R . B h a s h y a m
S . R a g h a v a n

In fosys Techno log ies L td .
E lec t ron ics C i ty
Bangalore � 561 229
Fax: +91-80-852-0352
Emai l : kd inesh@in f . com

Managing the Transition from ISO to
High Maturity Levels of the CMM

ABSTRACT

In an effort to improve its processes, Infosys, a large ISO9000-certified

software house, adopted the CMM framework. Within one year, Infosys was

able to successfully transition from ISO to level 4 of the CMM. A key success

factor in this achievement was that the transitioning was treated and

managed like an aggressive project. This article describes some of the

important aspects of managing this transition.

Keywords: Software process improvement, ISO9001, Capability maturity

model, Process maturity, Project management.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Managing the

Transition

from ISO to

High Maturity

Levels

of the CMM

INTRODUCTION

A process framework specifies some characteristics

that the process must have in order to �qualify� to be a

process of some maturity. The maturity of a process

may be classified in some levels, and the number of

levels in which a framework characterizes a process

may be two or more. A framework only specifies the

characteristics that processes at different levels should

have and does not prescribe any process so that

different processes may fulfil the requirements of the

framework. By specifying characteristics of processes

for different levels of maturity, frameworks also provide

guidance regarding the improvements needed to move

from one maturity level to the other.

There are many frameworks for software processes.

Currently, the two most used and influential models are

ISO9001[5] and the CMM [9]. ISO9001 is a general

standard for providing service, which has been

specifically interpreted for software in ISO9000-3 [6].

TickIT provides further guidelines on how ISO9001 is to

be used by software organizations [7]. ISO9001 has 20

clauses which an organization must satisfy in order to

qualify to be �ISO certified�. Within the �ISO certified�

category, there are no distinctions (further improvement

is generally handled through the auditing process). In

other words, there are only two levels in the ISO9001

framework. The model is general and considers the

working of the whole organization, not just of its

software projects.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Managing the

Transition

from ISO to

High Maturity

Levels

of the CMM

Adapted from portions of �CMM in Practice: Processes for Executing Software Projects at Infosys,� by P. Jalote,
copyright ã2000 by Addison Wesley Longman, Inc. Material used with permission of the publisher.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Managing the

Transition

from ISO to

High Maturity

Levels

of the CMM

The CMM for software is a framework that focuses on processes

for software development whose foundations were laid down in [4],

and the framework itself is described completely in [9]. One of the

objectives of the CMM is to distinguish mature processes from

immature or ad-hoc processes. In the path to higher maturity,

there are some well defined plateaus that are viewed as maturity

levels by the CMM. The CMM specifies five maturity levels in this

path � level 1 (which is the lowest) to level 5 (which is the

highest). Each maturity level (except level 1) is characterized by

some Key Process Areas (KPAs), which specify the areas in

which the organization should focus if it wants it process to be at

that maturity level. Of the 700 assessments that were done

between 1992 and 1997 and whose assessment results are with

the SEI, about 165 organizations were assessed at level 2, about

105 at level 3, about 16 at level 4, and about 4 at level 5 [12]. That

is, of the 700, only about 20 organizations are at levels 4 or 5. The

number of high maturity organizations is growing rapidly however.

Infosys is a large software house, currently employing over 3000

employees. It provides software services to customers from

around the world, and executes over 200 projects each year. Its

business has been growing at the rate of about 70% per year for

the last five years. In its early growth stages itself Infosys

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Managing the

Transition

from ISO to

High Maturity

Levels

of the CMM

recognized that a rapid pace of growth cannot be managed without

a set of properly defined processes for executing and controlling

software projects. To achieve this, initially, it adopted the ISO 9001

TickIT model leading to ISO certification. After the ISO compliant

systems were established, a need was felt for improving the

processes further. It was felt that for further process improvement,

ISO provided little guidance, and the CMM framework for process

improvement was adopted. Having implemented ISO, the

organization was somewhere between level 2 and 3 (implementing

ISO generally implies that most of the Key Practice Areas (KPAs)

for level 2 of CMM are generally satisfied and same portions of

same KPAs at level 3 may also be satisfied [10]). A limited

assessment by an external consultant had also placed the

organization at level 2. Early in 1997, due to business requirements

and other needs it was decided to move aggressively on the

adoption of CMM. In less than a year after this decision, Infosys

was successfully assessed to be at level 4 of the CMM. This article

describes some of the key aspects and strategies in taking a

project-management approach to managing the transition from ISO

to CMM. It is generally believed that process improvement is a slow

process which must be done gradually. Our experience suggests

that �rapid process improvement� is possible with proper

management.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Managing the

Transition

from ISO to

High Maturity

Levels

of the CMM

SETTING THE GOAL

There are two approaches for implementing the CMM (or any

other) framework. One is to do process improvement and

enhancement based on needs and analysis, and then later go in

for an assessment. In this approach, achieving a level is

essentially a �side effect� of software process improvement

initiatives. The other approaches is to fully accept the CMM

framework, set some target in terms of maturity level, and then

strategize and plan accordingly.

If a project approach is to be followed, then as in any project, the

goal or the desired end result must be extremely clear. The SEI

survey also reports that having well understood software process

improvement (SPI) goals is a key success factor [2]. Furthermore,

everyone involved in the project must be fully committed to

achieving the goals. As has been pointed out in [11], a shared

vision is very important for the success of SPI initiatives. Though

goal setting and obtaining commitment can be done with the first

approach, they are considerably easier in the latter as the goal is

very clear � achieving a maturity level. Furthermore, demonstrating

that goals have been met or progress is being made towards

achieving the goal is much harder in the former approach and can

require a considerable period of time to collect enough data to

�prove� the case. This exercise is much simpler in the latter � the

fulfillment of the goal can be demonstrated through an

assessment.

At Infosys we followed the latter approach. The lowest level

Infosys could shoot for was level 3, but it was felt that this goal is

not sufficiently ambitious and will add only marginal value. As

going for level 4 added only two more KPAs it was felt that with

some additional effort we should be able to achieve it. Also level 4

will provide the quantitative visibility & analysis that the

organization desired. Due to these reasons, and some business

reasons, the target of level 4 was set for the company. The senior

management of the company, including the CEO in co-operation

with the head of SEPG, set the target. Indeed, a goal like this

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Managing the

Transition

from ISO to

High Maturity

Levels

of the CMM

cannot be set by the SEPG itself and has to be set by the top

management. This made (and would generally make) the senior

management and the SEPG partners in the SPI initiative, providing the

necessary buy-in by senior management, which is important for the

success of any SPI initiative [1, 2, 3], and avoiding the potential problem

of lack of senior management support [2, 3, 11].

Once the target level was set, the schedule was to be decided. As a rough

KPA-wise gap analysis suggested that gaps are manageable, a schedule

of one year was set. A short time span was given to suggest the

�importance� of the initiative, which is also an important success factor [2,

3]. One year was also long enough to effectively complete one full cycle of

process improvement, along with any corrections that might be needed in

that cycle. Though moving up the maturity scale is generally considered

as a slow process and experience of many is that it takes longer than

expected [3], we thought that with a focused target, and tight project

management, it should be possible to move up in this duration. It was

also agreed that the head of the SEPG will be the project leader for this

project with support and co-operation being provided, on a need basis, by

the project people.

Besides satisfying a basic requirement for operating in a project mode,

this setting of a target provided other benefits as well.

It stopped all debates about the usefulness of CMM and the focus shifted

to how to use it best for our business and environment.

The task of deciding what SPI initiatives to undertake became much

simpler as the framework was used.

An immediate buy-in that followed when the senior management set level

4 as a corporate objective providing a shared goal among the various stake

holder.

Finding people to help in the SPI initiatives derived from the goal became

a lot easier, as it was a corporate objective.

As the initiative ended in assessment, it provided a relatively quick

feedback on the project and, in our case, provided a great sense of

achievement.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Managing the

Transition

from ISO to

High Maturity

Levels

of the CMM

LEVERAGING EXISTING PRACTICES

When an organization follows or complies with some standard or

framework, it deploys some practices and develops some

structures to support the framework. It stands to reason that when

a different framework is to be employed, the current practices and

structures should be leveraged to the fullest. We established a

guiding principle that for implementing the CMM framework, the

existing structures and procedures that help implement ISO are to

be re-used and leveraged as much as possible. Some of the

structures and practices that an ISO organization is likely to have

[8] are given below along with how they might be leveraged for

CMM:

Some quality system (QS) manuals or documents

describing the various practices in the organization. The QS can

be used for documenting all the processes. One particular

document � the quality manual � which is often there in ISO

organizations, can be used to document the various policies

required by various KPAs in the CMM.

A group within the organization, like a quality group or

department. Such a group is likely to be doing process activities

and hence can play the role of SEPG.

An internal audit program, which requires that different

aspects of implementation of the quality system of the

organization are audited by some people who are independent

from the ones doing the implementation. The audit mechanism

can be effectively used to implement the Software Quality

Assurance KPA of level 2, as well as for implementing key

practices of different KPAs that require that some activity be

independently reviewed or audited.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Managing the

Transition

from ISO to

High Maturity

Levels

of the CMM

Some procedures to identify reasons for non-compliance, and for

changing the processes, and disseminating the changes. The structures and

mechanisms being used for this can be used for implementing processes

and process changes to satisfy some requirements of the Organization

Process Focus KPA.

A senior management review of activities of the quality group. This

review can be expanded to implement those requirements of Organization

Process Focus and Organization Process Definition KPAs which require

senior management involvement.

Documentation policies and guidelines which require that all

identified work products are documented. The implementation of this can be

enhanced to satisfy requirements of various KPAs which require

documentation of project plan, schedule, requirements, test plans, etc.

Documentation control procedures that ensure that proper versioning

is maintained, the documents are reviewed and approved, and that impact of

change of a document is understood and made on other documents as well.

These mechanisms can be enhanced to handle some key practices of the

Requirements Management KPA. The review practices for documents (which

include plans as well as work products) can be enhanced to implement the

Peer Review KPA.

An overall development life cycle specifying the major phases

including requirements, design, coding, testing, and installation. This

definition can be enhanced to a suitable degree of detail for the CMM. This

definition can also be enhanced to support process tailoring, a requirement of

the OPD KPA.

Project planning policies requiring that a proper project plan be

developed which contains the estimates etc. before the development begins.

The project plan, and the planning process, can be enhanced to implement

the various requirements of the various KPAs.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Managing the

Transition

from ISO to

High Maturity

Levels

of the CMM

Configuration management policies and practices, which can be used

to satisfy the Configuration Management KPA.

Some training program with records of training being maintained. This

can be enhanced to satisfy the Training Program KPA of level 3.

Some metrics program. In particular, reporting of defects, and their

tracking to closure. This program can be enhanced to collect more data that

is needed for higher levels. The usage of metrics also will need to be refined

considerably.

The practices of maintaining quality records can be enhanced to

collect defect data. Furthermore, analysis of such data can be used for

quantitative process management.

These are some of the examples of how existing structures and practices that

are in place in an ISO organization can be used for implementing the CMM.

Besides trying to reuse existing structures, we also established the principle

of simplicity � the processes should be kept simple and not very detailed or

complicated. Our experience earlier with detailed processes was that they

tend to put-off practitioners and are not amenable to �validation� (how do you

ensure that the process is being followed?), and hence tended to remain �on-

paper� processes. We also established that even though CMM is to be

implemented, relevance of our processes to our business needs should not be

sacrificed. This essentially meant that where it was perceived that some

CMM requirement has limited value to our business, we needed to interpret it

in a manner that it adds value to us, or do a very �light weight� implementation.

As CMM allows a fair amount of flexibility in interpretation, by this approach

the basic objectives of processes � to support the business effectively � is not

transformed to an expedient objective of �achieve level�. This also provides a

solid reason for undertaking the SPI initiative and makes it easier to get the

required �buy-in� from the project people.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Managing the

Transition

from ISO to

High Maturity

Levels

of the CMM

GAP ANALYSIS

The first step in executing the project was to identify the gaps in the

existing processes with respect to CMM level 4. Some general purpose

studies have been done to help this activity [8, 10]. A summary of

possible gaps in an ISO organization with respect to level 3 and 4 of the

CMM is given below [8].

Organization Process Definition

Documented procedure for developing and
maintaining a process.

Tailoring guidelines

Process definition with sufficient details.

Organization software process database

Library of process assets

KPA Probable Gaps

Method to identify and disseminate usage of new
tools and processes that are already being used
in some parts of the organization.

Plan for software process development and
improvement activities

Procedure for conducting training

Course material preparation standards

Waiver procedure

Organization Process Focus

Training Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Managing the

Transition

from ISO to

High Maturity

Levels

of the CMM

KPA Probable Gaps

Integrated Software Management
Tailoring guidelines

Learning technical and management lessons

Guidelines/procedure for risk management

Tracking of effort, critical resources, etc.

Thresholds for variation of actual perfor-
mance on a project as compared to planned
for taking action

Software Product Engineering
Rationale for tool selection

Defect data analysis

Intergroup coordination None

Peer Reviews All activities and goals of this KPA

LEVEL 4 KPAs

Quantitative Process
Management

Methods for quantitatively managing a project,
including making plans, collecting data and
analyzing them, and taking corrective actions
when necessary.

Process capability in quantitative terms (and this
capability used in project planning and execution)

Software Quality
Management

Methods for setting quantitative quality goals
for a project, methods for quantitatively
monitoring the progress and taking corrective
actions when necessary.

Quality capability of the process known in
quantitative terms

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Managing the

Transition

from ISO to

High Maturity

Levels

of the CMM

The actual gaps in the processes of an organization will, obviously,

depend on the exact nature of the processes. The general purpose gap-

analysis can help in identifying the specific gaps. At Infosys, the gap

analysis was done primarily by a group in SEPG. The main approach

was to go over all the key practices in all the KPAs and identify what

were the missing elements. This gap analysis was analogous to the

requirements analysis phase in that it clearly defined the scope of the

project and what was to be implemented. Initially, only gaps at a high

level were identified. Some of the gaps we found were:

Risk Management � existing risk management was ad hoc and there was

no established process for this.

Process tailoring � existing guidelines were minimal.

Peer reviews � existing reviews were un-structured, and mostly one-

person reviews.

Estimation � Data from past experience was being used only informally.

Process database � There was no on-line process database, though

project closure analysis was being done.

Quantitative project tracking � No guidelines in place.

Quantitative quality management � No guidelines in place.

Besides these, there were some small gaps relating to configuration

management, usage of tools, knowledge sharing, etc

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Managing the

Transition

from ISO to

High Maturity

Levels

of the CMM

MANAGING THE PROJECT

The gap analysis indicated that there were about 8-10 areas that

needed more attention, most of them related to project

management, and many of them requiring formalization of exists

approaches. As time was short, we decided to follow the �big

bang� approach. That is, to define all the enhancements needed to

reach level 4, validate them, and then deploy them all together. This

is contrary to the commonly held belief that process changes

should be done gradually. However, we felt that this big-bang

approach was better suited. It not only reduces the cycle time, it

also considerably reduced the training needs (otherwise every time

changes are made, training will be needed), and kept the focus on

the process initiative. However, it was clear that if this big bang

approach is to succeed, the project of transitioning from ISO to

level 4 will have to be planned and managed effectively. Here we

discuss some aspects of planning and project management.

PROJECT PLANNING

Once the gap analysis was completed we knew what needed to be

done to upgrade the processes to level 4 (i.e. the �requirements�

were known). A project plan was made, which specified the tasks in

the project, who it was assigned to, the start date, and the end

date. The plan was maintained as a Microsoft Project Plan (MPP)

document.

The plan divided the project into three logical phases � Phase I to

define the processes, Phase II to deploy the processes, and Phase

III for assessment. Initially, only details of the first phase were

specified in the project plan; other phases were specified only at a

high level (specifying the duration for each). Later, detailed activities

for the other stages were also specified. Finally, the MSP schedule

for this project had about a 100 schedulable tasks in it.

DEFINING THE PROCESSES

To define process for the gaps, the working group or task force

approach was followed. For each major gap, a working group was

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Managing the

Transition

from ISO to

High Maturity

Levels

of the CMM

formed, which consisted of about 4 - 5 people, and one representative from the

SEPG. In most groups, the group leader was some experienced person from

projects.

Each working group was given specific instructions, where possible, about

what is the nature of expected output. They were also sensitized to our guiding

principles. The relevant KPAs that were the cause of the gaps were also

pointed out. Their charter was to define (or enhance) the process to plug the

gap and satisfy the relevant KPA, pilot the processes on one or two projects,

prepare the necessary training material, and then hand it all over to SEPG for

full deployment and training.

About 8 working groups worked in parallel. Due to our guiding principles, in

most cases the scope of work was not large (due to our leveraging principle,

little R&D had to be done). Each group was given about two to three months to

finish their task. Most people in the groups, except the SEPG member,

worked part-time, spending about one third of their time on this. Within about

three months all the processes had been defined, and most piloted or tried on

same existing projects.

PROCESS DEPLOYMENT

Deployment is always the hardest task of an SEPG. The two primary activities

in a process-based approach are process definition and process deployment.

Frequently, the focus of SEPG is on process definition, in the belief that that is

the main task. Though process definition is a technically and intellectually a

challenging task, a considerable effort is needed for process deployment. In

this case, as this particular initiative was a corporate goal, the task of

deployment had become easier. We decided to deploy these processes

mostly in new projects, and let the existing projects continue to use old

processes. This simplified the deployment task considerably as new projects

come in with a steady, slow, rate, which permits the SEPG to �hand hold� them

comfortably even with the limited staff.

First a massive training drive was embarked upon. Here we took the view that

project people do not need to know CMM � they need to know our processes

only. It is the task of the SEPG to ensure that our processes were �level 4

compliant�. Hence, the focus of our training was our processes. We packaged

the training material in two programs � one for peer reviews as this was a new

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Managing the

Transition

from ISO to

High Maturity

Levels

of the CMM

process step that was being added with a new procedure, and the

other was a comprehensive program having short sessions on each of

the new process elements. While the latter training program targeted

project leaders only as most of the new process concerned project

management, peer reviews training was given to developers as well.

Within a few weeks a large number of people has been imparted the

training, as training programs were held multiple times every week.

To aid deployment, we also enhanced the role of the SEPG member

who is usually associated with the project. The usual practice was

that a SEPG member is associated with a project, who does not take

part directly in any project activities but aids the projects is process

definition and monitors the project for process compliance. As some of

new process elements required the use of process database and data

analysis periodically, we decided that support for this will be provided

by the SEPG. Besides this, a checklist was prepared for the SEPG

role in projects to make sure that processes are being properly

implemented.

PROJECT MONITORING

Though proper monitoring is critical in any project, in this project

monitoring and control were even more important. There were some

reasons for this. First, the people in the working group were not

members of the SEPG and hence did not report to the SEPG manager

and had other tasks assigned to them too. Without direct control and

influence on them by SEPG, proper control mechanisms became very

important. Secondly, the plan for this project depended on the

situations in other projects and hence plan became more dynamic,

particularly in Phases II and III. Finally, as the project was to achieve a

corporate goal, the stakes were much higher.

To ensure that all working groups deliver in time, even though SEPG

was responsible for this project, we formed a steering team comprising

of many senior manager and headed by the CEO. The steering team

met once a month and all working groups reported their progress in this

meeting. So, though regular monitoring was being done by SEPG, this

provided the necessary �push� and commitment. Having the CEO as its

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Managing the

Transition

from ISO to

High Maturity

Levels

of the CMM

chair, right messages went out that the organization is serious about the

initiative, which is an important success parameter [2, 3]. It also provided

the visibility into the initiative to the senior management, another important

success factor [2, 3]. Also, the steering team meetings and presentations

gave the working groups a visibility to the CEO, which provided an added

incentive to them, as the CEO ultimately controls the salary raises,

promotions, stock options, etc.

RISK MANAGEMENT

Once a goal was set, and a tight deadline given, it was clear that there

were many things that may go wrong during the project. In other words,

there were many risks to this project. To handle this, effective risk

management was needed. Risk management is typically not associated

with SPI projects. However, we found that once the goal was clear, risk

management was very useful in achieving our goal.

We followed a simple strategy for risk management. In each steering team

meeting, particularly the early ones, we prepared a list of risks that we

thought could adversely effect the outcome of the project. We ranked the

risks as high, medium, or low. And for each high and medium risk we

suggested some risk mitigation step.

The strategy of presenting and discussing risk management in the steering

team was very useful. As many of the proposed risk mitigation steps were

to be executed by people outside the SEPG, commitments were obtained

during the steering team meeting. With the CMD and other senior

managers in the steering team, agreeing and executing risk mitigation

became considerably easier.

For example, as the early plan was to take only the development and re-

engineering processes to level 4 , there was a risk that not enough such

projects may volunteer (we had set a target that at least a dozen projects

must be operating at level 4 by the assessment time.) As this was

identified as a risk, during the steering team meeting itself projects got

identified and committed, since most of the senior people were in the

steering team. Another risk mitigation step for this was to expand the

scope and include maintenance projects also. Again, during the steering

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Managing the

Transition

from ISO to

High Maturity

Levels

of the CMM

team meeting commitments were obtained and relevant working groups formed

for maintenance.

Another risk was number of entries in the process database. We had set a

target that there must be about 50 entries in the process database within the

next six months. From the old project closure reports, we were able to add

about 20 data points. Hence, the rest had to come from recently completed

projects or projects that were to complete in the near future. This was

proposed as the risk mitigation strategy. Once this was accepted, all such

projects were asked to furnish their project completion analysis reports, which

was a somewhat hard task earlier.

One risk we identified early was �difference in interpretation with the assessor�.

We had interpreted and implemented the CMM in some manner, which we

thought suited us the best. However, how were we to be sure that this

interpretation will be accepted by the assessor. This is a very real risk,

particularly since CMM does not prescribe processes and so different

assessors may take a different view of same aspects of CMM. Non-

prescriptive nature of CMM gives it the flexibility but also makes the task of

implementing CMM harder [2, 3]. For risk mitigation, we employed a CMM

consultant for a few days to evaluate our processes, not their implementation,

with respect to the CMM.

CO-EXISTANCE OF ISO AND CMM

After an organization has been assessed at a high maturity level of the CMM,

it has to decide what it wants to do with its ISO certification. There are two

clear options available � relinquish the ISO certification, or continue with both

ISO and the CMM.

If the ISO structures are leveraged effectively for implementing the CMM

framework, then there is no conflict between the two frameworks, and

satisfying two frameworks does not �double the paper work�. In other words,

there is no need to relinquish ISO. At Infosys, as we used the ISO structures

fully, maintaining ISO actually became easier after attaining the level 4 of the

CMM. In fact, the external audits that ISO has, helped in strengthening the

deployment of the CMM.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Managing the

Transition

from ISO to

High Maturity

Levels

of the CMM

Overall, we found that ISO and CMM are consistent with each other and can

peacefully co-exist in an organization.

SUMMARY

There is now enough evidence to suggest that software process improvement

can provide good returns to any organization developing software. In an effort

to further improve its processes, Infosys decided to move from ISO to higher

levels of the CMM. Within one year of staring the transitioning initiative, it

was assessed at level 4 of the CMM. In this article, we discussed various

elements of the strategy we followed for this rapid climb up the maturity

ladder, which we believe are quite general and reusable in other contexts

also. Some of the important elements of the strategy were:

Setting a goal for the transitioning in terms of a maturity level. This

provided a clear and succinct objective which will necessarily require

commitment from senior management. Setting an �icon� makes it easier to

rally the organization around the �icon�. It also provides an easy way of

validating whether goals of the project have been achieved � through an

assessment.

Keep the duration of the project not too long. This allowed keeping

the focus and interest and a relatively quick feedback on the effort. In a short

duration, the processes will get defined and the capability for the particular

maturity level will get developed. Spreading the processes can continue to

take place after the successful completion of the project as part of regular

SEPG activities.

Principles of leveraging the existing structures and simplicity help in

reducing the �amount of change� and getting processes that are likely to be

followed.

The transitioning initiative with the goal as a maturity level should be

managed like a project. Proper planning should be done, followed by proper

implementation and monitoring. It helps to have monitoring done by senior

management as it provides them visibility into the project and preserves their

commitment and support for the SPI initiative.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Managing the

Transition

from ISO to

High Maturity

Levels

of the CMM

Risk management techniques can be very effective in ensuring that

the goals of the SPI project are met. We used risk management very

effectively to continually reduce the risk of failure.

ISO and CMM can co-exist peacefully without extra overhead.

REFERENCES

1. M. Daskalantonakis, �Achieving higher SEI levels�, IEEE Software,

July 1994, pp. 17-24.

2. J. D. Herbsleb and D.R. Goldenson, �A systematic survey of CMM
experience and results�, 18th Int. Conf. On Software Engineering, Berlin,

1996, pp. 323-330.

3. J. Herbsleb et. al., �Software quality and the capability maturity

model�, Commn. Of the ACM, 40:6, June 1997, pp. 31-40.

4. W. Humphrey, Managing the Software Process, Addison Wesley,

1989.

5. ISO9001, Quality Systems � Model for Quality Assurance in
Design/Development, Production, Installation, and Services, Intl. Standards

Organization, Geneva, 1987.

6. ISO9000-3: Guidelines for the application of ISO9001 to the
development, supply and maintenance of software, International Standard,

1991.

7. TickIT: A Guide to Software Quality Management System

Construction and Certification Using EN29001, UK Dept. of Trade and

Industry and British Computer Society, 1992.

8. P. Jalote, Moving from ISO to higher levels of the CMM, SEPG

Conference, Atlanta, 1998.

9. M. Paulk, et. al., �The Capability Maturity Model for Software,
Version 1.1�, CMU/SEI-93-TR-24, Software Engineering Institute, 1993, also

published as book by Addison Wesley, 1995.

10. M. C. Paulk, �Comparing ISO 9001 and the capability maturity

model for software�, Software Quality Journal, vol 2, 1993, pp. 245-256.

11. K. Sakamoto, et. al., �Toward computational support for software
process improvement activities�, Proc. 20th Int. Conf. On Software Engg.,

1998, pp. 22-31.

12. Maturity profile report from SEI, www.sei.cmu.edu/sema/

profile.html.3.download.html.

1

K. Dinesh
Infosys T echnologies L td.
B angalore

Co-Authors :
P. Jalote, M. R . Bhashyam, S . Raghavan

About Infosys

• Software house with over 3000 engineers
• 15 locations world-wide
• Customers in 6 countries
• 60% annual growth for the last 5 years
• Multiple offerings - development, maintenance,

reengineering, Y2K, ….
• Different business domains

2

Infosys - Quality
Journey

• Before 1991 - some processes; performance
varied a lot depending on people

• 1993 - got ISO9001 (TickIT) certification
– One of the first software companies to do

so
– Helped in ensuring uniformity
– Better control on projects
– Extremely useful in managing the huge

growth
• ISO an excellent starting point in quality

journey;established process-oriented culture

Culture Change with IS O

Before ISO
• Fire fighting and crisis

management
• Wide variation in QP
• Little control and visibility
• Focus on short term gains and

quick fixes
• Personality orientation

Post ISO
• Planned project execution
• Better control and visibility
• Customer orientation
• Focus on long term
• Involved entire organization in

standardization

3

Why
CMM?

• ISO has only 2 levels - cannot differentiate an
organization that has gone beyond

• Limited guidance for a graded approach to
process improvement

• CMM was becoming very popular, and many US
customers were demanding it

• Many competitors were adopting CMM
• Need for quantitative visibility in quality and

productivity and quant. control

What is CMM?

• CMM categorizes process maturity in 5
levels - level 1 (lowest) to level 5 (highest)

• Only about 40 organizations world-wide at
level 4 and 5

4

Level Focus Key Process Areas ISO9000

5 - Optimizing Continuous Process Defect prevention X
Improvement Technology change mgmt.

Process change mgmt.

4 - Managed Product and Process Quality Quantitative process mgmt. X
Software quality mgmt.

3 - Defined Engineering process Organization process focus X(SEPG)
Organization process defn. X(Process Assets)
Training program
Integrated software mgmt.
Software product engineering
Intergroup coordination
Peer reviews X(Well defined)

2 - Repeatable Project Management Requirements management Replication, Delivery
Software project planning and Installation
Software project tracking
Software subcontract mgmt. Customer maintenance
Software quality assurance agreement, Purchasing
Software configuration mgmt.

1 - Initial

CMM and IS O

S trategy for T rans ition

• Leverage existing ISO structures and practices so that
there is no redundancy

• Manage transition like an aggressive project

• Set a corporate goal in terms of level (4)

• Have a high-powered steering team to monitor the project
and keep tight control

• Keep a tight schedule to preserve focus

5

Why Level 4?

• An ISO organization satisfies most level 2
requirements and some level 3 req.

• Lowest level to shoot for is level 3
• Level 4 provides the quantitative visibility

and control; has 2 more KPAs
• Suitable target level is 4 - is ambitious and

brings about next level of cultural change
(metrics orientation)

Leverage Exis ting
Practices

For improvement, structures for different frameworks should be seamless

ISOLevel 4

Most ISO structures were utilized; some new were added

6

S PI Project Planning

• Decided to follow the big-bang approach for
process enhancement

• Three phase plan
– Process definition/refinement
– Process deployment
– Assessment

Process
Definition/Refinement

• Did gap analysis of existing processes with
respect to level 4 requirements

• About 8 major gaps; many minor gaps
– Process tailoring, risk management, peer

reviews, estimation, process database,
quantitative process and quality
management

• Formed work groups to enhance processes;
they worked in parallel

– Process implementation infrastructure
existed. Preparation for close to 2 years

– In the final stretch of 3 to 5 months,
processes were refined/enhanced and most
piloted

7

Process Deployment

• Massive training drive
– Project mgmt changes - to project

leaders
– Inspections - to developers also

• SEPG help to projects enhanced
• Only new projects to implement new

processes; old ones continued
– Helped make implementation smooth and

gradual

Assessment

• Internal assessment through key-practice wise
check list

• Internal audit focus areas made consistent with the
CMM initiative

• Abridged process assessment done
• Then final assessment done

8

S PI Project Monitoring

• Work groups involved over 50 people from different
groups, most working part-time

• Not in direct control of SEPG
• Formed a steering team of very senior people for

monitoring the project
– Met monthly to review progress
– Resolved issues that needed senior mgm. Input
– Made sr. mgmt. Partner in process improvement

Monitoring - R isk Management

• An aggressive project has risks - employed risk
management effectively for this

• Identified risks, prioritized them, and chose their
mitigation steps

• Presented in steering team meetings and got
commitments for mitigation

• Some risks: not enough data points; not enough
development projects; interpretation

9

Roles and Respons ibilities

Process
Improvement

Goals

Senior Mgmt

SEPG

•Goals
•Resources
•Funding
•Support
•Reward

•Org-wide Analysis
•PI proposals collation
•Orientation & Training
•Coordination
•Deployment

•Innovation
•Pilot
•Implement process
improvement
•Give feedback

Steering Team

•Review, resolve issues, manage risks

Working Groups

Projects

Key Challenges

• Developing “metrics orientation”
– Capture of project performance data -

process database
– Conceiving and building process

capability baseline
– Using statistical methods for project

control and handling performance
variation

10

Key Challenges - Contd.

• Institutionalizing Inspections
– Group reviews are counter intuitive: how

can review be better than testing?
– Are perceived to be very expensive
– Data from others not believed
– Not Applicable Here (NAH) syndrome

needs to be handled
– Did experimentation and massive training

Key Challenges - Contd.

• Change management - the people aspect
– Need leaders, champions, early adopters
– SEPG took the leadership
– Champions were pilots, working gp. members
– Early adopters as projects
– Middle management is the key

11

Lessons Learned

• Aggressive schedule possible only if strong
process implementation infrastructure exists

• Frameworks have enough flexibility to match
business needs

• Senior management support and commitment
is essential

• Setting a goal in terms of a level helps rally the
organization

Lessons Learned - Contd.

• Backward planning from end date was effective
• Keeping processes simple, light-weight, and

practical helped acceptance
• Keeping the metrics set simple and realistic helped

in deployment
• Middle management is the critical link
• Good information infrastructure is essential

12

Lessons Learned -
L imitations

• Should have viewed level 5 as the ultimate
goal and level 4 as the immediate goal

• Metrics usage and analysis could be done
more effectively

IS O to Level 4 - Cultural
Change

Troubleshooting

Fire-fighting

Crisis Management

Focus on:
 Short-Term Gains
 Customer Complaints
 Quick Fixes

Quantitative process
management

Quantitative control

Better planning

Goal directed improvement

Higher predictability

Better understanding and
control of risks

Involvement of senior
management in process
definition

13

IS O and CMM Co-
Exis tence

• Is having CMM and ISO not double work?
• No. Both can co-exist; Infosys keeps both

– Structures are used for both
– Processes are common
– So, no redundancy; CMM becomes a

“super set” of the ISO
practices/structures

S ummary

• Transition from ISO to CMM is smooth, level 4
seems to be the right target

• Managing it as an aggressive project has many
benefits

• Senior management monitoring helps
• Plenty of benefits
• Is not the final destination in the quality journey!

14

T he Journey Continues

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands - 1 -

IMPROVEMENT OF THE TEST PROCESS
using TPI

T.Koomen, M. Pol
IQUIP Software Control Testen

P.O. Box 263, 1110 AG Diemen
The Netherlands

Tel: +31 20 6606600
Fax: +31 20 6953298
e-mail: tpi@iquip.nl

English TPI website: www.iquip.nl/tpi

Abstract

This paper presents the TPI-model, which is based on current state-of-the-art test process
improvement practices. The model gives practical guidelines for assessing the maturity level
of testing in an organisation and for step by step improvement of the process. The purpose of
such improvement could be reaching CMM level 3.

The model consists of 20 key areas, each with different levels of maturity. The levels of all key
areas are set out in a maturity matrix. Each level is described by several checkpoints.
Improvement suggestions, which help to reach a desired level, are part of the model.

The paper includes a general description of the application of model, which deals with how to
implement and how to consolidate the improvements.

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands - 2 -

1 How good is your test process ?

This seemingly easy question turns out to be very hard to answer in reality. Testing is often
experienced as a troublesome and uncontrollable process. Testing takes too much time, costs
a lot more than planned, and offers insufficient insight in the quality of the test process and,
therefore, the quality of the information system under test and the risks for the business
process itself. But can we do something about this ?

Many organisations realise that improving the test process can solve these problems.
However, in practice it turns out to be hard to define what steps to take for improving and
controlling the process, and in what order. A comparison can be made with improvement of
the total software process, where models like the Capability Maturity Model (CMM) offer
support.

Based on the knowledge and experiences of a large number of professional testers the Test
Process Improvement (TPI) model has been developed. The TPI model supports the
improvement of test processes. The model offers insight in the "maturity" of the test processes
within your organisation. Based on this understanding the model helps to define gradual and
controllable improvement steps.

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands - 3 -

2 Description of the model

The model is visualised as follows:

Key areas

Levels

Checkpoints Improvement suggestions

Test
Maturity

Matrix

Key areas

In each test process certain areas need specific attention in order to achieve a well defined
process. These Key areas are therefore the basis for improving and structuring the test
process. The TPI model has 20 key areas.

The scope of test process improvement usually comprises high-level tests like system and
acceptance tests. Most key areas are adjusted to this. However, to improve more "mature" test
processes, attention must also be given to verification activities and low-level tests like unit
and integration tests. Separate key areas are included in order to give due attention to these
processes as well.

A full list of key areas is given below, followed by an explanation.
Test strategy
Life-cycle model
Moment of involvement
Estimating and planning
Test specification
techniques
Static test techniques
Metrics
Test tools

Test environment
Office environment
Commitment and motivation
Testing functions and
training
Scope of methodology
Communication
Reporting

Defect management
Testware management
Test process
management
Evaluation
Low-level testing

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands - 4 -

Key area Description

Test strategy The test strategy has to be focused on detecting the most important defects
as early and as cheaply as possible. The test strategy defines which
requirements and (quality) risks are covered by what tests. The better each
test level defines its own strategy and the more the different test level
strategies are adjusted to each other, the higher the quality of the overall
test strategy.

Life-cycle model Within the test process a number of phases can be defined, such as
planning, preparation, specification, execution and completion. In each
phase several activities are performed. For each activity the following
aspects should be defined: purpose, input, process, output, dependencies,
applicable techniques and tools, required facilities, documentation, etc..
The importance of using a life-cycle model is an improved predictability
and controllability of the test process, because the different activities can be
planned and monitored in mutual cohesion .

Moment of involvement Although the actual execution of the test normally begins after the
realisation of the software, the test process must and can start much earlier.
An earlier involvement of testing in the system development path helps to
find defects as soon and easy as possible and perhaps even to prevent
errors. A better adjustment between the different tests can be done and the
time that testing is on the critical path of the project can be kept as short as
possible.

Estimating and planning Test planning and estimating indicate which activities have to be carried
out when, and the necessary resources (people). Good estimating and
planning are very important, because they are the basis of, for example,
allocating resources for a certain time frame.

Test specification
techniques

The definition of a test specification technique is "a standardised way of
deriving test cases from source information". Applying these techniques
gives insight into the quality and depth of the tests and increases the
reusability of the test.

Static test techniques Not everything can and should be tested dynamically, that is, by running
programs. Inspection of products without running programs, or the
evaluation of measures which must lead to a certain quality level, is called
static tests. Checklists are very useful for this.

Metrics Metrics are quantified observations of the characteristics of a product or
process. For the test process, metrics of the progress of the process and the
quality of the tested system are very important. They are used to control the
test process, to substantiate the test advice and also to make it possible to
compare systems or processes. Why has one system far fewer failures in
operation than another system, or why is one test process faster and more
thorough than another? Specifically for improving the test process, metrics
are important by evaluating consequences of certain improvement actions,
by comparing data before and after performing the action.

Test tools Test tools are automated aids for the test process. Automation within the
test process can take place in many ways and has in general one or more of
the following aims:
- fewer hours needed,
- shorter lead time,
- more test depth,
- increased test flexibility,
- more and/or faster insight in test process status,
- better motivation of the testers.

Testing environment The test execution takes place in a so-called test environment. This
environment mainly comprises the following components:
- hardware;
- software;
- means of communication;
- facilities for building and using databases and files;
- procedures.

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands - 5 -

The environment should be composed and set up in such a way that by
means of the test results it can be optimally determined to what extent the
test object meets the requirements. The environment has a large influence
on the quality, lead time, and cost of the test process. Important aspects of
the environment are responsibilities, management, on-time and sufficient
availability, representativeness, and flexibility.

Office environment The test staff need rooms, desks, chairs, PCs, word-processing facilities,
printers, telephones, and so on. A good and timely organisation of the
office environment has a positive influence on the motivation of the test
staff, on communication in- and outside the team, and on the efficiency of
the work.

Commitment and
motivation

The commitment and the motivation of the persons involved in testing are
important prerequisites for a smoothly running test process. The persons
involved are not only the testers, but also, for example, the project
management and the line management personnel. The latter are mainly
important in the sense of creating good conditions. The test process thus
receives enough time, money, and resources (quantitatively and
qualitatively) to perform a good test, in which cooperation and good
communication with the rest of the project results in a total process with
optimum efficiency.

Testing functions and
training

In a test process the correct composition of a test team is very important. A
mix of different disciplines, functions, knowledge, and skills is required.
Besides specific test expertise, knowledge of the subject matter, knowledge
of the organisation and general IT knowledge is required. Social skills are
also important. For acquiring this mix, training etc. is required.

Scope of methodology For each test process in the organisation a certain methodology or working
method is used, comprising activities, procedures, regulations, techniques
etc.. When these methodologies are different each time or when the
methodology is so generic that many parts have to be drawn up again each
time, it has a negative effect on the test process efficiency. The aim is that
the organisation uses a methodology which is sufficiently generic to be
applicable in every situation, but which contains enough detail so that it is
not necessary to rethink the same items again each time.

Communication In a test process, communication with the people involved must take place
in several ways, within the test team as well as with parties such as the
developer, the user, the customer, etc.. These communication forms are
important for a smoothly running test process, not only to create good
conditions and to optimize the test strategy, but also to communicate about
the progress and the quality.

Reporting Testing is not so much "defect detection" as about giving insight in the
quality level of the product. Reporting should be aimed at giving well-
founded advice to the customer concerning the product and even the
system development process.

Defect management Although managing defects is in fact a project matter and not specifically
of the testers, the testers are mainly involved in it. Good management
should be able to track the life-cycle of a defect and also to support the
analysis of quality trends in the detected defects. Such analysis is used, for
example, to give well-founded quality advice.

Testware management The products of testing should be maintainable and reusable and so they
must be managed. Besides the products of the testing themselves, such as
test plans, specifications, databases and files, it is important that the
products of previous processes such as functional design and realisation are
managed well, because the test process can be disrupted if the wrong
program versions, etc. are delivered. If testers make demands upon version
management of these products, a positive influence is exerted and the
testability of the product is increased.

Test process
management

For managing each process and activity, the four steps from the Deming
circle are essential: plan, do, check and act. Process management is of vital
importance for the realisation of an optimal test in an often turbulent test

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands - 6 -

process.

Evaluation Evaluation means inspecting intermediate products such as the
requirements and the functional design. The importance of evaluation is
that the defects are found at a much earlier stage in the development
process than with testing. This makes the rework costs much lower. Also,
evaluation can be set up more easily because there is no need to run
programs or to set up an environment etc..

Low-level testing The low-level tests are almost exclusively carried out by the developers.
Well-known low-level tests are the unit test and the integration test. Just as
evaluation, the tests find defects at an earlier stage of the system
development path than the high-level tests. Low-level testing is efficient,
because it requires little communication and because often the finder is
both the error producer as well as the one who corrects the defect.

Levels

The way key areas are organised within a test process determines the 'maturity' of the process.
It is obvious that not each key area will be addressed equally thoroughly: each test process has
its strengths and weaknesses.

In order to enable insight in the state of the key areas, the model supplies them with Levels
(from A to B to C). On the average, there are three levels for each key area.

Each higher level (C being higher than B, B being higher than A) is better than its prior level
in terms of time (faster), money (cheaper) and/or quality (better). By using levels we can
unambiguously assess the current situation of the test process. It also increases the ability to
advice targets for stepwise improvement.

Each level consists of certain requirements for the key area. The requirements (= checkpoints)
of a certain level also comprise the requirements of lower levels: a test process at level B
fulfils the requirements of both level A and B. If a test process does not satisfy the
requirements for level A, it is considered to be at the lowest and, consequently, undefined
level for that particular key area.

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands - 7 -

Below a description is given of the different levels of the key areas.

Levels

Key area

A B C D

Test strategy Strategy for single high-level test Combined strategy for high-level tests Combined strategy for high-level tests plus
low-level tests or evaluation

Combined strategy for all test and
evaluation levels

Life-cycle model Planning, Specification, Execution Planning, Preparation, Specification,
Execution, Completion

Moment of involvement Completion of test basis Start of test basis Start of requirements definition Project initiation

Estimating and planning Substantiated estimating and planning Statistically substantiated estimating and
planning

Design techniques Informal techniques Formal techniques

Static test techniques Inspection of test basis Checklists

Metrics Project metrics (product) Project metrics (process) System metrics Organisation metrics (>1 system)

Test tools Planning and control tools Execution and analysis tools Extensive automation of the test process

Test environment Managed and controlled environment Testing in most suitable environment Environment on call

Office environment Adequate and timely office environment

Commitment and motivation Assignment of budget and time Testing integrated in project organisation Test-engineering

Test functions and training Test manager and testers (Formal) Methodical, technical and functional
support, management

Formal internal Quality Assurance

Scope of methodology Project specific Organisation generic Organisation optimising (R&D)

Communication Internal communication Project communication (defects, change
control)

Communication within the organisation about
the quality of the test processes

Reporting Defects Progress (status of tests and products),
activities (costs and time, milestones),
defects with priorities

Risks and recommendations, substantiated
with metrics

Recommendations have a Software
Process Improvement character

Defect management Internal defect management Extended defect management with flexible
reporting facilities

Project defect management

Testware management Internal testware management External management of test basis and test
object

Reusable testware Traceability system requirements to test
cases

Test process management Planning and execution Planning, execution, monitoring, and
adjusting

Monitoring and adjusting within organisation

Evaluation Evaluation techniques Evaluation strategy

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands - 8 -

Low-level testing Low-level test life-cycle: planning,
specification and execution

White-box techniques Low-level test strategy

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands - 9 -

Checkpoints

In order to determine levels, the TPI model is supported by an objective measurement
instrument. The requirements for each level are defined in the form of Checkpoints:
questions that need to be answered positively in order to classify for that level. Based on the
checkpoints a test process can be assessed, and for each key area the proper level can be
established. As each next level of a key area is considered an improvement, this means that
the checkpoints are cumulative: in order to classify for level B the test process needs to
answer positively to the checkpoints both of level B and of level A.

Test Maturity Matrix

After determining the levels for each key area, attention should be directed as to which
improvement steps to take. This is because not all key areas and levels are equally important.
For example, a good test strategy (level A of key area Test Strategy) is more important than a
description of the test methodology used (level A of key area Scope of Methodology). In
addition to these priorities there are dependencies between the levels of different key areas.
Before statistics can be gathered for defects found (level A of key area Metrics), the test
process has to classify for level B of key area Defect management. Such dependencies can be
found between many levels and key areas.

Therefore, all levels and key areas are related to each other in a Test Maturity Matrix. This
has been done as a good way to express the internal priorities and dependencies between
levels and key areas. The vertical axis of the matrix indicates key areas, the horizontal axis
shows scales of maturity. In the matrix each level is related to a certain scale of test maturity.
This results in 13 scales of test maturity. The open cells between different levels have no
meaning in themselves, but indicate that achieving a higher maturity for a key area is related
to the maturity of other key areas. There is no gradation between levels: as long as a test
process is not entirely classified at level B, it remains at level A.

Scale

Key area

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Test strategy A B C D

Life-cycle model A B

Moment of involvement A B C D

Estimating and planning A B

Test specification techniques A B

Static test techniques A B

Metrics A B C D

Test tools A B C

Test environment A B C

Office environment A

Commitment and motivation A B C

Test functions and training A B C

Scope of methodology A B C

Communication A B C

Reporting A B C D

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands - 10 -

Scale

Key area

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Defect management A B C

Testware management A B C D

Test process management A B C

Evaluation A B

Low-level testing A B C

The main purpose of the matrix is to show the strong and weak sides of the current test
process and to support prioritising actions for improvement. A filled in matrix offers all
participants a clear view of the current situation of the test process. Furthermore, the matrix
helps in defining and selecting proposals for improvement.

The matrix works from left to right, so low mature key areas are improved first. As a
consequence of the dependencies between levels and key areas, practice has taught us that real
'outlyers' (i.e., key areas with high scales of maturity, whereas surrounding key areas have
medium or low scales) give little return on investment. For example, what is the use of a very
advanced defect administration, if it is not used for analysis and reporting? Without violating
the model, deviation is permitted, but sound reasons should exist for it.

In the example below, the test process does not classify for the lowest level of the key area
test strategy(level < A), the organisation is working conform a life-cycle model (level A) and
the testers are involved at the moment when the specifications are completed (level A).

Scale

Key area

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Test strategy A B C D

Life-cycle model A B

Moment of involvement A B C D

etc.

Based on this instance of the matrix, improvements can be discussed. In this example, a
choice is made for a combined test strategy for high-level tests (=> level B) and for a full life-
cycle model (=> level B). Earlier involvement is at this moment not considered to be of
relevance. The required situation is represented in the following matrix.

Scale

Key area

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Test strategy A B C D

Life-cycle model A B

Moment of involvement A B C D

etc.

Improvement Suggestions

Improvement actions can be defined in terms of desired higher levels. For reaching a higher
level the checkpoints render much assistance. Beside these, the model has other means of
support for test process improvement: the Improvement Suggestions, which are different
kinds of hints and ideas that help to achieve a certain level of test maturity. Unlike the use of

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands - 11 -

checkpoints, the use of improvement suggestions is not obligatory. Each level is supplied with
several improvement suggestions.

3 Application of the TPI model

The process of test improvement is similar to any other improvement process. The figure
below shows the various activities of an improvement process. These activities are discussed,
with special attention for the places where the TPI model can be used.

Obtain
awareness

 Define
improvement

actions

Perform
evaluation

Formulate
plan

Determine target, area
of consideration and
approach

 Implement
improvement

actions

Execute
assessment

Obtain awareness
The first activity of a test improvement process is to create awareness for the necessity to
improve the process. Generally speaking, a number of problems concerning testing is the
reason for improving the test process. There is a need to solve these problems and an
improvement of the test process is regarded as the solution. This awareness also implies that
the parties mutually agree on the outlines and give their commitment to the change process.
Commitment should not only be acquired at the beginning of the change process, but be
retained throughout the project. This requires a continuous effort.

Determine target, area of consideration, and approach
We determine what the improvement targets are and what the area of consideration is. Should
testing be faster, cheaper or better? Which test processes are subjects for improvement, how
much time is available for the improvement and how much effort is it allowed to cost?

Execute assessment
In the assessment activity, an evaluation is given of the current situation. The use of the TPI
model is an important part of the assessment, because it offers a frame of reference to list the
strong and weak points of the test process. Based on interviews and documentation, the levels
per key area of the TPI model are examined by using checkpoints, and it is determined which
checkpoints were met, which were not met, or only partially. The Test Maturity Matrix is
used here to give the complete status overview of the test process. This will show the
strengths and weaknesses of the test process in the form of levels assigned key areas and their
relative position in the matrix.

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands - 12 -

Define improvement actions
The improvement actions are determined based on the improvement targets and the result of
the assessment. These actions are determined in such a way that gradual and step by step
improvement is possible.

The TPI model helps to set up these improvement actions. The levels of the key areas and the
Test Maturity Matrix give several possibilities to define gradual improvement steps.
Depending on the targets, the scope, the available time and the assessment results, it can be
decided to carry out improvements for one or more key areas. For each selected key area it
can be decided to go to the next level or, in special cases, even to a higher level. Besides this,
the TPI model offers a large number of improvement suggestions which help to achieve
higher levels.

Formulate plan
A detailed plan is drawn up to implement (a part of) the short term improvement actions. In
this plan the aims are recorded and it is indicated which improvements have to be
implemented at what time to realise these aims. The plan deals with activities concerning the
content of the test process improvement as well as general activities needed to steer the
change process in the right direction.

Implement improvement actions
The plan is executed. Because during this activity the consequences of the change process
have the largest impact, much attention should be spent on communication. Opposition,
which no doubt is present, must be brought to the surface and be discussed openly.
It has to be measured to what extent actions have been executed and have been successful. A
means for this is the so-called "self assessment", in which the TPI model is applied in order to
quickly determine the progress. Here, the persons involved inspect their own test processes
using the TPI model.
Another vital part of this phase is consolidation. It should be prevented that the implemented
improvement actions have a once-only character.

Perform evaluation
To what extent did the implemented actions yield the intended result? In this phase the aim is
to see to what extent the actions were implemented successfully as well as to evaluate to what
extent the initial targets were met. A decision about the continuation of the change process is
made based on these observations.

Copyright © 1998 IQUIP Informatica B.V., Diemen, The Netherlands - 13 -

4 Conclusions and remarks

Current developments proceed at a very high speed. The productivity of developers is rising
continuously and the customers demand ever higher quality. Even if your current test process
is fairly satisfactory, your process will need to improve in the future. The TPI model can help
you with this.

The TPI model is an objective means to gain quick insight in the current situation of the test
process. The model greatly offers help for improvement in the form of key areas, levels and
improvement suggestions. It supports the definition of small and controlled improvement
steps, based on priorities.

The reader might get the impression that use of the TPI model automatically leads to good
analysis of the current and required situation. This is not true. The model should be seen as a
tool for structuring the improvement of the test process and as a very good means of
communication. Apart from the tool, improvement of test processes demands a high degree of
knowledge and expertise of people involved, at least in the areas of testing, organisation and
change management.

Book:
Koomen, T., Pol, M. (1999), Test Process Improvement, a practical step-by-step guide to
structured testing, Addison-Wesley, ISBN 0 201 59624 5
Internet:
at 'www.iquip.nl/tpi' several TPI products can be viewed and downloaded. Also questions can
be asked and remarks can be made.

- 1 -

IQUIP
98 405 SCT 1

Test Process Improvement
Experiences:

everything you always wanted to know …

Tim Koomen
IQUIP Informatica BV

koomenti@iquip.nl

IQUIP
98 405 SCT 2

Agenda

• The TPI® model
• 3 TPI Experiences

- 2 -

IQUIP
98 405 SCT 3

Agenda

• The TPI® model
• 3 TPI Experiences

IQUIP
98 405 SCT 4

What is Test Process Improvement?

“Optimizing the quality, costs and lead time of
 the test process, in relation to the total
 information services”

• Quality Insight
Coverage
Control
Timeliness

• Costs Cheaper
• Lead time Faster

Required:

a reference model

- 3 -

IQUIP
98 405 SCT 5

The TPI® model

Key areas

Levels Test
Maturity
Matrix

Improvement suggestionsCheckpoints

IQUIP
98 405 SCT 6

Metaphor TPI ® model

Subjects

Notes

Report

Training, etc.Tests, exams

- 4 -

IQUIP
98 405 SCT 7

K ey A rea / S ca le 0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 T e s t s tra teg y A B C D

2 L ife -cyc le m o de l A B

3 M om e nt o f in vo lvem en t A B C D

4 E s tim a tin g a nd p lan n in g A B

5 T e s t spe c ifica tion techn iqu es A B

6 S ta tic tes t tech n iqu es A B

7 M etrics A B C D

8 T e s t to o ls A B C

9 T e s t en v iro nm e nt A B C

10 O ffice en v iron m e nt A

11 C om m itm e nt a nd m otiva tion A B C

12 T e s t fu nc tio ns an d tra in ing A B C

13 S cop e o f m e tho do logy A B C

14 C om m u n ica tion A B C

15 R ep orting A B C D

16 D efec t m an age m e nt A B C

17 T e s tw are m ana ge m en t A B C D

18 T e s t p rocess m an age m e nt A B C

19 E va lu a tio n A B

20 Lo w -leve l te s ting A B C

Test Maturity Matrix

K
e
y

A
r
e
a
s

Levels

Increasing Maturity

IQUIP
98 405 SCT 8

Current situation - example
K ey A rea / S ca le 0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 T e s t s tra teg y A B C D

2 L ife -cyc le m o de l A B

3 M om e nt o f in vo lvem en t A B C D

4 E s tim a tin g a nd p lan n in g A B

5 T e s t spe c ifica tion techn iqu es A B

6 S ta tic tes t tech n iqu es A B

7 M etrics A B C D

8 T e s t to o ls A B C

9 T e s t en v iro nm e nt A B C

10 O ffice en v iron m e nt A

11 C om m itm e nt a nd m otiva tion A B C

12 T e s t fu nc tio ns an d tra in ing A B C

13 S cop e o f m e tho do logy A B C

14 C om m u n ica tion A B C

15 R ep orting A B C D

16 D efec t m an age m e nt A B C

17 T e s tw are m ana ge m en t A B C D

18 T e s t p rocess m an age m e nt A B C

19 E va lu a tio n A B

20 Lo w -leve l te s ting A B C

- 5 -

IQUIP
98 405 SCT 9

Desired situation - example
K ey A rea / S ca le 0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 T e s t s tra teg y A B C D

2 L ife -cyc le m o de l A B

3 M om e nt o f in vo lvem en t A B C D

4 E s tim a tin g a nd p lan n in g A B

5 T e s t spe c ifica tion techn iqu es A B

6 S ta tic tes t tech n iqu es A B

7 M etrics A B C D

8 T e s t to o ls A B C

9 T e s t en v iro nm e nt A B C

10 O ffice en v iron m e nt A

11 C om m itm e nt a nd m otiva tion A B C

12 T e s t fu nc tio ns an d tra in ing A B C

13 S cop e o f m e tho do logy A B C

14 C om m u n ica tion A B C

15 R ep orting A B C D

16 D efec t m an age m e nt A B C

17 T e s tw are m ana ge m en t A B C D

18 T e s t p rocess m an age m e nt A B C

19 E va lu a tio n A B

20 Lo w -leve l te s ting A B C

IQUIP
98 405 SCT 10

K ey A rea / S ca le 0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 T e s t s tra teg y A B C D

2 L ife -cyc le m o de l A B

3 M om e nt o f in vo lvem en t A B C D

4 E s tim a tin g a nd p lan n in g A B

5 T e s t spe c ifica tion techn iqu es A B

6 S ta tic tes t tech n iqu es A B

7 M etrics A B C D

8 T e s t to o ls A B C

9 T e s t en v iro nm e nt A B C

10 O ffice en v iron m e nt A

11 C om m itm e nt a nd m otiva tion A B C

12 T e s t fu nc tio ns an d tra in ing A B C

13 S cop e o f m e tho do logy A B C

14 C om m u n ica tion A B C

15 R ep orting A B C D

16 D efec t m an age m e nt A B C

17 T e s tw are m ana ge m en t A B C D

18 T e s t p rocess m an age m e nt A B C

19 E va lu a tio n A B

20 Lo w -leve l te s ting A B C

Controlled Efficient

TPI Maturity Categories

Op-
timi-
sing

Project Organisation

- 6 -

IQUIP
98 405 SCT 11

Process of Change

Perform
evaluation

Formulate
plan

 Implement
improvement

actions

Awareness

Execute
assessment

 Define
improvement

actions

Determine goal,
scope and approach

IQUIP
98 405 SCT 12

Agenda

• The TPI® model
• 3 TPI Experiences

- 7 -

IQUIP
98 405 SCT 13

Experience 1: Large bank

• Staff department
• System and acceptance tests
• Goal

– Cheaper & faster testing
• Assessment

– Variety in results
– Low maturity

• Improvement targets
– Integration of system and acceptance

testing
– 2 year improvement period

IQUIP
98 405 SCT 14

Experience 1: Results & lessons

• Lack of “real” commitment
• Lack of central change process
• Results

– Islands of TPI
– Local improvements

Lessons:
• Budget
• Sponsor
• Change process in large organisations

- 8 -

IQUIP
98 405 SCT 15

Experience 2: Financial company

• Fast growing organisation
• Many failures in production
• Goal: better product quality
• Assessment

– Low testing maturity
• Improvement targets

– Control of (acceptance) test process
– Train people
– Create change capability

IQUIP
98 405 SCT 16

Experience 2: Results & lessons

• High visibility of internal change team
• Low visibility of external advisor
• Intensive support and training
• Results:

– Re-assessment showed improvements
– No other measurements
– Test department changes manager

Lessons:
• Demonstrate improvements

- 9 -

IQUIP
98 405 SCT 17

Experience 3: Insurance company

• Buy instead of Make
• Test Service Centre
• Goal

– Higher product quality
– Shorter time-to-market

• Assessment
– Low testing maturity

• Improvement targets
– Better control of test process

IQUIP
98 405 SCT 18

Experience 3: Results & lessons

• Improvement + consolidation in stages
• First stage (9 months):

– Improved product quality
– Improved time-to-market

Lessons:
• Partnership
• Commitment
• Change process

- 10 -

IQUIP
98 405 SCT 19

Summary

Perform
evaluation

Formulate
plan

 Implement
improvement

actions

Obtain
awareness

Execute
assessment

 Define
improvement

actions

Determine target,
area of consideration

and approach
Key areas

Levels

Improvement suggestionsCheckpoints

TPI-model
• Means of support
• Covers all aspects
• Based on practice
• Control
• Confidence

TPI
• Change process &

organisation
• Commitment
• Demonstrate

improvements

IQUIP
98 405 SCT 20

Questions?

or email: tpi@iquip.nl

website: www.iquip.nl/tpi

What??

How?
Who!

Where...

Do you really think... Can you explain…?

Ask now!

- 11 -

IQUIP
98 405 SCT 21

Books:

Website:
Email:

Books:

Website:
Email:

English (available);
Dutch (available);
German (Spring 2000)
www.iquip.nl/tpi
tpi@iquip.nl

English (available);
Dutch (available);
German (Spring 2000)
www.iquip.nl/tpi
tpi@iquip.nl

Info about TPI:

Test Management

Solutions for Project Improvement

Document: Test Management Solutions
Version: September 1999

© 1999 Prof. David Powell. All rights reserved
Any party wishing to use or reproduce text from this publication must first obtain the express permission of the author.

Page: 2

Contents

1. Foreword 3

2. 4 main reasons for testing 4

3. Management of Risks 6
3.1 Risk Analysis ...6

4. Cost Management 7
4.1 Business Focus ...7
4.2 Fault Costs ..7
4.3 Early detection...7

5. Management of Time 8
5.1 Time Squeeze ...8
5.2 Parallel Test Development ..8
5.3 Automated Test Tools ...8

6. Management of Quality 9

7. Responsibility of the Test Manager 10
7.1 Test Model...10

8. Short Term Focus vs. Long Term Vision 16

9. Strategic Implementation 17

10. About Interim Technology 18

Test Management – Solutions for Project Improvement Page: 3

1. Foreword

Organisations operate in a changing business world where they are daily confronted by new
developments, new requirements, greater expectations and bigger desires on the part of their
clients. Information Technology has come to play a greater role in addressing these changes. No
organisation or institution can now afford to ignore IT because the commercial and operational
benefits are too great. Modern day technology offers many opportunities for astute businesses.

The quality of the information flow is also becoming far more important - critical would not be too
strong a word to use. The growing integration between business processes and IT means that
any interruption to the normal operation of the computer systems and the business side can have
disastrous effects and expensive consequences. One major US organisation recently lost it’s
internet booking system for over 3 days, meaning anyone wanting to book with them from
overseas either had to call the States by telephone or contact their rivals website. My guess is
most did not call !!

The importance of prevention rather than cure of such interruptions has now become both
recognised and accepted. Software testing (or Software Quality Engineering as it is called in
America) has developed into an essential specialist area within the IT industry.

In practice, however, the controllability of the testing process often proves limited. While the
design, development and administration of systems is usually approached very systematically,
the testing process has (and in many organisations it still is) frequently conducted on an ad hoc,
unstructured basis or as an after-thought.

Primarily the process has to be appropriate to the organisation in which it is to be adopted - it
must fit rather than conflict with the other practices and procedures. Secondly, testing can only
offer quality control if it is approached structurally and if what is produced allows for easy
maintenance throughout the lifetime of that process, system or application. And finally, the use of
tools and accessories is essential to any modern testing process, so as to provide greater long-
term returns.

This paper looks at the need for testing to be a framework in which the areas mentioned above
are used. Due to testing being a rapidly developing professional area, the structure has to allow
room for new methods, services and tools to be developed.

Testing is now an essential process for any organisation and provides certain guarantees
regarding the correct functioning of systems. I hope that this paper provides you with food for
thought when considering the solutions for improving the testing in your organisation.

Prof. David Powell MSTI

September 1999

Test Management – Solutions for Project Improvement Page: 4

2. 4 main reasons for testing

There are - at least as far as this paper goes - 4 main areas or reasons why organisations
undertake software and system testing.

Management of Risks

Risk Management has grown in importance within the IT industry, and I doubt I am the only
person to be in software testing with a Masters degree in Risk Management.

Surprisingly many organisations still do not see that by managing the risks within both their
development activities and within their testing work, they can achieve valuable long term benefits.

Management of Costs

“But the problem is that extensive testing to reduce risks costs too much”

That is a subjective attitude. It is not always apparent how much it would have cost had the
faults not been found until after the system was in the live environment. How many orders would
have been lost, how many helpdesk calls would have been logged, etc.

And costs are not always direct costs. A lost reputation might costs the organisation it’s very
existence. If a factory or office closes, it is not just those workers who loose their jobs, but the
impact on the local economy can be many times greater.

Management of Time

“Testing takes to long especially as the time to market for new products and services is
becoming ever shorter.”

The increasing globalisation of markets is having a direct effect of increasing competition. And
history shows us that things will not get slower and are more likely to get faster.

Products have to be brought to the market as quickly as possible. Moreover, in practice IT
development projects appear to become more time consuming as the delivery date approaches.

The paper addresses ways of removing the pressure points on the testing needed, to allow the
business to keep ahead of the opposition.

Extensive manual testing aimed at achieving a quality to market solution is extremely time-
consuming. Automated etst tools whilst offering a number of significant advantages, also have
associated issues which need to be borne in mind.

Management of Quality

The quality of the application or system delivered to the market is now of crucial importance.
Whilst double entries in mailing lists or address files are a nuisance, double entries in an
accounting package can cost organisations their futures.

Even more serious problems can arise when modern technology throws a 'spanner in the works'
of the whole business operation. Bad quality will cost you customers and will damage your
reputation. In short, systems failure can have far-reaching consequences for the core business
of any company or institution.

Test Management – Solutions for Project Improvement Page: 5

Extensive manual testing aimed at achieving a quality to market solution is extremely time-
consuming.

The Test Manager

Enter the test manager.

From experience some feel they should have first train as a juggler - after all, their experience
shows that will be required to keep many balls in the air - without dropping them of course - and
to juggle conflicting demands.

Their mission is to help the organisations bring their products and services to the market more
rapidly and to the pre-determined level of quality.

Over the next few chapters we will look at each of these areas in more detail.

Test Management – Solutions for Project Improvement Page: 6

3. Management of Risks

The time when testing takes place is often left to chance. It's hardly surprising then that chance
plays a great part in the reliability of the IT system !

To avoid falling into this trap, testing must become a serious project within an organisation. This
starts with a thorough Risk Analysis, an adequate testing budget and sufficient resources to do
the work.

This may seem costly and time consuming, but the consequences are worse still.

3.1 Risk Analysis

A Risk Analysis is an absolute necessity in order to give a test manager an advanced indication
or warning of where problems might be found.

In his training course on Object Orientated testing, Lee Copeland spends the first half looking at
the issues, challenges and problems which OO developers face before asking the question
about where should we as testers focus our test effort.

These risks or potential problems may be within the system to be tested, but could also be within
the organisation, the specifications, the test environments (or lack of them), the designed tests,
etc.

A person (or on big projects this might be a team of people) should be appointed with the
authority to determine whether there are risks and how they should be addressed.

These risks need not simply be “known” risks. They could be issues that are identified as being
a risk should they happen.

For example, on one project the organisation concerned had a clear desk policy, which meant
that anyone could sit anywhere, and the lack of assigned desks was identified as a potential risk.
As the project grew there were more people than desks, so the lack of facilities materialised as a
risk. Because this had been highlighted earlier to management, a solution was already being
worked out, bringing time and cost management benefits.

Risk analysis is extremely important on projects where there are more than one supplier. I
worked on a project which had 3 major IT consultancys building the system plus the client doing
some of the development work. All were dependent on each other but because of the rivalry and
competitiveness very little communication took place between the consultancys.

If this area is taken seriously, it will assist in releaving pressure on time management, cost
management and quality management.

Test Management – Solutions for Project Improvement Page: 7

4. Cost Management

4.1 Business Focus

In really good organisations the test managers are involved from the earliest stages of project
planning and costing. This becomes even more important in consultancy projects (especially
fixed price contracts) where the clients do not appreciate delays or cost overruns.

Normally at board level, an agreement for capital investement is made and will not be changed.
The business is always focused on the financial aspects and good test managers should at the
minimum have some understanding of the workings of the business in which they are working.

4.2 Fault Costs

The later faults are found the more money they cost to fix. In 1993 there was research done on
this which produced the following information:

Development Project Stages Cost of fixing the fault

Operational £100

Acceptance Testing £50

Development Testing £27:50

Coding £10

Design £4.50

Requirements £1

Adapted from: GILB, Software Inspection, 1993

The above chart shows that, if a fault found during the requirement stage cost £1 to fix, then it
would cost 100 times that amount if the same fault was found after the system had gone live. In
my experience it is likely that a fault found at the requirement stage will cost at least £50 to fix
(including mantime and retesting) which means the same fault, if found after the system had
gone live, would cost £5000 !!

So the earlier faults are detected then the more this will meet the business objectives of no
increased costs and no delays. It also gives the test manager one other opportunity - to bring the
project in under budget !!

This approach was tried on a recent project and slide 5 shows the effects that this had. There
were 17 parts to the overall system, including interfaces to 3rd party software such as PeopleSoft.
The project was a RAD based development with each part of the system being built in isolation,
and the inherited plan was to test it in the same way.

On average 30 faults were found when going through the functional specifications (which the
client had signed off !!) giving a total of 510 faults.

Due to time constraints it was agreed that these would be fixed when the detailed design
documents were produced. Once these were available the same exercise mentioned above was

Test Management – Solutions for Project Improvement Page: 8

repeated – note we did not just re-test the fixes. A further 10 new faults were found on average

Based on the above model, if this had cost £540 to fix the functional specification faults and
£765, the total would have been£1305. In reality it costs around 50 times this to fix (an

But this is insignificant when compared to the amount had they been left until system testing as is
the norm with that organisation.

Test Management – Solutions for Project Improvement Page: 9

5. Management of Time

Testing must be given the attention it deserves. It is simply no longer enough to approach the
examination of information systems in a 'we'll do it if we have time' way. This is hardly an
improvement on the old philosophy that testing is another word for contingency !!

5.1 Test Squeeze

The above model shows at a high level the normal project phases at the start of a new project.

But once things start, they have the alarming habit of slipping, all except the deployment date. So
the model normally ends up looking like this:

5.2 Parallel Test Projects

Parallel testing allows for the test development to be done in parallel with the system
development. It also allows the documentation produced during the system development to be
tested as outlined in the previous chapter. So the model would look like this:

Test Development

System Development

Planning & Specification Development & Build Testing

Planning & Specification Development & Build
Testing

Planning & Specification Development & Build Testing

Preparation Analysis Test
Automation

Execution

Test Management – Solutions for Project Improvement Page: 10

Obviously if the tests are to be executed manually then the Analysis phase (where the tests are
designed and built would extend and the test execution might start earlier to allow longer to run
the tests needed to meet the required quality standard.

5.3 Automated Test Tool

Testing tools can speed up and simplify the testing process. The actions normally carried out by
a human tester (such as mouse movements and keystrokes) are taken over by a computer
program. Such actions are included in a Test Script which functions as a control program for the
test tool. The Scripts can be modified, as they have an underlying programming language.

The most significant advantage of the use of testing tools is that once the Test Scripts have been
recorded they can be used time and time again without any intervention on the part of the tester.
For example a huge number of tests can be carried out unsupervised at night or a batch run
simulated.

The automation of routine and often boring testing activities has the additional advantage of
making the testing more reliable because the human factor is completely eliminated. There is no
possibility of not being able to reproduce an error.

Maintenance of any supporting programs is an important consideration. There is little or no
benefit in using these programs if they take longer than manual testing.

The use of automated is a means to an end and not the end in themselves. Test tools add speed
but they do not necessary add quality to the tests being run. After all if you automated chaos you
simply get faster chaos.

Test Management – Solutions for Project Improvement Page: 11

6. Management of Quality

In Chapter 4, I gave the statistics of faults found on a project and the cost savings that this had
on the project.

Added to this slide showing the standard V-model, are the arrows moving back up from
Requirements to Business Needs; Design to Requirements; and from Code to Design. At each
stage validation takes place against the former stage to make sure that what has been done is in
line and to the same standards

Maintaining quality through out the design and build phase will reduce the number of faults found
during System Testing, save time, and reduces costs.

But as Test Managers there should also be quality management over the tests which are
produced. Good quality tests have a longer lifespan and most often can be used agbain and
again by regression testing and then can be re-used when the system goes live for on-going
maintenance.

C E L E B R A T I N G 5 3 Y E A R S I N B U S I N E S S 1 9 4 6 - 1 9 9 9

® Copyright 1999 by David Powell. All rights reservedR

Production

Solution: Testing Levels & Validation

Code

Design

Requirements

Business Needs

Unit Testing

Integration Testing

System Testing

Acceptance Testing

Test Management – Solutions for Project Improvement Page: 12

TEST
DESIGN

STRATEGY &
PLANNING

MAINTENANCE

TEST
EXECUTION

7. Responsibility of the Test Manager

7.1 Test model

There are phases involved in setting up and implementing testing within an organisation. The
model shown above does not rely on a predetermined and rigid plan. The arrows in the figure
indicate that the areas need not be carried out in any set order and interact with each other.

An area can also be repeated more than once. In the case of the Strategy and Planning this
should be a revisited if any changes are made to the system which will be tested or changes
made to the development project.

The four phases form part of each new testing project. They can also be repeated as necessary
depending on the test results.

7.2 Strategy & Planning

Slide 13 outlines a serious of questions which a test manager can ask at the start of the project
to help them establish the basis for the Test Strategy.

Test Management – Solutions for Project Improvement Page: 13

The Strategy and Planning should not be a long drawn-out procedure. It is intended to:
• determine the feasability of the project
• carry out a Risk Analysis
• define a test organisation, procedures, tasks and responsibilities
• create a clear Test Strategy for the project which should be read by all team members
• set priorities for the testing
• establish which test techniques and test tools will be used during the project
• define the infrastructure needed so that the Test Analyst can record information and the Test

Executor can begin to install and use their programs, develop the automated test scripts and
- of course - test the system.

The Test Strategy will form the foundation for the testing team in carrying out their activities, and
will consist of:
• organisational elements;
• the testing strategy;
• acceptance criteria;
• the various testing activities;
• any products to be supplied during the course of testing, and who is to supply them.

The following quality criteria must also be included:
• the extent to which the tests will examine each of the system functions
• the way in which the test components and the implementation of the tests take place
• the manner in which the results can be carefully and controllably established.

The main problem in drawing up a timetable for testing is its dependency on the development
processes of the systems. As we have already seen, any delay in the development process will
almost always lead to delays in the testing process.

In formulating the planning, the following should also be considered:
• test co-ordination during the project;
• equipment for the test environment;
• structure of the test;
• test automation of all or parts of the test;
• execution of the tests;
• assessment of the test results and how these are to be logged and reported;
• the implications of any retesting required should problems be found;
• control of the test products supplied.

7.2.1 What should the testing be ?

Slide 14 outlines 3 areas which need to be addressed :

Requirements driven tests - looks that the business needs have been adequately and correctly
described and ensures compliance with these requirements.

Data driven tests - checks that the system functions correctly, handles data and includes any
special data cases (such as conversion mechanisms)

Error driven (or destructive) tests - looks at anticipated human activities, worst case scenarios
and errors that are benign.

Page: 14

7.3 Test Design

At each level of test development, consideration must be given to what is going to be tested and
how can we know if the test is complete ? Each test is divided into a logical structure, for
example, by system area.

Next the Test Conditions are established for each of these system areas. These are then broken
down into individiual Test Cases which exercise the Test Conditions.

How these proceed depends on the test execution method. If the tests are to be run manually
then each Test Case has Test Lines and Test Data added which will be input into the system.
The very structure of this approach increases the quality of manual testing, and the tests can be
produced in spreadsheets or a database.

If the tests are to be run using an automated test tool in it’s standard Record and Playback
mode, then the test data is recorded straight into the test tool, and the test cases saved within
the software.

7.3.1 Test Conditions

Test Conditions are an important part of the overall testing process. They are a description of
what needs to be tested in order to prove that the system operates according to the functional or
other specifications. The Test Conditions also indicate the depth of testing required.

For example, on an client record system, the Test Conditons identified from the specifications
could be that:
• a clients record can be added to the system;
• a client record can be amended to show new information;
• a client record cannot be deleted.

The expected results are normally logged at this point so that they can be compared with the
actual test results to see if a fault has occurred when the tests are run.

7.3.2 Test Cases

The Test Conditions are then translated into Test Cases.

For each Test Case, the computer functions are tested to ensure that the test results comply with
the expected results.

For example, the tests for the first Test Condition shown above could be:
• a client record can be added with full details
• a cleint record can be added with partial details **
• a cleint record can be added with mandatory details only
• a cleint record cannot be added without mandatory details

** There may be a number of tests run to prove different ways of adding partial details, but it is
not always necessary to test every percievable permutation unless this is part of the system
specification .

7.3.3 Test Lines

The definition of Test Lines is the final phase of structuring the test preparation and contain the
data to be input into the system. They can also be details of any expected messages or
functions that need to be performed, such a pressing the F9 key at a certain point.

Test Management – Solutions for Project Improvement Page: 15

7.4 Test Execution

Again the method of execution will have a project impact. If this is done manually then there will
be need for more testers within the test team. If this is done with an automated test tool then this
will need people who can use these tools and are able to amend the underlying Test Script if
necessary.

7.4.1 The Test Report

A clear overview of the test results, of passes or any problems that have come to are essential in
order to be able to deal with faults. Any carelessness can undermine the quality to market of the
application.

With automated test tools they automatically produce a Test Report in which changes in the
expected result are shown. These may be minor (such as a wrong screen message) but could
be more serious (such as a system which cannot cope with a certain number of transactions)

With manual testing there needs to be mechanism put in place to log the test results and to log
any faults found during the running of the test.

7.4.2 Results administration

If an error requiring attention is discovered in the system, it is important that the procedure for
dealing with this is carefully monitored. The administration should describe and follow through all
errors. Everyone involved in systems development or maintenance should be informed of the
errors or problems in the relevant version.

Faults and errors can be divided into various categories, depending on the gravity of the
problem. The most important category is one where the implementation of the system becomes
impossible. The second category can include those problems which affect the proper functioning
of major parts of the system. A third category fault may be for the more cosmetic problems, such
as spelling mistakes in the help file, or an incorrect error message.

This division into categories is useful for any management report because it clearly indicates the
nature of the problems. By regularly supplying such overviews, you will be able to closely monitor
how the quality of the system is developing.

Repetition of some tests may be essential if major errors requiring attention are discovered in the
system, and periodic full regression tests are alos advisable, especially on RAD projects.

Once the tests show the required results, you can comfortably move onto the next phase.

7.5 Maintenance

Test maintenance can be roughly divided into four components:
• setting up and maintaining the Test Reports
• managing the results of the tests
• managing the different versions of the system ebign tested
• transfer of the test products to the production/live environment.

Test Management – Solutions for Project Improvement Page: 16

8. Short Term Focus vs. Long Term Vision

8.1 Re-usable testing products

Testing products are often subject to poor reuse. Many organisations find that they have to set
up tests from scratch each time there is a minor modification to the system. Frequently this is
due to negligence.

The requirement for a time management means that tests produced during the development
phase of a system must be easily maintained and totally reusable.

On the other hand the quality mangement demands that the various stages of testing can
produce an accurate risk assessment.

An easily maintainable test suite should be available from the very outset - one which can be
used time and time again with just minor modifications when necessary.

The time savings will become particularly noticeable when updates involve only five to ten
percent of the system. In testing the other 90 – 95% will be retested using existing test material.

Because the various testing resources are used time and again, the initial investment pays for
itself after a few repetitions.

Test Management – Solutions for Project Improvement Page: 17

9. Strategic Implementation

In conclusion, the only way to address the four key areas mentioned in Chapter 2 (time, quality,
cost and risk management) is to have a strategic corporate solution to meet all the organisations
testing needs.

One organisation I met had 40 different development project teams who each focused on one
particular system which was used within that company. Each project manager defined how their
development work was to be tested, giving a possible 40 different ways of testing. Once they
were happy with the system it went live and the tests passed to the maintenance team.

How much easier, cheaper and faster it will be for the organisation when they adopt a strategic
test approach, method and standards across all 40 projects.

A reusable testsuite reduces the costs and time to market for upgrades and new functionality,
and I would suggest quality to market will be dramatically increased because the risks are
reduced.

Test Management – Solutions for Project Improvement Page: 18

10. About Interim Technology

Software Quality Management
With today’s focus on achieving more with fewer resources, applying consistent quality to the software
engineering process is critical. The costs of inadequate quality management include lost opportunities,
excessive corrective procedures, reduced competitiveness, and reduced profits.

Interim Technology, The Consulting Group has developed a range of services and products designed to
help Information Technology departments deliver defect-free software on time and within budget.
Interim’s quality management procedures, based upon international standards, are compatible with any
software development life cycle and have been proven in the field on hundreds of projects, on four
continents, for more than twenty-five years.

Quality Procedures Development and Implementation
Interim has refined its extensive experience into practical, easy-to-implement adaptable strategies and
procedures. Interim can help integrate these or similar approaches with organizational philosophies,
methods, and goals.

Quality Management Handbook (QMH)
A guide to Interim’s comprehensive Quality System and its applicability to all aspects of software
development and maintenance. Based on international standards, the QMH is designed to be
customised for in-house work and that provided by vendors.

Project Management Handbook (PMH)
The PMH contains steps and guidelines for effective management and control of software projects. The
PMH is compatible with all recognized life cycle methodologies and project management tools, helping
businesses get the most out of their software development process.

VALI/TEST Pro (SM)
Long recognized as the most comprehensive approach to the testing of custom developed or package-
based software, VALI/TEST Pro covers all phases of the software life cycle. It is a Windows™-based
hypertext tool, which is also available in book form.

Software Testing and Validation
Testing is vital in the creation of defect-free software. Effective testing not only identifies design and
coding errors, but validates that the software truly meets business needs. Interim Technology’s validation
approach focuses on requirements-based testing through the complete life cycle, including unit,
integration, acceptance and post-implementation maintenance testing. VALI/TEST Pro, is the foundation
of a range of testing services. This online methodology tool provides the most comprehensive approach
to software testing and is the foundation of a range of testing services including: testing process
assessment, testing, testing strategy and planning, user acceptance testing, testing process
implementation, testing for the year 2000, and test project management.

Quality and Productivity Metrics
Interim’s staff of professionals will deliver a metrics strategy planning to help identify the software metrics
most closely aligned to an organization’s mission and goals. Metrics program implementation assists
with the planning and implementation of a Metrics program.

Quality Services for Project Management
Interim helps organisations apply the fundamentals for success contained in our Project Management
Handbook (PMH) and Quality Management Handbook (QMH). Doing so helps lay the foundation for

Page: 19

project success and forms the basis of a number of Interim’s project management services that include:
request for proposal (RFP) development and review, project office, contract management, and
independent quality assurance.

Education and Training
Implementing effective quality management requires education and training at all levels, in addition to
long-term management commitment. Interim Technology offers a full range of educational programs that
can be customized to fit specific needs, as well as for individual mentoring and coaching. All are
designed to instill and reinforce the understanding of quality principles. Interim’s programs address both
management and implementation issues alike.

User Services
The goal of User Services is to forge a partnership between business and MIS management to ensure
dependable systems that meet business requirements. Interim’s user services staff rely on a proven
process that integrates user-related elements from several key disciplines to ensure maximum
productivity. This specialty can provide support in the following areas: training, custom application
training, requirements definition, acceptance testing, user project management, project office, package
selection and implementation, and user documentation.

Quality Consulting
A proven project initiation and management process is essential in order to ensure dependable, high
quality results with a minimum of inefficiency, risk and cost. Interim can assist by applying the
fundamentals for success contained within its Project Management Handbook (PMH) and Quality
Management Handbook (QMH).

TEST/CYCLE
Interim Technology, The Consulting Group’s software testing specialty offers a comprehensive set of
services and products, all based on the VALI/TEST Pro (SM) approach to testing, that can be tailored to
an organization’s testing objectives.

TEST/CYCLE , an advanced PC- or LAN-based software automates management of the entire testing
process. TEST/CYCLE complements and enhances the software development process, whether it
includes a traditional life cycle, client/server, GUI, RAD, or other methods. It thoroughly supports all
testing levels, including unit, integration, acceptance and regression testing.

1

C E L E B R A T I N G 5 3 Y E A R S I N B U S I N E S S 1 9 4 6 - 1 9 9 9

® Copyright 1999 by David Powell. All rights reservedR

Test Management -
Solutions for Project Improvement

November 4, 1999

David Powell. MSTI

Management Consultant

Software Quality Management

C E L E B R A T I N G 5 3 Y E A R S I N B U S I N E S S 1 9 4 6 - 1 9 9 9

® Copyright 1999 by David Powell. All rights reservedR

• Test Management

Why Test ?

• Management of Risks

• Management of Costs

• Management of Time

• Management of Quality

2

C E L E B R A T I N G 5 3 Y E A R S I N B U S I N E S S 1 9 4 6 - 1 9 9 9

® Copyright 1999 by David Powell. All rights reservedR

Risk Management

• Faults are risks until they are found
TICKTICK TICKTICK TICKTICKBOMBBOMB

££
££££££

• Finding them later will cost you money

C E L E B R A T I N G 5 3 Y E A R S I N B U S I N E S S 1 9 4 6 - 1 9 9 9

® Copyright 1999 by David Powell. All rights reservedR

Cost Management
…. Defect Repair @ Different Project Stages

£27.50 Development Testing

£10 Coding

£4.50 Design

£1 Requirements

Adapted from GILB, Software Inspection, 1993

£100 Operational

£50 Acceptance Testing

3

C E L E B R A T I N G 5 3 Y E A R S I N B U S I N E S S 1 9 4 6 - 1 9 9 9

® Copyright 1999 by David Powell. All rights reservedR

The 17 x 30 Rule
• Functional Specifications

– New International System for Medical Insurer

– 17 System areas being build in isolation

– Average 30 faults found in each of the 17 areas

– Total : 510

• Detailed Design Documents
– Produced for each of the areas to corret the faults

– Average 10 faults found in each of the 17 areas

– Total : 170

• & the business signed off all these documents !!!

C E L E B R A T I N G 5 3 Y E A R S I N B U S I N E S S 1 9 4 6 - 1 9 9 9

® Copyright 1999 by David Powell. All rights reservedR

Production

Solution: Testing Levels & Validation

Code

Design

Requirements

Business Needs

Unit Testing

Integration Testing

System Testing

Acceptance Testing

4

C E L E B R A T I N G 5 3 Y E A R S I N B U S I N E S S 1 9 4 6 - 1 9 9 9

® Copyright 1999 by David Powell. All rights reservedR

planning and
specification development test

Time Management
…... testing is often put under pressure

DEADLINE

C E L E B R A T I N G 5 3 Y E A R S I N B U S I N E S S 1 9 4 6 - 1 9 9 9

® Copyright 1999 by David Powell. All rights reservedR

planning and
specification development test

DEADLINE

Time Management
…... testing is often put under pressure

Testing is not just another word for contingency !

5

C E L E B R A T I N G 5 3 Y E A R S I N B U S I N E S S 1 9 4 6 - 1 9 9 9

® Copyright 1999 by David Powell. All rights reservedR

Solution: Parallel Development

SQM Development

System development

PlansPlans andand
SpecificationsSpecifications DevelopmentDevelopment TestingTesting

AnalysisAnalysis AutomateAutomate ExecuteExecutePreparationPreparation

C E L E B R A T I N G 5 3 Y E A R S I N B U S I N E S S 1 9 4 6 - 1 9 9 9

® Copyright 1999 by David Powell. All rights reservedR

Management Objectives

Maximize
System
Quality

Meet
Business

Needs

6

C E L E B R A T I N G 5 3 Y E A R S I N B U S I N E S S 1 9 4 6 - 1 9 9 9

® Copyright 1999 by David Powell. All rights reservedR

Project Activities

Strategy & Planning

Design

Execution & Evaluation

Maintenance

C E L E B R A T I N G 5 3 Y E A R S I N B U S I N E S S 1 9 4 6 - 1 9 9 9

® Copyright 1999 by David Powell. All rights reservedR

Common Activities

Strategy & Planning
• establish the test strategy
• investigate the project feasability
• identify risks and problems
• establish test organisation and procedures
• plan test environment

7

C E L E B R A T I N G 5 3 Y E A R S I N B U S I N E S S 1 9 4 6 - 1 9 9 9

® Copyright 1999 by David Powell. All rights reservedR

Determine the Strategy

Determine
Test

Strategy

What type of
project ?

What type of
software?

What type of
technical

environment ?

What is the
project’s scope ?

When will
testing occur ?

What are the critical
success factors?

Who will conduct
the testing ?

What are the
trade-offs ?

How critical is the
system to the
organisation ?

C E L E B R A T I N G 5 3 Y E A R S I N B U S I N E S S 1 9 4 6 - 1 9 9 9

® Copyright 1999 by David Powell. All rights reservedR

Testing Should Be …
• Requirements driven

– Ensuring the business needs have been correctly described

– Ensuring compliance to the requirements

• Data driven
– System functions correctly, handles data, including special data

cases

– Data has integrity

– Data is safe (backup & recovery)

• Error driven - Destructive Testing
– Anticipate human activities

– Errors are benign

– Worst-case

8

C E L E B R A T I N G 5 3 Y E A R S I N B U S I N E S S 1 9 4 6 - 1 9 9 9

® Copyright 1999 by David Powell. All rights reservedR

Testing
Levels

Unit Testing

Integration Testing
System Testing

Acceptance Testing

• Pilot Testing
• Operability Testing
• Installation Testing

• Environment Testing
• Back-Up/Recovery Testing

R
egression
T

esting

 Maintenance

C E L E B R A T I N G 5 3 Y E A R S I N B U S I N E S S 1 9 4 6 - 1 9 9 9

® Copyright 1999 by David Powell. All rights reservedR

Common Activities

Test Automation
Design ?

Test
Design

• select appropriate Test Tool
• design automation scripts
• build the scripts
• populate the test environment

• define the test conditions
• design test cases to meet conditions
• build test cases and test data
• establish the test environment

9

C E L E B R A T I N G 5 3 Y E A R S I N B U S I N E S S 1 9 4 6 - 1 9 9 9

® Copyright 1999 by David Powell. All rights reservedR

Common Activities

Execution & Evaluation

• execute tests
• report faults
• retest fix releases
• produce reports
• validate reports

C E L E B R A T I N G 5 3 Y E A R S I N B U S I N E S S 1 9 4 6 - 1 9 9 9

® Copyright 1999 by David Powell. All rights reservedR

Common Activities

Maintenance

• on-going keeper of the tests
• maintain test cases
• maintain automation scripts

Well defined tests can be used daily if the maintenance requires this

10

C E L E B R A T I N G 5 3 Y E A R S I N B U S I N E S S 1 9 4 6 - 1 9 9 9

® Copyright 1999 by David Powell. All rights reservedR

Plan for Maintenance
• Prepare for Maintenance during Development

• Keep Deliverables and Documentation up-to-date
– Requirements; Test Design; Test Cases; Test Data; Test Results

• Maintain all related deliverables during error correction
– Requirement specifications

– Program specifications

– Design specifications
– Defect reports

Good Maintenance provides huge Time, Cost,
Quality and Risk Management Rewards

C E L E B R A T I N G 5 3 Y E A R S I N B U S I N E S S 1 9 4 6 - 1 9 9 9

® Copyright 1999 by David Powell. All rights reservedR

Future ContactFuture Contact

David Powell MSTI
sqm-uk@interim.com

Any
Questions ??

Managing your test costs Save date: 05/10/1999
Abstract open Jens Pas

qwe99.11m_pap.DOC Copyright © 1999 ps_testware 1/5

1. MANAGING YOUR TEST COSTS

This abstract is meant to be a short introduction to the presentation ‘Managing Your Test Costs’.

The accompanying text written by Jens Pas and Mario Jansen will give more detailed information

regarding this issue.

Title Managing your test costs

Bullets • How to forecast your testing budget

• How to manage your testing cost

• How to optimise your testing cost

Intended audience • Test and Business Managers

• Advanced testing professionals

Type Paper

Paper Jens Pas, Operations Manager @ ps_testware

2. PREFACE

This document briefly explains the cost issue of testing as discussed in the tutorial “Managing Your Test
Costs”.

The tutorial covers the issue of estimating your test budget, managing your costs while you are testing and
finally addresses how to optimise your organisation in order to reduce the costs associated with testing.

The tutorial uses real life data to illustrate the issues discussed. Academic cost models that are, however,
applicable in practice are presented. They will allow the attendee to structure and manage his or her cost
issues. The tutorial provides a case that the attendees will solve during the tutorial.

3. INTRODUCTION

When discussing the testing of software, the issue of cost rapidly comes to surface. Responsible for this
hyper-sensitivity for cost, is the fact that many people consider testing as a necessary evil, that has to be
kept as small as possible. Testing is not making a contribution, testing is a pure remedial activity that helps
to obtain the quality that we should have programmed in the first place. At least, this is what is said. This
tutorial will not discuss why the above statements are incorrect, nor why testing does provide a great deal of
contribution.

We start the tutorial from the axiom that we must test, whether we like it or not. Consequently, we must
consider the costs associated with the testing activity. Three questions pop up when test costs are discussed:

• how to forecast the testing budget;
• how to manage the costs while you are testing;
• how to optimise the testing costs.

These questions will be discussed in more depth in the following chapters.

Managing your test costs Save date: 05/10/1999
Abstract open Jens Pas

qwe99.11m_pap.DOC Copyright © 1999 ps_testware 2/5

4. HOW TO FORECAST THE TESTING BUDGET?

According to the Gartner Group about 50% of all software engineering effort is spent on verification and
validation. The other 50% concerns the building activities (e.g. analysis, designing, programming,
documenting,…). If one knows his or her development budget, one can simply determine the testing effort.
The problem with this way of defining the test budget is that it includes all the “test” work done by the
builders (analysts, designers, and programmers…). As such, it is difficult to distinguish the effort done by
professional independent testers.

Like the concept “cost”, testing is also a meaningless word. Meaningless since it tries to cover to many
activities. In order to measure the testing effort properly, one first has to distinguish the various activities
involved in testing. We define eight types of effort done when testing. Consequently, they are eight budgets
to forecast:

Defect tracking The time spent on the management and follow-up of the registered
defects, including but not limited, to controlling whether repaired
defects are waiting for closing and the creation of defect reports.

Test development The time spent on the development of the test procedures and test
cases, including but not limited to the prologue and epilogue
procedures, the scripts, the test-the-test activities and the initialisation
of the test bed.

Test execution The time spent on the execution of the tests with the intent of finding
errors in the product that is tested, including but not limited, to the new
tests and regression tests (regression tests as a consequence of the
interim versions of the product that is tested).

Test maintenance The time spent on the adjusting and updating of the test ware (scripts,
test cases,…), necessary for the different versions of the product under
test.

Test overhead The time spent on activities supporting the test process, including but
not limited to the communication through meetings or reports
concerning appointments with regard to the test organisation, escalation
of problems, the creation of administrative reports for invoicing, giving
or requesting support regarding test knowledge.

Test planning The time spent on the creation of the Test Plan, including but not
limited to the writing of the document, the creation of the Test
Requirements Hierarchy, the meetings, the analysis of the Test Bed, the
making of the planning.

Test preparation The time spent on the creation of the Test Assignment (sort of Test
Project Plan), including but not limited to the writing of the document,
the necessary interviews and meetings, the analysis of the test basis and
the installation of the test organisation.

Test repair The time spent on the correction of the testware (scripts, test cases,…).
This activity is mostly started as a consequence of the registration of a
defect, after which the test and not the product turns out to be wrong.
The time does not concern the test activities during the development of
a test.

Base ratios as experienced by ps_testware1:

1 These figures are derived from new development projects in a Client/Server environment, using a RAD-
development approach, a automated test tool with defect tracker and Requirements Management tool. It
must be noted that these figures can strongly vary if the previously mentioned elements change. The use of
tools (both for automation and for management) will heavily influence the activity budget distribution.

Managing your test costs Save date: 05/10/1999
Abstract open Jens Pas

qwe99.11m_pap.DOC Copyright © 1999 ps_testware 3/5

Defect tracking 10-15%

Test development 25-50%

Test execution 1-15%

Test maintenance 0-10%

Test overhead 25-30%

Test planning 10-15%

Test preparation 10-15%

Test repair 0-10%

Total testing budget 100%

Correctly estimating the required time to complete a task involves proper project management skills. It is
striking how many people over-estimate the probability of their estimation. Most project managers or
leaders rate their abilities to estimate time near 80%. It can easily be mathematically proven that even the
best project leaders, using a “classical behaviour” cannot score higher than 30% to 40%. This means that
every estimation is over optimistic and as such is prone to overrun.

Further issues have to be taken into account, when estimating time are the software engineering maturity of
the organisation and its people and the intrinsic quality and complexity of the software that is written (based
upon historical facts.

5. HOW TO MANAGE THE COSTS WHILE YOU ARE
TESTING?

Once the testing has started, the test manager or project manager/leader must make sure that the testing is
effective and efficient. In other words, the testing must be done with the highest return. This means that the
manager must focus on the contribution generated by the tester, rather than on the volume of testing (testing
hours, code coverage, etc.). Furthermore, we may not forget that the manager may not overrun his testing
budget.

If the manager wants to achieve the highest contribution, he must know the constraint that prevents him
from an even higher return. The test manager will seek for the bottleneck that does not allow him to make
even more money (read: software quality). Again we will apply Theory of Constraints to manage this issue.
This time we will not focus on time but on defects or bugs.

Consider the following process. A developer makes a piece of software. When finished, a tester is asked to
test it. The fact that a tester is added to process (much too late, but that is another more methodological
matter) confirms that the provided software most probably contains errors. So, the tester receives software
of an “unknown” quality. He has been added to the process to help increase the software quality, by finding
errors and having them repaired or by confirming that there where no errors. In the latter case, which is
quite hypothetical since there are always errors to be found, he will not have increased the quality but he
will have reduced the risk “taking into production”. In short, the tester has to find defects. In order to help
to increase the quality of the software, the defects must be repaired. When a defect has been repaired the
tester has contributed to the quality increase. It must be noted, however, that the repair was executed by the
developer and not by the tester. Consequently, the tester’s contribution is dependent on the repair work of
the developer. From a management control point-of-view, this is a complex issue that requires particular
attention.

Two facts from this story have to be kept in mind:

Managing your test costs Save date: 05/10/1999
Abstract open Jens Pas

qwe99.11m_pap.DOC Copyright © 1999 ps_testware 4/5

1. Testers provide contribution when they find errors, which are repaired
2. Developers, and not the testers, do the repairing.

The way to manage the test process consists as such out of the management of the flow of bugs. The test
manager must focus on the amount of bugs that are found in the database and the status they have. Many
bugs with the “Newly found” status indicate that the tester does a good job in finding errors, but that there is
no one looking at them in order to get them repaired. Hence, no contribution will be generated. This
situation looks familiar, doesn’t it? How many times didn’t a test manager add a tester to the project,
thinking that he would illustrate that all was done well. No repair time was foreseen. The tester was asked to
come and test the last month before “going live”, regardless of his findings. As such, no resources where
planned to look at the defects found and to see whether they need repairing.

Managing the test process through the flow of defects is called Throughput Management. It is a method to
optimise the throughput of solved defects through the system. Here a particular metric was defined called
“Defect Throughput”.

“The Defect Throughput is the pace at which the system (the project team) produces solved defects.”

By managing the Defect Throughput a minimal test cost will be made. This method relates to the
Throughput Accounting2 method used in Cost Accounting when establishing optimal product mixes in
product manufacturing processes in factories.

6. HOW TO OPTIMISE THE TESTING COST?
Managing according to the Defect Throughput is good for optimising and controlling the operational test
activities, it does not, however, help to improve and optimise the test costs in the long run. In order to
reduce the testing costs, managers must identify what these costs are and what activities are driving them.
Here we enter the field of Activity Based Costing (ABC) or Activity Based Management (ABM). With
ABC, costs are seen as the consequence of one or more activities. Rather then to simply eliminate steps in
the process in order to cut costs (e.g. reduce test time or test resources), the relation between an activity and
the created costs is determined. The relation is called the “cost driver”. For instance, the cost of setting up
quality test scripts depends on the “testability” of the product and of the means provided to test the product.
An application that was developed in a very exotic programming language or environment will have a hard
time getting fully tested at an acceptable cost using standard testing tools. Not using tools might result in
poor and inefficient test quality, developing proprietary tools might also induce more unwanted costs. In the
latter case, the test-tool must also be tested before taken into operation.

Using an ABC-system will facilitate the cost reduction objectives of continuous improvement3. It does this
by allowing managers to gauge to the cost consequences of decisions to change the performance or use of
activities. Activities may be reduced, eliminated, substituted by alternative solutions or shared, resulting in
benefits through economies of scale.

It is here that issues such as the “Early-defect-discovery” must be situated. It is theoretically correct that the
sooner a defect is found, the less costs it creates. In practice, however, we are confronted with the late
discovery of sometimes simple and obvious bugs. Here the power of the V-model, as described by Glenford
Myers4 is too limited to provide an implementation scheme to really find those bugs early in the process.
Using the V-model as framework on one side and applying ABC as a driver on the other, a well-structured
optimisation might be achieved in every organisation. Applying ABC will drive towards an optimal
software engineering process, taking into account proper analysis, documentation, verifications, designs,
development and validations.

2 Ruhl, Jack M., Journal of Cost Management, “The Theory of Constraints within a Cost Management
Framework”, pp.16-24, November/December 1997
3 Turney, Peter B.B., Cost Management, “How Activity-Based Costing helps reduce Costs”, pp. 29-35,
Winter 1991.
4 Myers, Glenford, The Art of Software Testing, John Wiley and Sons, 1979

Managing your test costs Save date: 05/10/1999
Abstract open Jens Pas

qwe99.11m_pap.DOC Copyright © 1999 ps_testware 5/5

Combining the optimisation of the test cost with forecasting test cost leads us to another concept of
Management Accounting, Target Costing. With Target Costing we define the maximum cost we may incur
during the development process. The manager must apply all possible creativity to provide the required
quality, given the maximum target cost. Target Costing, though until now little documented, will probably
be the answer to real Rapid Application Development (RAD) projects. There development targets are
already well institutionalised.

7. THE COST OF THE UNFOUND DEFECT

What has not been discussed is the cost of the unfound defect. This article has focussed on the costs
associated with finding bugs. Some bugs, however, are not found and create damage once the software is
applied in reality. It is unfair to call this the cost of the bug or even the unfound bug and not to allocate it
anywhere. It is more correct to attribute this incurred cost to the development of the application and to add
this to the development budget of the project. By labelling this cost as such, the sensitivity of the project
leader towards the quality of his product will increase significantly. Since he has a budget responsibility,
putting bugs in his budget is the same as making him explicitly accountable for the quality of the software.
This is after all what we want if we hope to manage and improve the software engineering process.

Test Costin

Jens Pas - Copyright © 1999 ps_testware 1

Test Test CostingCosting

C
op

yr
ig

ht
 ©

 1
99

9
ps

_t
e

st
w

a
re

 -
 J

en
s

P
as

 -
 T

e
st

 C
os

tin
g

-
1

1 9 9 4 - 1 9 9 9

Sof tw are Testing Serv i ces

5 th A n n iv e rsary

SolvingSolving the budget issues the budget issues

1 9 9 4 - 1
 9 9 9

Sof tw are Test ing Ser vi ce

s

5 th A n n iv e rsary

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 2

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
toc

Jens Pas
General Manager

Managing YourManaging Your Test Test Costs Costs
(and(and Benefits Benefits))

Solving the costing issuesSolving the costing issues

Test Costin

Jens Pas - Copyright © 1999 ps_testware 2

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 3

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocAgendaAgenda

•• IntroductionIntroduction & Background & Background

•• The The costing costing issuesissues

•• Forecasting your Forecasting your test test costcost

•• Managing your Managing your test test costcost

•• Optimising your Optimising your test test costcost

•• QuestionsQuestions

1 9 9 4 - 1
 9 9 9

Sof tw are Test ing Ser vi ce

s

5 th A n n iv e rsary

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 4

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
toc

Introduction & BackgroundIntroduction & Background

Why this Topic?Why this Topic?

Test Costin

Jens Pas - Copyright © 1999 ps_testware 3

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 5

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocWhy do we test ?Why do we test ?

To improve the To improve the profitprofit of your company! of your company!

Price - Cost = ProfitPrice - Cost = Profit

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 6

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
toc(How much) do we have to test ?(How much) do we have to test ?

Man-hoursMan-hours

testingtesting

TestTest
wareware
(tools,(tools,
infra)infra)

TestTest

Management
Management

RepairRepair
costscostsCost of

Cost of

ownership
ownership

OpportunityOpportunity
costcost

RepairRepair
costscosts

TestTest
wareware
assetsassets

QualityQuality
knowledgeknowledge

MoreMore

rework
rework

Test Costin

Jens Pas - Copyright © 1999 ps_testware 4

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 7

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocFactsFacts

•• Axiom:Axiom:

•• Testing is the necessary evilTesting is the necessary evil

•• Testing is remedialTesting is remedial

•• Testing does not provide Testing does not provide contributioncontribution

We have to test.We have to test.

We have to make test costs.We have to make test costs.

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 8

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
toc

•• Three questions: Three questions:
–– How can I forecast the cost of structuredHow can I forecast the cost of structured

testing?testing?

–– How can I manage these costs during theHow can I manage these costs during the
execution of a project?execution of a project?

–– How can I optimise test costs in the future?How can I optimise test costs in the future?

The test cost issuesThe test cost issues

Test Costin

Jens Pas - Copyright © 1999 ps_testware 5

1 9 9 4 - 1
 9 9 9

Sof tw are Test ing Ser vi ce

s

5 th A n n iv e rsary

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 9

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
toc

Forecasting test costsForecasting test costs

Development strategyDevelopment strategy

Base ratiosBase ratios

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 10

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocForecasting test costsForecasting test costs

•• Know your current test efforts?Know your current test efforts?

•• Assess your organisation on “structuredAssess your organisation on “structured
test readiness”test readiness”

•• Use a forecasting modelUse a forecasting model

Test Costin

Jens Pas - Copyright © 1999 ps_testware 6

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 11

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocKnow your current test effortsKnow your current test efforts

Name Devel Sys/AT Oper Effort Cost(K)
Developer 1 20-40 19 18-24 57-83 21-30
Developer 2 12-18 1-2 - 13-20 5-7
Developer 3
Developer 4
 Sub-Total 32-58 20-21 18-24 70-103 26-37

Tester 1 10-12 33 - 43-55 13-17
Tester 2
 Sub-Total 10-12 33 - 43-55 13-17

User 1 8 2 10 2
User 2
 Sub-Total 8 2 10 2

Other 1
 Sub-Total

 Totals 42-60 61-62 20-26 123-148 41-56
 Pcts 23% 28% 10% 61% 36%

Name Devel Sys/AT Oper Effort Cost(K)
Developer 1 20-40 19 18-24 57-83 21-30
Developer 2 12-18 1-2 - 13-20 5-7
Developer 3
Developer 4
 Sub-Total 32-58 20-21 18-24 70-103 26-37

Tester 1 10-12 33 - 43-55 13-17
Tester 2
 Sub-Total 10-12 33 - 43-55 13-17

User 1 8 2 10 2
User 2
 Sub-Total 8 2 10 2

Other 1
 Sub-Total

 Totals 42-60 61-62 20-26 123-148 41-56
 Pcts 23% 28% 10% 61% 36%

T&E Effectiveness

T&E Efficiency

Poor Ave

High

Ave

Good

Low Great
Stuff!

(Cost)

(Results)

Major
Issue! ?

?

OK

OK

OK

?

?

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 12

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocAssess your “structured test readiness”Assess your “structured test readiness”

OrganizationOrganization

B
usiness Link

B
usiness Link

O
rganisation

O
rganisation

P
roject P

lanning
P

roject P
lanning

P
roject T

racking
P

roject T
racking

P
rogram

. M
eth.

P
rogram

. M
eth.

C
onfig. M

gt.
C

onfig. M
gt.

Q
A

 &
 D

oc.
Q

A
 &

 D
oc.

M
otivation

M
otivation

Structured Software TestingStructured Software Testing

Test
Maturity

0

Test Costin

Jens Pas - Copyright © 1999 ps_testware 7

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 13

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocA forecasting model A forecasting model (1/2)(1/2)

•• Step 1: Estimate the development budgetsStep 1: Estimate the development budgets
–– Development strategyDevelopment strategy

–– Historical figuresHistorical figures

Development BudgetsDevelopment BudgetsDevelopment Budgets
Building & VerificationBuilding & VerificationBuilding & Verification
Module & Integration TestingModule & Integration TestingModule & Integration Testing
System TestingSystem TestingSystem Testing
Babysitting (& Acceptance Testing)Babysitting (& Acceptance Testing)Babysitting (& Acceptance Testing)
Overhead (Test Mgt.)Overhead (Test Mgt.)Overhead (Test Mgt.)

TotalTotalTotal

% of total budget% of total budget% of total budget
40% - 60%40% - 60%40% - 60%
5% - 20%5% - 20%5% - 20%
20% - 30%20% - 30%20% - 30%
5% - 10%5% - 10%5% - 10%
5% - 10%5% - 10%5% - 10%

100%100%100%

Source: ps_testware project database

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 14

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocA forecasting model A forecasting model (2/2)(2/2)

•• Step 2: Distribute budget on test activitiesStep 2: Distribute budget on test activities
–– Base ratiosBase ratios
Test ActivityTest ActivityTest Activity
Test PreparationTest PreparationTest Preparation
Test PlanningTest PlanningTest Planning
Test Bed set-upTest Bed set-upTest Bed set-up
Test DevelopmentTest DevelopmentTest Development
Test ExecutionTest ExecutionTest Execution

% of total budget% of total budget% of total budget
5% - 10%5% - 10%5% - 10%
5% - 15%5% - 15%5% - 15%
≤ 5% !??≤≤ 5% 5% !??!??

25% - 50%25% - 50%25% - 50%
10% - 30%10% - 30%10% - 30%

Test RepairTest RepairTest Repair
Test MaintenanceTest MaintenanceTest Maintenance
Defect TrackingDefect TrackingDefect Tracking
Test ReportTest ReportTest Report
Overhead (Test Mgt.)Overhead (Test Mgt.)Overhead (Test Mgt.)

≤ 5%≤≤ 5%5%
≤ 10%≤≤ 10%10%
≤ 7%≤≤ 7%7%
≤ 5%≤≤ 5%5%

5% - 20%5% - 20%5% - 20%
Source: ps_testware project database

Test Costin

Jens Pas - Copyright © 1999 ps_testware 8

1 9 9 4 - 1
 9 9 9

Sof tw are Test ing Ser vi ce

s

5 th A n n iv e rsary

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 15

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
toc

Managing Test CostsManaging Test Costs

Theory of ConstraintsTheory of Constraints

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 16

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocManaging test costsManaging test costs

•• Classic metricsClassic metrics
–– number of defectsnumber of defects

–– number of hours of testingnumber of hours of testing

–– logic coveragelogic coverage

Treat the test (and development)Treat the test (and development)
process as a production processprocess as a production process

Application of Theory of Constraints (TOC)Application of Theory of Constraints (TOC)

Test Costin

Jens Pas - Copyright © 1999 ps_testware 9

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 17

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocIntermezzo: Theory of ConstraintsIntermezzo: Theory of Constraints

R1
(10units/h)

R2
(7 units/h)

R3
(14 units/h)

How many cars can be made per hour ?

Body
Assembly

Motor
building “Marriage”

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 18

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocIntermezzo: Theory of ConstraintsIntermezzo: Theory of Constraints

•• Define the units to measure contribution!Define the units to measure contribution!

•• 1. IDENTIFY the constraints1. IDENTIFY the constraints

•• 2. Decide how to EXPLOIT the constraints2. Decide how to EXPLOIT the constraints

•• 3. SUBORDINATE everything else to the3. SUBORDINATE everything else to the
above-mentioned decisionabove-mentioned decision

•• 4. ELEVATE the constraints4. ELEVATE the constraints

•• 5. Be aware of INERTIA! If the constraint5. Be aware of INERTIA! If the constraint
has been broken, go back to step 1.has been broken, go back to step 1.

Test Costin

Jens Pas - Copyright © 1999 ps_testware 10

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 19

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocIntermezzo: Theory of ConstraintsIntermezzo: Theory of Constraints

R1
(10units/h)

R2
(7 units/h)

R3
(14 units/h)

What are the units ?

Testing Repairing
Re-testing

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 20

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocWhat is the testing process?What is the testing process?

Testing is the process of executing a programTesting is the process of executing a program
with the intent of finding errorswith the intent of finding errors

Source: Glenford Myers (1979)

•• What is testing ?What is testing ?

•• Why ?Why ?

Test Costin

Jens Pas - Copyright © 1999 ps_testware 11

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 21

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocWhat are the units of the process?What are the units of the process?

•• Goal of testingGoal of testing

•• Quality will improve if we find defects andQuality will improve if we find defects and
repair themrepair them

•• So, the test process produces solvedSo, the test process produces solved
defects!defects!

•• Solved defects Solved defects ≈≈ Passed requirements Passed requirements

Improve the quality of the product under testImprove the quality of the product under test

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 22

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
toc

R1
(10req./h)

R2
(7 req./h)

R3
(14 req./h)

•• Requirements ThroughputRequirements Throughput

Main metricMain metric

Testing Repairing
Re-testing

The pace at which the system producesThe pace at which the system produces
passed requirements.passed requirements.

Test Costin

Jens Pas - Copyright © 1999 ps_testware 12

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 23

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocHow to manage in practiceHow to manage in practice

•• Register all your “test” requirements in aRegister all your “test” requirements in a
Test RepositoryTest Repository

•• Register all defects in this repository andRegister all defects in this repository and
link to the related requirementlink to the related requirement

•• Follow-up status of defects in theFollow-up status of defects in the
repositoryrepository

•• Use the repository to report theUse the repository to report the
Requirement ThroughputRequirement Throughput per “activity” per “activity”

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 24

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocPitfall!!Pitfall!!

•• Focus of the testerFocus of the tester

•• Focus of the test managerFocus of the test manager

Find defectsFind defects

Requirements ThroughputRequirements Throughput

Test Costin

Jens Pas - Copyright © 1999 ps_testware 13

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 25

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocExample: Progress ReportExample: Progress Report

Microsoft Excel + SQAMicrosoft Excel + SQA TeamTest TeamTest

Weekly test progress report

Project ID MTH/nnnn Date 14/04/97
Project title Acceptatietest voor ps_home weeknr. 199716

Start date 1/01/97 Laptime spent 69%
End date 31/05/97

1. Goal achievement

Test Requirement Coverage

Number of test requirements 215

Development coverage 90%
Test coverage 74%

Passed product 48%

2. Test quality

Effectiveness This week Total index Plan Total Plan
Are we doing the right thing ? (hours) (T days) (T days)

Number of defects 20 245

Hours of test preparation 0,0 75,094% 80,0
Hours of test planning 0,0 78,098% 80,0

Hours of test development 5,0 260,081% 320,0
Hours of testing 4,0 24,060% 40,0

Hours of test repairing 5,0 24,060% 40,0
Hours of defect tracking 12,0 50,042% 120,0

Hours of Maintenance 5,0 24,030% 80,0
Hours of Overhead 8,0 90,075% 120,0

Total 39,0 625,0 71% 880,0 0 110
0%

Defect Removal Effectiveness 35%

Efficiency This week Total index Plan
Are we doing the thing right ?

Average hours/day #N/A #DIV/0!#### 8
Test maintainability 0% 91%121% 75%

Test spoilage 13% 4%84% 5%
Overhead 21% 14%106% 14%

Defect throughput (per day) 0,20 1,14
Defect detection rate (per day) 4,00 3,20

3. Constraints analysis

0. New 41
1. Pend. Invest. 28
2. Pend. Distr. 0
3. Pend. Repair 60
4. Pend. Rep. Valid. 18
5. Pend. Freeze Valid. 0
6. Froozen 12
7. Solved 86

Defect distribution

41
28

0

60

18

0
12

86

0

20

40

60

80

100

0. New 1. Pend.
Invest.

2. Pend.
Distr.

3. Pend.
Repair

4. Pend.
Rep.

Valid.

5. Pend.
Freeze
Valid.

6.
Froozen

7.
Solved

N
r.

 o
f d

ef
ec

ts

Defect trend (1)

0

50

100

150

200

250

19
00

0
1

19
97

1
6

19
00

0
1

19
00

0
1

19
00

0
1

19
00

0
1

19
00

0
1

19
00

0
1

19
00

0
1

19
00

0
1

N
r.

 o
f d

ef
ec

ts

Total

7. Solved

Defect trend (2)

0

50

100

150

200

250

19
00

0
1

19
00

0
1

19
00

0
1

19
00

0
1

19
00

0
1

19
00

0
1

19
00

0
1

19
00

0
1

19
00

0
1

19
00

0
1

19
00

0
1

19
00

0
1

N
r.

 o
f d

ef
ec

ts

Total

7. Solved

1 9 9 4 - 1
 9 9 9

Sof tw are Test ing Ser vi ce

s

5 th A n n iv e rsary

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 26

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
toc

Optimising Your Test CostsOptimising Your Test Costs

Learn from defectsLearn from defects

Activity Based CostingActivity Based Costing

Test Costin

Jens Pas - Copyright © 1999 ps_testware 14

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 27

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocLearn from defectsLearn from defects

•• Causal analysis (Causal analysis (paretopareto) of solved defects) of solved defects

Cause analysis of Closed defects (>7/96)

<None>

Developper error

Analysis error

User manipulation error

External failure

Other

Design error

Unknown

Out of scope

Number of Defects

Cause

0

50

100

150

200

<None> Analysis error External failure Design error Out of scope

Developper errorUser manipulation error Other Unknown

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 28

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocOptimising the test costsOptimising the test costs

•• Optimise the test process (ABC)Optimise the test process (ABC)
–– Define activity poolsDefine activity pools

–– Look for cost driversLook for cost drivers

R1
(10req./h)

R2
(7 req./h)

R3
(14 req./h)

Testing Repairing
Re-testing

Test Costin

Jens Pas - Copyright © 1999 ps_testware 15

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 29

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocOptimise the test processOptimise the test process

•• Activity poolsActivity pools
–– Test PreparationTest Preparation

–– Test PlanningTest Planning

–– Test Bed set-upTest Bed set-up

–– Test DevelopmentTest Development

–– Test ExecutionTest Execution

–– Test MaintenanceTest Maintenance

–– Test RepairTest Repair

–– Defect TrackingDefect Tracking

–– Test ReportingTest Reporting

–– OverheadOverhead

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 30

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocTest PreparationTest Preparation

•• Number of test levels (V-model)Number of test levels (V-model)

•• Number of sub-systemsNumber of sub-systems

•• Number of dependencies and projectNumber of dependencies and project
constraintsconstraints

Test Costin

Jens Pas - Copyright © 1999 ps_testware 16

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 31

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocTest PlanningTest Planning

•• Number of user/test requirementsNumber of user/test requirements

•• Availability and quality of the test basisAvailability and quality of the test basis

•• Business knowledge of the testerBusiness knowledge of the tester

•• Complexity of the test bedComplexity of the test bed

•• Amount of concurrent testingAmount of concurrent testing

•• Resource constraints (human andResource constraints (human and
infrastructure)infrastructure)

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 32

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocTest Bed set-upTest Bed set-up

•• Complexity of the software architectureComplexity of the software architecture

•• NrNr . of. of infrastructural infrastructural requirements requirements

•• (see also test planning)(see also test planning)

Test Costin

Jens Pas - Copyright © 1999 ps_testware 17

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 33

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocTest DevelopmentTest Development

•• NrNr . of user/test requirements (coverage). of user/test requirements (coverage)

•• NrNr . of business critical user/test. of business critical user/test
requirements (depth)requirements (depth)

•• Availability and quality of test basisAvailability and quality of test basis

•• Use of test toolsUse of test tools

•• Test experience of the testersTest experience of the testers

•• NrNr . of test procedures. of test procedures

•• Availability of development knowledgeAvailability of development knowledge

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 34

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocTest ExecutionTest Execution

•• AverageAverage Nr Nr . of test data sets. of test data sets

•• NrNr . of test procedures. of test procedures

•• Availability of automation toolAvailability of automation tool

•• NrNr . of required test cycles. of required test cycles

•• ““ ResetabilityResetability” of the test bed” of the test bed

Test Costin

Jens Pas - Copyright © 1999 ps_testware 18

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 35

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocTest MaintenanceTest Maintenance

•• NrNr . of user requirements. of user requirements

•• NrNr . of development standards. of development standards

•• NrNr . of intermediate releases. of intermediate releases

•• NrNr . of re-usable components (generic test. of re-usable components (generic test
library)library)

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 36

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocTest RepairTest Repair

•• See test developmentSee test development

Test Costin

Jens Pas - Copyright © 1999 ps_testware 19

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 37

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocDefect TrackingDefect Tracking

•• NrNr . of defects found. of defects found

•• Availability of a defect trackerAvailability of a defect tracker

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 38

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocTest ReportTest Report

•• Availability and quality of test repositoryAvailability and quality of test repository
and access tooland access tool

Test Costin

Jens Pas - Copyright © 1999 ps_testware 20

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 39

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocOverheadOverhead

•• Maturity of project managementMaturity of project management

•• Availability and quality of projectAvailability and quality of project
documentationdocumentation

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 40

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocExamplesExamples

•• Test PlanningTest Planning
–– If test basis has bad quality, use workshops toIf test basis has bad quality, use workshops to

define test requirementsdefine test requirements

–– Technique switchTechnique switch

•• Test MaintenanceTest Maintenance
–– If many intermediate releases, many re-testingIf many intermediate releases, many re-testing

required => reduce intermediate release andrequired => reduce intermediate release and
“package” repaired software“package” repaired software

Test Costin

Jens Pas - Copyright © 1999 ps_testware 21

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 41

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocRules for ABCRules for ABC

•• Select Activity pools based onSelect Activity pools based on
organisational structureorganisational structure

•• Define only activity pools and cost driversDefine only activity pools and cost drivers
which you can easily identify and measurewhich you can easily identify and measure

•• Use 20/80 rule: 80% of the costs come fromUse 20/80 rule: 80% of the costs come from
20% of cost drivers.20% of cost drivers.

•• Work on one cost driver at a time (theoryWork on one cost driver at a time (theory
of constraints)of constraints)

•• Be aware of correct time horizonBe aware of correct time horizon

•• Measure!Measure!

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 42

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocSummarySummary

–– Testing is inevitableTesting is inevitable

–– Testing has no contribution if no repair is doneTesting has no contribution if no repair is done

–– Managing Test Costs = Managing developmentManaging Test Costs = Managing development
costscosts

–– Forecast Test Costs, using Forecast Test Costs, using budget and activitybudget and activity
base ratiosbase ratios

–– Manage your Test Costs with Manage your Test Costs with Theory ofTheory of
ConstraintsConstraints

–– Optimise your Test Costs using Optimise your Test Costs using Activity BasedActivity Based
CostingCosting

Test Costin

Jens Pas - Copyright © 1999 ps_testware 22

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 43

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocBonus: some Value LogicBonus: some Value Logic

Conventional Logic Value Logic

Assumption Development conditions
are given

Development conditions
can be shaped through
testing

Assumption Testing is not a business
activity

Leverage your
investments in testing
and sell your testing
experience

Reveal hidden assumptions (Himalayas principle)Reveal hidden assumptions (Himalayas principle)
Always think in terms of value creation (throughput)Always think in terms of value creation (throughput)

Assumption … ...

Advised reading: W. Chan Kim, Renée Mauborgne, “Value Innovation”,
 Harvard Business Review, Reprint 97108

1 9 9 4 - 1
 9 9 9

Sof tw are Test ing Ser vi ce

s

5 th A n n iv e rsary

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 44

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
toc

QuestionsQuestions

Test Costin

Jens Pas - Copyright © 1999 ps_testware 23

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 45

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
toc

Tiensesteenweg Tiensesteenweg 329329
B-3010 B-3010 LeuvenLeuven
Tel.: +32 (16) 35.93.80Tel.: +32 (16) 35.93.80
Fax: +32 (16) 35.93.88Fax: +32 (16) 35.93.88
e-mail: ps_testware@e-mail: ps_testware@compuservecompuserve.com.com
http://www.http://www. pstestwarepstestware.com.com

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 46

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocpsps_testware_testware

•• Started Started in in 19911991

•• 1993: 1993: Tools Tools &&
technical technical servicesservices
–– Tool Tool TrainingTraining

–– CoachingCoaching

•• 19951995: : MethodologicalMethodological
ServicesServices
–– ConsultancyConsultancy

•• 19961996: Software: Software
TestingTesting Services Services
–– TestTest Assignments Assignments

–– Test PlanTest Plan

–– Test ReportTest Report

•• 19971997: Software: Software
TestingTesting Services Suite Services Suite
–– TestTest Assessments Assessments

–– Y2K trainingY2K training

•• 19981998: PSTI: PSTI
–– Office @NLOffice @NL

–– Total OutsourcingTotal Outsourcing

–– PartnershipsPartnerships

•• 19991999::
––

666

666

555

151515

+ 28?+ 28?+ 28?

252525

333333

Test Costin

Jens Pas - Copyright © 1999 ps_testware 24

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 47

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocOur BusinessOur Business

•• Structured Software TestingStructured Software Testing

•• MethodologyMethodology

•• Implementation ModelImplementation Model CodingCoding

Audit testAudit test

Acceptance testAcceptance test

System testsSystem tests

Integration testsIntegration tests

Modular testsModular tests

Strategic choicesStrategic choices

User requirementsUser requirements

Logical designLogical design

Physical designPhysical design

Program designProgram design

FollowFollow--upup

TestTest
executionexecution

TestTest
DevelopDevelop--

mentment

TestTest
PlanningPlanning

TestTest RepairRepair RetestRetestScopeScope PlanPlan DesignDesign BuildBuild

™

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 48

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocOur ServicesOur Services

•• Training Training (see (see ps_testware instituteps_testware institute))

•• CoachingCoaching

•• ConsultancyConsultancy

•• Outsourcing Outsourcing (now also Total Outsourcing)(now also Total Outsourcing)

Provided by:Provided by:
–– Test EngineersTest Engineers

–– Test ConsultantsTest Consultants

–– Management ConsultantsManagement Consultants

Test Costin

Jens Pas - Copyright © 1999 ps_testware 25

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 49

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocOur ProductsOur Products

•• TestTest AssessmentAssessment

•• Test AssignmentTest Assignment

•• Test PlanTest Plan

•• Test ReportTest Report

•• Test AdviceTest Advice

•• Test AuditTest Audit

•• Test Pack™Test Pack™

•• Test LaboratoryTest Laboratory

•• ToolsTools

New

New

New

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 50

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocReferencesReferences

•• KredietbankKredietbank

•• Barco GraphicsBarco Graphics

•• Exact MaatwerkExact Maatwerk

•• ING BankING Bank

•• BankBank Card Company Card Company

•• JanssenJanssen
PharmaceuticaPharmaceutica

•• TessaTessa

•• Europese RaadEuropese Raad

•• LernoutLernout & & Hauspie Hauspie

•• OriginOrigin

•• SpecsSpecs

•• GemeentekredietGemeentekrediet

•• SiemensSiemens

•• ING ING 22

•• YokogawaYokogawa

•• LinkLink

•• Alcatel BellAlcatel Bell

•• MobistarMobistar

Test Costin

Jens Pas - Copyright © 1999 ps_testware 26

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 51

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocCredoCredo

ps_testware’s first responsibility goes to the customers who use our
services. Our services must be of high quality and must be a reference
for our customers. In line with our primary business, Structured
Software Testing, we may not indulge in pressure, quantity or quick
profit.

We are responsible to our members, the men and women who work with
us. Every member must be respected as an individual and must be
rewarded personally and fairly. We must support our members through
a competent management, an adequate working environment and
proper working conditions. Our members must have the means to
provide and receive feedback, allowing them and the organisation to
learn continuously. We must support our members in their family
responsibilities. Our actions must be just and ethical.

Our final responsibility is to our stockholders. Our business must make
a sound profit. We must innovate and continuously improve our
methods and techniques. We must develop new services and implement
them effectively and efficiently. We must create reserves to provide for
adverse times. Our stockholders must receive a fair return on their
investments.

Copyright © 1999 ps_testware - Jens Pas - Test Costing - 52

P
S

T
P

S
T

B
on

us
B

on
us

S
um

m
ary

S
um

m
ary

O
p

tim
ise

O
p

tim
ise

M
ana

ge
M

ana
ge

F
orecast

F
orecast

Intro
Intro

toc
tocThe MissionThe Mission

To offer the To offer the best solutionbest solution to quality problems of computer to quality problems of computer
systems by using its systems by using its test expert knowledgetest expert knowledge in a in a professionalprofessional

way.way.

Best solutionBest solution: the solution that provides the highest contribution.: the solution that provides the highest contribution.

Test expert knowledgeTest expert knowledge: the intellectual asset of: the intellectual asset of ps ps__testwaretestware, a profound, a profound
and complete knowledge regarding verification and validation (testing).and complete knowledge regarding verification and validation (testing).

ProfessionalProfessional: the courage to really provide what has been promised.: the courage to really provide what has been promised.

Test Costin

Jens Pas - Copyright © 1999 ps_testware 27

1 9 9 4 - 1 9 9 9

Sof tw are Testing Serv i ces

5 th A n n iv e rsary
C

opyright ©
 1999 ps_te

stw
a

re - Jens P
as - T

e
st C

osting - 53

1 of 13

© ESI ESI-1999-CODE/VERSION

ROADMAPS FOR SPI

Marina Blanco, Jose Ángel Díez, Pedro Gutiérrez,
Leire Markaida, Giuseppe Satriani.

European Software Institute
Parque Tecnológico de Zamudio #204

E-48170 Vizcaya SPAIN

The European Software Institute (ESI) maintains one of the most important
repositories of software process improvement experiences containing results of more
than 200 European organisations. The present paper analyses the repository, depicts
the current scenario of SPI experiences in Europe and presents a roadmap in order to
help organisations plan an improvement initiative.

1. INTRODUCTION

Since 1995 the VASIE database has been continuously collecting the software
process improvement (SPI) experiments funded by the European Systems and
Software Initiative. Currently1 this database contains the experience of 216
organisations in changing and improving their software processes. VASIE is
permanently growing and can be accessed through ESI web site at www.esi.es/VASIE
in order to download the case studies. Every month around 1400 experience reports
are downloaded which indicates how VASIE is considered in the SPI world.

Sections 2 to 4 analyse in depth the contents of the VASIE database. Sections 5 to 7
explain and illustrate the Roadmap concept. A roadmap is a way to encapsulate the
experience that exists in VASIE through the analysis of the patterns of solutions
implemented by the organisations in order to achieve better technical and business
results. A roadmap is intended to help organisations in the design of their own
improvement initiatives based on VASIE experience.

2. WHAT IS VASIE

The European Commission (EC), being aware of the increasing technical, strategic
and social importance of software, created the European Systems and Software
Initiative (ESSI) with the objective of improving European industry competitiveness
through the improvement of software process capability. This programme pushes
software process improvement through the direct funding of improvement
experiments and dissemination of the achieved results across Europe. A PIE offers

1 September 1999

2 of 13

ESI-1999-CODE/VERSION © ESI

the opportunity to demonstrate the benefits of process improvement, through a
controlled, limited experiment executed in a particular organisation. Dissemination
actions however, are in charge of the dissemination of PIE's results.

The VASIE project (Value Added Software Information for Europe) is a
dissemination action, created in 1993 with the aim of collecting, validating and
disseminating the above mentioned PIE's results. In order to achieve this
dissemination objective, the European Software Institute (ESI), has developed a
public repository that contains the results of the ESSI Process Improvement
Experiments.

From its beginnings, in 1993, until the year 2000 the ESSI programme will have
funded around 400 Software Process Improvement (SPI) projects in European
organisations ranging from hundred of thousands to organisations of 5 employees,
generating improvement experiments in the entire spectrum of organisations. This
fact makes possible that any organisation interested in improving can always find
examples of similar organisations that can be used as guidelines for designing their
own improvement initiatives.

VASIE is probably the most important and largest repository of SPI experiences, and
is definitively the most representative of the different European Industries. It was
especially designed for organisations thinking of designing an improvement project,
in order to allow them to learn how others had done so, the problems they had
encountered, and the solutions they had provided.

Thanks to the high diversity of organisations that have been performing experiments
under ESSI, any organisation interested in software process improvement can find
experiences of similar organisations, solving similar problems and so analyse them
before designing their own improvement programme. All the PIEs are stored and
classified in a database. The set of searches designed to access the database allows
users either to locate experiments performed in specific contexts (country, industrial
sector, organisation size, software department size, etc.), or to locate experiments that
solve particular problems (high number of errors after delivery, project time
deviation, etc.).

Users can read information reported directly by the organisations involved in the SPI
experiments. This information can be read in a HTML browser or downloaded in
PDF format. All the reports clearly indicate which is the organisation contact
information in order to facilitate the access to first hand information provided by the
main actors of the experience.

VASIE is currently being used by a large number of organisations that browse around
600 reports in HTML and download around 800 reports in PDF format every month
i.e. 1400 reports in total. These encouraging figures are an indicator of the
acceptance of VASIE as an active instrument for the design of SPI projects for

3 of 13

© ESI ESI-1999-CODE/VERSION

supporting consultants activity and for extracting case-studies to be discussed in a
classroom.

3. WHAT IS A PIE

A PIE aims at demonstrating the benefits of improving the software development
process through a controlled limited experiment. A PIE (see Figure 1) is usually
undertaken in conjunction with a real software project (the baseline project), which
forms part of the normal business of the organisation. A PIE allows an organisation
to try out new procedures, new technologies and organisational changes before taking
the decision as to whether or not they should be replicated throughout the software-
developing unit.

Experimentation Next
Stage

Analysis of
starting
scenario

Analysis of
resulting
scenario

DisseminationPIE

Baseline Project

Figure 1 A Process Improvement Experiment (PIE)

There is a very specific information flow between a PIE and VASIE (see Figure 2), in
order to capture all relevant information.

PIE
see figure 1

24 to
30 months

0 months 12 to
18 months

VASIE

Starting
Scenario
Questionnaire

Mid-Term
Report

Final Report &
Resulting
Scenario
Questionnaire

Impact
Analysis
Questionnaire

1 year

Figure 2 Information flow between the PIE and VASIE.

4 of 13

ESI-1999-CODE/VERSION © ESI

Starting Scenario Questionnaire. The PIE send this questionnaire at the very
beginning, informing about the organisations that participate in the PIE, their context,
the objectives they pursue, and the problems they want to tackle.

Mid-term Report. Reflects the activities performed by the PIE in the middle of the
experiment.

Final Report. The complete story of the experiment is submitted at the end of the PIE
and summarises problems, solutions, implementation steps, difficulties found,
benefits achieved, lessons learned, etc.

Resulting Scenario Questionnaire. Submitted together with the Final Report, reflects
the processes changed, facilitator and inhibitors encountered, etc.

Impact Analysis Questionnaire. Approximately one year after the end of the PIE,
another questionnaire is submitted that reflects the long-term benefits achieved, and
follow up activities started.

Every PIE goes through a Review Process that decides whether the Final Report
contains relevant information, reproducible solutions and valuable lessons and
benefits. Those experiments that fulfil the criteria established for the Review Process
are inserted in the repository for public dissemination, in addition the final report of
each PIE has to follow a clear and logical structure, and provide an adequate clarity
and level of conciseness.

The PIEs are classified according to the organisation context and to the own
experiment context. In relation to the organisation context, the most relevant
parameters are: the country, the organisation size, software department size, and the
industrial sector. The experiment context is described using parameters such as the
business goals pursued by the organisation, the most common problems that the
organisation expected to solve performing the improvement action and the software
processes affected by the experiment. Each final report describes these parameters
and the executed tasks during the experiment, the procedures, templates, tools and
methodologies used. And finally the obtained results and the lessons learnt are
explained to help other organisations with similar experiments.

4. VASIE CONTENT OVERVIEW

In September 1999, VASIE contains 184 PIEs, and due to the fact that more than one
organisation can participate in a PIE the repository includes about 216 organisations
experiences.

The complete set of questionnaires obtained from the PIEs let VASIE characterise
them in depth. The analysis of the information contained in VASIE allows to figure
out the SPI picture in Europe with high precision

5 of 13

© ESI ESI-1999-CODE/VERSION

Less than 17

37%

Between 20 and 53

27%

Between 60 and 150

23%

Between 160 and 10,000

13%

Figure 3 Software development unit size distribution (Number of employees)

The PIEs have been fundamentally executed in small software development units. In
fact, software development units of less than 17 employees have carried out 37,35%
of the experiences. The figure below shows how the groups of units under 17
employees and the group from 17 to 52 are the two most important with respect to the
number of PIEs executed.

Not all the industrial sectors have been equally covered by ESSI. See Figure 4 for
detailed information of the most representative industrial sectors.

7%

60%17%

8%

7% 1%

Other activities

IT activitiesManufacturing

Engineering

Community
activities

Business

Figure 4 Percentage of organisations per activity in VASIE.

6 of 13

ESI-1999-CODE/VERSION © ESI

Figure 5 illustrates how the different European countries are represented in VASIE
with respect to the number of suitable PIEs executed.

Germany 23%

Italy 19%

Spain 9%France 9%
United
Kingdom 8%

Greece 8%

Ireland 5%

Findland 5%

Netherlands 3%

Belgium 3% Denmark 3% Others 5%

Figure 5 Countries represented in VASIE.

In order to categorise the different PIEs in VASIE according to the capability level of
the organisations where they were executed, Figure 6 shows the capability of the
organisations before the PIE start.

61%31%

8%

Level 0,1Level 2

Level 3

Figure 6 Distribution of organisations per capability level in VASIE

- Levels 0 and 1 indicate that there are evidences of a lack or ineffective use of
project management.

- Level 2 means that there are evidences of the existence of a project management
function, at least at project level.

7 of 13

© ESI ESI-1999-CODE/VERSION

- Level 3 means that there are evidences of the existence of organisational
procedures and methods that are used by the software projects according to a
defined software development life cycle at organisational level.

A different view of the capability of the organisations involved in the PIEs could be
observed in Figure 7 taking into consideration their state with respect to the ISO 9001
certification before the PIE start.

 Not certified

5%

Certified

15%

Unknown

66%

Certification
 in progress

14%

Figure 7 Status with respect to ISO 9001 in VASIE

Table 1 indicates which are the three business goals most representative in VASIE as
stated by the organisations involved in the PIEs.

Place Business goals pursued

1st Improve delivered quality

2nd Cost reduction

3rd Increase productivity

Table 1 Business goals most frequently pursued by organisations in VASIE

Table 2 summarises the most frequently tackled problems in the PIEs, ordered by the
importance assigned to each problem,.

8 of 13

ESI-1999-CODE/VERSION © ESI

Place Problems tackled

1st Reusability

2nd Project cost deviation

3rd Lack of process definition

Table 2 Problems most frequently tackled by organisation in VASIE

And finally, Figure 8 shows the improvement areas the PIEs preferred to improve:

Engineering

66%

Organisation

8%

Support

14%

Management

8%

Customer
Supplier

4%

Figure 8 Distribution of improvement areas preferred by organisations in VASIE.

Each area corresponds to a process category as specified by ISO 15504 (SPICE); The
following definitions have been extracted from it.

“The Customer-Supplier improvement area consists of processes that directly impact
the customer, support development and transition of the software to the customer,
and provide for the correct operation and use of the software product and/or service.

The Engineering improvement area consists of processes that directly specify,
implement or maintain the software product, its relation to the system and its
customer documentation. In circumstances where the system is composed totally of
software, the Engineering processes deal only with the construction and maintenance
of such software.

9 of 13

© ESI ESI-1999-CODE/VERSION

The Organisation improvement area consists of processes that establish the business
goals of the organisation and develop process, product, and resource assets which,
when used by the projects in the organisation, help the organisation achieve its
business goals. Although organisational operations in general have a much broader
scope than that of software process, software processes are implemented in a
business context and, to be effective, require an appropriate organisational
environment.

The Support improvement area consists of processes that may be employed by any of
the other processes (including other supporting processes) at various points in the
software life cycle.

The Management improvement area consists of processes that contain practices of a
generic nature that may be used by anyone who manages any type of project or
process within a software life cycle.”

5. ROADMAPS

Analysis of the data contained in the VASIE repository shows the existence of
patterns of solutions which are commonly applied by many organisations. Roadmaps
are, within the context of this paper, a mechanism to represent those patterns of
solutions (the roads) which organisations in VASIE have implemented in order to
reach the business and technical goals2 (the destinies). A solution is represented in
terms of the set of ISO 15504 processes improved in order to reach a goal.

Solutions are classified into different categories according to their level of reliability.
Higher reliability levels are assigned to solutions which have been tested in real
production projects, while lower levels are assigned to solutions tested in laboratory
projects or off-line environments.

Roadmaps provide a picture of the different solutions available to reach a specific
goal. They allow the evaluation of alternative solutions, their level of reliability, the
type of organisations that have used them, and many other factors that facilitate the
selection of the most appropriate route for the particular context of an organisation.

The following are some tips to better understand a roadmap:

• If a road crosses different processes, it can not be deduced that the organisations
changed the processes in the order the road crosses those processes. That is if a
road crosses first through software design and then through software
requirements, it can no be deduced that an organisation improved first the design

2 These business and technical goals are collected at the very beginning of the PIE, though the Starting
Scenario Questionnaire (already described in section 3).

10 of 13

ESI-1999-CODE/VERSION © ESI

and afterwards the requirements process. Both processes were improved, but
nothing can be said about the order.

• The road width is an indicator of the number of organisations that used that
solution; i.e. the road traffic.

• The road length (at the moment) is not an indicator of the effort to implement the
solution.

• The processes represented are processes the organisations improved in order to
reach a goal. However not all the processes changed are represented in the
roadmap. Processes with low traffic have been omitted for the sake of simplicity.

• A roadmap (at the moment) does not allow the judgement of the success of any of
the solutions adopted.

6. A ROADMAP

The roadmap presented in this paper (see Figure 9) is an example of the different
roadmaps that are being derived form VASIE. This one analyses the experiences of
18 organisations. These organisations shared the common goal of increasing the
delivered quality of their software products, and the roadmap highlights the solutions
they used. Two solution alternatives have been followed. The first alternative
followed by group A, that consists of 9 organisations, improves the following
processes:

• Software design and

• System and software requirements.

The second alternative followed by group B, that consists of 9 organisations,
improves the following processes:

• Integration & testing of system and software

• Project management

• Verification.

11 of 13

© ESI ESI-1999-CODE/VERSION

Group
A

Group
B

Figure 9 Two different alternatives to increase delivered quality

According to the roadmap above, group A focuses on lifecycle processes, specially on
the initial processes of the cycle. However, group B put a tremendous3 attention on
one of the final processes of the cycle, i.e. the integration and test of both software
and system. What is more, group B goes beyond the lifecycle and improves process
such as project management and verification.

For a better comprehension of the reasons why these two sets of organisations
implemented different solutions, it is interesting to go into the details of the context of
both groups. The context is explained in Table 3 through the following
characteristics:

• Maturity level; as described in section 4

• Primary involvement in software industry i.e. the role each organisation performs
in software industry.

• Baseline Project characteristics; as mentioned in section 3 a PIE is implemented
in conjunction with a real software project. This project is said to be a laboratory
project when it is an off-line environment that resembles the actual software

3 According to the high traffic the roadmap represents for that process

12 of 13

ESI-1999-CODE/VERSION © ESI

development environment. A project is said to be a production project when its
primary objective is to deliver a software product to a customer.

• Industrial Sector

• ISO 9001 certification

GROUP A GROUP B

Maturity
Level

Level 1
87%

Level 2
13% Level 1

22%

Level 2
67%

Level 3
11%

Primary
Involvement
in Software
Industry

Software User

(primarily developed

in-house)

89%

Software User

(primarily developed

by a 3rd-party)

11%

Software Vendor

(producing off-the-

shelf systems)

23%

Software User

(primarily developed

by a 3rd-party)

8%

Software Vendor

(producing custom

software systems)

15%

Software User

(primarily developed

in-house)

54%

Baseline
Projects
Characteristics

Laboratory
87%

Production
13% Laboratory

33%

Production
67%

Industrial
Sectors

Agriculture and

Forestry

13%

Electronic

Components

24%

Telecommunication

Products

13%

Machinery, Electrical

and Optical

Instruments

24%

Software

Consultancy and

Suply

13%

Textile and Textile

products

13%
Machinery, Electrical

and Optical

Instruments

23%

Software

Consultancy and

Suply

22%
Health

11%

Finance and

Insurance

11%

Telecommunication

Products

11%

Mechanical

Engineering

11%

Electrical

Engineering

11%

ISO 9001 Certified
13%

In the

Certification
Process

13%

Unknown
74% Certified

56%
Unknown

33%

Not Certified
11%

Table 3 Roadmap groups characteristics.

13 of 13

© ESI ESI-1999-CODE/VERSION

Table 3 data suggest that organisations at level 2 and organisations that are ISO 9001
certified prefer the solution followed by group B while level 1, and not certified
organisations prefer the other solution.

Another important characteristic highlighted by the table about the reliability level of
each solution, is that group B solution is tested in more realistic baseline projects i.e.
production projects. And it could be expected that the results of that solution are
more realistic too.

7. CONCLUSIONS

The Roadmap presented in this paper summarises the patterns of solutions
implemented by the organisations in order to reach a goal. However, it could be
interesting to understand whether the solution helped the organisations reach the goal,
or to what extent. It could be also interesting to know which is the average effort
associated with the implementation of each solution. These and other information are
crucial to decide which solution to implement and without them roadmaps are not so
useful. ESI is currently deriving improved roadmaps, which provide this useful
information, using the Impact Analysis Questionnaire (see section 3). This
questionnaire, filled in by the organisation a year after the PIE ended provides
visibility on the long term goals affected by the PIE and about the effort invested, as
long as visibility on other important data.

8. BIBLIOGRAPHY

Marina Blanco, Pedro Gutiérrez,Leire Markaida, Giuseppe Satriani (1999) Repository
of Expertise Guide. European Software Institute. ESI-1999-TR-017

ESI (1995) The VASIE Repository at www.esi.es/VASIE

Marina Blanco, Jose Ángel Díez, Pedro Gutiérrez,Leire Markaida, Giuseppe Satriani
(1999). Software Process Improvement Driven by Business Goals: The role of
experiences. Sixth European Conference On Software Quality: Software Quality-The
Way To Excellence (Vienna, Austria, April 12-16, 1999)

ISO (1998) ISO/IEC 15504: Software Process Assessment: Parts 1 - 9, Technical
Report - Type 2 (approved for publication)

Herbsleb, James et al (1994) Benefits Of CMM-Based Software Process
Improvement: Initial Results. Software Engineering Institute. CMU/SEI-94-TR-13

1

1 © ESI 1999Quality Week Europe 1999

Roadmaps for SPI

Pedro Gutierrez
3rd International Software Qualit y Week Europe

European Software Institute
Parque Tecnologico de Zamudio #204

Bizkaia, Spain

2 © ESI 1999Quality Week Europe 1999

ESI’s Style
Non-profit association, created in 1993

Supported by the European Commission , the Basque
Government and through company membership

ESI’s Mission
To support our members and European industry to improve

competitiveness by promoting and disseminating best
practice in software

ESI’s Focus
Software Process Improvement to optimise business results

European Software Institute

2

3 © ESI 1999Quality Week Europe 1999

Agenda

• VASIE
Created in 1995,
Collects the software process improvement case studies

funded by the ESSI during the last 7 years.

• Roadmaps for SPI
Encapsulate the knowledge that exist in VASIE through the

analysis of patterns of solutions.

4 © ESI 1999Quality Week Europe 1999

Some details

• 216 organisations represented in VASIE grouped
in 184 case studies

• 1400 case studies downloaded monthly

• Public database

VASIE

3

5 © ESI 1999Quality Week Europe 1999

PIE: Process Improvement Experiment

Experimentation Next
Stage

Analysis of
starting
scenario

Analysis of
resulting
scenario

DisseminationPIE

Baseline Project

VASIE

6 © ESI 1999Quality Week Europe 1999

Information flow between VASIE and the PIE.

VASIE

VASIE

Impact
Analysis
Questionnaire

1 year

24 to12 to
30 months0 months 18 months

E x p e r im e n ta t io n N e x t
S ta g e

A n a ly s is o f
s ta r t in g
s c e n a r io

A n a ly s is o f
r e s u lt in g
s c e n a r io

D is s e m in a t io nP IE

B a s e lin e P r o je c t

Starting
Scenario
Questionnaire

Report
Mid-Term

Scenario
Questionnaire

Final Report &
Resulting

4

7 © ESI 1999Quality Week Europe 1999

VASIE

7%

60%17%

8%

7% 1%

Other activities

IT activitiesManufacturing

Engineering

Community
activities

Business

Industrial SectorCountry

Germany 23%

Italy 19%

Spain 9%France 9%
United
Kingdom 8%

Greece 8%

Ireland 5%

Findland 5%

Netherlands 3%

Belgium 3% Denmark 3% Others 5%

8 © ESI 1999Quality Week Europe 1999

VASIE

Less than 17

37%

Between 20 and 53

27%

Between 60 and 150

23%

Between 160 and 10,000

13%

SW Department
Size

61%31%

8%

Level 0,1Level 2

Level 3

Maturity Level

5

9 © ESI 1999Quality Week Europe 1999

Business Goals

1st Improve Delivered
Quality

2nd Cost Reduction

3rd Increase Productivity

Problems Tackled

1st Reusability

2nd Project Cost Deviation

3rd Lack of Process Definition

VASIE

10 © ESI 1999Quality Week Europe 1999

VASIE Main Objective

Facilitate the access to case studies

• Using the WWW

• Powerful Search Mechanism
• Business Goals
• Organisation Context
• Problems Tackled
• Business Goals

VASIE

6

11 © ESI 1999Quality Week Europe 1999

VASIE 2nd Objective

Encapsulate VASIE knowledge in a way that

supports decision making

Roadmaps

• Capture explicit patterns of solutions into roads

• Easy to interpret

VASIE

12 © ESI 1999Quality Week Europe 1999

Increase
Delivered Quality

78 Organisations

Roadmaps

7

13 © ESI 1999Quality Week Europe 1999

Software
Design

Software
Requirements

System
Requirements

Increase
Delivered Quality

Project
Management

Verification

Integrate &
Test System
and Software

OrganisationsGroup A
9 orgs

Group B
9 orgs

Roadmaps

14 © ESI 1999Quality Week Europe 1999

Context Analysis

• Industrial Sectors

• Maturity levels

• ISO 9001 certification

• Role in software industry

• Size

• How they implemented the improvement

Roadmaps

8

15 © ESI 1999Quality Week Europe 1999

Maturity Level

Roadmaps

Level 1
87%

Level 2
13%

Group A

Level 1
22%

Level 2
67%

Level 3
11%

Group B

16 © ESI 1999Quality Week Europe 1999

ISO 9001 Certification

Roadmaps

Certified

13%

In the
Certification

Process
13%

Unknown

74%

Group A

Certified
56%

Unknown
33%

Not Certified
11%

Group B

9

17 © ESI 1999Quality Week Europe 1999

Baseline Projects Selection

Roadmaps

Laboratory
87%

Production
13%

Group A

Laboratory
33%

Production
67%

Group B

18 © ESI 1999Quality Week Europe 1999

Summarising

Roadmaps

Group A

• Maturity level 1

• Not certified

• PIEs in laboratory
baseline projects

Group B

• Maturity level 2

• Usually certified

• PIEs in production projects.

10

19 © ESI 1999Quality Week Europe 1999

Limitations

• It is not clear whether the business goal is
achieved or not.

• There are no indications about the cost of the
implementation of a solution.

Roadmaps

20 © ESI 1999Quality Week Europe 1999

Current and Next Steps

Analysis of the Impact Analysis Questionnaire

• Clarify whether the goal is reached and to what
extent

• Average effort to implement one solution

Roadmaps

1

Achieving Business Excellence in SPI:
Applying the EFQM/SPICE Integrated Model in Industry

Luigi Buglione & Elixabete Ostolaza

EUROPEAN SOFTWARE INSTITUTE

Parque Tecnológico de Zamudio #204

E-48170 Zamudio, Bizkaia, Spain

E-mail: {luigi, elixabete}@esi.es

Tel: (34) 94 420 9519 - Fax: (34) 94 420 9420

Index – 1. Introduction - 2. The EFQM/SPICE Integrated Model 1998 version – 3. The Assessment
Method – 4. Trials 1998 – 5. Lessons Learned from Trials 1998 – 6. Trials 1999 – 7. Conclusions and
prospects – References

Abstract – This work analyses the increasing importance for a Software Intensive Organisation (SIO) to
implement and take advantage of a TQM model tailored for the software field in order to achieve business
excellence through continuous improvement.

ESI has developed the EFQM/SPICE Integrated Model, that combines the strengths of two well-known and
accepted models: EFQM - for the business side, taking advantage of its capability to link results with specific
business goals through a causal chain - and SPICE (ISO/IEC 15504) - for the software improvement side,
taking advantage of its effective process-based approach.

Additionally, an Assessment Method was developed to provide SIOs with a well-defined and structured
approach to evaluating the degree of excellence of their process performance and to its deployment throughout
the organisation, describing in detail the phases of the assessment and the activities and tasks to be performed,
based on an ETVX (Entry-Task-Validation-eXit) process definition notation approach.

Last year this three-level tier method was tested by ESI. Trial sessions were carried out on some Spanish SIOs
in order to verify the adequacy and consistency of the 1998 version of the model, as a ncessary step to
bridging the gap between theory and practice.

The experience gained from these trials is presented here, as well as the consequent suggestions and useful
starting points for the improvements of the upcoming model evolution.

The new 1999 Trials structure is also presented.

Keywords – EFQM Model, SPICE, TQM, Information Tecnology, Software Intensive Organisations,
Assessment Method.

Conference Topics – Process Assessment/Improvement; Mature Software Processes; Real-World
Experience

2

Figure 1 - Relationship between a SPI framework (CMM) and
TQM [11]

1. Introduction
Over the last few years, process improvement has demonstrated that a company’s business
results are based on how the organisation manages its processes. Software Process
Improvement (SPI) therefore has a much wider relevance than just its software engineering
technical aspects. An analysis of the relationship between SPI and Total Quality Management
(TQM1) is now viewed as a prerequisite for a successful improvement programme in a
Software Intensive Organisation (SIO)2. Figure 1 shows this relationship referring in
particular to CMM that, as stressed by
Paulk [9], covers just the process side
of TQM3 specifically for software
engineering, deliberately not
addressing other relevant aspects, like
people issues4. In fact, traditional
software process improvement models
are not TQM oriented. They manage
software processes as isolated from
the rest of organisation’s key
processes. These models focus on
measuring the process in order to
control it and guarantee its continuous
improvement. However, they lose the
global picture of the company and
often measures are not tied to business
goals. On the other hand, TQM
models like EFQM and Malcolm
Baldrige do not provide any help in
the difficult task of defining the key processes for a software organisation and how to improve
them to achieve concrete business goals. In order to help overcome these problems, the
European Software Institute (ESI) has developed the EFQM/SPICE Integrated Model [6].
The EFQM/SPICE Integrated Model is a process-based model for continuous improvement
that integrates SPI into the wider context of TQM. For this reason it could be considered as
the business excellence road for software intensive organisations. It is the result of merging
two well-known and accepted models: SPICE and EFQM:
y The European Foundation for Quality Management (EFQM) and its Excellence Model [5]

take into account the Total Quality concepts;

1 Kanji & Asher [8] give an interesting distinction between the concepts of quality and TQM, affirming that
"Quality is to satisfy customers’ requirements continually; TQM is to achieve quality at low cost by involving
everyone’s daily commitment".
2 SIOs are organisations whose main objective is software development and selling or software departments of
organisations that develop software as integrating part of its final products or organisations that develop software
for internal use to achieve better business results or whose software department can be qualified as an
independent organisational unit.
3 Covey [3] affirms that "Total Quality is an expression of the need for continuous improvement in four areas: 1)
personal and professional development; 2) interpersonal relations; 3) managerial effectiveness; and 4)
organisational productivity". Silver [12] lists several CMM flaws, from the reduced importance given to
processes' cultural dimension to the lack of quantitative process-perfomance metrics.
4 BØttcher [1] identifies key differences between CMM and TQM after an analytic summary of their
characteristics. It must be stressed that SPI shares many of the common goals and success factors which
characterise not only TQM, but also the Business Process Reengineering and Learning Organisation
management approaches <http://www.objectif.fr/~spire/pages/section4.html>.

3

y SPICE - Software Process Improvement and Capability dEtermination – (ISO/IEC 15504)
[7] is a continuous model for process improvement containing good practices for software
engineering.

The EFQM/SPICE Integrated Model provides a wider and holistic approach by emphasising
the business results of process improvement. In this way, quality means meeting customer
expectations, not just conformance to a model. Quality systems and business management
should not be separate activities but should operate concurrently as part of the overall
business system so that they are not inconsistent. Quality is not something that should be
added on to a business: the whole business should be managed in a quality way.
The EFQM/SPICE Integrated Model has also inherited from the EFQM Model its important
focus on stakeholders: customers – internal and external, current and potential; employees;
shareholders; society and subcontractors. These stakeholders are not sufficiently considered
by other models or are only considered as part of a contractual relationship. In the latter case
the organisation tries to be conformant to a set of requirements rather than caring about
customer satisfaction. The new model is based on concepts like partnership and establishing
win-win relationships with the stakeholders. It recognises the organisation’s people as one of
its most valuable assets (this is especially true for software intensive organisations). It focuses
on customer satisfaction and not just in conforming to customer requirements. This is
considered essential for achieving long-term company success.
This paper is subdivided into five main sections. Section 2 presents the 1998 version of the
EFQM/SPICE Integrated Model. Section 3 illustrates the Assessment Method, the tool used to
determine SIOs strengths and areas of improvements in their work to continuously improve
processes towards business excellence. Sections 4 and 5 introduce most relevant aspects ad
conclusions from the 1998 trials and lessons learned, while Section 6 illustrates the 1999 trials
updated design derived form ESI past experience.

2. The EFQM/SPICE Integrated Model 1998 version
The EFQM/SPICE Integrated Model v1 [6], represented in Figure 2 is the result of combining
the strengths of two well-known and
accepted models: SPICE and EFQM5. The
Integrated Model maintains the wider
external structure of EFQM but is
internally configured like SPICE, based on
processes, base practices and work-
products. There is a process category for
each enabler criteria and in each of these
categories there are as many processes as
there are sub-criteria for the relevant
enabler criterion. SPICE processes play an
important role in the model as candidates
for key processes. A mapping between the
candidate SPICE processes and the
business goals will determine the key software processes for the organisation. Like SPICE,
the integrated model has two dimensions:

5 The EFQM/SPICE Integrated Model v1 refers to the EFQM Model for Business Excellence [4].

LEADERSHIP

PROCESSES

BUSINESS

RESULTS

PEOPLE

MANAGEMENT
PEOPLE

SATISFACTION

POLICY &

STRATEGY

CUSTOMER

SATISFACTION

RESOURCES IMPACT ON

SOCIETY

Customer-Supplier

Engineering

Organisation

Management

Support

Key
Processes

Figure 2 - Structure of the Integrated Model v1

4

Process A
Process B

Process C
Process D

0%

25%

50%

75%

100%

1

3

2

4

0

1

2

3

4

5

Level

Process

Scope

The Process Capability Dimension

0%

25% 4

50% 2

75% 3

100% 1

Process A Process B Process C Process D

Figure 4 -The Process Capability Dimension

• Processes and Results dimension: a descriptive
representation of both the processes that a SIO aiming
at TQM should implement and the quantitative data it
should gather to check that it is achieving the right
results. On the Process side, there are three types of
processes (Figure 3): enabler processes, key processes
and the measurement process6, sharing a common
process structure7.
On the Results side, the Integrated Model
contains a set of results, grouped by type and
subtypes, to which the measurement process is
applied8.

• Capability dimension: a mechanism to measure
the maturity of the processes, the excellence of
the results, and the scope of these maturity and
excellence levels. This second dimension, the
capability dimension, has two aspects: one for
processes and another for results.

6 In detail:
• Enabler processes: The EFQM/SPICE Integrated Model consists of five process categories, one for each

EFQM enabler criteria. Each process category has as many processes as sub-criteria in the corresponding
enabler criteria of the EFQM Model;

• Key processes: The model provides a set of candidate processes directly extracted from SPICE; processes
that characterise software organisations. Processes that are already covered by other enabler processes
(corresponding to other EFQM criteria) are not under the key process candidates type;

• Measurement process: the measurement process identifies, collects and analyses data relating to the
organisation’s results. Its purpose is to demonstrate objectively the performance of the organisation in
achieving its business goals and satisfying the stakeholders.

7 The five common elements are:
• Process name
y Process purpose
y Process outcomes
y Base practices
y Work products (inputs and outputs).

8 In particular:
• Each type of result corresponds to an EFQM result criterion and has two subtypes: the perception subtype

(which contains a list of attributes to measure the perception of the results by the customer, people or
society) and the performance subtype (with a list of attributes that measure the performance of the
organisation in satisfying the needs of customers, people, society and shareholders);

• Each subtype of result maps with an EFQM result sub-criterion.

Results

ENABLER processes

Key processes

Measurement process

Figure 3 – Structure of the Processes and
Results Dimension

5

The ‘process capability dimension’ is
defined on the basis of the combination
of two factors, Level and Scope9 (Figure
4), while the ‘results excellence
dimension’ is also defined on the basis
of the combination of two factors,
Excellence and Scope10 (Figure 5).

3. The Assessment Method

The EFQM/SPICE Integrated Model is a
static reference point, a structured group of
good practices for organisation and process management, that allows top management to
understand what TQM means for their software company. Applying this model to an
organisation implies combining it with a set of dynamic tools and techniques that integrate
TQM and SPI into business management.

The EFQM/SPICE Integrated Model could be used solely for assessment purposes or for
business planning and improvement. The latter incorporates assessment, and particularly self-
assessment, as a strategic step in business management based on TQM concepts. To support
the application of the model, ESI has developed an Assessment Methodology [13] defining
the phases of the assessment and the activities and tasks to be performed within each phase.
The Method contains four first-level phases, that represent the logical workflow of an
assessment, where the output of the n-th phase represents the input for the (n+1)-th one:

1) Assessment Preparation11: these activities include preparing everything previous to
assessing the organisational unit, from agreeing the terms of the assessment with the sponsor
and collecting all the necessary information about the assessment context, to preparing the
detailed plan of the work to be carried out and obtaining a qualified assessment team;

2) Assessment Execution: these activities iclude collecting an accurate and comprehensive
set of data about the organisational unit, so that it is possible to cover the assessment purpose.
As a minimum, a list of strengths and areas for improvement of the organisational unit will be
produced;

3) Assessment Reporting: these activities include preparing a report of the assessment results
and to present it to the appropriate people of the organisational unit;

9 In detail:
• LEVEL – measures the degree of excellence of the process performance and implementation approach.

Like SPICE, there is a six point ordinal scale that enables capability to be assessed from the bottom of the
scale, Incomplete, through to the top of the scale, Optimising;

• SCOPE – measures the degree of deployment of the process throughout the organisation. Like EFQM, there
is a percentage scale that enables the scope of the application to be assessed from ‘not applied in relevant
areas’ to ‘applied in all relevant areas and activities’.

10 In detail:
• EXCELLENCE - measures the excellence of the results based upon a set of five attributes: Pertinence,

Trends, Targets, Comparisons and Cause. Like EFQM, there is a one hundred point cardinal scale that
enables excellence to be assessed from the bottom of the scale (0), No Results, through to the top of the
scale (100), Best in Class.

• SCOPE – measures the degree of coverage of the organisation’s relevant missions, business goals, areas and
activities. There is a percentage scale that enables scope of the results to be assessed from ‘not applied in
relevant areas’ to ‘applied in all relevant areas’.

11 This phase and its steps are based on the ideas described in [2].

Pertinence

Trends

Targets

Comparisons

Cause

0 1005025 75

Scope

The Results Excellence Dimension

Figure 5 - The Results Excellence Dimension

6

PREPARATION

EXECUTION

REPORTING

T2.1.1-COLLECT

DATA

T1.3.2-DELIVER

PRESENTATION TO

THE PARTICIPANTS

T2.1.2-

CONSOLIDATE

DATA

T2.2.1-VALIDATE

DATA

T2.2.2-DETERMINE

COVERAGE

T2.3.1-IDENTIFY

STRENGTHS AND

AREAS FOR

IMPROVEMENT

T2.3.2-DETERMINE

RATING

FOLLOW-UP

T1.1.1- IDENTIFY

PRELIMINARY

INPUTS

T1.2.1-DEVELOP

ASSESSMENT PLAN T1.3.1-TRAIN TEAM

T3.1.2-DEVELOP

RESULTS

PRESENTATION

T3.2.1-PRESENT

RESULTS

T.4.1.1-

COLLECT

ASSESSMENT

COMMENTS

T4.2.1-DEVELOP

CASE STUDY

T.3.1.1-DEVELOP

RESULTS REPORT

T1.1.2- ANALISE

INPUTS

T1.1.3-IDENTIFY

REMAINING

INPUTS

Figure 6 - Bottom-level activities of the ESI EFQM/SPICE
Assessment Method

4) Assessment Follow-up: these activities include drawing conclusions from the assessment
experience at ESI to reuse good practices in further experience.

Each top-level phase is broken up
into a series of a total of 10
second-level activities, that can
be decomposed into a series of a
total of 17 third-level tasks. Each
bottom-level task is defined
through the objective, entry and
exit criteria, activities, inputs and
outputs; responsibilities and
general considerations12. The
Asessment Method is supported
by a full set of assessment
materials including presentations,
document templates, checklist
and data collection forms. Figure
6 presents the 17 bottom-level
tasks, describing also the
workflow of the EFQM/SPICE
Assessment.

4. Trials 1998
In the second semester of 1998, ESI carried out two trials of the EFQM/SPICE Integrated
Model in software departments of two large organisations. ESI trial objectives were to
validate the efficiency of the EFQM/SPICE Integrated Model in a real context and to evaluate
the EFQM/SPICE assessment method, while software departments objectives were to obtain a
picture of their actual situation and to use the assessment results as basis for developing the
SIO plan to achieve the organisation business objectives.
Both organisations are successful and experienced an important income increase in the last
few years. Organisation A is already involved in an EFQM improvement initiative and its
EFQM score is above 400 points (according to an official assessment carried out by the
Basque Quality Foundation, Euskalit, in 1997). The organisation is composed by several
branches, each of them with its own software department. The software department of one of
these branches was assessed. Organisation B was not involved in any formal improvement
initiative. Its central software department was assessed. The assessments were carried out
following the 17 tasks of the EFQM/SPICE Assessment Method step by step. A short list of
the most relevant aspects of the assessments performed summarised by phases is here
described:
• PREPARATION PHASE. The main objective of the preparation phase is to asses the context

of the organisational unit in order to know the key processes of the organisation, including
the software key processes, to select later on 1) the set of ENABLER processes, SPICE
processes – from the SPICE processes candidate to key processes list – and results that will
be assessed, 2) the most appropriate projects to compare with and, 3) the appropriate
people to interview. These basic elements, the three of them, define the assessment plan.

12 The logic in compiling these tables is the same followed in some process definition notation approaches like
the ETVX (Entry-Task-Validation-eXit) [10] one.

7

The context information of the organisational unit should include the business goals and
the departments goals, quantified if possible. Based on the stated goals, the selection of the
most relevant processes and results to be assessed should be done by the software
department responsibles with the support of the assessment team.
During the preparation phase carried out in the two software departments, the selection of
ENABLER processes and SPICE software processes was based on not very accurate
context information due to the organisations immaturity. The organisational level business
goals were clear for the two departments but the software department goals were not
clearly defined and stated in one of them and they were too general in the other. Any of the
organisations assessed had indicators to follow the accomplishment of business goals and
no measures taken know the stakeholder's perception.
The department’s goal statements showed a very weak alignment between top-level
business goals and software department goals.

• EXECUTION PHASE. One of the most relevant tasks of the execution phase is the Collect
Data task. The interviews carried out to complete this task were based on a set of questions
prepared for each participant. A summary of what happen during the interviews, by type
of processes and results assessed, is:
ß ENABLER processes. A subset of ENABLER processes (selected during the

preparation phase) was assessed in each department. The questions related to each
process were of several detailed levels, each level corresponding to different degrees of
maturity of the process in the organisation. In the two assessments carried out, only the
questions related to the first level could be asked due to the immaturity of the processes
in the departments assessed. Many questions were left unanswered.

ß SPICE processes. The set of SPICE processes selected as key processes during the
preparation phase did vary during the interviews. That is, the SPICE processes
considered key processes according to the information provided by the department
responsibles was found not to be adequate during the interviews and in one assessment,
two other SPICE processes had to be added to the assessment.

ß Results. First-level questions showed that the results were not measured in a formal
way.

The execution phase showed that a higher level of maturity is required in the departments
in order to fully check the assessment method and the underlying model and, it confirmed
the weak alignment between the business management system and the software department
management system.

• REPORTING PHASE & F OLLOW -UP PHASES. As a trial result each organisation received a
report of three parts:
ß A list of the main strengths and areas to be improved;
ß For each assessed process, a complete list of the strengths and areas for improvement

found and, the profiles of each process;
ß A list of recommendations for starting an improvement initiative.
The list of strengths for the ENABLER processes in both organisations was very poor.
The rating of ENABLER processes was complicated. In addition to this, the
EFQM/SPICE assessment based on the model in its 1998 version does not provide an
EFQM score as assessment result. Most of the organisations, including the organisations
assessed that was already involved in an EFQM improvement initiative are interested in
knowing the EFQM score of the assessment.
 The areas of improvement provided for the result criteria were poor. The EFQM/SPICE
model provides a list of areas and attributes adapted to Software Intensive Organisations
(SIO). However, a list of measures linked to each attribute that can be used as reference
for a SIO would help.

8

The SIOs involved in an EFQM improvement initiative were not involved at all in the
initiative even if the department responsibles recognise as fundamental the contribution of
the SIO for the results of the organisation.

Some positive aspects were observed in the assessments:
ß The ability to refine or redefine the initially stated business goals with the assessment

results;
ß The assessments highlighted the extent of the role software has in an organisation;
ß The assessments enabled organisational managers to get a better understanding of how

software is developed;
ß The assessment highlighted gaps between organisational business management and the

software management increasing awareness of the need to manage software based on
organisational needs;

ß The SPICE like process assessment approach made it easier for software practitioners
to interpret the EFQM criteria;

ß The SPICE like process structure of the EFQM/SPICE integrated model provides an
interpretation of EFQM for SIOs that is very useful to provide strengths and
improvement areas for the software organisation or department assessed.

5. Lessons learned from 1998 trials
The experience ESI gained during 1998 EFQM/SPICE trials can be summarised in the
following points that represent the most relevant input for the 1999 updating of the Integrated
Model:
• A guided EFQM self-assessment will help organisations to define better basic pillars such

as business goals, policy and strategy and key processes of the EFQM/SPICE Integrated
Model;

• The EFQM/SPICE Integrated Scoring System should be compatible with the EFQM
scoring system;

• The Result criteria part of the EFQM/SPICE Integrated Model should be enriched in order
to provide richer support to SIOs willing to implement the EFQM/SPICE Integrated
Model;

• Some organisational processes related with organisational issues such as Leadership or
Policy and Strategy are difficult to assess at the department level when the full
organisation is not involved in a TQM improvement initiative. The organisation top
management commitment and participation is therefore essential for the complete success
of this type of initiative.

The new updated model covers all the above points including also its restyling according to
the new EFQM Excellence Model ("Version 2000").

6. Trials 1999
Based on the previously mentioned 1998 trials outcome, ESI has improved and redesigned the
trial scheme for 1999. Figure 7 shows the three phases:

9

Figure 7 - 1999 Trials design

• Pre-session13: a tutorial for SIO
managers is provided. Its aim is to
present benefits and ways to align SPI
into the wider context of TQM. An
Internet on-line version of the tutorial is
now being developed to support the pre-
session.

• Assessments14: based on
ß A two-day self-assessment with

EFQM criteria is carried out by SIO
managers appropriately guided and
supported on the initial attempt and,

ß A one-day mini SPICE assessment is performed by ESI consultants on two or three
software processes identified as key processes.

• Post-session: identification and prioritisation of the improvement areas are derived from
the assessments.

A 1999 joint trial with top managers of four SIOs has been planned. These trials have been
organised in collaboration with EUSKALIT which is the EFQM representative in the Basque
Country.

7. Conclusions & Prospects
Achieving business excellence in SPI is the main goal of Software Intensive Organisations.
But traditional SPI models are not TQM oriented, while on the other side TQM models do not
provide any help in defining key processes for a SIO and how to improve them. The European
Software Institute has provided the EFQM/SPICE Integrated Model, a unique model that
combines the strengths of two well-known models: EFQM and SPICE. This model can be
used for assessment or for business improvement and planning purposes. A brief description
of the three-tier architecture is presented as well as its 17 bottom-level tasks.
Main outcome from the 1998 trials are presented, classified by assessment phase, stressing the
lessons learned. These are now input for the 1999 updating of the Integrated Model. This has

13 More than 50 managers of 48 different companies, among SIOs of the Basque Country and members of ESI
and SPIN-SPAIN, attended a tutorial session that took place in Bilbao (Spain) last July. The feedback collected
about the model was satisfactory, as inferable from the following table (based on a 40 questionnaires answered):

Aspect \ %
EXCELLENT HIGH GOOD ENOUGH

NOT

SUFFICIENT
NOT AT ALL

Interest created by the model 21 31 33 15 0 0

Usefulness of the model 15 25 45 15 0 0

Innovation provided by the model 8 47 34 11 0 0

14 Four SIOs among the interested ones that attended the seminar have been selected in order to carry out the
Assessment and Post-session phases of the 1999 Trials. The Trial results will be available for the end of the year
1999.

10

been very useful to ESI also in order to redesign and better organise 1999 trials, as
demonstrated from a recent survey on the perception some SIOs have of the interest, utility
and innovation provided by the Integrated Model for applications inside their organisations.
After the trial phase, ESI is planning to promote the EFQM/SPICE Integrated Model
application on the European level and different initiatives are being put in place to achieve
this. Interest in participating in such activieties is welcome.

References

[1] BØTTCHER P., Total Quality Management and the Capability Maturity Model (CMM): What's the
difference?, Proceedings of the IRIS20 Conference, Hankø Fjordhotel, Norway, August 9-12, 1997,
http://www.ifi.uio.no/iris20/proceedings/17.htm

[2] CONTI T., Building Total Quality: a guide for Management, Chapman & Hall, 1993

[3] COVEY S.R., Principles of Total Quality (Part 4), Modern Office Technology, Vol. 37 No. 2,
February 1992, p.10

[4] EFQM, Self-Assessment 1997. Guidelines for Companies, European Foundation for Quality
Management, 1996

[5] EFQM, The EFQM Excellence Model – Improved Model, European Foundation of Quality
Management, 1999

[6] GARCÍA A.B., BENGURIA G., OSTOLAZA E., ESCALANTE M.L. & SATRIANI G., EFQM/SPICE
Integrated Model V 1.0, European Software Institute, ESI-1999-TR-003, February 1999

[7] ISO/IEC TR 15504 Software Process Assessment’s Parts 1-9, Technical Report type 2, 1998

[8] KANJI G.K. & ASHER M., 100 Methods for Total Quality Management, Sage Publications, 1996

[9] PAULK M., TQM and CMM: Software CMM Q&A #4, April 7th 1997,

http://www.sei.cmu.edu/activities/cmm/docs/q-and-a.4.html

[10] RADICE, R. A. & PHILLIPS, R.W., Software Engineering: An Industrial Approach, Prentice-Hall,
1988

[11] SAIEDIAN H. & KUZARA R., SEI Capability Maturity Model's Impact on Contractors, IEEE
Computer, IEEE Computer Society, Vol. 28 No. 1, January 1995, pp. 16-26

[12] SILVER B., TQM and the SEI Capability Maturity Model, Software Quality World, Vol.4 No.2,
December 1992

[13] ZORRIKETA I., GARCÍA A.B., BENGURIA G. & ESCALANTE M.L., EFQM/SPICE Assessment Method
Description, European Software Institute, ESI-1999-TR-004, February 1999

1

© ESI 1999Quality Week Europe 1999 - November 3rd, 1999

Achieving Business Excellence in SPI:

Applying the EFQM/SPICE Integrated Model in Industry

L.Buglione & E. Ostolaza

EUROPEAN SOFTWARE INSTITUTE

E-mail : {luigi, elixabete}@esi.es

© ESI 1999Quality Week Europe 1999 - November 3rd, 1999

AgendaAgenda

• Introduction

• The EFQM/SPICE Integrated Model 1998 version

• The Assessment Method

• Trials 1998

• Lessons learned from Trials 1998

• Trials 1999

• Conclusions and Prospects

2

© ESI 1999Quality Week Europe 1999 - November 3rd, 1999

• Covers all the aspects of the organisation

• Ensures a continuous alignment of improvements
towards current real business objectives and needs

• Process improvement objectives are derived from
organisational business objectives, thus focusing the
improvement only on those areas related with those
business objectives of the organisation

Total Quality Management (TQM)Total Quality Management (TQMTQM)

© ESI 1999Quality Week Europe 1999 - November 3rd, 1999

TQM ModelsTQM Models

A descriptive representation of the elements and their
interrelationships to take into account and to facilitate the
understanding, reasoning, simulation, …of the way
towards total quality

Most diffused TQM models are :

DemingDeming MalcolmMalcolm BaldridgeBaldridge EFQMEFQM

3

© ESI 1999Quality Week Europe 1999 - November 3rd, 1999

Problems when implementing TQMProblems when implementing TQM

TQM models provide a mechanism to define the policy and
strategy for the organisation,

but

do not provide much support when identifying and defining
the processes of the organisation that have most impact in
business results and that keep aligned to the organisational
policy and strategy

© ESI 1999Quality Week Europe 1999 - November 3rd, 1999

Software Process Improvement (SPI) modelsSoftware Process Improvement (SPI) models
• are oriented to facilitate the identification, definition, management, control

and improvement of the software processes but not ensuring the alignment
of processes to the organisational policy and strategy

• describe the processes involved in the development of software, providing
for each of them the purpose, the basic activities, inputs, outputs,…that
facilitates the implementation of the processes within the organisation

Most diffused SPI models are:

SPICESPICE

Customer-Supplier

Engineering

Organization
Management

Support

BootstrapBootstrapSW-CMMSW-CMM

4

© ESI 1999Quality Week Europe 1999 - November 3rd, 1999

SPI Models common featuresSPI Models common features
• Identify the set of processes that cover the model

• Describe the basic aspects that need to be accomplished when
implementing the processes

• Describe the degree or level of discipline with which implement each
of the processes

• Reduced view of the improvement areas

• SPI objectives could not be completely aligned with the current policy
and strategy and business objectives of the organisation

Problems when implementing SPIProblems when implementing SPI

© ESI 1999Quality Week Europe 1999 - November 3rd, 1999

Steps in the evolution of quality

1920 1950 1970 2000

Product

Client

Partnerships
Society

Organisation

Quality control

Quality
Assurance

Total
Quality

S
P
I

S
P
I

5

© ESI 1999Quality Week Europe 1999 - November 3rd, 1999

Current situationCurrent situation
• Quality in software industry reduces to SPI

• Few application and adaptation of EFQM by software industry

• It results too difficult that an organisation includes software related
processes as key processes for business management

• SIO organisations approach quality only under the perspective of
SPI

• Software departments of organisations under TQM initiatives get
isolated and not involved dynamically on them

As a consequence...As a consequence...

© ESI 1999Quality Week Europe 1999 - November 3rd, 1999

• Integrate software engineering and production processes in the
business management

• Deploy business objectives of the organisation into software
process improvement objectives that could be directly managed
by software process managers

• Provide SIO organisations a more complete view of the areas
where quality can be improved

• Provide to those SIO organisations approaching TQM the
appropriate support to facilitate organisations the involvement of
their software departments within their TQM initiatives

Why to integrate TQM and SPI? Why to integrate TQM and SPI?

6

© ESI 1999Quality Week Europe 1999 - November 3rd, 1999

Business Management
Control

Result of the integration (I)Result of the integration (I)
• Business improvement will cover improvements of

the software processes

• Ensure that any improvement on software processes
will contribute to business improvement

Software Process
Control

© ESI 1999Quality Week Europe 1999 - November 3rd, 1999

Result of the integration (II)Result of the integration (II)

KEY
PERFORMANCE

RESULTS

PEOPLE
RESULTS

CUSTOMER
RESULTS

SOCIETY
RESULTS

RESULTSRESULTS

LEADERSHIP

PROCESSES

PEOPLE

POLICY AND
STRATEGY

PARTNERSHIPS
AND RESOURCES

ENABLERSENABLERS

Key

Processes

Customer-Supplier

Engineering

Organization
Management

Support

7

© ESI 1999Quality Week Europe 1999 - November 3rd, 1999

C u s t o m e r - S u p p l i e r

E n g i n e e r i n g

O r g a n i s a t i o n

M a n a g e m e n t

S u p p o r t

LEADERSHIP
KEY
PERFORMANCE
RESULTS

PEOPLE PEOPLE
RESULTS

POLICY &
STRATEGY

CUSTOMER
RESULTS

PARTNERSHIP
& RESOURCES

SOCIETY
RESULTS

Processes

© ESI 1999Quality Week Europe 1999 - November 3rd, 1999

EFQM/SPICE ModelEFQM/SPICE Model

• EFQM Excellence Model (2000 Version)

• ISO/IEC 15504 TR-2 [aka as SPICE - Software Process Improvement
and Capability dEtermination]

Components

Objective
Provide a unique model covering software process improvement under
a framework of Total Quality Management

Scope
Full coverage of the organisation business including those activities
related to software development and maintenance

8

© ESI 1999Quality Week Europe 1999 - November 3rd, 1999

Software Intensive Organisations (SIO)Software Intensive Organisations (SIO)
• Organisations whose main objective is software

development and selling

Or

• Software Departments of:
• Organisations tha develop software as integrating part of its

final products

Or

• Organisations that develop software for internal use to
achieve better business results or whose software
department can be qualified as an independent
organisational unit.

EFQM/SPICE Model AudienceEFQM/SPICE Model Audience

© ESI 1999Quality Week Europe 1999 - November 3rd, 1999

General structure of the modelGeneral structure of the model

KEY
PERFORMANCE

RESULTS

PEOPLE
RESULTS

CUSTOMER
RESULTS

SOCIETY
RESULTS

RESULTSRESULTS

LEADERSHIP

PROCESSES

PEOPLE

POLICY AND
STRATEGY

PARTNERSHIPS
AND RESOURCES

ENABLERSENABLERS

Key

Processes

Customer-Supplier

Engineering

Organisation
Management

Support

CANDIDATE CANDIDATE
PROCESSESPROCESSES

9

© ESI 1999Quality Week Europe 1999 - November 3rd, 1999

EFQM/SPICE Integrated Model DimensionsEFQM/SPICE Integrated Model Dimensions

Results

ENABLER processes

Key processes

Measurement process

Process A
Process B

Process C
Process D

0%

25%

50%

75%

100%

1

3

2

4

0

1

2

3

4

5

Level

Process

Scope

The Process Capability Dimension

0%

25% 4

50% 2

75% 3

100% 1

Process A Process B Process C Process D

Pertinence

Trends

Targets

Comparisons

Cause

0 1005025 75

Scope

The Results Excellence Dimension

 Processes & Results

• process side

• results side

• Capability

• process capability

The Integrated Model, like SPICE, has 2
dimensions:

• results excellence

© ESI 1999Quality Week Europe 1999 - November 3rd, 1999

Model ApplicationsModel Applications

• Self-assessment to measure the
progress towards business excellence.

• Reference model for business
management

10

© ESI 1999Quality Week Europe 1999 - November 3rd, 1999

EFQM/SPICE Assessment MethodEFQM/SPICE Assessment Method

The Assessment Method defines four first-phases, with a list of activities
and tasks to be performed in each phase, for a total of 17 bottom-level
activities: PREPARATION

EXECUTION

REPORTING

T2.1.1-COLLECT

DATA

T1.3.2-DELIVER

PRESENTATION TO

THE PARTICIPANTS

T2.1.2-

CONSOLIDATE

DATA

T2.2.1-VALIDATE

DATA

T2.2.2-DETERMINE

COVERAGE

T2.3.1-IDENTIFY

STRENGTHS AND

AREAS FOR

IMPROVEMENT

T2.3.2-DETERMINE

RATING

FOLLOW-UP

T1.1.1- IDENTIFY

PRELIMINARY

INPUTS

T1.2.1-DEVELOP

ASSESSMENT PLAN T1.3.1-TRAIN TEAM

T3.1.2-DEVELOP

RESULTS

PRESENTATION

T3.2.1-PRESENT

RESULTS

T.4.1.1-

COLLECT

ASSESSMENT

COMMENTS

T4.2.1-DEVELOP

CASE STUDY

T.3.1.1-DEVELOP

RESULTS REPORT

T1.1.2- ANALISE

INPUTS

T1.1.3-IDENTIFY

REMAINING

INPUTS

© ESI 1999Quality Week Europe 1999 - November 3rd, 1999

Trials 1998Trials 1998
Main outlines from 1998 Trials that involved 2 Software
departments of Large organisations:

• Preparation Phase : The department’s goal statements showed a very
weak alignment between top-level business goals and software
department goals

• Execution Phase : a higher level of maturity in the departments is
required in order to fully check the assessment method and the
underlying model and, it confirmed the weak alignment between the
business management system and the software department
management system

• Reporting & Follow -up Phases :The SIOs involved in an EFQM
improvement initiative were not involved at all in the initiative even if the
department responsibles recognise as fundamental the contribution of the
SIO for the results of the organisation

11

© ESI 1999Quality Week Europe 1999 - November 3rd, 1999

Lessons Learned from 1998 TrialsLessons Learned from 1998 Trials

• Guided EFQM self-assessment help to define basic
organisational pillars (BGs, policy, strategy, KPs)

• More detail of Results (GQM-based)

• More detailed Rating scheme (EFQM compatible)

• Essentiality of Top management commitment

© ESI 1999Quality Week Europe 1999 - November 3rd, 1999

Trials 1999Trials 1999
Based on 1998 Trials, ESI has improved and redesigned the Trial
scheme for 1999. Three phases are forseen:

• Pre-session : a tutorial for SIO managers is provided in order topresent
benefits and ways to align SPI into the wider context of TQM.

• Assessments : 2-days self-assessment of EFQM criteria and 1-day A
SPICE mini-assessment on two or three software processes identified
as key processes.

• Post -session : identification and prioritisation of the improvement areas
are derived from the assessments

12

© ESI 1999Quality Week Europe 1999 - November 3rd, 1999

Conclusions & ProspectsConclusions & Prospects

• Process Oriented - best from TQM and SPI

• Adapted to Software Intensive Organisations (SIO)

• More detail of Results (GQM-based)

• More detailed Rating scheme (EFQM compatible)

• New upcoming version 2.0 (December 1999)

Improving software documentation: a customer oriented approach

QWE’99, Brussels, 1-5 November 1999 P. Moro, A. Cicu Page 1 of 20
© Optec srl and MetriQs srl, 1999

Improving software documentation: a customer oriented approach.
The results of the ESSI PIE DOCPROVE project

Pietro Moro, Optec srl
Antonio Cicu, MetriQs srl

Abstract

The DOCPROVE project [11] is an ESSI PIE (Process Improvement Experiment) funded by the European
Commission and undertaken by Optec srl, an Italian small company operating in the development and
commercialisation of optical and opto-electronic custom systems. The paper covers the following main points of
the improvement project: the essentials of the approach (driven by business goals), including the ami and GQM
approach for metrics; the details of the application of SPICE process models to software documentation (in the
framework of a SPICE trial), with emphasis to the adopted systemic approach; the effectiveness and ease of use of
the adopted templates and tools; the results of the measurements and of the SPICE final assessment; the lessons
learned regarding what has been really improved versus sustained costs, also from the point of view of motivation,
training and reaction of people; and finally, an evaluation of experience replicability inside and outside Optec.

Pietro Moro, Ing., Optec srl,
Via Canova 10, I-20017 Rho (MI) Italy
ph: +39 02 9350 1157, fax: +39 02 9350 0207
e-mail: moro.optec@agora.stm.it
website: http://www.optec-srl.com

Antonio Cicu, Ing., MetriQs srl,
Via don Gnocchi 33, I-20148 Milano Italy
 ph/fax: +39 02 4870 8691
e-mail: acicu@metriqs.com
website: http://www.metriqs.com

1. Introduction: the Optec’s business and PIE project context

The mission of Optec is the development of optical and opto-electronic imaging systems. Optec is competitive on the
market where critical and non-conventional systems are required. Figure 1 illustrates the market segments typically served
by Optec.

Optec’s business process strategy is supported by:
− a constant monitoring of the trends of optical systems market,
− a constant monitoring of the concerned technologies (for example: electronics components, and embedded software),
− a sustained interaction with the Customer.

Improving software documentation: a customer oriented approach

QWE’99, Brussels, 1-5 November 1999 P. Moro, A. Cicu Page 2 of 20
© Optec srl and MetriQs srl, 1999

Military

Medical
Imaging

Robotics
Industrial

Photo

Research

Space
X-Ray Imaging

TV Cameras

Figure 1 – The mission of Optec

Optec is able to assist the Customer in the conception of a new system and/or integrated solution, whenever an optical
image has to be handled, and to supply the Customer with the complete product, co-operating as system designer and
system integrator with other partner Companies, through the business cycle shown in Figure 2.

Optical System

Customer

Customer
Requests

Contract

OfferSystem Design
•Optical Design (Horus)
•Mechanical Design
•Electronic Design
•Prototyping &
Experimentation

Production

Sales

Other
External

Productions

Figure 2 – The business cycle

Improving software documentation: a customer oriented approach

QWE’99, Brussels, 1-5 November 1999 P. Moro, A. Cicu Page 3 of 20
© Optec srl and MetriQs srl, 1999

A deep interaction among Optec departments is always necessary, as follows:
− the feasibility study and offer require a lot of optical design;
− the optical layout has to be ‘dressed’ by mechanical components, and compromises have to be kept into consideration;
− production needs the interaction with the optical and mechanical designers to prepare assembly tools and to define the

testing procedures and tools;
− external suppliers have to be co-ordinated, and their products to be controlled;
− feedback from each department, from the external manufacturers, and from the customer is necessary for a better design

and for product engineering.

The system design is driven by the optical design, that is carried out with the aid of proprietary software (the program
Horus, so named from the Egyptian God of Sun).

And optical design support software is the area where the improvement action has been planned with the software process
improvement project described in this paper.

The DOCPROVE PIE has been based on a Baseline Project (Figure 3), which had the objective of making Horus to evolve
from the current release to a new release.

Horus and the ESSI/PIE Project DOCPROVE

1998 1999

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar May Jun Jul Aug Sep Oct Nov Dec

PIE

Baseline Project: Design and Development of Horus R4.2

R4.0 R4.1 R4.2

Releases of Horus

Apr

Horus
Release 4.2

Specifiche
di

Architettura

Specifiche Documenti
su Algoritmi
di calcolo

Horus
Release 4.1

Documenti
su Algoritmi
di calcolo

Baseline Project’s Content

• functional extensions
• User Interface improvement
• removal of defects

Figure 3 – The baseline project

The objectives of the new release (R4.2) of Horus were:
− add new design features;
− port the tool to faster machines, making the design activity more efficient;
− make the task of the optical designer easier, thanks to enhanced User Interface;
− remove known defects.

The tool Horus has a strategic importance in the organisation, because it is the design tool daily used to develop (or
upgrade) optical systems. It embeds a lot of know-how of mathematics and optical science, and it undergoes a yearly
upgrade activity as required by specific optical design requirements.

Improving software documentation: a customer oriented approach

QWE’99, Brussels, 1-5 November 1999 P. Moro, A. Cicu Page 4 of 20
© Optec srl and MetriQs srl, 1999

The Baseline project did start in October 1998: now (November 1999) the Baseline project has been concluded, and the PIE
is in the final reporting phase.
During the Baseline project a new process of documentation was experimented, applied to the parts of Horus being worked.

Also documentation processes of Optec at system level were involved in the Baseline project, and the documentation of
optical systems at system level was included in the improvement experiment, in order to provide to software people a set of
software requirements as solid and stable as possible.

2. The objectives of the DOCPROVE project, and the starting scenario.

The business goals of Optec can be synthesised as follows.

Goal 1 Design and production of innovative, not conventional systems, in the field of image acquisition and image
processing.

Goal 2 Increase its presence in important market areas, such as in-line image acquisition and processing, in-line quality
inspections, medical equipments, R&D (e.g. nuclear, space, energy, environment fields), where there is the
need of a complete cycle of services (user needs analysis, conception of the solution, design, production,
installation and support) regarding the above optical systems (the capability of supporting a complete project
cycle being a distinguishing factor for Optec).

Goal 3 Extend the range of Optec products applicability through ease of customisation and timeliness of solution
provision.

Goal 4 Reduce times and costs for solution provision; increase margins.

A program for pursuing the above business goals originates a set of needs, that have to be satisfied in order to achieve the
goals. For each need the following list provides also the mapping to pursued goals:

Need 1 Improve the ability of system and software analysis and specification (pursuing goals 1, 2, 4).
Need 2 Improve the ability of evaluating (through the available documentation) the suitability of external application

software candidate to be integrated into Optec systems (either to be acquired, or to be subcontracted) (pursuing
goals 1, 2, 3).

Need 3 Availability of efficient and up-to-date optical design tools (including the ability of implementing timely
changes, as much as possible by less experienced technicians) (pursuing goals 3, 4).

Need 4 Formalise and document the competence and expertise (related to optical systems) embedded into Horus design
tools (such a competence has to be an accessible and reusable intellectual property of the Company, and must
not remain in the mind of the tool developers). (Asset to be mastered by the Company, control of investments)
(pursuing goal 3, 4).

Need 5 Consolidate, improve the ability to integrate outside subsystems in Optec systems (pursuing goal 2).
Need 6 Stronger ability to coordinate activities (internally, and externally with business partners) (pursuing goal 4).

The following points were the yardsticks (YSn) (measured reference points) by which it was possible to measure the
progress towards the achievement of the objectives and results:

YS 1 the definition of PIE monitoring approach, including ami goal tree, the measurement plan, and metrics to be
used (at month 1.5);

YS 2 the definition of baseline project documentation process (at month 2.5);
YS 3, YS 4, YS 5

the Technical Review Reports (including the results of usage of methodology and tool, and the measures) (at
months 7, 10, 13);

YS6 the Operation Phase Results Report (at month 15).

A CMM-based mini-assessment performed in the software department during early 1996 (driven by CMM [6] inspired
criteria and by the CMM Maturity questionnaire) pointed up that main weaknesses were in the documentation process.
While people were used to produce their own documentation regarding their own activities, no standards were in use,
though attempts had been done in the past in order to standardise the process.

Improving software documentation: a customer oriented approach

QWE’99, Brussels, 1-5 November 1999 P. Moro, A. Cicu Page 5 of 20
© Optec srl and MetriQs srl, 1999

The motivation for the PIE came from the management awareness that documentation practices improvements are a prior
step to satisfy the needs mentioned above, and specifically to get:
− higher maintainability and extensibility of Horus’ future releases (business relevance and benefits: shorter time-to-

market, new optical design capabilities);
− higher ability to evaluate (through the available documentation) the suitability of custom application software

components to be integrated into Optec’s commercial systems (business relevance and benefits: higher
competitiveness).

Among the mentioned Optec’s business goals, priority was given to Goal 3 and Goal 4 as driving criteria for the selection of
improvement actions.

Documentation
Process

Improvement
Goals

Decrease effort spent
and/or time elapsed in
documentation tasks

Increase the quality of
documents

Improve
documentation
guidelines and tools

Improve people’s skills
and motivations

Extend Optec products applicability through
ease of customisation and timeliness of
solution provision (Goal 3)

PIE Business
Goals

Reduce times (Time To Market) and costs for
solution provision; increase margins (Goal 4)

Documentation
Process

Improvement
Sub-goals

Reduce elapsed
time, for a given
quality level, in
documentation work
and rework

Reduce effort spent,
for a given quality
level, in
documentation work
and rework

Reduce the number
of delivered defects

Increase
documentation
completeness and
stability

Adopt tools
supporting the
selected
documentation
process

Define and apply a
consolidated
documentation
process model

Develop people
awareness of
business benefits
achievable with
documentation

Train involved people
on the defined
process and selected
tools

Reduce slippage of
actual spent effort
and schedule versus
estimated

Figure 4 – The PIE Goals Tree

Being the selected overall objective of the experiment the improvement of the software documentation practices, such a
major objective was concretised in the following specific sub-objectives (for each sub-objective the information is provided
about which measures have been selected, with the help of ami method (Figure 4) [5], in order to control the level of
achievement and the impact on the business goals, and in order to verify to what extent the improvement goals were
achieved):
− to improve the skills and motivations of the people involved in software specification and documentation tasks, and

in documentation review tasks (people will have to improve their knowledge of why and when to produce software
documents, of why and when to review them and control their quality, of who is the audience of a given document)
(measures: evaluation of documentation methods competence levels, questionnaires for evaluating the employee
satisfaction);

− to improve the documentation guidelines and documentation tools, as well as the documentation control policies
and tools (people will have to improve their knowledge of what and how to document given software product aspects,
of which tools can help for saving time and for increasing quality) (measures: evaluation of the documentation process
approach in terms of completeness and compliance to the international standards);

− to increase the quality of documents, at parity of spent effort and elapsed time (measures: completeness, consistency,
non-ambiguousness of produced requirements documents; defect data and defect density for defects found in the
produced documentation);

Improving software documentation: a customer oriented approach

QWE’99, Brussels, 1-5 November 1999 P. Moro, A. Cicu Page 6 of 20
© Optec srl and MetriQs srl, 1999

− to decrease spent effort and/or elapsed time in documentation tasks, at parity of the other factors (respectively time
elapsed and quality, or effort spent and quality) (i.e. to improve the documentation process efficiency) (measures:
documentation time efficiency and documentation cost efficiency).

The life cycle adopted in the experiment is basically inspired from ISO/IEC 12207 [1] and ISO/IEC 15504 [7] standards
(see [17]).

The addressed process activities were (Figures 5 and 6):

− document preparation activities. Using proper document preparation guidelines (for selected critical parts of the User
manual, and for the technical documentation, with priority given to the user needs specifications, the system and
software requirements specifications, the user manual). The guidelines had to provide the suitable help to write user
needs and product specifications driven by the selected main business objectives;

− documentation quality verification. Requirements quality verification was driven by the document model described
in the selected templates, exploiting the requirements structure (requirement description + requirements attributes) and
traceability, in order to make more precise and cheaper the verification, including the adequacy to the user needs, and
the aspects of completeness, consistency, feasibility and testability of specified requirements;

− problem reporting, document change request and control, and document rework. These activities were performed
in the cases where the reviews detected any non conformity with the adopted templates or with other requirements.

− data collection and metrics calculation. Data were collected and metrics calculated during the experiment, as it was
specified in the Detailed Plan. The approach to metrics is described in detail in the dissemination paper [17].

A specific
IEEE std

as
template
for each

document
type

SPICE
Process Model

User Requirements CUS.3
System Requirements
System Architecture
Software Requirements ENG.1.2
Software Architecture
Detailed Design
User Manual ENG.1.2

ENG.1.1

ENG.1.3

Output
document

Baselined
output

documentY

N

Review
OK?

document
quality
review

data collection and metrics

document
preparation

or
document

rework

problem
 resolution

change
control

Primary SPICE Processes

Figure 5 – Process activities: Primary processes (the object of the improvement)

Product documentation, due to the nature of the baseline project, was prepared following a system approach, to ensure that
requirements to be allocated to software were correctly derived from system requirements. In order to better guarantee this
system approach, marketing people, and mechanical and optical designers did join software designers in the initial
specification activities, and in review works.

Improving software documentation: a customer oriented approach

QWE’99, Brussels, 1-5 November 1999 P. Moro, A. Cicu Page 7 of 20
© Optec srl and MetriQs srl, 1999

Training
Process Improvement
Project Management

Output
document

Y

N

Review
OK?

problem
 resolution

change
control

A specific
IEEE std

as
template
for each

document
type

document
quality
review

data collection and metrics

document
preparation

or
document

rework

document
quality
review

data collection and metrics

document
preparation

or
document

rework

Baselined
output

document

SPICE
Process Model

Quality Review SUP.4
Data Collection and
Metrics

ORG.5

Problem Resolution SUP.8
Change Control SUP.2
Documentation SUP.1 Supporting or Organisational

SPICE Processes

Figure 6 – Process activities: Supporting and Organisational processes

3. The description of the experiment.

The details of the approach adopted for the experiment were already published in the paper [17], illustrating the following
aspects: life cycle model selected for a software project, rationale for the document types to be experimented, IEEE software
engineering standards and guidelines selected to drive the definition of documents structure and content, rationale and
calculation details for the metrics selected as improvement indicators.

3.1. Main processes affected by the experiment, and related methodologies and tools.

Two major groups of processes are affected by the experiment:

a) primary documentation processes (Figure 5), which are the direct object of the DOCPROVE improvement action. The
processes selected under this group are the ones which directly produce the different levels of specifications required in
a system where a part of requirements is allocated to software, and the process (a support process, the Documentation
process) which defines all the other documentation processes. The selected project life cycle is described in Figure 7,
which shows also the project documents that were experimented in DOCPROVE: the Application Requirements (AR),
System Requirements (SYSR), System Architecture (SYSA), Software Requirements (SWR), Software Architecture
(SWA), Detailed Design (DD), User Manual (UM).
The corresponding primary documentation processes (again Figure 5), which produce the above documents, are:
Requirements elicitation (for AR), System requirements analysis and design (for SYSR and SYSA), Software
requirements analysis (for SWR and UM), Software design (for SWA and DD). All these processes belong to the
SPICE Engineering process category, with the exception of the Requirement elicitation, which belongs to the SPICE
Customer-Supplier process category.
There is another process that was directly affected by the improvement action: the Documentation process, which
belongs to the SPICE Support process category (Figure 6).
Last but not least, one more process was significantly affected by the improvement action, even if such process was not
included as an explicit objective of improvement: the Measurement process (belonging to the SPICE Organisation
process category), thanks to the varied set of measures that were experimented as measures of improvement of the
documentation processes mentioned above.

Improving software documentation: a customer oriented approach

QWE’99, Brussels, 1-5 November 1999 P. Moro, A. Cicu Page 8 of 20
© Optec srl and MetriQs srl, 1999

The Life Cycle: macro phases

Operation,
Support,

Maintenance,
 Sale

Testing and
Installation

Final
User

Manual

Development
and Integration

Software
Architecture

Detailed
Design

System and Software
Requirements,
Plans, Offer,

Contract

System
Requirements

System
Architecture

Software
Requirements

Definition of
Application

Requirements,
Sale

Application
Requirements

Figure 7 – Experimented documents

b) supporting and organisational processes/activities. These are processes/activities which are invoked by the primary
documentation processes in support of them, but which were not object of a specific improvement action under
DOCPROVE (and for which, e.g., no measurements were produced).
The processes included in this group are: Verification, Problem resolution and Configuration management (belonging
to the SPICE Support process category); Project management (Management process category); Improvement process
and Human resource management (Organisation process category) (Figure 6).
The reason why these processes have been considered was just to profit of the guidance provided by ISO/IEC 15504 [7]
for performing activities which are anyway to be performed within the project as necessary support activities, but with
no need of a full application of the related SPICE models.

The cycle of activities performed when producing and reviewing/reworking a document in DOCPROVE is shown in both
Figures 5 and 6.

Suitable IEEE standards or guidelines ([3], [4], [8], [12], [13], [14], [15], [16]), were selected as a guide to authors for the
definition of the structure and content of documents.

Improving software documentation: a customer oriented approach

QWE’99, Brussels, 1-5 November 1999 P. Moro, A. Cicu Page 9 of 20
© Optec srl and MetriQs srl, 1999

Methodologies evaluated and introduced

The following table provides a description of the methodologies evaluated and used in the project, per each area of activities
where a consolidated methodology was known.

Table 3.1-1 – Methodologies evaluated and used or introduced

Activity or
process area

Methodology evaluated and used or introduced
(and evaluation of the degree of innovation: Degr. of Innov.)

Models for
process
definition and
establishment

The method adopted for process definition and establishment was to use as much as possible the
process models described by ISO/IEC 12207 standard [1], with some practical details derived
in part from the related IEEE addenda for 12207 ([3], [4], and in part from SPICE guidelines
[7]. A schema of the considered process models has been presented at Vienna conference [17],
and provided also in Figures 5 and 6.
Reason of the choice: both ISO/IEC 12207 and 15504 provide clear, concise, consistent
descriptions of the single process models. The work of deriving the defined process model for
DOCPROVE has been straightforward. (Degr. of Innov.: High)

Requirements
and design
specification

A Requirement management methodology based on requirement elicitation and definition
templates derived from IEEE guidelines ([12], [13], [14], [15], [16]), which encourage the use
and control of requirements traceability and requirement attributes. Requirement definition
and control activities have been modelled taking as reference the suitable SPICE models. Full
reference to the adopted IEEE standards was published in the dissemination paper [17].
Reason of the choice: the IEEE templates provide flexible, adaptable models for document
structures, defined as a digest of industrial experiences, applicable also in small projects and in
small teams. The use of traceability and requirement attributes supports the achievement of a
higher completeness in review and rework. (Degr. of Innov.: High)

Metrics The ami methodology [5] has been used for defining the goal tree (Figure 4). In the context of
this methodology, the Goal/Question/Metrics (GQM) approach [10] has been used for defining
the metrics to be used in the project. The rationale of the approach, and the results of the metrics
definition were presented at the EOQ Vienna Conference [17]. Some criteria for measurements
reporting were derived from the Measurement process model of SPICE [7].
Reason of the choice: well documented methodologies, supporting an approach based on
common and practical sense for linking the metrics to the selected business goals. The results
were well understood and shared by Optec’s management. (Degr. of Innov.: High)

Verification The guideline for conducting document quality reviews is derived from the SPICE Verification
process model (SUP.4) [7], and from the IEEE standards supporting the Review activities ([8]
and [9]).
Reason of the choice: again the considered guidelines are a digest of long and diffused industrial
experience, and convincing also for small companies. (Degr. of Innov.: Medium)

Process
assessment

The selected guideline for conducting the planned process assessment is the one defined by the
ISO/IEC 15504 standard (SPICE) for process assessment ([7], Parts 3, 4 and 5). A preliminary
assessment (antecedent to the start of DOCPROVE) was based on CMM inspired criteria [6].
In addition to the CMM based mini assessment (1996), one more mini assessment, driven by
SPICE guidelines, had been performed in 1997. Reason of the choice: SPICE models and
guidelines are supported by accessible courses and documentation; the cultural investment
appears to be a durable one, not open to risks of fast obsolescence. The model offers suggestions
for defining the paths and actions for further improvements after the assessments. (Degr. of
Innov.: High)

Improving software documentation: a customer oriented approach

QWE’99, Brussels, 1-5 November 1999 P. Moro, A. Cicu Page 10 of 20
© Optec srl and MetriQs srl, 1999

Tools evaluated and used

The following table provides an overview of the adopted tools, with our evaluation of the related degree of innovation. For
the sake of completeness of the overview, the copies of the standards acquired in support of the project have been
considered themselves as support tools.

Table 3.1-2 – Tools evaluated and used

Activity or
process area

Tools evaluated and used

ProDoc ISOplus IEEE
standards
in PDF
format

ISO/IEC
12207

standard

IEEE
addenda

for 12207

ISO/IEC
15504

standard

Requisite
Pro

MS
Excel

MS
Word

Models for
process definition
and establishment

x x x x x x

Requirements and
design

specification

x x x x x

Metrics x x
Verification x x x x

Process
assessment

x
(Parts
3,4)

Degree of
innovation

supported by the
tool

M H M H H H H M L

Legenda: L=Low; M=Medium; H=High

Reasons of choice of the above tools were the following: a) for the ISO/IEC standards, to make use of the reference
international standards for software processes; b) for the IEEE standards, to make use of guidelines and templates resulting
from consolidated and diffused industrial experience; c) for ProDoc, ISOplus, RequisitePro, and Excel: after verification that
the tools satisfied the needs at reasonable price.

3.2. The phases of the experiment

The experiment did span over four main phases:

1. Definition of the initial status and of the improvement approach; definition of metrics and their target for the
experiment; definition of the preliminary PIE plan. Key deliverables: a document describing the PIE approach, and a
paper [17] published in April 99, that illustrates the fundamentals of the approach.

2. Experimentation.
This phase included the following activities: definition of the documentation process, strategies, methods, tools and
guidelines; installation of customised procedures for the documentation process and of the tools acquired; training of
involved people; release of the detailed PIE plan; experimentation of new practices, and collection of data for deriving
improvement indicators; exploitation of the collected data; comparison of results, correction of non-conformities. Key
achievements: the documents to be experimented, the measure reports. Further major expected deliverables: the Final
Assessment report, the Documentation guidelines for Optec.

3. Result synthesis, final reporting. Key deliverables: the ami case study, the Final Report.
4. Dissemination at international events. Key deliverables: 1st international dissemination event (achieved, [17]); this

paper at QWE’99 Conference, and the related presentation [19].

Improving software documentation: a customer oriented approach

QWE’99, Brussels, 1-5 November 1999 P. Moro, A. Cicu Page 11 of 20
© Optec srl and MetriQs srl, 1999

The initial total cost estimate for the project was 105600 ECUs corresponding to an effort of 292 man-days and 58.5
consultant-days. A revision of the estimates made after 7.5 months of project produced a new estimate of the overall effort
required for the experiment: 338 Optec man-days + 64.5 consultant-days (55 for consultant service, 9.5 as teacher for
training).

4. The results of the experience

4.1. Technical impact

With reference to the yardsticks defined in Section 2 as measurable reference points, by which it is possible to measure the
progress towards the achievement of the objectives and results, the following synthesis provides a view of the technical
impact.

The problem areas, indicated in section 2 as object of improvement, have been technically tackled through a synergetic use
of methods and tools, as indicated in Table 4.1-1.

Table 4.1-1 – Problem areas

Problem area How technically tackled

improve the skills and motivations of
people

conduct the planned training sessions, covering adequately the
adopted methods and tools

improve the documentation guidelines
and documentation tools

define the documentation processes and the corresponding guidelines
compliant as much as possible to consolidated and affirmed
international standards

increase the quality of documents experiment the adopted guidelines to support the production of the
planned documents, and perform the selected quality measurements
(documentation completeness and stability, delivered defects
indicators) (see [17])

decrease spent effort and/or elapsed time perform the selected efficiency measurements, using the data collected
during the experimentation activities (effort slippage, schedule
slippage, effort efficiency, time efficiency) (see [17])

The two tables in section 3 “Methodologies evaluated and introduced” and “Tools evaluated and used” provide the
information regarding the methodologies and tools which have been evaluated and adopted for performing the improvement
experiment.

The 1st yardstick YS1 (Definition of the improvement approach) has been achieved making the proper synergetic use of
the of the ami [5] and GQM [10] methodologies, using also some elements of the measurement process of SPICE [7]. The
fundamental points of the approach have been published and disseminated (see [17]).

The 2nd yardstick YS2 (Definition of the documentation process) has been achieved [20] exploiting (as said in Table
3.1-1, first row) the process models and guidelines provided by the standards ISO/IEC 12207 [1] and ISO/IEC 15504 [7],
integrated with the relevant IEEE guidelines, in order to produce the process descriptions, the document templates, and the
documentation management procedures.
For each of the document types planned for the experiment, the DOCPROVE project team has verified that there is a
corresponding process model in SPICE [7]. In the framework of DOCPROVE the processes, which have a technical
specification document as direct output, have been called “primary documentation processes” (Figure 5).
Each “primary documentation process” has been defined, in DOCPROVE, making as much reference as possible to the
process standard ISO/IEC 15504 [7], and using the following schema:
− Adopted process model
− Process purpose

Improving software documentation: a customer oriented approach

QWE’99, Brussels, 1-5 November 1999 P. Moro, A. Cicu Page 12 of 20
© Optec srl and MetriQs srl, 1999

− Responsibility
− Input
− Input criteria
− Process activities description
− Quality review of documents and of other process outcomes
− Output
− Baselining of output
− Characteristics of process’ Work Products
− Reference standards.

A remarkable result is the explicit orientation to customer needs of the document template (inspired from the IEEE
standard 1362–1998 [12]) selected in support of the elicitation of Application requirements. This is considered one of the
distinguishing aspects of the performed experiment: Optec management feels now to have acquired a useful guide for
defining and agreeing the customer needs. The approach supported by the IEEE standard [12] requires that the analyst
describes the following major points:
− the current product or process of the customer
− business goals of the customer
− which are the limitations or weaknesses of the current product or process constituting an impediment for the customer

to achieve the business goals
− which are the modifications of the current product/process or new functions required to overcome the limitations
− the characteristics of the new product/process resulting from the installation of the modified or new functions.

The above schema stimulates the analyst to acquire and master the knowledge on customer’s business processes: such
knowledge allows the analysts and commercial people of the vendor to formulate the specifications of a new solution which
matches as much as possible the customer problems and expectations. More, a good knowledge of customer’s processes
(i.e.: of its market) allows the vendor to even anticipate future needs of the customer and to be perceived from the customer
as a real partner supporting its business.

The adopted general documentation process model (see the cycle in Figures 5 and 6) gives evidence of a set of
support/organisation activities that are performed in order to control and rework correctly a document (review, problem
reporting, change control, data collection and metrics), and to prepare and sustain the prerequisites for improving the
documentation activities (training, project management, process improvement).
Again SPICE guidelines provide a process model for the above support/organisational activities. So, even if such activities
are not the object of improvement in DOCPROVE (they are simply used in support of the primary documentation
processes), the DOCPROVE team has considered useful to define a process also for them, taking inspiration from SPICE,
with the aim of ensuring the best support conditions to the activities to be improved.

All the planned documentation experiments have been concluded. The resulting documents were submitted to technical
reviews and reported in suitable Technical review reports (the Yardsticks YS3, YS4, YS5): the major outcomes resulting
from the reviews have been used throughout this paper. The quality control activities performed through such technical
reviews have been accurate, applying the review criteria documented in the relevant process descriptions [20]. A result is
that Optec participants to the project affirm that the specification documents produced are more complete and more stable
than the rather informal documentation used in the past for the system specification and design phases. The evidence is
supported by the adherence of developed documents structure to the selected documentation models.

Change control of documents has not always been performed formally: in some cases the change requests were not
formalised, but changes were performed directly.

The planned data collection and metrics activities have been performed. We now have the following results (previously
not available):
− a set of metrics driven by project and organisational goals (supporting the control of product quality, and of process

quality and efficiency)
− an initial practice of a data collection discipline
− an initial nucleus of historical data
− an initial set of measures against which to perform future comparisons.

Improving software documentation: a customer oriented approach

QWE’99, Brussels, 1-5 November 1999 P. Moro, A. Cicu Page 13 of 20
© Optec srl and MetriQs srl, 1999

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

AR SYSR SYSA SWR SWA D D UM

C hanged (%)

Added (%)

De leted (%)

Total modified (%)

w/out UM w/ UM
Total requirements specified 112 321 64 178 86 150 756 911 1667

Requirements changed 14 2 4 5 0 2 2 27 29
Requirements added 11 9 1 6 8 6 20 41 61
Requirements deleted 1 1 0 0 0 0 0 2 2

Total requirements modified 26 12 5 11 8 8 22 70 92
Requirements changed (%) 12.5% 0.6% 6.3% 2.8% 0.0% 1.3% 0.3% 3.0% 1.7%
Requirements added (%) 9.8% 2.8% 1.6% 3.4% 9.3% 4.0% 2.6% 4.5% 3.7%
Requirements deleted (%) 0.9% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.1%

Total requirements modified (%) 23.2% 3.7% 7.8% 6.2% 9.3% 5.3% 2.9% 7.7% 5.5%

Grand total
AR SYSR SYSA SWR SWA DD UMExperimented document

Figure 8 – Documentation completeness and stability indicators

Among the documentation quality metrics produced in DOCPROVE as planned, a set of documentation completeness and
stability indicators has been produced, which can be used in the future in order to monitor future progresses in the
requirements elicitation and specification capabilities (see Figure 8). The diagram shows that there has been some
improvement, in terms of percentage of requirements modified, going from the initial phases of the experiment toward the
conclusive phases. This could be a result of an increasing capability of mastering the topics suggested by the documentation
templates.

The planned process assessment has been performed, with the purpose of evaluating the process capability levels of the
processes that were to be improved.
The assessment has been performed in a way compliant to the SPICE guidelines (see [7] parts 3, 4, and 5). The assessment
report provides a detailed analysis of the strengths and weaknesses for each assessed process, making precise references, as
evidence of each finding, to the experimented guidelines and documents.

The results of the assessment are summarised in the process profiles shown in Figure 9. Figure 9 provides the results of the
recent SPICE compliant assessment, performed on the processes performed with the support of the DOCPROVE project,
and the results of an initial SPICE assessment made in July 1997. Basically it can be said that documentation processes
capabilities are now at level 2, as far as the activities performed on the Baseline project are considered, and that a
stabilisation of the achieved capability level is ready to be pursued making use, in the next projects, of the guidelines and
experience accumulated in DOCPROVE.

From the point of view of process assessment and improvement, the following statements summarise the impact:

− process modelling and description has been supported in a consistent and practical way, as shown above, from the
standards ISO/IEC 12207 (see [1], [3], [4]), and ISO/IEC TR 15504 [7]. The process descriptions produced in the
document [20] are a relevant added value to Optec quality system, ready also to be used with ISO 9000:2000 which
will require explicitly the description of the quality system by processes;

− process assessment was very well supported by the mentioned assessment guidelines ([7] parts 3, 4, and 5).
Specifically, the guide available in [7] part 5 provides a set of process capability indicators which are helpful in

Improving software documentation: a customer oriented approach

QWE’99, Brussels, 1-5 November 1999 P. Moro, A. Cicu Page 14 of 20
© Optec srl and MetriQs srl, 1999

conducting a detailed review of process performance and in detecting and pointing out the major weaknesses. The
assessment report produced with this guidance is a real asset for Optec, that contains practical and detailed indications
for further improvement actions.

PA 1.1 PA 2.1 PA 2.2 PA 1.1 PA 2.1 PA 2.2

Process
performance

Performance
management

Work product
management

Process
performance

Performance
management

Work product
management

CUS.3

ENG.1.1

ENG.1.2

ENG.1.3

ENG.1.2

SUP.1

ORG.5

LEGENDA not achieved (N)
partially achieved (P)

largely achieved (L)
fully achieved (F)

After the improvement project

Process attributes

Before the improvement project

Process attributes

User Manual document process

Documentation process

Data collection and metrics (measurement)
process

Application Requirements document process

System Requirements and System
architecture document process

Software Requirements document process

Software Architecture and Detailed Design
document process

Process name

Process

SPICE
process
model ID

Figure 9 – DOCPROVE project assessed process capability profiles

Thanks to the above positive impacts, in synthesis Optec’s management evaluates that the project has contributed to solve
the following major process problems:
a) requirements instability. Optec analysts and designers evaluate to be able now, thanks to the acquired documentation

models and to the documentation quality metrics, to produce documents which are more complete, more stable, more
customer oriented; and to possess experimented criteria for guiding technical reviews that help in timely detection of
analysis and design defects and weaknesses;

b) the control of internal deliveries. The technical review discipline experimented in the project will be transferred to
other current Optec projects (a recent decision by Optec management has been taken with this aim), in order to control
in detail the quality of internal deliveries of documents and work products coming out from Optec departments or from
external suppliers. More, Optec management intends to adopt the templates resulting from the experiment, in order to
control any kind of requirements and work products, in any phase of the Optec life cycle (going from the customer
contacts to the management of intermediate suppliers, and to the management of deliveries and acceptance tests);

c) the control of the entire development process. Project planning, thanks to the accurate project plan structure required
by the Commission in order to manage and monitor the progress of the PIE, has been another positive experience that
Optec management intends to replicate in the new Optec projects, in order to control better than in the past the efforts
and times spent. Optec management evaluates that the planning schema experimented in DOCPROVE is applicable,
with minimal tailoring, in the other Optec projects;

and the following product problems:
a) project time and project cost deviations. The reuse of the templates experimented in DOCPROVE will help Optec

personnel in defining with more precision the structure of the work products also in terms of components, and therefore
in estimating with lower risk of errors the efforts and times required for the development and testing. This improved
capability should reduce the amplitude of deviations;

b) low reliability at delivery time. Again the discipline of the above mentioned intermediate technical reviews, performed
on each intermediate work product, will contribute to clean the work products from defects already in the phase when
they are injected, reducing so the risks of defective final products delivered to the customer. The discipline
experimented in DOCPROVE has been already transferred, with a good satisfaction of the customer, to another Optec

Improving software documentation: a customer oriented approach

QWE’99, Brussels, 1-5 November 1999 P. Moro, A. Cicu Page 15 of 20
© Optec srl and MetriQs srl, 1999

relevant project (from now on called ALPHA): in this case also the review and acceptance requirements have been
preliminarly defined and agreed in co-operation with the customer representatives. This point is considered to be a
remarkable spin-off of DOCPROVE project.

4.2. Business impact

The most relevant impacts on the business operation, on the basis of the achieved results, can be described through the
following benefits:

− acceleration towards the Quality System’s ISO 9001 compliance certification. The achieved results constitute already
an improvement of Optec’s Quality System, because the defined process models will become, after the project, a basic
part of Optec’s Quality System procedures (specifically: the project life cycle, the documentation templates; the review
procedure, the data collection and metrics guides, the process assessment and improvement guide), characterised by a
finalisation of the quality activities in support of customer needs and satisfaction.

− Better control of the planned time to market. Some models (Application Requirements, the clauses of requirement
testability of System and Software Requirements, and the mentioned project planning schema), have been already
applied in the mentioned ALPHA Optec project, passing also with success a joint review with the customer. This is a
first (after DOCPROVE) evidence of an Optec’s consolidated capability in eliciting the customer’s requirements in a
more complete and stable way, and in defining a detailed Work breakdown, which is the basis for development and
testing plans which are more complete, more accurate, and therefore subject to lower estimation error, and more able to
support a detailed control of the actual progress.

− The higher stability and completeness of requirements helps in achieving a higher delivered quality, thanks to less
requirements changes in the final phases, and to quality control criteria defined in a finer detail (thanks to this aspect a
satisfactory delivered quality has been already experienced in the ALPHA project).

4.3. Organisational impact

The improvements in project documentation are contributing to solve the following organisational problems:

− Lack of infrastructure for project estimation. The good level of completeness achieved in the definition of
requirements allows to define plans in a deeper detail, based on a more detailed definition of Work breakdown
structure, with positive impact on accuracy of estimates: a planning experience supported by detailed estimates has
been the quality plan of ALPHA project.

− Engineers tend to shortcut the standards due to overhead. Often the standards are not so easy to apply in the daily
activity, because of difficulties in interpretation. DOCPROVE has produced documentation guidelines (thanks to the
use of ProDoc and ISOplus tools [21], [22]) which contain, for each topics to be specified, a set of hidden help texts
(with examples) which make the topics more easy to understand. Such DOCPROVE documentation guidelines have
been produced independent of the type of system and software to be specified, thanks to the inspiration of IEEE
standards. They are now available for other projects: a first usage outside DOCPROVE has been in the project ALPHA.
Their ease of use, and the time saved because of the ready to use templates, sustain the motivation of engineers to apply
them.

− Low communication among projects. The more accurate and updated documentation helps a better communication
among projects, in the frequent cases where there are opportunities of specification, or design, or technical approach
reuse: in the case of ALPHA project, the reuse did regard a plan schema already experienced in DOCPROVE.

4.4. Culture impact

«Business driven quality culture» has been the slogan inspiring the improvement project.

Properly planned training sessions were held to transfer to Optec people on one side a business oriented quality view,
insisting on customer process driven elicitation of requirements, in order that the customer perceives the supplier as its
business partner. In order to improve Optec abilities towards this objective, high care was put in teaching Optec people how
to help the customer in expressing his requirements and needs.
With this aim, specific seminars have been organised where to transfer the know-how contained in the IEEE standard 1362-
1998 [12] (which has been specifically prepared in support of elicitation of customer business rationales, and of customer
needs), and to teach a model for process analysis and description. The effects of this tutorial action (as well as of the other

Improving software documentation: a customer oriented approach

QWE’99, Brussels, 1-5 November 1999 P. Moro, A. Cicu Page 16 of 20
© Optec srl and MetriQs srl, 1999

seminars held for other types of documents) has been controlled via specific questionnaires, where Optec people did express
their satisfaction degree. An example of training seminar satisfaction results is provided in Figure 10.

Training Task: T2.1-A2/2

Attendees: 3 Date: October 15, 1998
Topics - Process analysis exercise: basis for Application Requirements elicitation.

Insuff Low Medium Good Very good
0% 0% 11% 63% 26%

Total Scores

1 Clearness and intelligibility of
explanations

2 Usefulness and applicability of concepts
3 Wealth and practicability of examples
4 Adequacy of the time dedicated to

argumentations and discussions
5 Coherence of the developed program

versus the contents to be explained
6 Adequacy of the distributed handouts
7 Involvement / possibility to participate for

the attendees
8 Global evaluation of the teacher's

interventions
9 Overall satisfaction

Evaluation criteria

Figure 10 – DOCPROVE project: example of Employee Training Satisfaction Degree

On the other side other facilitator factors have been used during the experiment, in order to facilitate a culture evolution
and enrichment: management commitment, two-ways communication and people involvement in setting-up the goals of
the improvement project; use of customer feedback for planning future projects (this has been applied in the ALPHA
project); internal dissemination of the improvement approach and results; provision of suitable tools and resources; tracking
and managing the status of the project, and verification of improvements through planned measures.

4.5. Skills impact

The following skills and knowledge types have been generated by the improvement project (thanks to the training actions,
and to the practical experimentation of new documentation practices in the context of a real project, the Baseline project):

− Customer process modelling, customer needs elicitation (experimented in DOCPROVE, and partially in project
ALPHA).

− Ability to define and/or adapt system and software documentation templates (fully experimented in DOCPROVE, and
in the Customer Needs, Quality Plan and Quality records forms of ALPHA project).

− Management of a systemic approach to projects (a specific care has been dedicated in DOCPROVE to the definition of
System documents, under the persuasion that stable software requirements originate from well specified system
requirements; this approach did allow to produce cultural and practical benefits also for system people in Optec).

− Matured awareness of advantages of good documentation on business results (this result has been achieved thanks to
the mentioned training action regarding the analysis of customer processes and needs, and also thanks to the approach
adopted for the definition of metrics, which were defined as indicators linked to defined business goals (see Figure 4,
and document [17]). This approach consolidated the awareness that every project activity must be finalised to business
goals.

− Good understanding of advantages of traceability and attributes of requirements as key ingredients of the approach, that
help in performing good review and quality control activities (as a matter of fact, the degree of detail in quality control
was facilitated in terms of correctness of review, and of time spent in review, by the use of traceability and
requirements attribute). For example, the evaluation of completeness of requirements is practically impossible in
medium/large projects, without the help of traceability.

− Knowledge of ISO Software process standards (such as ISO 12207 [1] and SPICE [7]) as ideal and clear guidelines for
planning future incremental improvement actions (the knowledge accumulated regarding the two mentioned standards

Improving software documentation: a customer oriented approach

QWE’99, Brussels, 1-5 November 1999 P. Moro, A. Cicu Page 17 of 20
© Optec srl and MetriQs srl, 1999

is considered reusable for approaching the next process assessment and improvement activities in Optec, also at system
level, in process areas different from the experimented documentation processes).

5. Key Lessons learned

The key lessons learned are considered to be the following ones.

5.1. Technical/technological point of view

From a software engineering point of view:
− The process improvement program is considered to have been well supported, by the available international

standards such as ISO/IEC 12207 [1], ISO/IEC 15504 (SPICE) [7], for the activities experimented of process
definition and establishment. Such standards may give to a novice reader the impression to be too much wide and
complex. However, once their structure has been acquired (and this is easy) in such a way that the software engineering
process specialist or the software engineer can find easily the section relevant to the process to be improved, such
standards contain process model descriptions which are complete as well as sufficiently precise, concise, practical and
reusable. We evaluate also that process assessment has been supported well by ISO/IEC 15504 ([7], parts 3, 4, 5) (see
in section 4.1 of this paper the comments regarding the assessment).
However, as far as the document preparation activities are considered, the details available in ISO/IEC 15504 Part 5 [7],
and in ISO/IEC 12207.1 [3] constitute very useful document skeletons, but they need to be completed by more rich
guidelines, such as the ones provided by the selected IEEE standards ([12], [13], [14], [15], [16]).

− The ami methodology [5] is an application of management good sense to solve the problem of defining useful and
practical measurements of improvement. The methodology provides good guidance for defining metrics which are
linked to the selected business goals, especially with the suggested use of good sense questions which help in
evaluating if a goal has been achieved.

− Cheap but professional tools are available, like ProDoc and ISOplus ([21], [22]) which help significantly in providing a
start basis in the definition of the document templates and procedures (their use generates a saving of effort and an
increase of quality).

− Traceability of requirements and specification of requirement attributes are means that make easier and cheaper
any activity of requirement quality control and change control. The level of details required for performing good
controls is manageable only if a tool is used: the adopted tool [23] is evaluated to be practical and easy to learn.

− The accuracy in documentation is the best pre-requisite for planning a project, because well specified requirements
support the production of more accurate effort and schedule estimates. This point has been already confirmed in Optec
by the planning activity of project ALPHA, where specific care was put in defining the testability requirements,
according to the guidelines derived from DOCPROVE experience.

5.2. Business point of view

A good awareness has matured in Optec about the following points:
− The initial usage (one month period) of the new Horus release developed by the Baseline project appears to be

significantly less defective in comparison with past releases, even if, due to lack of past data, no quantitative
comparison can be made. It is too early to say that this benefit (if confirmed by further use) is due to the care put in
documenting the components impacted with the baseline project. We have to wait for a longer usage period, however it
is interesting to record that already now the software team and system team say that system and software specification
quality is under better control. But also at system level the Optec’s systems documentation is evaluated to have
received good improvements: being the system requirements evaluated to be much more solid and complete versus past
experiences, and being therefore the deriving quality of mechanical and optical parts more controlled, Optec’s people
affirm that good documentation will produce higher quality at delivery.

− The development of an improvement project, like DOCPROVE, which was intentionally oriented to improve also the
management of customer needs, produces results (as the document templates and document management procedures)
which, thanks to the decision of incorporating them into the Optec’s Quality System, makes the Quality System more
customer oriented and more ready to the ISO 9001 certification.

− The achieved higher stability and completeness of requirements produces also positive effects on the ability to keep the
estimated delivery times and development costs, for two main reasons: Optec’s designer have experimented that
good early definition of requirements keeps away the reasons of changes, and therefore the related additional cycles of

Improving software documentation: a customer oriented approach

QWE’99, Brussels, 1-5 November 1999 P. Moro, A. Cicu Page 18 of 20
© Optec srl and MetriQs srl, 1999

rework, and that good quality requirements help in preparing a development and qualification plan with much more
details than in the past, and therefore less prone to errors in total estimates.

− Better technical specifications improve the company image towards the customers, as it was verified in a recent joint
review with the customer of ALPHA project, showing a requirement specification document developed according to
the DOCPROVE guidelines.

5.3. Strengths and weaknesses of the experiment

The following points should be remarked, as Optec’s view of the usefulness of the experiment.

As strength points:
− the systematic adoption of affirmed international standards has allowed to define and put in practice a consistent

approach (which includes improvement measurements), reusing consolidated experiences that other experts have put in
the standards, and to avoid the risks of home-made approaches;

− use of consolidated but simple, cheap tools has allowed to concentrate the efforts on cultural, methodological and
document content aspects rather than on support aspects;

− thanks to the fact that the approach has been experimented in Optec also at system level (and in part in the ALPHA
project), and that the adopted process models (quoting [7] part 4, section. 5.2 5-th paragraph: “The model provided in
ISO/IEC TR 15504-5 is a generic model that is designed to be applicable across all industry sectors and application
domains”; quoting [7] part 4, section. 6.3: “A documented process supports repeatability of an assessment approach”),
documentation templates and tools are well independent from the type of system and software to be developed, we can
say that a full replicability of the experience is ensured first of all in other Optec’s projects, but also in other
companies, and other business domains. For example, the process analysis and customer needs analysis approach
supported by the IEEE Std 1362-1998 [12] is really domain independent;

− various facilitator factors, already mentioned in section 4.4 (Culture impact).

As weaknesses:
− the lack of documentation examples adherent to the specific company’s business, during the training sessions. If

such examples were present, the effectiveness of the training and of the learning phases would have been even higher;
− the lack of workgroup/workflow management tool and environment: the use of such a kind of tool would have

increased significantly the productivity of the team in the DOCPROVE project;
− difficulties in keeping the schedules, due in part to underestimation of the needed efforts, and mostly to variability of

priorities due to urgency of other Optec projects.

It can be said that the overall benefit generated by the DOCPROVE project for Optec consists on the following points:
− to have imported/digested a quality culture oriented to elicit and to manage customer needs, to consolidate the

related requirements and to formulate plans consistent with the requirements;
− the practical use of schemas for expressing the requirements starting from the contacts with the customer, and for

using such requirements as reference (baseline) against which to make periodic checks of the status of a project;
− last but not least, the possibility to experiment in DOCPROVE (for the DOCPROVE project itself) a project

management schema. We mean the schema pushed by the European Commission, which is based on: a well
thought plan (contained in the project Annex), the successive formulation of a detailed plan, the Periodic Project
Reports and Mid Term Report. The templates and guidelines, suggested by the Commission for such reports, are
considered by Optec management a good tool which guides the intermediate reviews and controls, and which stimulates
timely and criticising tracking thoughts and actions, during the way, on the important milestones to be achieved. We
think that similar report schemas, properly adapted, will be very useful also for the other Optec’s projects.

Improving software documentation: a customer oriented approach

QWE’99, Brussels, 1-5 November 1999 P. Moro, A. Cicu Page 19 of 20
© Optec srl and MetriQs srl, 1999

6. Conclusions and Future Actions

Optec will give serious consideration to the use of SPICE and of ISO 12027 in support of future own improvement actions,
and to ensure a further dissemination of that process culture to Optec people, as a way to consolidate and sustain the
management’s and employees’ motivation to continue to improve the Optec’s processes, and to accelerate the
achievement of ISO 9001 certification.

In particular:

− To implement with priority, in each Optec future project, the preparation of the Application Requirements document,
of the System Requirements document, and of the Project Plan, profiting of the DOCPROVE experience. Plans are
seen as the key means to put the management in the position and attitude to allocate resources to next improvement
actions.

− With the above aim, derive from the experimented templates, with priority to the above document types, a set of
refined templates which can be proposed and discussed with the other Optec people, as work styles replicable in the
other projects.

− Put the best care in transferring the results of the experiment into the Optec’s Quality system (i.e. integrate the refined
templates into the Quality System, involving the management and the designers in the necessary reviews and decisions)

− Apply, on future project, at least the measures of delivered defect indicators, schedule_matching and
spent_effort_matching, with the related efficiency measures.

− Take into consideration the possibility to disseminate the experimented practices to our key suppliers and key
customers, for making easier in the future the co-operations for managing the requirements and the suppliers’ contracts.

Improving software documentation: a customer oriented approach

QWE’99, Brussels, 1-5 November 1999 P. Moro, A. Cicu Page 20 of 20
© Optec srl and MetriQs srl, 1999

References

[1] 12207 Package - IEEE Standard for Industry Implementation of International Standard ISO/IEC 12207:1995,
Standard for Information Technology - Software Life Cycle processes (the package includes the ISO/IEC
12207:1995 standard, and the Standards [3] and [4])

[2] J-STD-016-1995 - EIA/IEEE Interim Standard for Information Technology, Software Life Cycle processes, Software
Development, Acquirer-Supplier Agreement (Code: SH94377-NYF) (this standard provides a set of guidelines for
the documents to be produced during the life cycle)

[3] 12207.1-1997 - IEEE Standard for Industry Implementation of International Standard ISO/IEC 12207:1995,
Standard for Information Technology - Software Life Cycle processes - Life Cycle Data

[4] 12207.2-1997 - IEEE Standard for Industry Implementation of International Standard ISO/IEC 12207:1995,
Standard for Information Technology - Software Life Cycle processes - Implementation Considerations

[5] ami (Application of Metrics in Industry), Metric Users’ Handbook - A quantitative approach to software
management - The ami consortium c/o The ami User Group, CSSE, South Bank University, 103 Borough Road,
London SE1 0AA, UK

[6] Paulk M.C., Curtis B., Chrissis M.B., Weber C.V., 1995, The Capability Maturity Model, Guidelines for Improving
the Software process, Carnegie Mellon University, Software Engineering Institute, SEI Series in Software
Engineering, Addison Wesley

[7] ISO/IEC TR 15504-n: Information Technology - Software Process Assessment (Parts 1 to 9)
[8] 1028-1997 IEEE Standard for Software Reviews (code SH94592-NYF)
[9] 1012-1998 IEEE Standard for Software Verification and Validation (code SH94625-NYF)
[10] Basili V.R., Rombach H.D., 1988, «The TAME project: towards improvement-oriented software environment»,

IEEE Transaction on Software Engineering, vol.14, n. 6, June, pp. 322-331
[11] ESSI PIE - Annex I - Project Programme - 27875 - DOCPROVE - Improvement of Software documentation

practices, Version 1.2, 30-06-98
[12] 1362 -1998 IEEE Guide for Information Technology--System Definition--Concept of Operations Document (code

AD218-NYF)
[13] 1233-1996 IEEE Guide for Developing System Requirements Specifications (Code: SS94407-NYF)
[14] 830-1998 IEEE Recommended Practice for Software Requirements Specifications (Code: SH94654-NYF)
[15] 1016-1998 IEEE Recommended Practice for Software Design Description (Code: SH11031-NYF)
[16] 1063-1987 (Reaffirmed 1993) ANSI/IEEE Standard for Software User Documentation (Code: SS12039-NYF)
[17] Moro P., Cicu A., 1999, «Improvement of software documentation practices: the approach adopted by the ESSI PIE

(Process Improvement Experiment) DOCPROVE», Proceedings of Sixth European Conference on Software Quality
(SOFTWARE QUALITY – THE WAY TO EXCELLENCE), April 12-16, 1999, Vienna (Austria) (see also the
webs www.optec-srl.com, and www.metriqs.com)

[18] 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology (Code: SH13748-NYF)
[19] Moro P., Cicu A., 1999, «Improving software documentation: a customer oriented approach. The results of the ESSI

PIE DOCPROVE project», Proceedings of the 3rd International Software Quality Week Europe (QWE’99), Brussels
(Belgium), 1-5 November 1999 – Viewgraph presentation published as part of the Proceedings

[20] ESSI PIE - Project number 27875 - DOCPROVE - The documentation process definition – Part 1 and Part 2 –
Deliverable references: EDR1-1, EDR1-2, Version 1, 08-02-99

[21] ProDoc V2.0 – User Manual (Handbook to Systems Development Documentation) – Set of documentation templates
in support of software specifications and plans preparation – Software Productivity Centre, Vancouver, B.C., Canada

[22] ISOplus V1.0 – User Manual - Library of templates for the preparation of the Quality manual, the procedures and
forms of an ISO 9001 compliant Quality System – Software Productivity Centre, Vancouver, B.C., Canada

[23] RequisitePro, version 3.1 – User Manual - Rational Software Corporation

7. Acknowledgements

This work reflects experimentation performed in the framework of the ESSI PIE Project DOCPROVE, Contract No. 27875
[11], with the European Commission financial support.

Improving software
documentation: a Customer
oriented approach. The results of
the ESSI PIE DOCPROVE project.

Pietro Moro, Optec srl
Antonio Cicu, MetriQs srl

3rd International Software Quality Week Europe
(QWE’99)
Brussels, 1-5 November 1999

ESSI PIE Project 27875

QWE’99, Brussels, 1-5 November, 1999 2P. Moro, A. Cicu

Optec’s Context

Opto-electronic Imaging Systems

Military

Medical
Imaging

Robotics
Industrial

Photo

Research

Space
X-Ray Imaging

TV Cameras

Optec’s Business Cycle

Optical System

Customer

Customer
Requests

Contract

OfferSystem Design
•Optical Design (Horus)
•Mechanical Design
•Electronic Design
•Prototyping &
Experimentation

Production

Sales

Other
External

Productions

QWE’99, Brussels, 1-5 November, 1999 3P. Moro, A. Cicu

Horus: A Lens Design Program

• Optec’s proprietary
• A strategic investment
• Optical design competence embedded
• Continuous development

The objective of the PIE:
To improve software documentation process

QWE’99, Brussels, 1-5 November, 1999 4P. Moro, A. Cicu

The Baseline Project
Horus and the ESSI/PIE Project DOCPROVE

1998 1999

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar May Jun Jul Aug Sep Oct Nov Dec

PIE

Baseline Project: Design and Development of Horus R4.2

R4.0 R4.1 R4.2

Releases of Horus

Apr

Horus
Release 4.2

Specifiche
di

Architettura

Specifiche Documenti
su Algoritmi
di calcolo

Horus
Release 4.1

Documenti
su Algoritmi
di calcolo

Baseline Project’s Content

• functional extensions
• User Interface improvement
• removal of defects

QWE’99, Brussels, 1-5 November, 1999 5P. Moro, A. Cicu

DOCPROVE PIE Goals Tree (ami method)

Documentation
Process

Improvement
Goals

Decrease effort spent
and/or time elapsed in
documentation tasks

Increase the quality of
documents

Improve
documentation
guidelines and tools

Improve people’s skills
and motivations

Extend Optec products applicability through
ease of customisation and timeliness of
solution provision (Goal 3)

PIE Business
Goals

Reduce times (Time To Market) and costs for
solution provision; increase margins (Goal 4)

Documentation
Process

Improvement
Sub-goals

Reduce elapsed
time, for a given
quality level, in
documentation work
and rework

Reduce effort spent,
for a given quality
level, in
documentation work
and rework

Reduce the number
of delivered defects

Increase
documentation
completeness and
stability

Adopt tools
supporting the
selected
documentation
process

Define and apply a
consolidated
documentation
process model

Develop people
awareness of
business benefits
achievable with
documentation

Train involved people
on the defined
process and selected
tools

Reduce slippage of
actual spent effort
and schedule versus
estimated

QWE’99, Brussels, 1-5 November, 1999 6P. Moro, A. Cicu

Experimented Documents

The Life Cycle: macro phases

Operation,
Support,

Maintenance,
 Sale

Testing and
Installation

Final
User

Manual

Development
and Integration

Software
Architecture

Detailed
Design

System and Software
Requirements,

Plans, Offer,
Contract

System
Requirements

System
Architecture

Software
Requirements

Definition of
Application

Requirements,
Sale

Application
Requirements

QWE’99, Brussels, 1-5 November, 1999 7P. Moro, A. Cicu

The Process for Each Document
(Primary Documentation Processes)

document
preparation

or
document

rework

Primary SPICE Processes
A specific
IEEE std

as
template
for each

document
type

Output
document

Baselined
output

documentY

N

Review
OK?

document
quality
review

data collection and metrics

problem
 resolution

change
control

SPICE
Process Model

User Requirements CUS.3
System Requirements
System Architecture
Software Requirements ENG.1.2
Software Architecture
Detailed Design
User Manual ENG.1.2

ENG.1.1

ENG.1.3

QWE’99, Brussels, 1-5 November, 1999 8P. Moro, A. Cicu

The Process for Each Document
(Supporting and Organisational Processes)

Training
Process Improvement
Project Management

Output
document

Y

N

Review
OK?

problem
 resolution

change
control

A specific
IEEE std

as
template
for each

document
type

document
quality
review

data collection and metrics

document
preparation

or
document

rework

document
quality
review

data collection and metrics

document
preparation

or
document

rework

Baselined
output

document

SPICE
Process Model

Quality Review SUP.4
Data Collection and
Metrics

ORG.5

Problem Resolution SUP.8
Change Control SUP.2
Documentation SUP.1 Supporting or Organisational

SPICE Processes

QWE’99, Brussels, 1-5 November, 1999 9P. Moro, A. Cicu

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

AR SYSR SYSA SWR SWA DD UM

Changed (%)

Added (%)

Deleted (%)

Total modified (%)

w/out UM w/ UM
Total requirements specified 112 321 64 178 86 150 756 911 1667

Requirements changed 14 2 4 5 0 2 2 27 29
Requirements added 11 9 1 6 8 6 20 41 61
Requirements deleted 1 1 0 0 0 0 0 2 2

Total requirements modified 26 12 5 11 8 8 22 70 92
Requirements changed (%) 12.5% 0.6% 6.3% 2.8% 0.0% 1.3% 0.3% 3.0% 1.7%
Requirements added (%) 9.8% 2.8% 1.6% 3.4% 9.3% 4.0% 2.6% 4.5% 3.7%
Requirements deleted (%) 0.9% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.1%

Total requirements modified (%) 23.2% 3.7% 7.8% 6.2% 9.3% 5.3% 2.9% 7.7% 5.5%

Grand total
AR SYSR SYSA SWR SWA DD UMExperimented document

Technical Impact:
Documentation Completeness and Stability

QWE’99, Brussels, 1-5 November, 1999 10P. Moro, A. Cicu

Technical Impact:
DOCPROVE Project SPICE Assessment

PA 1.1 PA 2.1 PA 2.2 PA 1.1 PA 2.1 PA 2.2

Process
performance

Performance
management

Work product
management

Process
performance

Performance
management

Work product
management

CUS.3

ENG.1.1

ENG.1.2

ENG.1.3

ENG.1.2

SUP.1

ORG.5

LEGENDA not achieved (N)
partially achieved (P)

largely achieved (L)
fully achieved (F)

After the improvement project

Process attributes

Before the improvement project

Process attributes

User Manual document process

Documentation process

Data collection and metrics (measurement)
process

Application Requirements document process

System Requirements and System
architecture document process

Software Requirements document process

Software Architecture and Detailed Design
document process

Process name

Process

SPICE
process
model ID

QWE’99, Brussels, 1-5 November, 1999 11P. Moro, A. Cicu

Business Impact

Relevant Benefits:

• Acceleration towards Quality System’s ISO
9000 compliant Certification

• Time-to-Market

• Higher delivered quality

QWE’99, Brussels, 1-5 November, 1999 12P. Moro, A. Cicu

Organisational Impact

The project has contributed to solve the
following problems:

• Lack of infrastructure for project estimation

• Engineers tend to shortcut the standards due to
overhead

• Low communication among projects

QWE’99, Brussels, 1-5 November, 1999 13P. Moro, A. Cicu

Culture Impact
• Business driven quality culture,

based on capability of understanding and analysing
Customer’s processes

• Increased capability of helping the Customer in expressing its
needs

• Facilitators of culture evolution:
– management commitment

– people involvement in setting up the improvement goals

– use of Customer feedback in support of project planning

– internal dissemination

QWE’99, Brussels, 1-5 November, 1999 14P. Moro, A. Cicu

Culture Impact:
Employee Training Satisfaction Degree:
An Example
Training Task: T2.1-A2/2

Attendees: 3 Date: October 15, 1998
Topics - Process analysis exercise: basis for Application Requirements elicitation.

Insuff Low Medium Good Very good
0% 0% 11% 63% 26%

Total Scores

1 Clearness and intelligibility of
explanations

2 Usefulness and applicability of concepts
3 Wealth and practicability of examples
4 Adequacy of the time dedicated to

argumentations and discussions
5 Coherence of the developed program

versus the contents to be explained
6 Adequacy of the distributed handouts
7 Involvement / possibility to participate for

the attendees
8 Global evaluation of the teacher's

interventions
9 Overall satisfaction

Evaluation criteria

QWE’99, Brussels, 1-5 November, 1999 15P. Moro, A. Cicu

Skills Impact
Skills and knowledge types generated by the project:

• Customer process modelling, Customer needs elicitation

• Ability to define and/or adapt system and software
documentation templates

• Management of a systemic approach to projects

• Use of traceability and attributes of requirements

• Knowledge of ISO Software process standards (such as ISO
12207 and SPICE)

QWE’99, Brussels, 1-5 November, 1999 16P. Moro, A. Cicu

Lessons Learned
Technical / Technological Point of View
• Process assessment and process improvement

well supported by ISO/IEC 12207 and ISO/IEC 15504 (SPICE) stds

• ami methodology
management good sense applied for defining practical measurements

• Cheap, but professional tools
available for defining document templates and procedures

• Requirements traceability and attributes
support a more accurate quality control and change control

• Accurate documentation
prerequisite for planning a project

• Experiment evaluated as replicable
inside and outside Optec

QWE’99, Brussels, 1-5 November, 1999 17P. Moro, A. Cicu

Lessons Learned
Business Point of View

The experimented documentation produces:

• Higher quality at delivery

• Quality system more Customer oriented and more ready to
ISO 9001 Certification

• Better ability to match estimated delivery times and
development costs

• Better Company image

QWE’99, Brussels, 1-5 November, 1999 18P. Moro, A. Cicu

Optec srl

via Canova, 10
I-20017 RHO (MI)

tel: +39 0293501157
fax: +39 0293500207

moro.optec@agora.stm.it
http://www.optec-srl.com

QWE’99, Brussels, 1-5 November, 1999 19P. Moro, A. Cicu

How to test the EURO
effectively

Software Quality Week Europe 1999 - Brussels

Andreas Rudolf / Rainer Pirker
AD Consultants
IBM Global Services Austria

IBM Global Services Austria

Presentation overview

Our experience

Legal requirements

EURO implementation
(multistage plan)

EURO ready versus
EURO fit

Technical phases

Business transaction
versus technical
oriented testing

Test activities per phase

Unit tests

Function tests

System tests

End to End tests
(subsystem integration
tests)

Production supervision

Problems seen

Lessons learned

IBM Global Services Austria

Our experience has been extended by large EURO and
Y2K testing projects in different industries

Our Department is strongly focused on:
Test Consulting (EURO, Y2K, e-business, new product developments
etc.)

Application Development Effectivness Consulting (supporting the client
to assess and improve their application development processes)

Our experience includes:
Test consulting and test management for a dozen large EURO and
Y2K projects

Marketing and workshop activities for dozens of customer projects

Test consulting in the finance, insurance, transport and utility
industries

IBM Global Services Austria

The EURO phases and the timeframe

1997 1998 1999 2000 2001 2002

Countries
must meet
conver-
gence
criteria

Phase A:
Launch of
EMU

Name
participating
states end
of 1998
based
on actual
1997 data

Set up ECB
and ESCB

Phase B: Start of EMU

1st Jan Locked conversion rates

Build up "Critical Mass"

Monetary and exchange rate
policy in Euro

New issues of public debt in Euro

Markets in Euro: Interbank,
Monetary,
Exchange, Capital

Target operational

Phase C:
Full
Introduction
of
Single
Currency
(6 months)

Introduce
Euro
Notes &
Coins

Euro sole
legal
tender

Preparation, Education,
Production of Notes/Coins

IBM Global Services Austria

The legal requirements: Council Regulation (EC)
#1103/97 (The Article 235 Regulation)

Article 4
1. Conversion rates shall be adopted as one euro expressed in terms of each

of the national currencies of the participating Member States. They shall be
adopted with six significant figures

2. The conversion rates shall not be rounded or truncated when making
conversions

3. The conversion rates shall be used for conversions either way between the
euro unit and the national currency units. Inverse rates derived from the
conversion rate shall not be used

4. Monetary amounts to be converted from one national currency unit into
another shall first be converted into a monetary amount expressed in the
euro unit, which amount may be rounded to not less than three decimals and
shall then be converted into the other national currency unit. No alternative
method of calculation may be used unless it produces the same results.

IBM Global Services Austria

The legal requirements: Council Regulation (EC)
#1103/97 (The Article 235 Regulation) - cont.

Article 5
Monetary amounts to be paid or accounted for when rounding takes place after a
conversion into the euro unit pursuant to Article 4 shall be rounded up or down to
the nearest cent. Monetary amounts which are to be paid or accounted for which
are converted into a national currency unit shall be rounded up or down to the
nearest sub-unit or in the absence of a sub-unit to the nearest unit, or according
to the national law or practice to a multiple or fraction of the sub-unit or unit of the
national currency unit. If the application of the conversion rate gives a result
which is exactly half-way, the sum shall be rounded up.

 ==> This regulation shall be binding in its entirety and directly
 applicable in all Member States (Luxembourg, 17 June 1997)

IBM Global Services Austria

The introduction of the EURO as legal tender for 11
countries is unique and cannot be handled like
another currency
Article 235 regulations for conversion & rounding:

Base set of rules mandatory for Banking/Financial transactions only
Organisations also need to cater for:

Psychological pricing (e.g. 1.99) re-packaging or re-pricing?
Literals (e.g. overdraft limits, trading authorisation)
Accounting for rounding errors/differentials
Rounding comparisons, e.g. difference between "Converted sum" v "sum of converted amounts"

EU regulations are only the start

Add to this
National Plans, Industry standards, Consumer pressure
Accepted Practice vs Competitive Edge

Not one but two changes:
National Currency --> Dual-currency --> euro only

Rates to six significant figures
No Reciprocals
Rounding to "the nearest number in the smallest sub-division of the local currency"
Triangulation: Cross-conversion between National Currencies (NC) via Euro only

No compulsion, No prohibition

IBM Global Services Austria

IBMs recommended approach for the EURO is
supported by eleven offerings

Offering #8: Support for Euro Testing

Assessment
and

IT-Strategy

Detailed
IT-Planning

IT-Solution
Generation

IT-Solution
Validation

Business
Transition

Euro
Solution

Deployment

Euro Analysis
Organizational
projects

IT projects

Education and Training

Business
Impact

Analysis

IBM Global Services Austria

Goal:
detailed EURO test activities are performed to ensure the delivery of a completely and
correctly migrated IT environment.

Key activities:
Setting up a EURO test plan based on the client's existing test methods and processes

Setting up a technical test environment and defining the test procedures

Collecting all the test cases and data

Detailed planning and performing of the system integration / user acceptance tests

If necessary performing stress and performance tests

Evaluation of all the results

Benefits:
The Support for EURO Testing makes sure that the customer's IT management has done
all the necessary tests to successfully complete his IT euro migration. Eventual errors and
gaps are detected and can be solved or circumvented. The existing tests and test data are
updated and can be used for further application maintenance work.

Support for EURO Testing: The IBM Test offering
implementing the EUROPath

IBM Global Services Austria

Customer:
large insurance holding in
Austria

Main figures:
premium income
1.6b USD,

employees 4.400,

9 regional-headquarters,
171 district-headquarters
and branch offices

all lines of business

subsidiaries and joint
ventures in EU and
non-EU-countries

Figures and planning from a sample insurance company
to address the main objectives in EURO testing

Goal:
Planning and executing the changeover to EURO
(inclusive managerial, technical and test planning)

Duration:
from the middle of 1998 until third quarter of 2002

IT-organisation:
one IT-service organisation but different
IT-systems

no formal contract with other companies in the
holding

different releases of main IT-systems in the
companies

specific home grown solutions in the different
companies

IBM Global Services Austria

STEP 1:
Requirements for 1.1.1999 are implemented (voluntary display of dual
currencies and EURO fitness for some special applications)

STEP 2:
Application supports two decimals and currency indentifiers

STEP 3A:
Requirements for 1.10.2001 are implemented (legal display of dual currencies -
just in Austria)

STEP 3B:
Requirements for 1.1.2002 are implemented (EURO is base currency)

STEP 4:
Temporary solutions are removed (i.e. End of display of dual currencies)

Five main steps build the EURO implementation plan
(multistage plan)

ATS 125,90-

ATS 123,90-
EUR 9,15-

EUR 9,15-

IBM Global Services Austria

EURO requirements for display of dual currencies:
voluntary display of dual currencies for customer printouts (step 1)

general company wide display of dual currencies (sometime in 1999)

legal display of dual currencies (step 3A)

cleanup of display of dual currencies (step 4)

EURO requirements for applications:
a. conversion of programs and program logic

b. interfaces conversion

c. conversion and expansion of databases

d. conversion of data
a) and b) are preconditions to reach step 2
a) to d) are preconditions to implement step 3B

This multistage plan can be subdivided in technical
EURO requirements

IBM Global Services Austria

EURO readiness is granted for
an application when the following
requirements are fulfilled:

passive requirements of EURO
are implemented:

all amount fields have at least
two decimal digits

all amounts or applications
have a currency indicator,
when neccessary

all special EURO requirements of
the departments are taken into
consideration and are
implemented

An application has reached
EURO fitness when the subject
matter experts for this application
certify it to be EURO fit:

appropriate testcases have
proven the EURO fitness from the
business point of view

an End to End test has been
performed to check that all EURO
requirements of this application
are met

Only the state "EURO fit" for your application gives you
the security that all EURO requirements are met

IBM Global Services Austria

Activities
Test preparation (documentation)

Unit tests

Function tests

System tests

End to End tests

The technical requirements can be seen as phases of
the EURO changeover and for each phase milestones
and activities for testing have to be planned

Technical requirements:
Display of dual currencies

Conversion of programs and program logic

Interface conversion

Database & data conversion

Milestones
Prerequisites for testing are
available (HW, SW,
documentation)

Test goal achieved and/or sign
off through subject matter
experts

(Each activity implies regression tests
caused by errors and/or changes)

... planning for each phase:

Phases

IBM Global Services Austria

For each application a test plan must be prepared to
know which EURO activities have to be performed

Phases
Activities

Display of dual
currencies

Data & DB
conversion

Program
conversion

Interface
conversion

Test preparation
(testcases, documentation) obligatory obligatory obligatory obligatory

Unit tests optional optional optional optional

Function tests obligatory obligatory obligatory obligatory

System tests optional optional optional optional

End to End tests not neccessary tested with interface tests obligatory

Supervision of
production

obligatory ongoing checks in production environment

Sample (matrix) plan of obligatory and optional
activities for each EURO test phase:

IBM Global Services Austria

The business transaction oriented test approach and
the technical approach gives you the best of both
worlds for testing

business transaction
oriented (black box)

used for function tests, system
tests, end to end tests,
supervision of production

allows you to focus on the most
important business transactions

prepared by subject matter
experts

technical approach
(white & gray box testing)

unit tests, system tests,
EURO <-> national currencies
calculation routines

most errors came from newly
written program adaptions

prepared by technicians

IBM Global Services Austria

Business transaction definition

Test case definition

Equivalence classes definition

Test case and scenario execution

Problem management

Our cornerstone tool suite is based on Lotus Notes
and MS Access and integrates:

Testcase administation and problem management
databases were initially developed to support our Y2K
test methodology

Business
Transaction

Definition

Equivalence
Class

Definition

Testcase
Definition

Scenario
Definition

Methodology and Tool: From Test Case Definition through Execution

Testcase &
Scenario
Execution

Problem
Management

IBM Global Services Austria

Unit testing is recommended to identify problems early
in the project

Goal:
verify that a special module has met the (EURO) requirements

Test Method:
white & gray box testing - code oriented

Focus of tests:
central modules that are often applying amount calculations i.e.
convertion modules

database conversion routines

Special test areas:
correct use of decimals and currency identifiers

rounding problem

triangulation versus cross or inverse rate

IBM Global Services Austria

Differences in calculating DEM into ATS with
Triangulation versus cross rate methode

2.123,80

212,38

21,242,130,210,020,010,00
0,00

500,00

1.000,00

1.500,00

2.000,00

2.500,00

1,00 10,00 100,00 1.000,00 10.000,00 100.000,00 1.000.000,00 10.000.000,00

Amount in DEM

D
if

fe
re

n
ce

s
in

 A
T

S

If you do not use the proposed Triangulation method for
converting currencies you always will get big differences

IBM Global Services Austria

The purpose of function tests are to prove that the
converted software produces logically equivalent
results as before and after conversion of the EURO

Goal:
verify the functional correctness and completeness of EURO
converted programs

Test Method:
black box testing - business transaction oriented

Focus of tests:
all converted programs from the business transaction view

Special test areas:
general functionality

correct error messages

correct navigating

amounts appear clear and with decimals

correct display of dual currencies

correct print outputs

optional: equivalence class method

IBM Global Services Austria

The focus on EURO system tests is to check if the
newly adapted programs and conversion routines can
handle the required amount of data

Goal:
verify that the required amount of datas can be handled correct and
within the required periode of time

Test Method:
gray & black box testing - code and/or business transaction oriented

Focus of tests:
programs convertion routines that must handle big amounts of datas

programs and convertion routines that are time critical

Special test areas:
performance tests

volume tests

1
12

2

3

4
567

8

9

10

11

IBM Global Services Austria

End to End tests are the main overall effort in the
changeover to EURO

Goal:
verify that the whole system handles the EURO correctly. Ideally this should be
done in form of a series of complete tests of the interfaces of all applications - in
practice this may not be possible

Test Method:
black box testing - business transaction oriented

Focus of tests:
all important and critical business transactions covering the whole system

Special test areas:
time warp tests will be necessary
to simulate the introduction of the
different EURO steps

special test environment needed

complex test scenarios must be generated

side effect: lots of synergies to the Y2K
tests and test environment

?Year 2000

IBM Global Services Austria

There are a lot of synergy effects between EURO and
Y2K tests

Synergy effects:
inventory and test environment

identification of critical processes/
applications, prioritisation

reuse of business transactions

identification of cross-business
processes and applications

test methods and test data

regressions test tool kit and scripts

documentation and communication

project management methodology

Fundamental differences:
Year 2000: no changes to functionality (more technical focus)

EURO: business impact, new functionality to support mandatory requirements

Problem areas:
avoid converting and testing together
- testing 2 "unknowns"

rigorous change control and
configuration management

do not reuse test cases - they are
special for Y2K and EURO

Y2K

IBM Global Services Austria

Supervision of production is necessary to constantly
proof the correct use of EURO in the beginning of the
changeover period

Test Method:
spot check - business transaction
oriented

Focus of tests:
important and critical business
transactions

not previous tested interfaces

print outs

Special test areas:
production data different from test data

main calculations

customer printouts

Goal:
verify that in production the EURO is handled correctly, since not all tests are
possible to be performed in the test environment, test effort versus value of test
does not match and not all tests can be done because of ressource and time
restriction

IBM Global Services Austria

Tools are used to improve testing productivity
and to support data manipulation

Capture/replay tool
QAHiperStationTM from
CompuWare (mainframe
applications)

QA PartnerTM from Segue

(client/server systems)

Activity
Time using

QA PartnerTM

Time without

QA PartnerTM

Test case creation 160 h 150 h

Correcting generated scripts 5 h

Initial learning effort 5 h

Test case execution once 10 h 40 h

Total 180 h 190 h

Test execution 3 more time 30 h 120 h

Total 210 h 310 h

Data manipulation
File-AIDTM from CompuWare (prepare and verify test data)

File-AID/Data AgerTM from CompuWare (data aging)

Advantage of using a capture/replay tool for
regression tests

IBM Global Services Austria

Problems seen in the beginning of the project

Business Management decisions are necessary for every EURO
phase but not often seen

Customer had no defined business transactions and no test cases

Internal and external interfaces got often overseen in the beginning

Dedicated test environment occupied by Y2K tests

New product development projects cause a lot of additional problems
i.e. the EURO project also has to define test procedures for them

Very limited ressources for testing

Almost no education for the testers

Message of the customer in the beginning: "EURO is only conversion"

No reviews of the created testcases with the subject matter experts

Testcases covered often only standard situations

IBM Global Services Austria

Lessons learned

What went wrong?
Effort to integrate new product
development projects into the
EURO project was underestimated

Reviews MUST be done in every
phase of testing - regardless
communcation is a problem

A test database, test environment
and test tools must be installed at
the early beginning of the test

Overall test effort was
underestimated by customer
management

What went right?
Using test cases based on
business transactions (Black box
test strategy)

White/Gray box testing for
currency calculation routines

Establish a test database for all
business transactions and
testcases used in EURO tests

Dedicated test team

Test planning from the beginning
of the project

IBM Global Services Austria

Testing: What is unusual about a Euro project?

Pervasive change - company wide

Most systems affected

From minimal change through to competitive leverage

Conversion and cutover

Fall back

Severely constrained timescales

External and internal influences and dependencies

Year 2000

The combination is unique ...

IBM Global Services Austria

Open questions?

Ask them right now!

or if they come up later contact us:

Andreas Rudolf

e-mail:Andreas_Rudolf@at.ibm.com

Phone: +43-1-1706-4347

Fax: +43-1-1706-2393

Web: www.geocities.com/Vienna/Strasse/7559/

Rainer Pirker

e-mail:Rainer_Pirker@at.ibm.com

Phone: +43-1-1706-4163

Fax: +43-1-1706-2393

Page 1

Otto Vinter
Software Engineering Mentor

© 1999-09-20

Quality Week Europe ‘99

How to Apply for Funding
from the IST Programme

-

Otto Vinter
Software Engineering Mentor

Tel/Fax: +45 4399 2662, Mobile: +45 4045 0771
vinter@inet.uni2.dk http://inet.uni2.dk/~vinter

Otto Vinter
Software Engineering Mentor

© 1999-09-20

Information Society Technologies (IST)

Creating a user-friendly information society

• 3600 MEUR over 4 years
• 7 Action lines and Supporting Measures

- Research actions (RTD)
- Take up measures (best practice, trials)
- SME special measures

• Two calls for proposals per year
• 50-100% funding.
• Projects 1-3 years
• Partners from more than one country

Page 2

Otto Vinter
Software Engineering Mentor

© 1999-09-20

Information Society Technologies (IST)

Actions lines

KA I Systems and services for the citizen
KA II New methods of work and electronic commerce
KA III Multimedia content and tools
KA IV Essential technologies and infrastructure
CPA V Cross-programme themes
FET VI Future and emerging technologies
RN VII Research networking
ISM VIII IST support measures

Otto Vinter
Software Engineering Mentor

© 1999-09-20

Information Society Technologies (IST)

Information at: http://www.cordis.lu/ist
• Call text
• Work programme
• Guide for proposers
• Evaluation manual
• Guidelines for evaluators

Current call - October 1st
• Specific subset of actions called for

- check: http://www.cordis.lu/ist
• Deadline for proposals January 17th
• Next call expected January 15th

Page 3

Otto Vinter
Software Engineering Mentor

© 1999-09-20

Information Society Technologies (IST)

Who can participate ?

with Community funding
• EU member states
• Candidate member states
• Iceland, Liechtenstein, Norway, Israel, Switzerland

without Community funding
• any country on a project by project basis, if in conformity

with the interests of the Community

At least 2 partners
Less than 50% of budget in one country

Otto Vinter
Software Engineering Mentor

© 1999-09-20

Information Society Technologies (IST)

Selection process

1. Call for proposals
2. Proposal submission
3. Administrative check on eligibility
4. Evaluation by external experts
5. Summary reports by panel of experts
6. Priority list of proposals suitable for funding
7. Financial/administrative check and negotiations with

participants
8. Selection decision
9. Contract signature

Page 4

Otto Vinter
Software Engineering Mentor

© 1999-09-20

Information Society Technologies (IST)

Selection criteria

1.Scientific/Technological quality and innovation
• quality of research, degree of innovation, adequacy of approach

2.Community added value and contribution to EU policies
• European dimension of the problem, added value of the

consortium, contribution to EU policies

3.Contribution to Community social objectives
• improving the quality of life and health and safety, employment,

preserving/enhancing the environment

4.Economic development and S&T prospects
• usefulness and range of applications, quality of exploitation

plans, strategic impact, dissemination strategies

5.Resources, partnership, management
• quality of management/project approach, quality of partnership,

appropriateness of the resources

Otto Vinter
Software Engineering Mentor

© 1999-09-20

Information Society Technologies (IST)

Type of action Selection criteria
 examples (weight threshold)

S&T Com. Contrib. Econom. Resources
quality added to Com. Develop. Partnersh.
innov. value soc.obj. S&T pro. & Mgmt.
(w t) (w t) (w t) (w t) (w t)

RTD (one-step) 4 3 1 2 1 - 2 3 2 2
FET (Pro-active) 4 3 1 1 1 - 2 - 2 2
Take-up 4 - 1 2 1 - 2 - 2 4

Scores: 0 - Unsatisfactory 1 - Poor 2 - Fair
 3 - Good 4 - Very good 5 - Excellent

Page 5

Otto Vinter
Software Engineering Mentor

© 1999-09-20

What Is a Good IST Proposal ?

• Relevant subject within the scope of the call
• Clear and realistic goals
• Measurable results
• Realistic and efficient work plan
• Realistic budget and costing
• Elements in selection criteria covered
• The right partners

- researchers as well as end-users
- good distribution over countries
- well-defined roles and responsibilities
- some you already know or trust

• An IST project must be just as well prepared and argued
as any other application for funding in your company

Otto Vinter
Software Engineering Mentor

© 1999-09-20

Contract Negotiation Phase

• Based on proposal ratings and evaluator comments
• Changes in the proposal must be introduced
• Be prepared for cuts in the proposed budget
• The amended proposal text becomes part of the contract

(Annex 1, Project Programme)
• Otherwise a standard CEC contract (no changes)
• Establish partner agreements (contracts)
• Project start date app. July 1st
• 1st advance payment 60 days after signature by CEC

Page 6

Otto Vinter
Software Engineering Mentor

© 1999-09-20

Executing an IST Project

• Maintain effective project control
- resource consumption
- progress
- results

• Maintain effective communication
- technical level
- management
- externally (dissemination)

• Follow the work plan
- be prepared for changes (flexible)

• Handle conflicts internally
• When changes are necessary

- submit a revised plan for approval
- extensions of duration are possible
- the budget cannot be increased

Otto Vinter
Software Engineering Mentor

© 1999-09-20

Final Important Advice

Participation should be a company decision

• Commission funding does not mean: no commitment
• Internal demand for the results
• Performed as any other project

- allocation and prioritisation of resources
• Internal “champions”

- dedication
- ability to motivate and present
- avoid political games / power struggles

Slide 1

Scott Yara
Vice President of Marketing

Sandpiper Networks

Performance 2000: Ensuring Consistent
Website Performance

Slide 2

Agenda

l Today’s Internet

n The Problem

n High Expectations

n Today’s Infrastructure

l Emerging Standards for Improved Performance

n The Highway

n The First Mile

n The Last Mile

n Content Delivery Networks

n Additional solutions

Slide 3

The Problem - Web Page Downloading

Without Footprint With Footprint

E-commerce dollars lost
due to bad performance.

Slide 4

High Expectations

l Internet traffic is doubling every 100 days

l Voice, data, video, audio all coming down same pipe -- all billed
separately

l Full color, full motion, full screen video

l CD quality audio

l Real-time simulations, 3D virtual reality

l Virtual libraries and data archives

l Geographically dispersed groups to share specialized equipment

Slide 5

Today’s Infrastructure

l No single entity controls the Internet

l 1 million largely private networks

l 45 million computer hosts

l “Best effort” - no performance guarantees

l Dynamic and unpredictable network conditions

l E-commerce transactions are aborted due to long wait-times:

– $4.35B loss in US, 1998*

 * Zona Research

Slide 6

The Internet of Tomorrow:
A Closer Look

First Mile

The Highway

The Last Mile

Slide 7

Emerging
Highway Landscape

l Fiber Optics (DWDM) - Lucent, Ciena

l ATM / SONET - Fore, Cisco

l IP Packet Gateways - Lucent, Cisco

l Gigabit / Terabit Routers - Extreme, Juniper

l Network Caches - Inktomi, CacheFlow

l Satellite Providers - Hughes, PanAm Sat

l Peering Centers - AboveNet, Equinix

Slide 8

Emerging
First Mile Landscape

l Industrial-Strength Data Centers - Exodus

l Premium Transit Connections - InterNap

l High-end Servers - Sun

l Load-balancing Switches - Aleton

l Storage Appliances - Network Appliance

l Distributed Databases - Oracle

l Content Delivery Networks - Sandpiper

Slide 9

Emerging
Last Mile Landscape

l Faster Analog Modems - Ascend

l xDSL - Rhythms

l Cable Modems - @Home

l Satellite Networks - Teledesic

l Access Caching - Inktomi

Slide 10

Content Delivery Networks

 CDN’s improve
performance by
serving content closer
to end-users

l Hundreds of servers

l Multiple networks

l Patent-pending
technology

l Intelligent probes

l Professionally
managed

Slide 11

Content Delivery
Networks

l Outsourcing solution for publishers

• massive, shared infrastructure

• reserved resources

• serves all clients

• adapts to traffic conditions

l Additional publisher services

• audio/video support

• authentication services

• dynamic content support

Slide 12

A Popular Web Site

Browsers

Web Servers

Slide 13

• Reduces load on server
• Avoids network congestion

CDNs - Replicating Content Closer to
Users

Browsers

Web Server

Replicated
content

Router

Slide 14

How Footprint Works

1. Content Preparation

l Publishers identify which
resources should be served
by the Footprint CDN

n Publisher uses Footprint
Preparation tool to
modify HTML (static
rewriting)

n Tool uses rule base to
determine which
resources to serve

l Process is extremely simple

Footprint Manager
rules base page

Slide 15

Client IP
address

Network
map

Distributor load

Network
status

Selection of
Specific
Content

Distributor

How Footprint Works

2. Client Rendezvous
l Sandpiper uses a process called

Best Distributor Selection to direct
end-users to the optimal location

n Intelligent probes constantly
monitor the state of each
network

n Content Distributor (CD)
selection based upon CD
loading, Client network
location and network status

s The Best Distributor is
selected dynamically by a
modified DNS server

Slide 16

How It Works

3. Content Delivery
l Once an end-user is

directed to the fastest
location, the content is
delivered from the Content
Distributor

n Content Distributor
checks if currently
cached content is fresh
and if not retrieves
fresh content from
origin server

Slide 17

Case Study: Intuit

l Intuit experiences significant increases in
web site traffic during tax season

l The company used Footprint to handle
peak-traffic demands for distributing
products such as Quicken, Turbo Tax, and
QuickBooks Pro

l Footprint solution integrated seamlessly
into Intuit’s existing infrastructure

l Web site performance improved while costs
decreased

“Footprint helps us guarantee that our customers get the upgrades fast
and consistently regardless of heavy traffic requests.” - Rick Parkinson,
Intuit

Slide 18

Intuit
40

0

5

10

15

20

25

30

35

4/4
/9

9 0

4/5
/9

9 0

4/6
/9

9 0

4/7
/9

9 0

4/8
/9

9 0

4/9
/9

9 0

4/1
0/9

9 0

Time

R
es

p
o

n
se

 T
im

e(
S

ec
o

n
d

)

Origin Server Without Footprint Migrator With Footprint

Performance Improvements

l 50.8% average
improvement in
response time
during peak hours

l 40.3% overall
average
improvement in
response time

Slide 19

Background
l March 1999 subscription at 8Mb/sec., April at 16Mb/sec.
l Traditional Solution is was a 3 site co-location model

$34,640

$10,685

$0

$5,000

$10,000

$15,000

$20,000

$25,000

$30,000

$35,000

Traditional
Solution

Footprint
Solution

Case Study: Cost Savings

l In two months, Intuit saved
$23,955 or 69.2%

l On track to save $72,145
over one year

l No capital outlay for
equipment

l No hiring costs

l Lower recurring labor costs

l Lower connectivity costs

Slide 20

Publishing Tools

Multiple
Implementation Options

Log Consolidation

Cache Control

Comprehensive Content
Support

System Monitoring

Custom Domain Names

Comprehensive Solution

Footprint is a complete solution - making it easy to implement,
manage, and track your content throughout the network.

Slide 21

Good performance requires quality delivery for each of the multiple
content types that can make up a web page:

Targeted Ads

Personalized
Settings

Real-time
Information

Streaming
Media

Search
Queries

Rotating Banners

Premium Content

All Content Types

Slide 22

Streaming Content

l Audio and video files are extremely
bandwidth intensive

l Today’s architecture causes
degradation of streaming files

Streaming with Footprint

l Scales to vast numbers of viewers
without changes to servers

l Ensures more consistent and
better quality of stream

l Requires no investment in
hardware or software

l Content provider does not need to
own Real licenses

Slide 23

Publishing Tools

l Sandpiper provides several
easy-to-use tools that ensure
content served by the
Footprint Network is always
up-to-date:

n GUI

n Script

n Auto-publish

Benefits

l Control freshness on CDN

l Control freshness in ISP
deployed caches

Auto-publish tool

Slide 24

Open Architecture

l Custom applications

l Industry-specific solutions

l Value-added service
offerings

Sandpiper’s open architecture gives Content Providers
ultimate flexibility in leveraging the Footprint network to build:

MessagingFinancingPublishing

API

Footprint Network

Slide 25

Content Delivery Solution Providers

l IBeam

l Skycache

l Intervu

l Digital Island

l Mirror Image

l Exodus

Slide 26

Highlights

l Quality of service is becoming more difficult to
achieve

l CDNs improve the performance and reliability of
web content delivery by distributing content
closer to end users

l A host of solutions are available to improve
performance

l As the Internet grows, content delivery solutions
will become mission critical for all web sites

Slide 27

The Network Is Changing.
Adapt to It.

�

6FRWW�<DUD
9LFH�3UHVLGHQW�RI�0DUNHWLQJ

6DQGSLSHU�1HWZRUNV

3HUIRUPDQFH�������(QVXULQJ�&RQVLVWHQW
:HEVLWH�3HUIRUPDQFH

$JHQGD

● 7RGD\¶V ,QWHUQHW

■ 7KH 3UREOHP

■ +LJK ([SHFWDWLRQV

■ 7RGD\¶V ,QIUDVWUXFWXUH

● (PHUJLQJ 6WDQGDUGV IRU ,PSURYHG 3HUIRUPDQFH

■ 7KH +LJKZD\

■ 7KH)LUVW 0LOH

■ 7KH /DVW 0LOH

■ &RQWHQW 'HOLYHU\ 1HWZRUNV

■ $GGLWLRQDO VROXWLRQV

�

7KH�3UREOHP���:HE�3DJH�'RZQORDGLQJ

:LWKRXW)RRWSULQW :LWK)RRWSULQW

(�FRPPHUFH GROODUV ORVW

GXH WR EDG SHUIRUPDQFH�

+LJK�([SHFWDWLRQV

● ,QWHUQHW WUDIILF LV GRXEOLQJ HYHU\ ��� GD\V

● 9RLFH� GDWD� YLGHR� DXGLR DOO FRPLQJ GRZQ VDPH SLSH �� DOO ELOOHG
VHSDUDWHO\

●)XOO FRORU� IXOO PRWLRQ� IXOO VFUHHQ YLGHR

● &' TXDOLW\ DXGLR

● 5HDO�WLPH VLPXODWLRQV� �' YLUWXDO UHDOLW\

● 9LUWXDO OLEUDULHV DQG GDWD DUFKLYHV

● *HRJUDSKLFDOO\ GLVSHUVHG JURXSV WR VKDUH VSHFLDOL]HG HTXLSPHQW

�

7RGD\¶V�,QIUDVWUXFWXUH

● 1R VLQJOH HQWLW\ FRQWUROV WKH ,QWHUQHW

● � PLOOLRQ ODUJHO\ SULYDWH QHWZRUNV

● �� PLOOLRQ FRPSXWHU KRVWV

● ³%HVW HIIRUW´ � QR SHUIRUPDQFH JXDUDQWHHV

● '\QDPLF DQG XQSUHGLFWDEOH QHWZRUN FRQGLWLRQV

● (�FRPPHUFH WUDQVDFWLRQV DUH DERUWHG GXH WR ORQJ ZDLW�WLPHV�

± �����%�ORVV�LQ�86������

��=RQD�5HVHDUFK

7KH�,QWHUQHW�RI�7RPRUURZ�
$�&ORVHU�/RRN

)LUVW�0LOH

7KH�+LJKZD\

7KH�/DVW�0LOH

�

(PHUJLQJ
+LJKZD\�/DQGVFDSH

●)LEHU�2SWLFV��':'0����/XFHQW� &LHQD

● $70���621(7���)RUH� &LVFR

● ,3�3DFNHW�*DWHZD\V���/XFHQW� &LVFR

● *LJDELW���7HUDELW�5RXWHUV���([WUHPH� -XQLSHU

● 1HWZRUN�&DFKHV���,QNWRPL� &DFKH)ORZ

● 6DWHOOLWH�3URYLGHUV���+XJKHV� 3DQ$P 6DW

● 3HHULQJ�&HQWHUV���$ERYH1HW� (TXLQL[

(PHUJLQJ
)LUVW�0LOH�/DQGVFDSH

● ,QGXVWULDO�6WUHQJWK 'DWD &HQWHUV � ([RGXV

● 3UHPLXP 7UDQVLW &RQQHFWLRQV � ,QWHU1DS

● +LJK�HQG 6HUYHUV � 6XQ

● /RDG�EDODQFLQJ 6ZLWFKHV � $OHWRQ

● 6WRUDJH $SSOLDQFHV � 1HWZRUN $SSOLDQFH

● 'LVWULEXWHG 'DWDEDVHV � 2UDFOH

● &RQWHQW 'HOLYHU\ 1HWZRUNV � 6DQGSLSHU

�

(PHUJLQJ
/DVW�0LOH�/DQGVFDSH

●)DVWHU $QDORJ 0RGHPV � $VFHQG

● ['6/ � 5K\WKPV

● &DEOH 0RGHPV � #+RPH

● 6DWHOOLWH 1HWZRUNV � 7HOHGHVLF

● $FFHVV &DFKLQJ � ,QNWRPL

&RQWHQW�'HOLYHU\�1HWZRUNV

&'1¶V LPSURYH
SHUIRUPDQFH E\
VHUYLQJ FRQWHQW FORVHU
WR HQG�XVHUV

● +XQGUHGV RI VHUYHUV

● 0XOWLSOH QHWZRUNV

● 3DWHQW�SHQGLQJ
WHFKQRORJ\

● ,QWHOOLJHQW SUREHV

● 3URIHVVLRQDOO\
PDQDJHG

�

&RQWHQW�'HOLYHU\
1HWZRUNV

● 2XWVRXUFLQJ�VROXWLRQ�IRU�SXEOLVKHUV

� PDVVLYH��VKDUHG�LQIUDVWUXFWXUH

� UHVHUYHG�UHVRXUFHV

� VHUYHV�DOO�FOLHQWV

� DGDSWV�WR�WUDIILF�FRQGLWLRQV

● $GGLWLRQDO�SXEOLVKHU�VHUYLFHV

� DXGLR�YLGHR�VXSSRUW

� DXWKHQWLFDWLRQ�VHUYLFHV

� G\QDPLF�FRQWHQW�VXSSRUW

$�3RSXODU�:HE�6LWH

%URZVHUV

:HE 6HUYHUV

�

� 5HGXFHV ORDG RQ VHUYHU

� $YRLGV QHWZRUN FRQJHVWLRQ

&'1V���5HSOLFDWLQJ�&RQWHQW�&ORVHU�WR
8VHUV

%URZVHUV

:HE 6HUYHU

5HSOLFDWHG

FRQWHQW

5RXWHU

+RZ�)RRWSULQW�:RUNV

�� &RQWHQW 3UHSDUDWLRQ

● 3XEOLVKHUV LGHQWLI\ ZKLFK

UHVRXUFHV VKRXOG EH VHUYHG

E\ WKH)RRWSULQW &'1

■ 3XEOLVKHU XVHV)RRWSULQW

3UHSDUDWLRQ WRRO WR

PRGLI\ +70/ �VWDWLF

UHZULWLQJ�

■ 7RRO XVHV UXOH EDVH WR

GHWHUPLQH ZKLFK

UHVRXUFHV WR VHUYH

● 3URFHVV LV H[WUHPHO\ VLPSOH

)RRWSULQW 0DQDJHU

UXOHV EDVH SDJH

�

&OLHQW ,3

DGGUHVV

1HWZRUN

PDS

'LVWULEXWRU

ORDG

1HWZRUN

VWDWXV

6HOHFWLRQ

RI 6SHFLILF

&RQWHQW

'LVWULEXWRU

+RZ�)RRWSULQW�:RUNV

�� &OLHQW 5HQGH]YRXV

● 6DQGSLSHU XVHV D SURFHVV FDOOHG

%HVW 'LVWULEXWRU 6HOHFWLRQ WR GLUHFW

HQG�XVHUV WR WKH RSWLPDO ORFDWLRQ

■ ,QWHOOLJHQW SUREHV FRQVWDQWO\

PRQLWRU WKH VWDWH RI HDFK

QHWZRUN

■ &RQWHQW 'LVWULEXWRU �&'�

VHOHFWLRQ EDVHG XSRQ &'

ORDGLQJ� &OLHQW QHWZRUN

ORFDWLRQ DQG QHWZRUN VWDWXV

▲ 7KH %HVW 'LVWULEXWRU LV

VHOHFWHG G\QDPLFDOO\ E\ D

PRGLILHG '16 VHUYHU

+RZ�,W�:RUNV

�� &RQWHQW 'HOLYHU\

● 2QFH DQ HQG�XVHU LV

GLUHFWHG WR WKH IDVWHVW

ORFDWLRQ� WKH FRQWHQW LV

GHOLYHUHG IURP WKH &RQWHQW

'LVWULEXWRU

■ &RQWHQW 'LVWULEXWRU

FKHFNV LI FXUUHQWO\

FDFKHG FRQWHQW LV IUHVK

DQG LI QRW UHWULHYHV

IUHVK FRQWHQW IURP

RULJLQ VHUYHU

�

&DVH�6WXG\��,QWXLW

● ,QWXLW H[SHULHQFHV VLJQLILFDQW LQFUHDVHV LQ
ZHE VLWH WUDIILF GXULQJ WD[VHDVRQ

● 7KH FRPSDQ\ XVHG)RRWSULQW WR KDQGOH
SHDN�WUDIILF GHPDQGV IRU GLVWULEXWLQJ
SURGXFWV VXFK DV 4XLFNHQ� 7XUER 7D[� DQG
4XLFN%RRNV 3UR

●)RRWSULQW VROXWLRQ LQWHJUDWHG VHDPOHVVO\
LQWR ,QWXLW¶V H[LVWLQJ LQIUDVWUXFWXUH

● :HE VLWH SHUIRUPDQFH LPSURYHG ZKLOH FRVWV
GHFUHDVHG

³)RRWSULQW KHOSV XV JXDUDQWHH WKDW RXU FXVWRPHUV JHW WKH

XSJUDGHV IDVW DQG FRQVLVWHQWO\ UHJDUGOHVV RI KHDY\ WUDIILF

UHTXHVWV�´ � 5LFN 3DUNLQVRQ� ,QWXLW

,QWXLW
40

0

5

10

15

20

25

30

35

4/
4/

99
 0

4/
5/

99
 0

4/
6/

99
 0

4/
7/

99
 0

4/
8/

99
 0

4/
9/

99
 0

4/
10

/9
9

0

Time

R
es

po
ns

e
T

im
e(

S
ec

on
d)

Origin Server Without Footprint Migrator With Footprint

3HUIRUPDQFH�,PSURYHPHQWV

● ����� DYHUDJH

LPSURYHPHQW LQ

UHVSRQVH WLPH

GXULQJ SHDN KRXUV

● ����� RYHUDOO

DYHUDJH

LPSURYHPHQW LQ

UHVSRQVH WLPH

��

%DFNJURXQG

● 0DUFK ���� VXEVFULSWLRQ DW �0E�VHF�� $SULO DW ��0E�VHF�

● 7UDGLWLRQDO 6ROXWLRQ LV ZDV D � VLWH FR�ORFDWLRQ PRGHO

�������

�������

��

������

�������

�������

�������

�������

�������

�������

7UDGLWLRQDO

6ROXWLRQ

)RRWSULQW

6ROXWLRQ

&DVH�6WXG\���&RVW�6DYLQJV

● ,Q WZR PRQWKV� ,QWXLW VDYHG
������� RU �����

● 2Q WUDFN WR VDYH �������
RYHU RQH \HDU

● 1R FDSLWDO RXWOD\ IRU
HTXLSPHQW

● 1R KLULQJ FRVWV

● /RZHU UHFXUULQJ ODERU FRVWV

● /RZHU FRQQHFWLYLW\ FRVWV

3XEOLVKLQJ 7RROV

0XOWLSOH

,PSOHPHQWDWLRQ 2SWLRQV

/RJ &RQVROLGDWLRQ

&DFKH &RQWURO

&RPSUHKHQVLYH &RQWHQW

6XSSRUW

6\VWHP 0RQLWRULQJ

&XVWRP 'RPDLQ 1DPHV

&RPSUHKHQVLYH�6ROXWLRQ

)RRWSULQW LV D FRPSOHWH VROXWLRQ � PDNLQJ LW HDV\ WR

LPSOHPHQW� PDQDJH� DQG WUDFN \RXU FRQWHQW WKURXJKRXW

WKH QHWZRUN�

��

*RRG SHUIRUPDQFH UHTXLUHV TXDOLW\ GHOLYHU\ IRU HDFK RI WKH PXOWLSOH

FRQWHQW W\SHV WKDW FDQ PDNH XS D ZHE SDJH�

7DUJHWHG $GV

3HUVRQDOL]HG

6HWWLQJV

5HDO�WLPH

,QIRUPDWLRQ

6WUHDPLQJ

0HGLD

6HDUFK

4XHULHV

5RWDWLQJ %DQQHUV

3UHPLXP
&RQWHQW

$OO�&RQWHQW�7\SHV

6WUHDPLQJ�&RQWHQW

● $XGLR DQG YLGHR ILOHV DUH H[WUHPHO\

EDQGZLGWK LQWHQVLYH

● 7RGD\¶V DUFKLWHFWXUH FDXVHV

GHJUDGDWLRQ RI VWUHDPLQJ ILOHV

6WUHDPLQJ ZLWK)RRWSULQW

● 6FDOHV WR YDVW QXPEHUV RI YLHZHUV

ZLWKRXW FKDQJHV WR VHUYHUV

● (QVXUHV PRUH FRQVLVWHQW DQG

EHWWHU TXDOLW\ RI VWUHDP

● 5HTXLUHV QR LQYHVWPHQW LQ

KDUGZDUH RU VRIWZDUH

● &RQWHQW SURYLGHU GRHV QRW QHHG WR

RZQ 5HDO OLFHQVHV

��

3XEOLVKLQJ�7RROV

● 6DQGSLSHU SURYLGHV VHYHUDO

HDV\�WR�XVH WRROV WKDW HQVXUH

FRQWHQW VHUYHG E\ WKH

)RRWSULQW 1HWZRUN LV DOZD\V

XS�WR�GDWH�

■ *8,

■ 6FULSW

■ $XWR�SXEOLVK

%HQHILWV

● &RQWURO IUHVKQHVV RQ &'1

● &RQWURO IUHVKQHVV LQ ,63

GHSOR\HG FDFKHV

$XWR�SXEOLVK WRRO

2SHQ�$UFKLWHFWXUH

● &XVWRP DSSOLFDWLRQV

● ,QGXVWU\�VSHFLILF VROXWLRQV

● 9DOXH�DGGHG VHUYLFH
RIIHULQJV

6DQGSLSHU¶V RSHQ DUFKLWHFWXUH JLYHV &RQWHQW 3URYLGHUV

XOWLPDWH IOH[LELOLW\ LQ OHYHUDJLQJ WKH)RRWSULQW QHWZRUN WR EXLOG�

0HVVDJLQJ)LQDQFLQJ3XEOLVKLQJ

$3,

)RRWSULQW 1HWZRUN

��

&RQWHQW�'HOLYHU\�6ROXWLRQ�3URYLGHUV

● ,%HDP

● 6N\FDFKH

● ,QWHUYX

● 'LJLWDO�,VODQG

● 0LUURU�,PDJH

● ([RGXV

+LJKOLJKWV

● 4XDOLW\�RI�VHUYLFH�LV�EHFRPLQJ�PRUH�GLIILFXOW�WR
DFKLHYH

● &'1V�LPSURYH�WKH�SHUIRUPDQFH�DQG�UHOLDELOLW\�RI
ZHE�FRQWHQW�GHOLYHU\�E\�GLVWULEXWLQJ�FRQWHQW
FORVHU�WR�HQG�XVHUV

● $�KRVW�RI�VROXWLRQV�DUH�DYDLODEOH�WR�LPSURYH
SHUIRUPDQFH

● $V�WKH�,QWHUQHW�JURZV��FRQWHQW�GHOLYHU\�VROXWLRQV
ZLOO�EHFRPH�PLVVLRQ�FULWLFDO�IRU�DOO�ZHE�VLWHV

��

7KH�1HWZRUN�,V�&KDQJLQJ�
$GDSW�WR�,W�

1

(�&RPPHUFH�5HOLDELOLW\�DQG

:HE�6LWH�7HVWLQJ

(�&RPPHUFH�5HOLDELOLW\�DQG(�&RPPHUFH�5HOLDELOLW\�DQG

:HE�6LWH�7HVWLQJ:HE�6LWH�7HVWLQJ

eValid -- The Internet Quality Authority

6RIWZDUH�5HVHDUFK��,QF�6RIWZDUH�5HVHDUFK��,QF�

����0LQQHVRWD�6WUHHW����0LQQHVRWD�6WUHHW

6DQ�)UDQFLVFR��&$��������86$6DQ�)UDQFLVFR��&$��������86$

HYDOLGHYDOLG#VRIW�FRP#VRIW�FRP

:HE6LWH�4XDOLW\�)DFWRUV:HE6LWH�4XDOLW\�)DFWRUV

Time / Change

Accuracy and Consistency

Content

Structure

Performance

Response Time and Latency

eValid -- The Internet Quality Authority

2

:HE6LWH�$UFKLWHFWXUDO�$VSHFWV:HE6LWH�$UFKLWHFWXUDO�$VSHFWV

HTML

Database Access

Cgi-Bin (Perl, etc.)

Java, JavaScript

Multi-Media

eValid -- The Internet Quality Authority

$VVXULQJ�:HE6LWH�4XDOLW\�$XWRPDWLFDOO\$VVXULQJ�:HE6LWH�4XDOLW\�$XWRPDWLFDOO\

Browser Independent

Object Mode

Fonts and Preferences

No Buffering, Caching

Frames

Tables and Forms

eValid -- The Internet Quality Authority

3

&$3%$.�:HE&$3%$.�:HE&$3%$.�:HE

eValid -- The Internet Quality Authority

7HVW�(QDEOHG�:HE�%URZVHU

Script Capture/Replay

Performance Timing

Site Validation and Verification

Script Creation/Replay

Content Validation

&$3%$.�:HE &+5&7(5,67,&6

Fully Featured Web Browser

Built on IE 4.n, 5.n

Full User Capture/Playback Engine

“C” Script Language

Script Recording, Script Editing

Complete Support For:

ActiveX, Frames, XML, DHTML, SSL
FORMs, Modal Dialogs
JavaScript, VBScript, etc.

Multiple Playback Capability

eValid -- The Internet Quality Authority

4

&$3%$.�:HE 86(5)($785(6

Intuitive GUI Via PullDowns

Test Wizards
Link Test
Form Test
Button Test

Validation Functions
Text [Fragments]
Images [Fragments]

Timing Functions
User Controlled Clock
User Defined Alarms

Reporting
Timer Log
Message Log
Event Log

eValid -- The Internet Quality Authority

&$3%$.�:HE %URZVHU

eValid -- The Internet Quality Authority

5

&$3%$.�:HE +HOS 3XOOGRZQ

eValid -- The Internet Quality Authority

&$3%$.�:HE 3XOOGRZQ� 9LHZ

eValid -- The Internet Quality Authority

6

&$3%$.�:HE 3XOOGRZQ� 3UHIHUHQFHV

eValid -- The Internet Quality Authority

&$3%$.�:HE 3XOOGRZQ� 7LPHU� 6HW $ODUP

eValid -- The Internet Quality Authority

7

&$3%$.�:HE 3XOOGRZQ� :L]DUGV

eValid -- The Internet Quality Authority

&$3%$.�:HE 6DPSOH .H\VDYH)LOH

eValid -- The Internet Quality Authority

8

&$3%$.�:HE 6DPSOH (YHQW /RJ)LOH

eValid -- The Internet Quality Authority

&$3%$.�:HE ,QWHUIDFH WR 60$576

Hierarchical Test Tree

1000’s of Tests
Test Groups Nested Without Limit

Multiple Test Execution Modes

Selected Test [Sub-]Tree
Variable Outcomes

PASS/FALL Log Data

Direct PASS/FALL Statistics
Export Data to Spreadsheet
Export Data to DataBase

eValid -- The Internet Quality Authority

9

6XEVFULSWLRQ�7HVW�7HOH6HUYLFHV

&XVWRP�:HE�6LWH�7HVWLQJ�DQG�9DOLGDWLRQ

:HE�6LWH�4XDOLW\�&RQVXOWLQJ

6XEVFULSWLRQ�7HVW�6XEVFULSWLRQ�7HVW�7HOH6HUYLFHV7HOH6HUYLFHV

&XVWRP�:HE�6LWH�7HVWLQJ�DQG�9DOLGDWLRQ&XVWRP�:HE�6LWH�7HVWLQJ�DQG�9DOLGDWLRQ

:HE�6LWH�4XDOLW\�&RQVXOWLQJ:HE�6LWH�4XDOLW\�&RQVXOWLQJ

H9DOLG����7KH�,QWHUQHW�4XDOLW\�$XWKRULW\H9DOLGH9DOLG����7KH�,QWHUQHW�4XDOLW\�$XWKRULW\����7KH�,QWHUQHW�4XDOLW\�$XWKRULW\

eValid -- The Internet Quality Authority

:(%�0$5.(73/$&(�6,=(

44.1 Million On-Line Shoppers in 1999

128 Million On-Line Shoppers in 2002

E-Commerce ~$327 Billion in 2002

1,500,000 Domain Names Registered

$1B/year in site analysis, performance and
management tools (Dataquest)

eValid -- The Internet Quality Authority

10

H9DOLG�0$5.(7�7$5*(76

Web Editors/Creators
Main CAPBAK/Web Buyer
Single Short Term eValid Purchase

Web Masters
Likely CAPBAK/Web Buyer
Several Middle Term eValid Purchases
Some Long-Term eValid Purchases

Web Site Managers
Possible CAPBAK/Web Buyer
Multiple Long-Term eValid Purchases
TestSuite Development Support
Consulting Services

IT Directors
Possible CAPBAK/Web Buyer
Multiple Long-Term eValid Purchases
TestSuite Development
Web Quality Consulting Services

eValid -- The Internet Quality Authority

:(% 6,7(3()250$1&(� 48$/,7< 1/<6,6 3(563(&7,9(6

On-ISP
Runs Local to WebSite
Static/Local Analysis
Possible Outbound Link Checks

ISP-to-ISP
Runs Remote from Website
Dynamic Analysis
Possible Quality Analysis

Client-to-ISP (eValid's View)
Runs on Client Through Web to Site
100% Users' Perspective
56.6 Kbps Dialup Modem Standard
Multiple TimeZones
Client Creation/Verification of Tests

eValid -- The Internet Quality Authority

11

H9DOLG 6(59,&(237216 ��)UHTXHQF\

24 x 7 x 365

Timing Interval

Semi-Hourly (15 Minutes) 2,880 Tests/Month
Hourly 720 Tests/Month
Four-Hourly 180 Tests/Month

TimeZone Coverage

USA Non-USA

Eastern Pacific Rim
Central Europe
Mountain
Pacific

eValid -- The Internet Quality Authority

H9DOLG 6(59,&(237216 �� &XVWRP 7HVWLQJ

Consulting on WebSite Testing

TestSuite Development

Onsite
Remote

TestSuite Execution

24 x 7 x 365 “standard” Service

Customer Schedule

“Tiger Team” WebSite Assurance

eValid -- The Internet Quality Authority

12

H9DOLG 6(59,&(237216 �� :HE6LWH 9DOLGDWLRQ

BenchMark Test Service
How Fast Does a Sequence of URLs Download?
1-6 or 7-12 URLs
Is Site Too Slow?

SpotCheck Test Service
Do Selected Parts of URLs Have Constant Content?
6 Spots/URL on 6 URLs
Anything Missing on Site?

InwardLink Test Service
Weekly Update of Inward Link List

Max of 25 Inward Links
Do Outsiders' Links to the Site Work?
Which Prior InwardLinks Have Disappeared?

eValid -- The Internet Quality Authority

Transaction Test Service
Three Stage Transaction

Selection
Purchase
Payment

Does an E-Commerce Transaction Succeed?

Security Test Service
Two-State Tests

Login Passes Valid User
Login Blocks Invalid User

Is Login Security Working?

H9DOLG 6(59,&(237216 �� (�&RPPHUFH 9DOLGDWLRQ

13

H9DOLG 6(59,&(237216 �� 6HOI�7HVW 'HYHORSPHQW

eValid TEST (Test Engine / Standard Tests)

FREE to eValid Customer

Records / Edits / Plays

Submits Keysave File to eValid

Internal Confirmation

Production Version

eValid -- The Internet Quality Authority

H9DOLG 6(59,&(237216 �� 5HSRUWLQJ

Email Alerts

All Errors
Warning Counts Exeed Threshod

Online WebSite Access

ErrorLog
EventLog Details

TestSuite Execution

Semi-hourly (15 Minutes) 3 Days
Hourly 1 Week
Four-Hourly 1 Month

eValid -- The Internet Quality Authority

14

6RIWZDUH�5HVHDUFK��,QF�6RIWZDUH�5HVHDUFK��,QF�

����0LQQHVRWD�6WUHHW����0LQQHVRWD�6WUHHW

6DQ�)UDQFLVFR��&$��������86$6DQ�)UDQFLVFR��&$��������86$

3KRQH� >�@ ����� ��� � ����

)$;� >�@ ����� ��� � ����

(PDLO� VDOHV#VRIW�FRP

:HE6LWH� KWWS���ZZZ�VRIW�FRP

eValid -- The Internet Quality Authority

1

eCommerce Benchmarking Methodology
and Criteria

Steven Rabin,

Chief Technologist

How Much of Your eCommerce Sales are at Risk?

• 44.1 million on-line shoppers in the U.S.
• 37.5 million more will go on-line in the next 12 months
• on-line buyers spend an average of $200/month
• an estimated $762 million/month in eCommerce sales is

lost due to slow, spotty, inefficient sites

Zona Research, 7/99

2

Commerce Server Site Analysis

Home Page Size Bail-Out Rates
--
 70 KB * 50%

 40 KB * 30%
 34 KB 8%

 * other pages on site were 32-35KB and
 showed a 6-8% bail-out rate

 vendors must heed the 8 second rule

 Keynote Systems, 6/99

 Actions Taken After Abandoning eCommerce Site

Did Not Bought Item at Bought Item at
Demographic Buy Item Other Web Site Brick and Mortar
All 34% 24% 37%

Age < 25 years 27% 23% 53%

Age 25 to 34 43% 25% 30%

Age 35 to 44 27% 24% 43%

Age 45 to 54 35% 21% 38%

 Zona Research, 7/99

3

The eCommerce Performance Life-Cycle

Build and tune your application
Benchmark your system

Define your terms
Understand your customers
Set your goals
Plan your infrastructure

Build operations procedures
Adjust for special events

P
L
A
N

B
U
I
L
D

G
O

Performance
Management

Lifecycle
Plan

Infrastructure

Understand
Customer Behavior

Build / Tune
ApplicationBenchmark

Performance

Tune
Infrastructure

Adjust for
Peak Periods Set Site

Performance
Goals

Set
Operations
Procedures

Performance
Management Lifecycle

4

Define Your Terms

• Simultaneous users? Orders / day? Pages /
second? Visitors / day?

• What is the difference between a page? Hit?
Impression?

• How complex are the pages?
• Are system capacity numbers measured in pages

/ machine or pages / CPU?

• Understand units of commerce work
z loading modules
z building templates
z round trips (ie. database)
z transaction types

Understand Your Customers

• You can’t predict your traffic unless you understand
your customers.

• You must predict how many will come and what they
will do.

• Rely on past experience, industry statistics, and all
information available.

• Consider season, time of day, marketing campaigns,
and other factors.

5

Set your goals
Sizing the System by Orders / Day

• Orders / Day 1000 [GOAL]
• Conversion Ratio 2% [ESTIMATE]
• Pages / Visit 10 [ESTIMATE]
• Peak Ratio 10% [ESTIMATE]
• Pages / Peak Hour 50000 [CALCULATED]
• Pages / Second 14 [CALCULATED]
• Pages / Second / CPU 2 [IW ESTIMATE]
• CPU’s Needed 7 [CALCULATED]

Set your goals
Sizing the System by Simultaneous Users

• Simultaneous Shoppers 1000 [GOAL]
• Desired Response Time 5 [ESTIMATE]
• Dwell Time 45 [ESTIMATE]
• Pages / Second 20 [CALCULATED]
• Pages / Second / CPU 2 [IW ESTIMATE]
• CPU’s Needed 10 [CALCULATED]

6

Build and Tune Your Application

• Budget time for performance tuning
• Understand the trade-off between performance and

functionality
• Consider impacts on other systems
• Focus on areas that will be the hardest hit by

customers.
• Small decisions can have a huge impact

Benchmark Your System

• Benchmark each component in isolation.
• Benchmark the system as a whole.
• Invest the time in accurately modeling your users with

a load testing tool.
• Assemble a team of experts to help with the final

acceptance test.
• Measure the system against the original goals.

7

Performance & Stability Testing (1/2)
– Simultaneous Users:

 Threaded commerce software guards against serialized resources.
However, that requires careful management of common services to
avoid deadlock. Test for concurrent usage.

• database connection pools

• CPU

• components/objects

– Transactions per second:

 Stress testing for peak performance. Turnaway capabilities based
on estimated peak availability.

• common HTML refusal page

• where is the knee of the curve

Performance & Stability Testing (2/2)

– Server Sizing:

• Memory/CPUs?

• What is running on each server?

– Database Sizing:

• Capacity planning using sample data.

• Foot-print per user.

• Trigger threshold notices.

– Real-world Simulations:

• Server log analysis

• Classify types of transactions. Example: Search versus
Orders?

8

Top Commerce Site Performance (Xmas ‘98)

 Site HomePage Delivery Availability
 (seconds) (percent)
Amazon 4.9 99.4
Barnes & Noble 7.3 99.2
Dell 8.3 99.1
Gateway 6.4 86.7
Lands End 9.0 91.5
Toys R Us 5.7 98.1
Business 40 index 9.2 97.5

Scenario 1: Search to Buy Ratio Static to Dynamic Pages
 99 : 1 1 : 99

 5 : 95
10 : 90

Scenario 2: Search to Buy Ratio Static to Dynamic Pages
 95 : 5 1 : 99

 5 : 95
10 : 90

Scenario 3: Search to Browse to Buy Ratio Static to Dynamic Pages
 60 : 39 : 1 1 : 99

 5 : 95
10 : 90

Scenario 4: Search to Browse to Buy Ratio Static to Dynamic Pages
 50 : 45 : 5 1 : 99

 5 : 95
10 : 90

Benchmark Configurations

9

• Home Page Transaction
• Product Page Transaction
• Section List Transaction
• Shopping Basket Transaction
• Buy Transaction
• User Registration Transaction
• Search Transaction
• Check Status Transaction

 eCommerce Benchmark Transactions

Static and Dynamic Units of Work - Simple and Complex Transactions

Transaction Type Percent Frequency
(bookseller)

• Search on product characteristics (e.g. title 43%)
• Display particular product 32%
• View Homepage 10%
• Display Shopping Cart Contents 8%
• Add Item to Shopping Cart 5%
• Buy a product 1%
• Register new user .3%
• Display order .3%
• Error .3%

10

Home Page
Search
Basket
Order Process

OP1 = ObjBuilder, OrderProcess initialize
OP2 = " " verifyOrderDialog
OP3 = " " verifyBillingDialog
OP4 = " " verifyShippingDialog
OP5 = " " setShippingMethodDialog
OP6 = " " confirmationDialog
OP7 = " " paymentMethodDialog
OP8 = " " orderCompleteDialog
OP9 = " " deleteOrder

Benchmark Scripts
(Search-Buy)

Web Site Performance Q&A

• Do customers experience consistently good performance from your
web site?

• How does your web site compare to your competitors or to industry
benchmarks?

• Do customers in certain cities have more trouble with performance
than from other cities?

• How does your site deal with heavy traffic and/or peak load periods?

• How reliable is your site in terms of connections refused, connection
time outs and page time outs?

• Are certain pages consistently slow?

• Should geographic mirroring be considered for your site?

11

• Site Characteristics
• Determine customer value of each feature
• Remove non-essential steps
• Dynamic page analysis
• Turn off features (based on peak load scenarios)
• Remove or disable personalized pages (peak load scenarios)
• load characterization, site characterization

• Assessment
• Determine customer expectations and evaluate the impact
• Who are you selling to and what do they expect to see next?
• Does the current infrastructure support the future?
• Cost and benefit analysis of new features vs. performance

• Simulate Real World Load
• Number of users
• Types of transactions
• Database access
• Legacy connection(s)
• Network/infrastructure issues

Benchmark and Performance Technology Assessment

O p e r a t i n g S y s t e m : S o l a r i s
N u m b e r o f C P U ' s : 2
M e m o r y : 1 . 4 G B R A M

E l e m e n t 1 u s e r l o a d 5 u s e r l o a d 1 0 u s e r l o a d 2 0 u s e r l o a d 5 0 u s e r l o a d
H o m e P a g e 4 . 8 4 2 3 . 2 5 3 4 . 7 4 3 7 . 0 5

C a t a l o g L i s t 2 . 4 7 2 . 4 3 2 . 4 9 2 . 1 8 3 . 0 1

S e c t i o n L i s t - C a c h e d 3 . 3 2 1 2 . 7 3 1 7 . 2 6 2 0 . 4 4 2 2 . 2 6

C a t P r o d u c t - C a c h e d 3 . 9 7 1 3 . 6 2 1 8 . 9 2 6 . 4 9 6 . 4 0

S e c t i o n P a g e - C a c h e d 0 . 1 9 0 . 9 4 2 . 0 7 4 . 7 0 7 . 9 0

P r o d u c t P a g e - C a c h e d 0 . 1 9 0 . 9 5 1 . 8 5 2 . 5 7 . 8 4

B a s k e t (I W X) 2 . 1 8 4 . 3 3 4 . 3 1 4 . 2 9 4 . 5 0

B a s k e t S t e p s 1 . 4 1 2 . 0 7 2 . 0 7 2 . 0 7 1 . 8 8

O r d e r P r o c e s s (t o t a l s)
- I n i t i a l S t e p
- V e r i f y O r d e r
- V e r i f y B i l l i n g
- V e r i f y S h i p p i n g
- S h i p p i n g M e t h o d
- C o n f i r m a t i o n
- P a y m e n t M e t h o d
- O r d e r C o m p l e t e
- D e l e t e O r d e r

0 . 0 4 0 . 1 4 0 . 1 0

O b j e c t B u i l d e r
- N O O P p r o c e s s
- S t a t i c T e m p l a t e
- S t a t i c T e m p l a t e +

D a t a b a s e a c c e s s
S e a r c h 0 . 0 9 0 . 4 7 0 . 9 3 3 . 3 5

C a t e g o r y S e a r c h 0 . 0 9 0 . 4 7 1 . 0 0 1 . 9 6

C u s t o m e r R e g i s t r a t i o n

M i x 8 5 % t o 1 5 %

M i x 9 5 % t o 5 %

U n i t s = D y n a m i c P a g e s / s e c (t r a n s a c t i o n s / s e c)

Results vary based on
site customizations

Use benchmarks as a guide.
Your mileage may vary!

12

eCommerce Benchmarking Methodology
and Criteria

1

Jeff Schuster
jschuster@rational.com

Jeff Schuster
jschuster@rational.com

Effective Testing for Java-based Web SoftwareEffective Testing for Java-based Web Software

AgendaAgenda

� What is Java software, anyhow?
� How do you test Java?
� How do you build testable Java applets/applications?
� Discussion

2

Understanding JavaUnderstanding Java

� It is used in many different places
� Java Applets -- in browsers, applet-viewer
� Java Applications -- Sun and Microsoft VMs
� Java Runtime Environment (from Sun)

Testing JavaTesting Java

� It is used in many different places
� Java Applets -- in browsers, applet-viewer
� Java Applications -- Sun and Microsoft VMs
� Java Runtime Environment (from Sun)

3

Navigator, Explorer, Applet ViewerNavigator, Explorer, Applet Viewer

Web Server

Applets - Web apps running in a browserApplets - Web apps running in a browser

� Many pieces to this configuration
� Before testing, know the target environments
� Regression testing is necessary

Host OS

Applet viewer

Sun’s
JVM

Applet

MSIE

Microsoft’s
JVM

Applet

Navigator

Netscape’s
JVM

Applet

Browsers

Sun’s
“Java Plugin”

Applet

4

Java Apps - programs on the desktopJava Apps - programs on the desktop

� Several possible environments.
� Each application is likely to be deployed in just one

(or maybe two) environments on Windows

Host OS

Microsoft
“J”VM

Sun
JVM

Sun
JRE

Java
Application

Typical E-Commerce Application StructureTypical E-Commerce Application Structure

5

Typical Internet Application StructureTypical Internet Application Structure

Browser

E-Commerce
Clearinghouse

Commerce
Application

Commerce
Server

Business
Logic

Middle Tier
(JDBC...) Server

Web Pages
Forms

.

Web
Server

Data Base
Server

Web Pages
Forms

Custom Logic

Web
Server

Know this
for your
own application!

Java software -- what it’s made of ?Java software -- what it’s made of ?

� GUI toolkit, drawing software
� Foundation Class choices:

� Custom classes
� Sun’s JFC / Swing
� IBM Visual Age/Java
� Symantec Café
� MS AFC or WFC

� Abstract Windowing Toolkit
underneath other display classes Host OS

Java Virtual Machine

Native Display software
(“AWT Peer Classes”)

Foundation
Class Lib AWT

2nd-gen
Java
App

1st-gen
Java
App

6

Java software -- what it’s made of ?Java software -- what it’s made of ?

Host OS

Java Virtual Machine

Native Display software
(“AWT Peer Classes”)

Foundation
Class Lib AWT

2nd-gen
Java
App

1st-gen
Java
App

Java Development Kit version
(1.0.3, 1.1.6, etc)

Java Virtual Machine version
(1.0.3, 1.1.6, Microsoft, etc)

Host Environment

Java software -- what you have to know!Java software -- what you have to know!

Host OS

Java Virtual Machine

Native Display software
(“AWT Peer Classes”)

Foundation
Class Lib AWT

2nd-gen
Java
App

1st-gen
Java
App

Before beginning a testing project, get
some answers about the software

•Application? Applet?

•What Foundation Class set?

•Any custom display classes? (What
development IDE?)

•What JDK version ?

•What deployment browsers (applets)?

•What OS platforms?

7

AgendaAgenda

� What is Java software, anyhow?
� How do you test Java?
� How do you build testable Java applets/applications?
� Discussion

Recall what you have to communicate...Recall what you have to communicate...

� Requirements
�� Test Plan andTest Plan and

coveragecoverage
�� Test ScriptsTest Scripts

�� Defects - includingDefects - including
state, priority, systemstate, priority, system
configconfig., etc.., etc.

�� Regression resultsRegression results

8

To effectively test Web Apps, you MUSTTo effectively test Web Apps, you MUST

� Be able to tell how far we had tested against the current
system requirements in the test plan

� Check for reliability automatically with each new build
� Create test scripts for new functionality quickly and easily
� Make test scripts on one iteration and keep using them on

all of them
� Use one set of test scripts for all configurations
� Load test with confidence and ease before deploying
� Communicate the results and share the test assets and

metrics

Track dynamic requirementsTrack dynamic requirements

� Understand the requirements to
create the test

� Report coverage against current
requirements
�Where do results still apply?

� Track and document

9

Creating the Test PlanCreating the Test Plan

� Start with business
requirement to test
against

�� Plan test scripts,Plan test scripts,
schedules, etc.schedules, etc.

�� Execute, report, andExecute, report, and
re-evaluate with eachre-evaluate with each
iteration - regressioniteration - regression
testingtesting

Steps in Functional Regressions TestingSteps in Functional Regressions Testing

2. Run tests Video Clip

OK

Find

 Run script

View results

Report
defects

Iterate

1. Create test scripts

Select requirement

Record actions

 Insert validation

 Edit script
(optional)

10

Video Clip

OK

Find

Report
defects

 Run script

View results

Iterate

�� Object recording required to make test scripts robustObject recording required to make test scripts robust
�When application changes
� Across configurations

Track System-Under-Test ChangesTrack System-Under-Test Changes

� Objects can change in
� Appearance
� Content
� Location
� Timing

Object Testing on JavaObject Testing on Java

All object properties
available to developer
are tested at runtime

All object properties
available to developer
are tested at runtime

Accurate, reliable
navigation on Java
objects (even tabs,
trees, …)

Accurate, reliable
navigation on Java
objects (even tabs,
trees, …)

Tests all data, even
hidden (e.g. in Sun
Swing JTables)

Tests all data, even
hidden (e.g. in Sun
Swing JTables)

11

HTML Requires Object Testing Too

Object-oriented
recording does it
right, based on
W3C Document
Object Model.

Object-oriented
recording does it
right, based on
W3C Document
Object Model.

Can not record
targets
Can not record
targets

Server generates
unique target for
every transaction

Server generates
unique target for
every transaction

Must have
persistent link
names and let
server use real
targets at runtime

Must have
persistent link
names and let
server use real
targets at runtime

AgendaAgenda

� What is Java software, anyhow?
� How do you test Java?
� How do you build testable Java

applets/applications?
� Discussion

12

Give Objects Persistent NamesGive Objects Persistent Names

� Set the name member variable -- optional --
� Increases testability by allowing object recognition by

name.
� For example, in AWT:
RUGHU%XWWRQ�QDPH� �³�3ODFH�2UGHU´�

�… in JFC:
RUGHU%XWWRQ�DFFHVVLEOH1DPH� �³3ODFH�2UGHU´�

Flatten the Hierarchy and Make Names UniqueFlatten the Hierarchy and Make Names Unique

� Naming of Java objects: flatten out the subdivision
hierarchy; do not depend on inheritance
� E.g. “JavaPanel; JavaIndex=11” include Label & PushButton

13

Use Standard Object ClassesUse Standard Object Classes

� Derive your custom Java object classes from standard
JFC / AWT classes
� A good GUI testing tool recognizes the object as an instance

of the standard object from which it is derived

� Put testability information into public member variables in
your Java objects
� A good GUI testing tool sees these public members as object

properties.

Building Testable Java Applets/Applications?Building Testable Java Applets/Applications?

Three simple rules
� Give Objects Persistent Names
� Flatten the Hierarchy and Make Names Unique
� Use Standard Object Classes; Expose Public Members

14

AgendaAgenda

� What is Java software, anyhow?
� How do you test Java?
� How do you build testable Java applets/applications?
� Discussion

- 1 -

Writing a Software Engineering Handbook for the Intranet

Benedikt Lutz

Siemens AG Austria, PSE BV QM

1 Summary

In this paper I describe the Software Engineering Method of Siemens AG Austria PSE, which is
an intranet-based application of about 1000 html-pages. The intranet has many practical
advantages for such solutions (direct access to information in the working environment, platform
independent, no distribution effort,..), but for the practical acceptance of voluminous online
handbooks the usability of the application is extremely important: The whole text has to be
rewritten/”redesigned” for online presentation, the architecture of the application must have a
clear structure (defined and recognizable page types and link types), the access structure for
different needs of the users has to be carefully designed.

In this paper the basic principles of the method as well as the realization of the intranet
application will be shown; in the presentation (paper 10B) I give a live demonstration of the
application.

2 Short presentation of Siemens AG Austria – PSE

PSE (Program and Systems Engineering) is a part of the Siemens Aktiengesellschaft Österreich.
PSE offers solutions and services for the entire information and communications technology sector.
About 3.900 engineers, more than half of which hold an university degree, work in Vienna, Graz,
Salzburg and 5 international locations. More than 30,000 man-years of experience have been gathered
in the field of communication systems and data processing. Around 95% of the services offered by
PSE have been exported to 53 countries up to now.

PSE is at home working with most system platforms and operating systems available on the market.
The comprehensive overview of the current and future potential in public and private communication
networks provides a basis for special competence with respect to the design and implementation of
integrated information systems – from PC networks to satellite communications.

PSE has been concentrating its efforts for many years now on quality-assured development techniques.
The ISO 9001 certificate awarded to PSE only constitutes the starting point for further improvements.
SEI assessments, conducted in accordance with the capability maturity model, have resulted in PSE
assuming a leading position among the cream of the international competition.

3 SEM® - the Software Engineering Method of PSE

SEM is a process model which defines all work and test steps and the results which are to be
achieved in all phases of system development. It is therefore fully compliant with the standard
ISO 9001. The SEM development method was devised as early as 1983 for the PSE and has since
been the subject of systematic training in seminars (basic training in software engineering for all
employees).

- 2 -

Since it was first developed, the method has been adapted several times to meet market
requirements. As early as 1993, SEM was used as a basis for certifying the entire PSE in
compliance with the standard ISO 9001. One year later, the PSE software development was
assessed using the CMM/Bootstrap maturity model. This assessment rated SEM as a „robust,
comprehensive process model”.

For PSE, the systematic use of SEM brings about a marked improvement in error detection in the
early development phases and thus makes a significant contribution to business success.

Since 1996 we redesigned our engineering method completely: We started with writing an
general process model SEM-VM (German: „Vorgehensmodell”), which defines a uniform and
abstract process (like a „law book”) and serves as a reference model for certifications (like ISO
9001 or SEI assessments). From this abstract process model there can be derived tailor-made
method descriptions (or instances), which are adapted to requirements specific to a particular
sector or technology. So the process model for the user can be much more concrete and helpful
than the abstract description.1 Until now, there were derived the following instances:

• stdSEM: a general model for system development

• ooSEM: development of systems based on object-orientation methods

• eeSEM: system development method for developing electronics, firmware and ASICs

• SEM-HL: development and / or procurement of software for the Semiconductor Group (HL)
of Siemens AG Berlin / Munich.

• Other instances, like SEM for product development (prodSEM), are in preparation.

SEM subdivides the development process in phases. According to SEM, a project begins in the
Initiation phase and always ends in the Termination phase. If a positive project decision is
reached in the Initiation phase (after all risks have been evaluated and after basic advance
planning), the project is continued with the Definition phase; e.g. for drawing up a tender.

1 The whole process model, the procedures how to derive concrete methods and the description of our whole project
appeared as a book: Hermann Kaindl/Benedikt Lutz/Peter Tippold: Methodik der Softwareentwicklung.
Vorgehensmodell und State-of-the-Art der professionellen Praxis. Vieweg Professional Computing 1998.

picture 1: The abstract process model and derived methods

- 3 -

The detailed project planning, processing of requirements and producing of the software
requirements specification are followed by the Design and Implementation of the ready-to-use
product, accompanied by the necessary project management and quality management measures.

Product utilization itself is ensured in the Operations phase by means of agreed accompanying
measures. In the Termination phase, every project is concluded in an orderly manner and
experience gathered during the project is recorded in a report.

picture 2: Project phases according to SEM

But SEM does not only support the traditional Waterfall model, which is still important for
„classical“ software development work. In addition, there are possible 4 other life cycle
approaches:

• The Evolutionary development model serves as a basis for performing maintenance projects
and version developments in the PSE: A follow-up product version is always based on the
preceding version.

• In the Prototyping model, design and implementation are performed jointly step-by-step using
suitable tools: This ensures that customers’ needs are taken into account more than ever
before in the development work (this life cycle approach is very similar to the so called rapid
application development in some other publications).

• In the Incremental delivery model, the architectural design specification serves as a basis for
further development in independent releases.

• The Spiral model is a model involving extensive accompanying measures which is used with
very large projects (for each phase: goal definition, risk analysis, simulations, etc.).

4 Quality management in the PSE

Quality management has always been attached particular importance in the PSE:

• Every project has a QA manager who is responsible for QA planning, QA reporting and
ensuring that all QA measures are performed correctly.

• Every division has its own quality manager who supports the divisional manager in attaining
the business goals.

- 4 -

• The quality management center advises the PSE management in formulating and
implementing Q policy. The center also supports the various divisions and international
departments in PSE-wide improvement activities, the efficiency of which is regularly
checked. Technical and commercial project controlling procedures have been defined and
introduced to ensure the success of projects.

In addition to SEM, the PSE has numerous project support tools. These include:

• Guides (Performance of reviews, initiation of projects, risk management, usability
engineering, archiving of documents, etc.)

• Evaluation tables (Ascertaining project risks, ascertaining project manager qualifications,
etc.)

• Programming guidelines

Support centers are available for important subject areas. These centers provide advice and
support throughout the PSE. Support centers currently exist for:

• Estimation of effort and metrics

• Configuration management

• Databases

• Test and test automation

• Object-oriented development

• Project experience

• Project management

• Windows support & solutions

• Components and internet technology

5 From printed process models to online documentation

Printed process descriptions in the field of software development have always been seen by most
of the developers as a „necessary evil“, which has to be obeyed: People do not like „paperware”
that is difficult to read and, moreover – at least according to the opinion of many developers -
restricts their „liberty and creativeness”.

Online documentation, on the other hand, is much more attractive for developers, especially in
the form of an intranet application:

• An electronic manual in HTML format can be called up online from every workstation and
has a uniform appearance under all operating systems.

• The intranet contains a wealth of useful information for efficient networking.

• Documents can be downloaded directly from the online display of the application.

• Printouts can be performed from every workstation.

- 5 -

• There is no organizational effort involved in distributing new versions; the intranet Web is
always up-to-date.

So it was clear for us that the new version of SEM had to appear as an online application.

In many companies the existing paper-based documentation is already put into the intranet (e.g.
circulars, organigrams, work specifications, instructions etc.). In most cases the existing text is
just converted 1:1 into html-format. This procedure is absolutely sufficient for short documents
with clear access structures (e.g. table of contents of all circulars of the company with title and
date; if you click the title, the circular is shown in html-format or downloaded as a WinWord-
file).

But if you handle more voluminous documents this way, there arise big problems, which have to
do with reader acceptance and applicability of the texts. Nobody reads many online pages in one
piece, people lose control over the whole text. The two most important problems in this context
are disorientation of the reader (the so-called „lost in hyperspace”-phenomenon) and cognitive
overload (too much information which I do not need in the concrete context). These questions
have been treated from the scientific point of view for over a decade in the hypertext-community,
in Information Science, Cognitive Psychology and Text Linguistics; the discussion moved into
the web in the last years: There is a huge mass of literature available on the usability and
accessibility of texts in the web; hypertext styleguides are en vogue.

The essence of all this scientific research and advising literature: Hypertexts have to be designed
in a structural, textual and graphical sense to be applicable and usable for the reader. An
important aspect is the definition of node types (content of the same category) to enhance the
recognition of the readers; and on the other hand the definition of link types (leading to nodes of a
specified category) to give the right „presentiment” and safety to the readers („where will I go to,
if I click this icon?”).

These findings make it very clear: If you plan to construct a voluminous online handbook which
is usable and accepted by the readers, the application has to be carefully designed, already
existing linear text has to be reworked - or even better - completely reformulated. Early versions
of the application have to be usability tested (to check if your imaginations also work in reality).

6 Design principles and architecture

To design the architecture of a online handbook, you have to keep in mind on one side the
contents which have to be conveyed, and on the other side the needs of the users (what has to be
noticed by the readers under any circumstances vs. what are the most important needs of the
reader). You just cannot command the user to read this or that html-page; you have to design the
web in such a way that the probability is as high as possible that readers will read and understand
the most important pages. In the case of an instruction manual this task is even more difficult:
People have not only to understand the contents, you have to lead people to act in the right way!

This means for the structure of such a web: Clear content structures with clearly identifiable and
accessible contents. People must know what is in the web and what not (the „borders of the
universe”).

SEM is a phase model; so it was clear for us that the dominant structure for description and
access had to be phase-oriented. That is why the most important parts of SEM are in the

- 6 -

description of the development phases. In addition, there are some themes which are not clearly
assigned to specific phases, but belong to multiple phases (like project management and control,
quality assurance, configuration management, different life cycle approaches,...). These themes
appear in all phases, but are described coherently in a more global context („Themes relating to
multiple phases”). Finally we needed an introductory overview and some surrounding amenities
(help system, discussion forum for stimulating discussion on SW engineering themes,...).

So our handbook consists of the following parts:

• In-depth description of development phases

• Themes relating to multiple phases

• Overview

• Help system

• Discussion forum

• Rally (for making people curious to know what is in the web)

• Furthermore, there are short introductions to the contents and handling of the application (for
beginners).

picture 3: stdSEM homepage

- 7 -

Phases according to SEM are characterized by specific goals to be reached. These goals are
reached by executing activities and the results which these yield. For the majority of phases in
stdSEM, related activities are grouped together into appropriate subphases. These subphases
should be executed if the associated activities make sense (e.g. subphase „Drawing up a tender“
in the Definition phase, subphase „Preparation of operations“ in the Implementation phase). The
subphases can also overlap.

Every phase has its required preconditions. The phase can only be started if these preconditions
are met. There are also required activities which are performed during the phase. stdSEM makes
a distinction between primarily technical, project control and quality assurance activities. Each
phase is characterized by results which arise when activities are executed. The degree of
obligation of these results is defined for each phase in stdSEM (in the „Phase Orientation“).

Milestones mark significant points during the course of the project which are generally associated
with important results. Since they are particularly suitable for project controlling, prespecified
milestones are defined in stdSEM (these can also be modified on a project-specific basis). For
example, „Project enterprise decided“ is a project control milestone in the Definition phase.

In these phase orientation pages, which give a general graphical overview of the phase, there are
many links to detailed descriptions: each activity and result can be clicked to get in-depth
information; the general goals, milestones and phase-specific aspects of phase independent
themes (like project management) can be called up as well:

picture 4: Phase homepage

- 8 -

From the description of activities and results there are „deepening links” to further information:
checklists, tips, references to tools,...

For documents you will find predefined templates in different formats (WinWord and
FrameMaker), checklists and sample documents.

So the overall structure of stdSEM looks as follows:

picture 5: Architecture of the whole stdSEM-Web

7 Text design and layout of pages

Reading from the screen differs from reading printed matter. This has to be taken into account
when you write online texts and if you intend that the text is really read by the readers. But out of
many scientific publications of different disciplines it is not quite clear, what this means in detail:
For „hard” empirical scientific research there are too many intervening variables (like screen size
and resolution, font type, font size and color, text formatting, background color, combination of
graphic elements with text, system reaction time, etc.; all this aside from the most important
reader variables and the use of different browsing systems). So the results of scientific research in
this field are either too specific or very general. Furthermore, in the last years practice developed
much faster than theory, if you look for example at the development of the WWW (in the
technical, textual and graphical sense).

- 9 -

Nevertheless, some principles for the writing of online texts can be postulated: The text must be
shorter and more concise than printed text, there must be more headings and subheadings (for
catching attention), there must be short paragraphs and a clear structure of the text, important text
parts have to highlighted. The „message” has to arrive at the reader in the first seconds of
reading, people do not continue reading on the next screen if they are not quite sure that they find
relevant and interesting information a that place.

In this sense, these principles have quite a lot of similarities with journalism, especially boulevard
journalism: The text has to „fight for attention”. The classical structure of newspaper articles is in
the form of the so-called „inverted triangle”: Headline, lead sentence, important content, less
important content (you can shorten the article from the end without loss of relevant information
and consistency, if necessary). I think, the writers of online texts can learn much from the
procedures in journalism.

This holds true also for the combination of textual and graphical elements: The reading process is
lead and structured strongly by the use of graphical elements. Graphical cues are very important
and effective for orientation, recognition, signaling of importance and visualization of context.
Therefore we use graphic elements extensively in stdSEM. When we usability-tested an early
version of stdSEM, we made the interesting observation that sometimes the effect of graphic
elements is so strong that people did not realize what to do, if some procedures are documented
only in a textual way – the text-only descriptions actually „drowned” and were overruled by the
text-and-graphics descriptions. So we had to design the whole web graphically.

Now I want to present some typical pages (node types) of stdSEM for better understanding of
these principles. The next picture shows an activity node. Such nodes contain always a clickable
image map, where the graphic shows the connection to the previous and following activities
(„where do I come from” – „what other activities are in connection with this activity” – „where
shall I go to”).

- 10 -

The text structure of activity nodes is always the same: to be performed by - goal of the activity –
short description of activity – further notes. In the margin of the page there may be links to in-
depth descriptions of the activity (like checklists, tips, references to tools and FAQ-pages).
Sometimes there are links to the „outer world” of the intranet (to pages not belonging to the
stdSEM web): these links are signaled by specific icons (WinWord-symbol, door symbol):

picture 6: Activity node

- 11 -

Checklists give more details to an activity and are structured in the form of a catalogue of
questions and detailed descriptions of the steps belonging to this activity. They are identifiable in
the web through a pink background color:

picture 7: Checklist for activity

- 12 -

Pages with tips have a different style: They are less „serious” and give „real life advice”; people
are addressed directly in these pages:

picture 8: Tips for activity

- 13 -

Result nodes describe the result to be reached (in many cases the results are documents). The
description follows a general structure: Purpose – short description of content – further notes –
graphical description of preceding and following activities. The most important links at the result
nodes lead (in the case of documents) to a table of contents of the document, to the document
checklist (the annotated table of contents), and to the download of the document template:

picture 9: Description of result

- 14 -

The annotated table of contents has the advantage for the user, that there are clear structures for
the document to be written and, moreover, help and advice in an argumentative manner, what has
to be written in this or that chapter and why:

picture 10: Checklist for result

From this annotated table of contents you can click to sample documents (which are only
available in html-format). These sample documents are characterized in the web through a yellow
background color. From cognitive psychology we know that „learning by example” is very
effective, but dangerous, on the other side: The examples are perceived so dominantly that it is
difficult to understand the underlying and general principles (the examples are „seductive”;
people think that it will go always the way how is described here).

That was the most important reason why we decided to offer the document templates as
annotated tables of content and not as sample documents (they are too seductive): If there is
already an almost finished document, people tend to copy given materials and do not think much
about if this or that description holds true for the concrete project, too. Moreover, it is fairly
probable that people forget important themes, if these themes are not mentioned in the sample
document (and you cannot mention every possibly relevant theme in a sample document).

- 15 -

picture 11: Sample document

8 Orientation and multiple access structures for the readers

Apart from a clear structure and typed links and nodes, it is very important in voluminous
websites to provide orientation and different access structures to the readers, according to their
different needs.

Orientation is supported through a general header on every page with links to the homepage, the
phase homepages (the current phase is highlighted), to a search engine, a help system and a
„where am I”-page, which dynamically shows your actual position in a map of the stdSEM-web
(see picture 5).

For the fast access to the contents and definitions of central terms we provide an (alphabetical)
index with links to the respective pages (this index is content-oriented and not automatically
generated, which was much work, but leads to good results).

In the web there is integrated a search engine with full text search possibilities.

From the homepage there is direct access to some pages which lead to often needed content (see
picture 3): There is the possibility for downloading all document templates in different formats
from one single page (for the „power user”), and links to the descriptions of results and print-files
(see next chapter). Fast access is very important for experienced users, which is a fact that we
could also confirm through the analysis of logfiles.

- 16 -

9 Still a printed version?

If online information consists of more than small and independent pieces (like in databases), there
will sooner or later arise the question: Is there no printed version of the whole content or specific
„chapters” available? – For us, this question was already important during the writing process: It
is very tedious to review online text; it is much more effective to read the text in a printout and to
mark the sections to be changed in handwriting (you have to read and review not only single
pages, but pages in the whole context).

But there are some principal problems in printing websites: Hypertext is from its nature nonlinear
(there are no clearly preceding and following pages to a specific page, which in fact is the
important „informational surplus” of hypertexts), but you can print only in a linear form. A
linearized print is less attractive than the online presentation, but on the other hand it is
sometimes necessary (and the users asked for it).

So we decided to offer printfiles for download from the web (we put pages in a plausible
sequence into „chapters” in short and long form, with a table of contents and numbered pages) in
the format of PDF- and PostScript files:

picture 12: Print-files in PDF and PostScript

- 17 -

10 The course of this project / lessons learned

At first we thought that we could use text parts of the already existing and well introduced printed
software engineering handbook and then add the important new themes (like prototyping and new
technologies). But as we tried to convert some existing text parts into html-format, then it become
clear, that we had to start from the very beginning, if we wanted good results which are accepted
and usable for our end users.

So we made a complete design and architecture of the online application (as shown above); we
started with small prototypes of phases and performed usability tests which gave valuable input
for the design of the next prototypes.

Parallel to these design-oriented actions we defined and formulated the content, based on already
existing procedures (especially the old written handbook and the abstract process model SEM-
VM) and the results of a working group of representatives of different business units of PSE. We
started with the work results (documents) and went over to the description of the activities
leading to these results. Finally we formulated the checklist and tip pages.

A good WYSIWYG-authoring tool is indispensable for work in such a project (collaborative
authoring must be supported); the writers have to leave the level of html completely, they must
concentrate on the contents using predefined templates of pages giving already a structure for the
text and page design. The writing process for hypertext authors is very demanding, because you
have always to think on different levels („what do I want to write, which node is the best place
for this or that information, did I already mention this aspect in a neighbor node, what links have
to be set from this node to other nodes”, etc.).

Usability inspections (fast design cycles) and usability testing are extremely important for such
projects. You need real project leaders as „guinea pigs” in such usability tests to check the real
expectations and problems of real life; otherwise the results are not relevant enough. The
usefulness of the application in everyday projects is the crucial point for such tests. Furthermore
you have to check some „simple usability themes” as well (like design and comprehensibility of
icons etc.).

The introduction process of new methods is very important for the use in everyday life (and is
worth the investment). It is not enough to just mail to everybody that the new method is now
available. At least you need company-wide presentations to everybody and special introduction
for middle management. In addition, we had a very successful online competition (rally), where
people were led through the web by solving puzzles and could win a prize.

If you once attract the attention of the users, you have to keep them interested. So the
maintenance of the website is very important (and expensive – don’t forget budgeting of
maintenance!). You have to develop the method constantly, give feedback to the users, make the
concrete support to the projects better, according to the needs of the users of this method. All this
is much easier to perform with an online software engineering method than with traditional
printed handbooks.

Benedikt Lutz (Siemens AG Austria): Writing a Software Engineering Handbook for the Intranet, 1

PSE BV QM B. Lutz 9/99 - 1P r o g r a m a n d S y s t e m s E n g i n e e r i n g P S E

Writing a Software Engineering Handbook
for the Intranet

Dr. Benedikt Lutz
Siemens AG Austria, PSE BV QM

PSE BV QM B. Lutz 9/99 - 2P r o g r a m a n d S y s t e m s E n g i n e e r i n g P S E

Overview

z Short presentation of Siemens AG Austria - PSE

z Quality Management in the PSE

z SEM® - The Software Engineering Method of PSE

z From printed process models to online documentation

z Description of stdSEM®

z Important issues of the stdSEM® -project

z Live presentation of stdSEM®

Benedikt Lutz (Siemens AG Austria): Writing a Software Engineering Handbook for the Intranet, 2

PSE BV QM B. Lutz 9/99 - 3P r o g r a m a n d S y s t e m s E n g i n e e r i n g P S E

• Is a part of the Siemens Aktiengesellschaft Österreich

• Offers solutions and services for the entire information
and communications technology sector

• Is working with most system platforms and operating
systems

• Is a provider of services for Siemens worldwide
companies and a few external customers

• Sets for itself the highest standards as far as product and
process know-how are concerned

Program and Systems Engineering PSE

PSE BV QM B. Lutz 9/99 - 4P r o g r a m a n d S y s t e m s E n g i n e e r i n g P S E

Croatia

Czech Rep.

Slovakia

Hungary

Austria

z About 3,900 employees

z 5 company locations in
Europe and the USA

z Total output about 4.9 billion ATS
(FY 97/98)

z About 92.5% of the output is exported to 50
countries worldwide

PSE: Key Figures

Benedikt Lutz (Siemens AG Austria): Writing a Software Engineering Handbook for the Intranet, 3

PSE BV QM B. Lutz 9/99 - 5P r o g r a m a n d S y s t e m s E n g i n e e r i n g P S E

QM Organization in the PSE

z QA manager in every project (responsible for QA
planning, reporting, ensuring that all QA measures are
performed correctly)

z Quality manager in every division (supports the
divisional manager in attaining the business goals)

z Quality management center (advises in implementing
Q policy, supports improvement activities, project
controlling procedures,...)

PSE BV QM B. Lutz 9/99 - 6P r o g r a m a n d S y s t e m s E n g i n e e r i n g P S E

SEM® - The Software Engineering Method
of PSE

z The first version of the process model SEM was
devised already in 1983

z SEM was the basis for certifying PSE in compliance
with the Standard ISO 9001 in the year 1993

z CMM/Bootstrap assessments: “robust, comprehensive
process model”

z Since 1996 complete redesign and rework of the
method: SEM VM, hypertext stdSEM, ooSEM,...

Benedikt Lutz (Siemens AG Austria): Writing a Software Engineering Handbook for the Intranet, 4

PSE BV QM B. Lutz 9/99 - 7P r o g r a m a n d S y s t e m s E n g i n e e r i n g P S E

Basics of SEM® and stdSEM®

z Uniform and abstract process model (“law book” SEM-VM)

z Specific and concrete methods for the users are derived
from this abstract model

PSE BV QM B. Lutz 9/99 - 8P r o g r a m a n d S y s t e m s E n g i n e e r i n g P S E

Course of a project

z Frame phases (initiation/termination) and execution
phases

z Project execution is also possible using customer
methods

Benedikt Lutz (Siemens AG Austria): Writing a Software Engineering Handbook for the Intranet, 5

PSE BV QM B. Lutz 9/99 - 9P r o g r a m a n d S y s t e m s E n g i n e e r i n g P S E

Different life cycle approaches, not only
waterfall

Prototyping model

Evolutionary development model

Incremental delivery model

Spiral model

PSE BV QM B. Lutz 9/99 - 10P r o g r a m a n d S y s t e m s E n g i n e e r i n g P S E

From printed process models to online
documentation

z Printed handbooks have always been seen as
“necessary evil”

z Online documentation is information in your working
environment, “at your fingertips”

z The intranet is platform independent

z New versions are immediately available, no distribution
effort

z “SW-Engineering portal” in the company: links to other
websites (e.g. QA, Support-centers offering concrete
help for special themes and technologies,...)

Benedikt Lutz (Siemens AG Austria): Writing a Software Engineering Handbook for the Intranet, 6

PSE BV QM B. Lutz 9/99 - 11P r o g r a m a n d S y s t e m s E n g i n e e r i n g P S E

Hypertext-design

z If printed matter is converted 1:1 into online text, the
results are poor; for good results the whole text has to
be rewritten

z Two primary problems for the readers:
– Lost in hyperspace (disorientation)
– Cognitive overload (too much information)

Î Design and Usability of the Website is very important:
– Architecture of the Website: Safety, “borders of my universe”
– Text structure: ”inverted triangle” like in newspapers
– Node-Types: Content of same categories - better recognition
– Link Types: Links to nodes - giving the right “presentiment”
– Different access structures, satisfying users´ expectations

PSE BV QM B. Lutz 9/99 - 12P r o g r a m a n d S y s t e m s E n g i n e e r i n g P S E

Architecture of the stdSEM-web

z about 1000 html-
pages

z about 450 graphic
elements

z about 17.000 links
z German and English

version
z Discussion forum

included
z about 35 templates

(MS-Word,
FrameMaker)

z Embedded into the
worldwide Siemens
Intranet

Benedikt Lutz (Siemens AG Austria): Writing a Software Engineering Handbook for the Intranet, 7

PSE BV QM B. Lutz 9/99 - 13P r o g r a m a n d S y s t e m s E n g i n e e r i n g P S E

Text design for screens

z Reading from screens differs from reading printed matter
(about 30% slower reception)

z Clear arrangement of text parts, short paragraphs with
headlines are important

z Inverted triangle (like in newspapers): headline, lead
sentence, important content, less important content

z Combination of text and graphic elements influences the
reading process (“once graphics - ever graphics ”)

z Readers scroll only if they are really interested
z In hypertexts the “cohesive closedness ” of pages is important

- you cannot presuppose that the reader already read the
“previous page”

PSE BV QM B. Lutz 9/99 - 14P r o g r a m a n d S y s t e m s E n g i n e e r i n g P S E

Node types

z Content of the same category has to be “typed ” - better
recognition for the reader

z Some important node types of stdSEM:
– Description of activity
– Tip page for activity
– Activity checklist
– Description of result
– Annotated checklist for template

z Examples in the live presentation

Benedikt Lutz (Siemens AG Austria): Writing a Software Engineering Handbook for the Intranet, 8

PSE BV QM B. Lutz 9/99 - 15P r o g r a m a n d S y s t e m s E n g i n e e r i n g P S E

Access structures

z Different access structures are important for different
levels of user knowledge and interest: “beginner” -
“browser” - “power user”

z stdSEM supports distinct access structures for
satisfying different needs :
– Phase specific home pages
– Free text search
– Theme specific index
– Overview graphic
– Fast access to all document

templates
– “Where am I” page for supporting orientation

PSE BV QM B. Lutz 9/99 - 16P r o g r a m a n d S y s t e m s E n g i n e e r i n g P S E

No printed version?

z Already during the writing process there arose the
problem of printing hundreds of pages (especially for
reviewing the content).

z Printing more than a few pages from the web browser
is tedious

z A linearized version of a hypertext is less attractive, but
in our case necessary (and the users wanted it)

z Our solution: pdf and ps-files with linearized
“chapters” of the web can be downloaded from the web
(incl. table of contents and page numbers)

Benedikt Lutz (Siemens AG Austria): Writing a Software Engineering Handbook for the Intranet, 9

PSE BV QM B. Lutz 9/99 - 17P r o g r a m a n d S y s t e m s E n g i n e e r i n g P S E

Special question:
What is the best aid for writing a document?

z No template , only process-oriented description of activities
leading to a result: much liberty, little concrete help

z Template with predefined layout, table of contents and
chapter headings: help for structuring, but in practice people
often do not know what to write in this or that chapter, they
just “associate freely”

z Sample document : Good, but seductive: People do not
change what has to be changed

z We decided for document templates with annotated
chapter headings (“this section must specify.... It is
important to mention..., because...”)

PSE BV QM B. Lutz 9/99 - 18P r o g r a m a n d S y s t e m s E n g i n e e r i n g P S E

Some lessons learned in this project

z Usability engineering activities are extremely important
for the acceptance and every day usefulness of the web
– Design prototypes
– Usability testing of prototypes
– Short cycles for design details
– Analysis of logfiles as input for better access structures

z For collaborative authoring a good WYSIWYG-tool is
important

z Design and content are closely connected - we could not
strictly separate writing from layout

Benedikt Lutz (Siemens AG Austria): Writing a Software Engineering Handbook for the Intranet, 10

PSE BV QM B. Lutz 9/99 - 19P r o g r a m a n d S y s t e m s E n g i n e e r i n g P S E

Summary

z The intranet is nowadays the right place for a “software
engineering handbook”: Concrete online applicability

z Large webs have to be designed carefully : overall
architecture, node- and link types

z Already existing texts from printed handbooks have to be
completely rewritten

z Multiple access structures and aids for orientation are
necessary

z Design aspects and usability issues are crucial for user
acceptance (bad usability destroys the best content)

PSE BV QM B. Lutz 9/99 - 20P r o g r a m a n d S y s t e m s E n g i n e e r i n g P S E

And now...

© 1999 /-/ /_ /-/ seven vi ews to websi te qual ity 1

Seven Views to Website Quality
Modeling and Assessment

 Hans-Ludwig Hausen

German National Research Centre for Information Technology
 GMD; Schloss Birlinghoven; D-53754 Sankt Augustin; Germany
http://www.scope.gmd.de <> ftp://ftp.gmd.de/GMD/SW-Quality

 E-mail: hausen@gmd.de

"""
Quality is to be defined, measured and assessed with respect to
the extent to which stated or implied requirements are met !!!

"""

"When you can measure what you are speaking about, and express it in numbers, you know something about it;
but when you cannot measure it, and when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind;

it may be the beginning of knowledge, but you have scarcely in your thoughts advanced to the stage of science."

William Thomson, Lord Kelvin, in: Popular Lectures and Addresses, 1891-1894 as Listed in Bartlett's Quotations 1980

"""

Seven Views to Website Quality
Modeling and Assessment

 Hans-Ludwig Hausen

German National Research Centre for Information Technology
 GMD; Schloss Birlinghoven; D-53754 Sankt Augustin; Germany
http://www.scope.gmd.de <> ftp://ftp.gmd.de/GMD/SW-Quality

 E-mail: hausen@gmd.de

"""
Quality is to be defined, measured and assessed with respect to
the extent to which stated or implied requirements are met !!!

"""

"When you can measure what you are speaking about, and express it in numbers, you know something about it;
but when you cannot measure it, and when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind;

it may be the beginning of knowledge, but you have scarcely in your thoughts advanced to the stage of science."

William Thomson, Lord Kelvin, in: Popular Lectures and Addresses, 1891-1894 as Listed in Bartlett's Quotations 1980

"""

© 1999 /-/ /_ /-/ seven vi ews to websi te qual ity 2

Motivation Questions concerning a Website

Motivation Questions concerning a Website

Site Assessment: -> Needs/Conditions/Conduction

comparing actual measurement results against required

Site Certification: -> Needs/Conditions/Conduction

checking conditions and eventually issuing a certificate
Site Measurement: -> Needs/Conditions/Conduction

mapping of an attribute onto real numbers
Site Validation: -> Needs/Conditions/Conduction

test against implied needs i.e. assumptions

Site Verification: -> Needs/Conditions/Conduction

test against stated needs i.e. specifications

Product:

software comprising at least requirements, specifications and program(s)

Process:

planned, controlled and reported actions to construct, apply or maintain
software product

Project:

planed, controlled and reported process and product

Site Assessment: -> Needs/Conditions/Conduction

comparing actual measurement results against required

Site Certification: -> Needs/Conditions/Conduction

checking conditions and eventually issuing a certificate
Site Measurement: -> Needs/Conditions/Conduction

mapping of an attribute onto real numbers
Site Validation: -> Needs/Conditions/Conduction

test against implied needs i.e. assumptions

Site Verification: -> Needs/Conditions/Conduction

test against stated needs i.e. specifications

Product:

software comprising at least requirements, specifications and program(s)

Process:

planned, controlled and reported actions to construct, apply or maintain
software product

Project:

planed, controlled and reported process and product

Topics

• Motivation
• Site Q Attributes
• Site Service
• Site as SW Entity
• Methods
• Tools
• Objectives
• Synthesis

© 1999 /-/ /_ /-/ seven vi ews to websi te qual ity 3

 An Engineer’s Evaluation Principles
according ISO

 An Engineer’s Evaluation Principles
according ISO

• Repeatability: Repeated evaluation of the same product
to the same evaluation specification by the same testing
laboratory gives the same result.

• Reproducibility : Repeated evaluation of the same
product to the same evaluation specification by different
testing laboratories gives the same result.

• Impartiality : Evaluation is free from unfair bias towards
achieving any particular result.

• Objectivity : The evaluation result is obtained with the
minimum of subjective judgement.

evaluation = verification + validation + measurement + assessment

• Repeatability: Repeated evaluation of the same product
to the same evaluation specification by the same testing
laboratory gives the same result.

• Reproducibility : Repeated evaluation of the same
product to the same evaluation specification by different
testing laboratories gives the same result.

• Impartiality : Evaluation is free from unfair bias towards
achieving any particular result.

• Objectivity : The evaluation result is obtained with the
minimum of subjective judgement.

evaluation = verification + validation + measurement + assessment

© 1999 /-/ /_ /-/ seven vi ews to websi te qual ity 4

Web Site Evaluation Aspects Web Site Evaluation Aspects

WEBSITE
EVALUATION

Quality Attributes
i.e.

characteristics
sub-characteristics

sub...sub-characteristics
metrics

Site documentation
i.e.

 site requirements
site specification

site pages and program codes
handbooks

Evaluation Methods
i.e.

verification methods
validation techniques

measurement procedures
assessment methods

Process Documents
i.e.

management report
quality assurance report

project file

© 1999 /-/ /_ /-/ seven vi ews to websi te qual ity 5

 Q VIEW P E R F U M
ISO 9126 Quality Characteristics

 Q VIEW P E R F U M
ISO 9126 Quality Characteristics

P ortabilityA set of attributes that bear on the ability of software to be transferred from one environment to another

Sub-characteristics: adaptability, conformance, installability, replaceability = acir

E fficiencyA set of attributes that bear on the relationship between the level of performance of the software and the amount of
resources used

Sub-characteristics: resource behaviour, time behaviour = rt

R eliabilityA set of attributes that bear on the capability of software to maintain its level of performance under stated conditions for a
stated period of time

Sub-characteristics: fault tolerance, maturity, recoverability = fm

F unctionality A set of attributes that bear on the existence of a set of functions and their specified properties. The functions are
those that satisfy stated or implied needs

Sub-characteristics: accurateness, compliance, interoperability, security, suitability = aciss

U sabilityA set of attributes that bear on the effort needed for use and on the individual assessment of such use by a stated or implied
set of users

Sub-characteristics: learnability, operability, understandability = lou

M aintainabilityA set of attributes that bear on the effort needed to make specified modifications

Sub-characteristics: analysability, changeability, stability, testability = acst

--->PERFUM-acir-rt-fmr-aciss-lou-acs

P ortabilityA set of attributes that bear on the ability of software to be transferred from one environment to another

Sub-characteristics: adaptability, conformance, installability, replaceability = acir

E fficiencyA set of attributes that bear on the relationship between the level of performance of the software and the amount of
resources used

Sub-characteristics: resource behaviour, time behaviour = rt

R eliabilityA set of attributes that bear on the capability of software to maintain its level of performance under stated conditions for a
stated period of time

Sub-characteristics: fault tolerance, maturity, recoverability = fm

F unctionality A set of attributes that bear on the existence of a set of functions and their specified properties. The functions are
those that satisfy stated or implied needs

Sub-characteristics: accurateness, compliance, interoperability, security, suitability = aciss

U sabilityA set of attributes that bear on the effort needed for use and on the individual assessment of such use by a stated or implied
set of users

Sub-characteristics: learnability, operability, understandability = lou

M aintainabilityA set of attributes that bear on the effort needed to make specified modifications

Sub-characteristics: analysability, changeability, stability, testability = acst

--->PERFUM-acir-rt-fmr-aciss-lou-acs

© 1999 /-/ /_ /-/ seven vi ews to websi te qual ity 6

N E W - P E R F U M - DEFINITIONS
ISO 9126 Quality Characteristics

N E W - P E R F U M - DEFINITIONS
ISO 9126 Quality Characteristics

The followings are examples of proposed definitions.
Functionality : Totality of attributes of software that influence the existence of a set of

functions and their specified properties. The functions are those that satisfy stated and
implied needs. The totality is expressed by the extent to which software provides
functions which meet stated and implied needs when used under specified conditions.
(This definition is consistent with ISO 8402.)

Functionality measure: An assigned value which shows the extent to which software
provides functions which meet stated and implied needs when used under specified
conditions.

Functionality attributes : Those attributes (elementary properties) of a software that
influence the existence of a set of functions and their specified property.

The followings are examples of proposed definitions.
Functionality : Totality of attributes of software that influence the existence of a set of

functions and their specified properties. The functions are those that satisfy stated and
implied needs. The totality is expressed by the extent to which software provides
functions which meet stated and implied needs when used under specified conditions.
(This definition is consistent with ISO 8402.)

Functionality measure: An assigned value which shows the extent to which software
provides functions which meet stated and implied needs when used under specified
conditions.

Functionality attributes : Those attributes (elementary properties) of a software that
influence the existence of a set of functions and their specified property.

© 1999 /-/ /_ /-/ seven vi ews to websi te qual ity 7

Olsina’s Quality Characteristics for
Academic Sites

Olsina’s Quality Characteristics for
Academic Sites

1. Usability
1.1 Global Site Understandability
1.1.1 Global Organisation Scheme
1.1.1.1 Site Map
1.1.1.2 Table of Content
1.1.1.3 Alphabetical Index
1.1.2 Quality of Labelling System
1.1.3 Student-oriented Guided Tour
1.1.4 Image Map (Campus/Buildings)
1.2 On-line Feedback and Help Features
1.2.1 Quality of Help Features
1.2.1.1 Student-oriented Explanatory Help
1.2.1.2 Search Help
1.2.2 Web-site Last Update Indicator
1.2.2.1 Global
1.2.2.2 Scoped (per sub-site or page)
1.2.3 Addresses Directory
1.2.3.1 E-mail Directory
1.2.3.2 Phone-Fax Directory
1.2.3.3 Post mail Directory
1.2.4 FAQ Feature
1.2.5 On-line Feedback
1.2.5.1 Questionnaire Feature
1.2.5.2 Guest Book
1.2.5.3 Comments
1.3 Interface and Aesthetic Features
1.3.1 Cohesiveness by Grouping Main Control
Objects
1.3.2 Presentation Permanence and Stability of
Main Controls
1.3.2.1 Direct Controls Permanence
1.3.2.2 Indirect Controls Permanence
1.3.2.3 Stability
1.3.3 Style Issues
1.3.3.1 Link Colour Style Uniformity
1.3.3.2 Global Style Uniformity
1.3.3.3 Global Style Guide
1.3.4 Aesthetic Preference
1.4 Miscellaneous Features
1.4.1 Foreign Language Support
1.4.2 What’s New Feature
1.4.3 Screen Resolution Indicator

2. Functionality
2.1 Searching and Retrieving Issues
2.1.1 Web-site Search Mechanisms
2.1.1.1 Scoped Search
2.1.1.1.1 People Search
2.1.1.1.2 Course Search
2.1.1.1.3 Academic Unit Search
2.1.1.2 Global Search
2.1.2 Retrieve Mechanisms
2.1.2.1 Level of Retrieving Customisation
2.1.2.2 Level of Retrieving Feedback
2.2 Navigation and Browsing Issues
2.2.1 Navigability
2.2.1.1 Orientation
2.2.1.1.1 Indicator of Path
2.2.1.1.2 Label of Current Position
2.2.1.2 Average of Links per Page
2.2.2 Navigational Control Objects
2.2.2.1 Presentation Permanence and Stability
of Contextual (sub-site) Controls
2.2.2.1.1 Contextual Controls Permanence
2.2.2.1.2 Contextual Controls Stability
2.2.2.2 Level of Scrolling
2.2.2.2.1 Vertical Scrolling
2.2.2.2.2 Horizontal Scrolling
2.2.3 Navigational Prediction
2.2.3.1 Link Title (link with explanatory help)
2.2.3.2 Quality of Link Phrase
2.3 Student-oriented Domain-related Features
2.3.1 Content Relevancy
2.3.1.1 Academic Unit Information
2.3.1.1.1 Academic Unit Index
2.3.1.1.2 Academic Unit Sub-sites
2.3.1.2 Enrolment Information
2.3.1.2.1 Entry Requirement Information
2.3.1.2.2 Form Fill/Download
2.3.1.3 Degree Information
2.3.1.3.1 Degree Index
2.3.1.3.2 Degree Description
2.3.1.3.3 Degree Plan/Course Offering
2.3.1.3.4 Course Description
2.3.1.3.4.1 Comments
2.3.1.3.4.2 Syllabus
2.3.1.3.4.3 Scheduling

2.3.1.4 Student Services Information
2.3.1.4.1 Services Index
2.3.1.4.2 Healthcare Information
2.3.1.4.3 Scholarship Information
2.3.1.4.4 Housing Information
2.3.1.4.5 Cultural/Sport Information
2.3.1.5 Academic Infrastructure Information
2.3.1.5.1 Library Information
2.3.1.5.2 Laboratory Information
2.3.1.5.3 Research Results Information
2.3.2 On-line Services
2.3.2.1 Grade/Fees on-line Information
2.3.2.2 Web Service
2.3.2.3 FTP Service
2.3.2.4 News Group Service
3. Site Reliability
3.1 Non-deficiency
3.1.1 Link Errors
3.1.1.1 Broken Links
3.1.1.2 Invalid Links
3.1.1.3 Unimplemented Links
3.1.2 Miscellaneous Errors or Drawbacks
3.1.2.1 Deficiencies or absent features due to
different browsers
3.1.2.2 Deficiencies or unexpected results (e.g.
non-trapped search errors, frame problems, etc.)
independent of browsers
3.1.2.3 Dead-end Web Nodes
3.1.2.4 Destination Nodes (unexpectedly) under
Construction
4. Efficiency
4.1 Performance
4.1.1 Static Page Size
4.2 Accessibility
4.2.1 Information Accessibility
4.2.1.1 Support for text-only version
4.2.1.2 Readability by deactivating Browser
Image Feature
4.2.1.2.1 Image Title
4.2.1.2.2 Global Readability
4.2.2 Window Accessibility
4.2.2.1 Number of panes regarding frames
4.2.2.2 Non-frame Version

© 1999 /-/ /_ /-/ seven vi ews to websi te qual ity 8

Attributes - Factors - Metrics
 (as in ISO/ IEC 9126 vs ISO 9241-11)

funct ional ity .3

sui tabi lity .2

accur ateness .3

interoperabi lity .2

com pliance .1

secur ity .2

funct ional ity .3

sui tabi lity .2

accur ateness .3

interoperabi lity .2

com pliance .1

secur ity .2

effici ency .2

tim e behavi our .6

resource behavi our .4

effici ency .2

tim e behavi our .6

resource behavi our .4

portabi lity .05

adapt abi lity .1

inst al labi lity .2

conf orm ance .3

repl aceabi lity .4

portabi lity .05

adapt abi lity .1

inst al labi lity .2

conf orm ance .3

repl aceabi lity .4

sat isf act ion .5sat isf act ion .5 effect iveness .5effect iveness .5

m aintainabi lity .05

anal yzabi lity .25

changeabi lity .25

stabi lity .2

test abi lity .3

m aintainabi lity .05

anal yzabi lity .25

changeabi lity .25

stabi lity .2

test abi lity .3

usabi lity .1

under standabi lity .2

learnabi lity .4

operabi lity .4

usabi lity .1

under standabi lity .2

learnabi lity .4

operabi lity .4

rel iabi lity .3

m aturity .3

faul t tolerance .4

recover abi lity .3

rel iabi lity .3

m aturity .3

faul t tolerance .4

recover abi lity .3

7+286$1'6�2)�0(75,&6

Q

© 1999 /-/ /_ /-/ seven vi ews to websi te qual ity 9

Minimal Metrics SetMinimal Metrics Set

Site Requirements
SR

Site Requirements
SR

Site Code
SC

Site Code
SC

Site Design
SD

Site Design
SD

SR activity flow
SR document flow
SR state transitions
SR annotations
SR denotation

SD control flow
SD object flow
SD state transitions
SD annotations
SD denotation

implementation
correctness metrics
metrics for ...
metrics for ...
metrics for ...
metrics for ...
metrics for ...
performance
metrics

?

SC control flow
SC object flow
SC state transitions
SC annotations
SC denotation

specification
correctness metrics
metrics for ...
metrics for ...
metrics for ...
metrics for ...
metrics for ...

analysis
correctness metrics
metrics for ...
metrics for ...
metrics for ...
metrics for ...
metrics for ...

•

© 1999 /-/ /_ /-/ seven vi ews to websi te qual ity 10

Multidimensional Assessment

 Quality & Product ivi ty
 Quality & Product ivi ty

 attribute.l
 attribute.l

 factor.r
 factor.r

 factor.i
 factor.i

m etri c.z
m etri c.z

m etri c.y
m etri c.y

 m etric.x
 m etric.x

 m etric.c
 m etric.c

 m etric.b
 m etric.b

 m etric.a
 m etric.a

m etric.z
act ual val ue

m etric.z
act ual val uem etric.y

act ual val ue

m etric.y
act ual val ue m etri c.x

act ual val ue

 m etri c.x
act ual val ue m etri c.c

act ual val ue

 m etri c.c
act ual val ue m etri c.b

act ual val ue

 m etri c.b
act ual val ue m etri c.a

act ual val ue

 m etri c.a
act ual val ue

m etric.z
req.val ue

m etric.z
req.val uem etric.y

req.val ue

m etric.y
req.val ue m etri c.x

req.val ue

 m etri c.x
req.val ue m etri c.c

req.val ue

 m etri c.c
req.val ue m etri c.b

req.val ue

 m etri c.b
req.val ue m etri c.a

req. val ue

 m etri c.a
req. val ue

product s of
type t.a

product s of
type t.b

product s of
type t.c

product s of
type t.x

product s of
type t.y

product s of
type t.z

.............

distance. a distance. ydistance. cdistance. b distance. zdistance. xQ1 = f (, , , ,),...,

 attribute.a
 attribute.a

 attribute.z1
 attribute.z1.......

 factor.a
 factor.a

 factor.z2
 factor.z2

perm itted
distance. a

perm itted
distance. y

perm itted
distance. c

perm itted
distance. b

perm itted
distance. z

perm itted
distance. x (, , , ,),...,

devi ation.a devi ation.ydevi ation.cdevi ation.b devi ation.zdevi ation.xQ2 = f (, , , ,),...,

....

ISO 9126:
char acteristics
sub- char acteristics
m etri cs

IEEE 610:
attributes
factors
m etri cs

© 1999 /-/ /_ /-/ seven vi ews to websi te qual ity 11

Website ComponentsWebsite Components

Website := Set of linked Digital Objects + Service

Digital Object := Hypertext denoting:

Executable Code, Audio Objects,

Picture Objects, Video Objects.

Digital Object is a highly structured data structure or data base

Service := Result obtained when interpreting

Executable Code

and/or applying tools to digital objects

Service is like interpreter output plus transfer according a protocol

© 1999 /-/ /_ /-/ seven vi ews to websi te qual ity 12

A Digital ObjectA Digital Object
object := <object-id, object-location, object-author,

object-neighborhood, object-content , object-extra>

which might be decomposed into

<object-id> := <object-number> , <object-name>
<object-location> := a URL
<object-author> := web-site-manager
<object-neighborhood> :=

set of URLs or URNs of the objects semantically closed to the actual object
<object-content > := set of relevant descriptors for the particular object V
 <object-image-content > V

<object-sound-content > V
<object-text-content >

The base scheme can be made extensible and enhanceable by introducing typed components, thus we get:
object := <object-type>

< object-id-type: object-id>,
object-location-type: object-location>,

object-author-type: object-author>,
 object-neighborhood-type: object-neighborhood>,

object-content-type: object-content> ,
object-extra -type: object-extra >

© 1999 /-/ /_ /-/ seven vi ews to websi te qual ity 13

Process ViewProcess View

Activity

Roles

Typed
Agents

Resources

performed by

requires skill

consumes

set of skill profiles

set of mature
equipment and

materials

set of slaves

Input
digital ob ject

Output
digital ob ject

fulfill

use

planed by pmpm role
in use by cici role
submitted to qaqa role
accepted by qaqa role
presented by cmcm role

planed by pmpm role
in use by cici role
submitted to qaqa role
accepted by qaqa role
presented by cmcm role

requires

© 1999 /-/ /_ /-/ seven vi ews to websi te qual ity 14

Process characteristicsProcess characteristics

✟ Understandability

Is the process defined and understandable?

✟ Visibility

Is the process progress externally visible?

✟ Supportability

Can the process be supported by tools?

✟ Acceptability

Is the process acceptable to those involved in it?

✟ Reliability

Are process errors discovered before they result in product errors?

✟ Robustness

Can the process continue in spite of unexpected problems?

✟ Maintainability

Can the process evolve to meet changing organisational needs?

✟ Rapidity

How fast can the system be produced?

© 1999 /-/ /_ /-/ seven vi ews to websi te qual ity 15

Quality of Service EvaluationQuality of Service Evaluation

Service
delivery
processMarketing

process

Design
process

Service
result

Service
brief

Quality
control

specification

Service
delivery

specification

Service
specification

Service performance
analysis and improvement

Supplier's
assessment

Customer's
assessment

Service
needs

Service Provider

Customer Supplier

Supplier CustomerInterface

Interface

Evaluation
result

Assessment
report

Assessment
report

Improvement
instruction

Improvement
instruction

Improvement
instruction

© 1999 /-/ /_ /-/ seven vi ews to websi te qual ity 16

As usual the Questions areAs usual the Questions are
1. Process "_What_ has to be done?"

What is to be determined here is which activities have to be carried out,
which results have to be produced.

2. Methods "_How_ is this to be achieved?"

What is to be determined here is with which methods the activities laid down
for the first level are to be carried out and which presentation means are to be
used in the results.

3. Tools "_By what_ is something to be done?"

What is determined here is which functional characteristics the tools have to
have which are to be used in the software development process.On all three
levels, the regulations are structured according to activity areas.

© 1999 /-/ /_ /-/ seven vi ews to websi te qual ity 17

Software Process ElementsSoftware Process Elements

process planing
activity planning

product planning

resource planning

process planing
activity planning

product planning

resource planning

project configuration
project plan

project audit

project records

project configuration
project plan

project audit

project records

process conduction
activity execution

product construction

resource consumption

process conduction
activity execution

product construction

resource consumption

process controlling
activity controlling
product controlling

resource controlling

process controlling
activity controlling
product controlling

resource controlling

© 1999 /-/ /_ /-/ seven vi ews to websi te qual ity 18

Components of a MethodComponents of a Method

evaluation
verification

validation

inspection

testing

measurement

assessment

evaluation
verification

validation

inspection

testing

measurement

assessment

construction
requirements specification

system design / specification

programming

construction
requirements specification

system design / specification

programming

product management
system integration

version management

variant management

product management
system integration

version management

variant management

documentation
process documentation

product documentation

user documentation

maintenance documentation

documentation
process documentation

product documentation

user documentation

maintenance documentation

contracting
customer - developer

developer - sub-developer

developer - test laboratory

developer - user/distributor

user - distributor

contracting
customer - developer

developer - sub-developer

developer - test laboratory

developer - user/distributor

user - distributor

process management
planing

conducting

controlling

process management
planing

conducting

controlling

© 1999 /-/ /_ /-/ seven vi ews to websi te qual ity 19

Components of a Software Evaluation MethodComponents of a Software Evaluation Method

verification
termination

partial correctness

symbolic execution

symbolic evaluation

verification
termination

partial correctness

symbolic execution

symbolic evaluation

testing
black box test

control flow test

 path test

 statement test

 expression test

 condition test

data flow test

operational profile test

testing
black box test

control flow test

 path test

 statement test

 expression test

 condition test

data flow test

operational profile test

measurement
product identification

metric selection

metric application

measurement
product identification

metric selection

metric application

assessment
quality characteristics selection

quality factor identification

quality attribute identification

quality metric attachment

assessment
quality characteristics selection

quality factor identification

quality attribute identification

quality metric attachment

inspection
walk through

author-reader test

review

falsification

inspection
walk through

author-reader test

review

falsification

validation
requirements checking

specification checking

application checking

validation
requirements checking

specification checking

application checking

© 1999 /-/ /_ /-/ seven vi ews to websi te qual ity 20

Evaluation ProcedureEvaluation Procedure

ANALYSING SPECIFYING DESIGNING CONDUCTING

REPORTING

Application standards
and regulations

evaluation
requirements

evaluation
specification

product- and
process information

evaluation
techniques

library of
evaluation modules

evaluation
plan

evaluation
results

to be provided by the client to be provided by the testing laboratory

Characteristics and
evaluation level

delivered to the client
or to the certification body
or to both

evaluation report

© 1999 /-/ /_ /-/ seven vi ews to websi te qual ity 21

Data Model for Y7
Quality &
Metrics

Tools

Goals &
Objectives

Methods

Products ProcessesMission

C

I

R

O

C

I

R

O

© 1999 /-/ /_ /-/ seven vi ews to websi te qual ity 22

Data Model for Y7
Data Model for Y7

Data Model for Y7
Quality &
Metrics

Tools

Goals &
Objectives

Methods

Products ProcessesMission

C

I

R

O

C

I

R

O

© 1999 /-/ /_ /-/ seven vi ews to websi te qual ity 23

Q&P
Model

Yet Another Quality
and

Productivity Model
 YAQUAPMO

Y7

Software Product

if software-part.a ...
software-part.z

then PRODUCT

if atomic-software-part
then software-part

Methods
for

Computer Aided
System Engineering

if sub-methods
then METHOD

if atomic-methods
then sub-method

Objectives
and

Goals

if sub-objectives
then OBJECTIVE

if atomic-objectives
then sub-objective

Mission
if

product and process
and

characteristics and metrics
and

methods and tools
then

objective & goal

Software Process

if process-element.a ...
process-element.z
then PROCESS

if atomic-process
then process-element

Software Process

if process-element.a ...
process-element.z
then PROCESS

if atomic-process
then process-element

Quality and
Productivity

Characteristics and Metrics
if metrics or characteristics

then Quality and Productivity

if atomic-metrics
then characteristics

Quality and
Productivity

Characteristics and Metrics
if metrics or characteristics

then Quality and Productivity

if atomic-metrics
then characteristics

Tools
for

Computer Aided
System Engineering

if sub-tools
then TOOL

if atomic-tools
then sub-tool

Tools
for

Computer Aided
System Engineering

if sub-tools
then TOOL

if atomic-tools
then sub-tool

Aspects of EvaluationAspects of Evaluation

TheTheThe
aimaimaim
ofofof
aaa

goalgoalgoal
is tois tois to

accomplishaccomplishaccomplish
aaa

missionmissionmission

© 1999 /-/ /_ /-/ seven vi ews to websi te qual ity 24

Application of the MethodApplication of the Method

requirements

Req Spec

specification

Sys Spec

pro gram code

Coding

Applicable for
√ Concurrent Evaluation (1)
√ Acceptance Testing (2)
√ Independent Evaluation (2)
√ Product Certification (2)
√ Product Ranking (3)

Applicable for
√ Concurrent Evaluation (1)
√ Acceptance Testing (2)
√ Independent Evaluation (2)
√ Product Certification (2)
√ Product Ranking (3)

A
N

A
LY

S
IN

G

ev
al

ua
tio

n
re

qu
ire

m
en

ts

S
P

E
C

IF
Y

IN
G

th
e

ev
al

ua
tio

n

D
E

S
IG

N
IN

G

th
e

ev
al

ua
tio

n

C
O

N
D

U
C

TI
N

G

th
e

ev
al

ua
tio

n

R
E

P
O

R
TI

N
G

th
e

ev
al

ua
tio

n

ev
al

ua
tio

n

re
qu

ire
m

en
ts

ev
al

ua
tio

n

sp
e

ci
fic

a
tio

n

ev
al

ua
tio

n

pl
an

ev
al

ua
tio

n

re
su

lts

ev
al

ua
tio

n
re

po
rt

A
N

A
LY

S
IN

G

ev
al

ua
tio

n
re

qu
ire

m
en

ts

S
P

E
C

IF
Y

IN
G

th
e

ev
al

ua
tio

n

D
E

S
IG

N
IN

G

th
e

ev
al

ua
tio

n

C
O

N
D

U
C

TI
N

G

th
e

ev
al

ua
tio

n

R
E

P
O

R
TI

N
G

th
e

ev
al

ua
tio

n

ev
al

ua
tio

n

re
qu

ire
m

en
ts

ev
al

ua
tio

n

sp
e

ci
fic

a
tio

n

ev
al

ua
tio

n

pl
an

ev
al

ua
tio

n

re
su

lts

ev
al

ua
tio

n
re

po
rt

A
N

A
LY

S
IN

G

ev
al

ua
tio

n
re

qu
ire

m
en

ts

S
P

E
C

IF
Y

IN
G

th
e

ev
al

ua
tio

n

D
E

S
IG

N
IN

G

th
e

ev
al

ua
tio

n

C
O

N
D

U
C

TI
N

G

th
e

ev
al

ua
tio

n

R
E

P
O

R
TI

N
G

th
e

ev
al

ua
tio

n

ev
al

ua
tio

n

re
qu

ire
m

en
ts

ev
al

ua
tio

n

sp
e

ci
fic

a
tio

n

ev
al

ua
tio

n

pl
an

ev
al

ua
tio

n

re
su

lts

ev
al

ua
tio

n
re

po
rt

software system

ANALYSING
evaluation requirements

SPECIFYING
the evaluation

DESIGNING
the evaluation

CONDUCTING
the evaluation

REPORTING
the evaluation

evaluation
requirements

evaluation
specification

evaluation
plan

evaluation
results

evaluation report

to the customer or certification authority

(1)

(2)

Flexibility in
v Evaluation techniques
v Evaluation tools
v Development technology
v Product and process standards
v Legal or contractual issues

Flexibility in
v Evaluation techniques
v Evaluation tools
v Development technology
v Product and process standards
v Legal or contractual issues

© 1999 ONION 1/11

RADIUM – Applying RAD to innovative
ERP/ E-commerce projects

C. Baresi, G. Bazzana, G. Rumi

Onion S.p.A., Italy

Abstract

ERP systems are experiencing a tremendous growth owing to new requirements imposed by
the evolution of the market and its new paradigms. Introduction of such systems is a big
effort, both from an organisational and technical point of view. On the other side Internet and
its new technologies are growing faster and faster and give to companies the opportunity to
reach new markets. The integration of ERP systems and Internet technologies is the only way
to satisfy new market requirements.

This paper presents the experiences matured in the introduction of SAP R/3 following an "on
spec, on time, on budget" strategy. The methodological approach combines the adoption of
ASAP (Accelerated SAP, a methodology specifically intended for reducing delivery time)
with innovative approaches like management on Intranet of the project key information. The
approach has been successfully applied (within the scope of the RADIUM project) both to the
introduction of classic ERP features as well as to the integration of ERP features with WWW
environment.

Keywords

Rapid Application Development (RAD), Enterprise Resource Planning (ERP), SAP,
Accelerated SAP (ASAP), E-Commerce

1. Introduction

As we approach the year 2000, the development, use and management of information systems
in enterprises will continue to undergo revolutionary changes as businesses continue to
respond to aggressive competition and the need to achieve increasing levels of customer
satisfaction. Moreover, companies are discovering that old solutions do not work with new
challenges. The business parameters are changed, and so the risks and payoffs.

The Internet and its various technologies have established themselves as a new
communication medium. Marketing via the Internet is already playing an increasingly
important role in electronic commerce, and further substantial increases in sales volumes are
expected. The increased number of people on the web has given businesses a new way to
reach customers and enhance profits.

The real power of the Internet today is to provide universal access to information. For
businesses, the web can empower customers, partners and employees to access information

RADIUM – Applying RAD to innovative ERP/ E-commerce projects

© 1999 ONION 2/11

directly in a new, self-service paradigm, while reducing costs in business operations and IT
infrastructure.

0

1.000.000

2.000.000

3.000.000

4.000.000

5.000.000

6.000.000

1995 1996 1997 1998 1999

Fig. 1: Actual WWW Growth (number of servers)

Today, electronic commerce represents an unprecedented opportunity for companies to reach
new markets, reduce selling and marketing costs, and enhance their relationships with
customers and suppliers. Electronic commerce has opened a new universe for consumers and
organisations, and it demands new management approaches. Electronic commerce is also very
important in internal organisational functioning, as evidenced by the rapid proliferation of
Intranets.

0%

10%

20%

30%

40%

50%

1994 1995 1996 1997 1998 1999

Fig. 2: E-commerce Growth (% of companies expecting benefits from E-commerce)

RADIUM – Applying RAD to innovative ERP/ E-commerce projects

© 1999 ONION 3/11

22 17

51

32

10

8

1
2

15

42

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1997 2000

Internet e-commerce

Non Internet e-commerce

Phone or fax

Mail

Direct sales

Fig. 3: Increased weight of the E-commerce sales channel

0

100

200

300

400

500

600

700

800

900

1000

1997 1998 1999 2000 2001 2002

U
.S

. I
nt

er
ne

t C
om

m
er

ce
 R

ev
en

ue
s

(B
ill

io
ns

)

Manufacturing (durable)

Manufacturing (non-durable)

Wholesale and business retail

Utilities

Transportation

Services

Fig. 4: Penetration of e-commerce by domain

The emergence of client/server computing environments, along with the growing demand for
process reengineering to address these rapidly changing business requirements, has created a
growing demand for ERP System. Given the tremendous pressure on business, the
modernisation of their information systems to meet these challenges will only succeed if
organisations effectively develop, manage and use an ERP System.

Today companies use the Internet for marketing purposes. The only way to satisfy new
market requirements is to fully integrate ERP software with Internet technologies.

RADIUM – Applying RAD to innovative ERP/ E-commerce projects

© 1999 ONION 4/11

Fig. 5: SAP R/3 roadmap for business on the Internet

In order to make the introduction of ERP systems and their integration with E-commerce “on
spec, on time, on budget”, a new methodology must be approached. The integration between
ERP and the Internet requires the application of new development paradigm to obtain fast and
reliable deployment. An example of such an approach and the related methodology will be
given in the following paragraphs.

2. The RADIUM Project

The RADIUM (Rapid Application Development Improvement Using Multimedia) Project had
the main goal to improve the software development capabilities of ONION, an Italian
organisation offering ICT services (for more details see the Web at URL: http://net.onion.it/).
While supplying its services, ONION has more and more to face with the development of
innovative projects, where the complexity is related to the integration of different media
technologies, and integration projects, where the complexity is related to the merging of
different systems and different technologies.

The RADIUM Project has constituted an important component of the Software Process
Improvement Program that ONION is undergoing. The Process Improvement started in mid
1995 and was based on an initial self-assessment aimed at singling out strong and weak
process areas. Starting from the assessment, the Improvement Plan has been derived, and is
now driving all ONION software process improvement actions.

The RADIUM Project has represented the evolution of the ONION commitment to the
improvement of software development capabilities. In particular, it concentrated on the
selection and widespread adoption of methods and tools for the Rapid Application
Development of innovative projects, tightened by short development times. Focus of the
whole activity was put on the initial phases of the development life cycle, in particular
requirements management. This was done in order to better the definition and structuring of
requirements and fast prototyping, as well as to produce easily modifiable incremental
prototypes in a fast way, with a satisfactory degree of quality.

RADIUM – Applying RAD to innovative ERP/ E-commerce projects

© 1999 ONION 5/11

The approach was driven by both methodological and technical needs, specifically related to
the definition of the reference development model and to the selection and adoption of the
most appropriate tooling for supporting the activities.

Considerable effort was put into training and dissemination activities (both internal and
external) in order to raise the “company quality culture” and to perform appropriate
technology transfer.

Moreover experiences were packaged in the form of new/ enhanced standard operating
procedures within the ISO 9001 compliant Quality Management System.

Going just a bit into details, the RADIUM project were structured into the following main
activities:
Ø technology survey;

Ø technical set-up of the software factory;

Ø definition of RAD life cycle;

Ø definition of Requirement Capture methods;

Ø definition of prototyping methods;

Ø application of the defined methods/ tools to the first baseline project;

Ø application of the defined methods/ tools to the second baseline project;

Ø measurement of results;

Ø deployment decisions;

Ø alignment of the standard operating procedures.

In the remainder of this paper we describe the experiences learnt from the second baseline
project, which focused on methods and tools to shorten delivery time of SAP ERP Projects, in
particular when delivering E-commerce features.

3. Improving timeliness in SAP / E-Commerce deployment

3.1. The baseline project

The SAP System (http://www.sap-ag.de/) constitutes one of the most popular ERP solutions
for the integrated management of the company business. The SAP R/3 System, can be
distinguished by the following most relevant characteristics:
Ø it is an integrated and comprehensive system, as it addresses all the company business

sectors such as sales and distribution, financial accounting, warehouse management,
production planning and human resources;

Ø it is an open system, for on the first hand it is possible to adopt only the really needed
modules and on the second hand it runs on the hardware platforms of leading international
vendors and on the third hand it allows interoperability with third party solutions;

Ø it is always updated so to be able to use new technologies, as showed by the recent
integration to Internet and e-commerce;

Ø it is international, since it covers all the legal and financial issues which are peculiar in the
different world countries, so that multinational companies can use it all over the world
without any additional integration effort.

RADIUM – Applying RAD to innovative ERP/ E-commerce projects

© 1999 ONION 6/11

The baseline project was constituted by the installation of SAP core modules (FI; CO; MM,
PP; SD; WM; QM) to an international manufacturing group for an effort of over 10 person-
years along 15 months.
Also E-commerce features were put to trial.

SAP electronic commerce solutions are envisaged to provide:
Ø links between Management Information Systems and WWW;

Ø access to Management Information Systems via WWW interface;

Ø integration between web-based application, based on transaction-oriented business
processes, and Management Information Systems;

Ø possibility to set-up simple, cross-platform applications on top of a simple-to-manage and
more centralised IT infrastructure.

The RAD approach embedded in the ASAP methodology was applied to the introduction of
SAP R/3 and e-commerce, which are generally well known as time consuming and long
lasting projects, to shorten the development time frame.

3.2. Applying ASAP to minimise delivery time

ASAP (Accelerated SAP) is SAP methodology to streamline R/3 projects. ASAP envisages to
optimise time, quality and resources. It focuses on the co-ordination of the following
elements:
Ø the Roadmap, a detailed project plan with detailed descriptions about what, why and how

certain activities are performed; the plan describes all the activities in an implementation
and includes details related to technical aspects;

Ø a specific set of Tools to support project management and business process re-engineering
activities (technical guidebooks and checklists are included); tools are in the form of files,
templates and collection of experiences from other projects.

Fig. 6: The ASAP Roadmap

RADIUM – Applying RAD to innovative ERP/ E-commerce projects

© 1999 ONION 7/11

Wherever possible, the ASAP provides examples, checklists, or templates as samples for e.g.
a cut-over plan. They are used as a starting point to avoid "reinventing the wheel". ASAP
calls these things “Accelerators”.

Another very useful ASAP tool is the Question and Answer database. It is a repository of all
questions that are needed to define business requirements and to develop the business
solutions in terms of the R/3 Reference Model and R/3 System. This includes business
processes, technical, organisational, and configuration questions and answers that are the
source for creating the Business Blueprint. It gives the possibility also to collect company
responses and to automatically produce documentation starting from the database.

Further to guaranteeing a close control over planned activities and progress status, the ASAP
methodology makes it possible to significantly shorten the implementation and customisation
of a R/3 SAP system. Moreover it helps in defining QMS rules related to the introduction of
Management Information Systems and it allows to follow these rules during the project.

In short, ASAP helps in optimising time, quality and efficient use of resources, focusing on
the co-ordination of all activities to ensure the successful completion of a SAP R/3 project.
The result of our experiences is that the application of ASAP to minimise delivery time is
worth when considering the result of the following topics which are clearly addressed by the
methodology:
1. Goal-oriented project management: this aspect is coupled with a detailed project plan that

predefines milestones and quality checks. In particular, ASAP provides strategies and
recommendations that have to be followed and helps in evaluating critical needs vs. "nice-
to-have" and how to implement a process-oriented implementation.

2. Assured quality and know-how transfer: ASAP has predefined quality checks at the end of
each phase that offer the opportunity to perform quality reviews that evaluate progress and
risk factors step by step. The output of these checks are detailed progress reports and
formal acceptance of each phase by the steering committee.

3. Efficient use of resources: ASAP takes this into account and gives recommendations about
the needed background, experience and other skills that the project team members need to
have.

4. Consistent documentation: ASAP delivers a documentation concept for all types of
documentation that are typically created during an implementation (project quality plan,
project plan, meeting minutes, progress reports, technical documentation, issue and
change requests, etc.); in this respect it is quite easy to work with pre-defined documents
and templates. It is also possible to adapt these documents and templates to be ISO9001
consistent.

5. Insight into the implementation process: with the ASAP Roadmap, it is very easy to
follow the implementation process. In particular, it is quite easy to understand at each time
where we are, what is planned and which are the deliverables of each phase. This fact also
helps not to forget anything and to co-ordinate all the links between business and technical
tasks.

6. Emphasis on early stages in the project: ASAP addresses a lot of activities usually
underestimated or started too late such as data conversions, interfaces, and authorisations.

The application of the ASAP methodology force the Project Manager to define a very detailed
Quality Plan for the project. It helps in the definition of all the activities needed to
successfully complete the project and consequently in an accurate definition of the budget. It
is an essential tool to ensure that your project is “on spec, on time, on budget”.

RADIUM – Applying RAD to innovative ERP/ E-commerce projects

© 1999 ONION 8/11

All the tools at Project Manager’s disposal are very useful to help key users in analysing
processes and in defining the final solution, without forgetting any part of the system and
focusing on real needs.

Moreover, ensuring a very strict check on the project progress helps in preventing problems
and in selecting the best solutions.

3.3. Intranet

Another very important role within the development activities is played by the diffusion and
sharing of information through both the company staff and the development team. To make it
as free and easy as possible we experienced that the management of all the key information
via Intranet constitutes a winning aspect. In fact, a specific area within the company Intranet
has been set-up to manage all the relevant documentation such as:

Ø Project overview;

Ø Planning and tracking;

Ø Project rules;

Ø Meeting minutes;

Ø Technical documentation;

Ø Issues and change requests.

Appropriate access levels have also been set up in order to guarantee security in respect to the
stored information.

3.4. Applying RAD methodology to E-Commerce trial
Web retailing on the Internet plays an important role in electronic commerce. With the use of
the Internet the standard supply chain is extended with customers and suppliers accessing the
Information System from outside.
There are three different classification of web-based applications:
Ø Business-to-Consumer (Internet): the customer uses a Web browser to access the vendor’s

system to review a product catalogue, place an order, or inquire about a product or
service;

Ø Business-to-Business (Extranet): integrated business systems can co-operate with each
other; information such as order numbers, customers, and invoices is exchanged;

Ø Intranet: the Internet is used for communication within a single enterprise.

SAP has two different approaches to the development of Internet applications:

Ø Inside-out: information is exported from the Information System to the web;
Internet Applications Components (IACs) and SAP Internet Transaction Server (SAP ITS)
are used. IACs are ready-to-use solutions able to access information stored in the SAP
system via BAPIs (Business Application Programming Interfaces), assuring complete
compatibility with future releases. Moreover, the IACs can easily be tailored to your
specific requirements by designing the Web pages used in the component accordingly. On
the other side, the SAP Internet Transaction Server (running on Windows NT) combines
Internet technology with SAP technology, providing consistent information, scalability
and security.

RADIUM – Applying RAD to innovative ERP/ E-commerce projects

© 1999 ONION 9/11

Ø Outside-in: information is accessed from an external web-based application.
“Ad-hoc” applications are developed using BAPIs to access information on the SAP
system. The “standard” Internet technology is used to export information. BAPIs provide
a standard, multi-vendor interface for common business processes and objects such as
creating customer orders or customer master records. In this way, the application is
completely apart from the SAP system and can interact with many other systems, even if
different core technologies are used.

In all Web-based applications, security is one of the most important theme. Even more in
applications publishing on the Internet information from the Information System and in
application related to e-commerce.

The needed level of security is assured by four different group of features:

Ø ITS architecture: the integration of SAP with E-commerce is provided through a multi-tier
architecture, as detailed in the figure below.

Fig. 7: Multi-tier architecture

To tighten the security of your ITS installation you can add firewalls both between the
ITS server and the R/3 Application server and between the Web host and the ITS host.

Ø NT security features: some ITS information, such as passwords and files needed for ITS
execution, must be safeguarded against unauthorised access; it is recommended that you
restrict access to this information as much as possible, using Windows NT security.

Ø R/3 security features: the ITS needs an R/3 user account to access the R/3 System.
Depending on the needed level of security, you can decide to create a global R/3 user
account for all services, or a specific R/3 user account for each individual service, or no
static R/3 user account (in this case, the user is prompted for the user name and password
in a logon procedure each time the service is started). Static R/3 user names and
passwords are stored in the service files. All passwords are encrypted. If you use the
secure-installation option, all service files are additionally protected by the NT security
system.

Ø ITS security features: you can specify that the data passed between ITS host and web host
be encrypted; moreover ITS has appropriate internal mechanisms designed to prevent
unauthorised third party to connect to an existing R/3 session.

RADIUM – Applying RAD to innovative ERP/ E-commerce projects

© 1999 ONION 10/11

4. Conclusions

The application of the ASAP methodology has made it possible to achieve significant results:

Ø first of all it has been essential to keep to schedule the implementation and customizing of
our R/3 SAP system; it has to be underlined that the project was expected to require 40%
longer schedule in accordance with SAP estimation rules based on historical SAP projects
developed in conventional ways;

Ø the documentation produced using the ASAP instructions is completely consistent with
the ISO9001 standards; as a confirmation of that, the project has been inspected by a
certification body, during an ISO9001 surveillance visit and no anomaly has been
detected;

Ø last but not least, ONION has won the ASAP Award as one of the best SAP Project in
Italy managed using the ASAP methodology

From a technical point of view, the application of the ASAP methodology allowed the project
to reach the following goals:
Ø proper and clear definition of project objectives;

Ø involvement of management and key users in all phases of the project;

Ø strict control on project progress and timely reporting to project management;

Ø achievement of deadlines;

Ø reduction in delivery time.

The SAP e-commerce solutions offer different benefits:
Ø you can take advantage of the SAP International capabilities with very little effort;

Ø you do not need to redefine sales processes due to the complete integration with the R/3
processes;

Ø there is no need to duplicate data since there is only one database;

Ø due to the ready-to-use solutions, it is very simple and fast to produce a prototype;

Ø SAP guarantees compatibility with R/3 future releases.

5. Acknowledgements

Our acknowledgement goes to the members of the ONION ERP development staff
contributing to the project and in particular to Mrs. E. Zanelli, Mrs. S. Rodella, Mr. E. Gares,
Mr. S. Peli and Mr. G. Zontini, who experienced and intensively co-operated in applying the
new approach.

We have to thank SAP Italia for the initial support in acquiring the basis for the ASAP
methodology and the SAP development team in Walldorf who has always been available for
support.

Moreover, we have to thank the European Commission for the financial support given to the
RADIUM Project (Number 23842), run under the ESSI Initiative as part of ESPRIT
Framework IV Programme. We are especially indebted to the Project Officer, Mrs. Bogliolo,
for her support.

RADIUM – Applying RAD to innovative ERP/ E-commerce projects

© 1999 ONION 11/11

6. Contact Point
Gianni Rumi
ONION S.p.A.
Via L. Gussalli, 9 – 25131 Brescia, Italy
Tel. +39.030.3581510
Fax. +39.030.3581525
E.mail: gr@onion.it

Internet/Intranet/Extranet for Business Process Re-Engineering

Integration between MIS and Internet/intranet 1

QWE 99QWE 99

RADIUM
Applying RAD to innovative
ERP/E-commerce projects

G. Bazzana, C. G. Bazzana, C. BaresiBaresi, G. , G. RumiRumi

Bruxelles - Nov 5, 1999

QWE 99 - (c) ONION Slide 2

ONION S.p.A. - ProfileONION S.p.A. - Profile

■■ Based in ItalyBased in Italy

■■ Business Areas:Business Areas:
Communications/Communications/
Technologies,Technologies,
Consulting/ ERPConsulting/ ERP

■■ Continuous ProcessContinuous Process
Improvement since 1996Improvement since 1996

■■ ISO 9001 registered forISO 9001 registered for
all provided servicesall provided services

http://www.onion.it/

Internet/Intranet/Extranet for Business Process Re-Engineering

Integration between MIS and Internet/intranet 2

QWE 99 - (c) ONION Slide 3

WWW WWW GrowthGrowth

0

1000000

2000000

3000000

4000000

5000000

6000000
au

g-
95

o
ct

-9
5

de
c-

95

fe
b-

9
6

ap
r-

96

ju
n-

9
6

au
g-

96

o
ct

-9
6

de
c-

96

fe
b-

9
7

ap
r-

97

ju
n-

9
7

au
g-

97

o
ct

-9
7

de
c-

97

fe
b-

9
8

ap
r-

98

ju
n-

9
8

au
g-

98

o
ct

-9
8

de
c-

98

fe
b-

9
9

ap
r-

99

Source: Netcraft

QWE 99 - (c) ONION Slide 4

E-E-commerce Growthcommerce Growth

1%

47%

29%

13%

6%
2%0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

1994 1995 1996 1997 1998 1999

Companies interested in E-commerce

Source: European Commission

Internet/Intranet/Extranet for Business Process Re-Engineering

Integration between MIS and Internet/intranet 3

QWE 99 - (c) ONION Slide 5

E-business E-business integrationintegration

New Phases / Segments Drive New Growth
In

fra
st

ru
ct

ur
e

So
ftw

ar
e

an
d

Se
rv

ic
e

C
on

te
nt

/A
gg

re
ga

tio
n

Ret
ai

l/C
om

m
er

ce
Bus

ine
ss

Ree
ng

ine
er

ing
/V

er
tic

als

R
ev

en
ue

1998 1999 2000 2001 Time

Source: Morgan Stanley Dean Witter Research

QWE 99 - (c) ONION Slide 6

ERP E-businessERP E-business

Internet/Intranet/Extranet for Business Process Re-Engineering

Integration between MIS and Internet/intranet 4

QWE 99 - (c) ONION Slide 7

The ChallengesThe Challenges

1 -1 - Process Re-engineering Process Re-engineering

2 -2 - Time to delivery Time to delivery

3 -3 - Quality of service Quality of service

QWE 99 - (c) ONION Slide 8

RADIUM Project goalsRADIUM Project goals

¾ Improvement of software integration capabilities
for innovative development

¾ Reduction in time to market while keeping QoS

¾ Application of RAD concepts to ERP projects

¾ Definition of most suitable techniques for
 integration between ERP and E-commerce

Internet/Intranet/Extranet for Business Process Re-Engineering

Integration between MIS and Internet/intranet 5

QWE 99 - (c) ONION Slide 9

Technical activitiesTechnical activities

¾technology survey
¾technical set-up of the software factory
¾definition of RAD life cycle
¾definition of Requirement Capture methods
¾definition of prototyping methods
¾application to the 1st baseline project
¾application to the 2nd baseline project
¾measurement of results
¾deployment decision
¾alignment of the standard operating procedures

QWE 99 - (c) ONION Slide 10

The Baseline ProjectThe Baseline Project
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dic Jan Feb Mar Apr May Jun

Set-up

Customizing FI

Customizing CO

Customizing SD

Customizing MM

Customizing PP

Printouts/Report

Interfaces

System Test

End-User Training

Data Migration

Go Live & Support

Maintenance

Customizing AM

Customizing QM

E-C Features

1998 1999

Internet/Intranet/Extranet for Business Process Re-Engineering

Integration between MIS and Internet/intranet 6

QWE 99 - (c) ONION Slide 11

The ASAP MethodologyThe ASAP Methodology

QWE 99 - (c) ONION Slide 12

Process integrationProcess integration

The typical top-down approach of ERP projects
(“as-is” --> “to be” --> BPR --> bla, bla) has been
contaminated with RAD approach

Round trip engineering:
analyze a little, customize a little, test a little

Strong communication means across project
team (> 20 staff members)

Internet/Intranet/Extranet for Business Process Re-Engineering

Integration between MIS and Internet/intranet 7

QWE 99 - (c) ONION Slide 13

The Intranet as a supportThe Intranet as a support

QWE 99 - (c) ONION Slide 14

Technical ResultsTechnical Results

.Goal-oriented project management

.Assured quality and know-how transfer

.Efficient use of resources

.Consistent documentation

.Insight into the implementation process

.Emphasis on early stages in the project

Major saving of calendar time while
keeping expected quality

Internet/Intranet/Extranet for Business Process Re-Engineering

Integration between MIS and Internet/intranet 8

QWE 99 - (c) ONION Slide 15

Management ResultsManagement Results

Reduction of schedule
from 15 to 9 months

Full consistency with ISO 9001

The baseline project won
the “ASAP Award”

QWE 99 - (c) ONION Slide 16

ConclusionsConclusions

■■ Experiences haveExperiences have
been matured in thebeen matured in the
context of thecontext of the
RADIUM Project under theRADIUM Project under the
auspices of EC DG XIIIauspices of EC DG XIII

■■ Deployment is on-goingDeployment is on-going
towards all projectstowards all projects

■■ Ultimate goal: “on spec, onUltimate goal: “on spec, on
time, on budget”time, on budget”

1

Taking Care of E-Business...Taking Care of E-Business...

Elie Kanaan
Marketing Europe

At the wakeAt the wake of of the the 3rd millenium : 3rd millenium :
1 1 concernconcern , 1 trend and 1 , 1 trend and 1 opportunityopportunity

■ Year 2000

■ Internet becoming the worldwide
communication/commerce backbone

■ IT as a value delivered to customers thru E-
Business applications

2

TopicsTopics

■ [E-Business] Application Testing:
Do or Die !

■ Product Update
● Testing : TestSuite Enterprise 6.0 and Astra
● Application Perfomance Management :

Topaz

■ E-Business EcoSystem
■ Conclusion

What is E-Business?What is E-Business?

E-Business = Transforming key business
processes thru the use of Internet technologies

Back OfficeSuppliers

Buy

Supply Chain
B to B

Front Office

Make/Add Value

Integration
B w B

Customers

Sell

Demand Chain
B to C

E-Business

Source: Yankee Group

3

E-Business = Big Business ?E-Business = Big Business ?

■ Political Risks
● Executive Sponsoring & Commitment

■ Business Risks
● Business & Selling Model

■ Organisational Risks
● Organisational Structure

■ Technical Risks
● E-Business Systems and Applications

Over-budget,
Late, with Reduced

Functionality
53%

Succeeded
16%

Failed
31%

The Standish Group Study of Business-Critical Projects

Technical Risks: How Big is theTechnical Risks: How Big is the
Problem?Problem?

4

Web Site Daily Internet commerce
revenue as of 1/15/99

Lost revenue per hour of
downtime as of 1/15/99*

www.techdata.com $1,000,000 $8,280

www.amazon.com $2,700,000 $22,500

www.dell.com $10,000,000 $91,320

www.cisco.com $20,000,000 $182,640

www.intel.com
(partner extranet site only)

$33,000,000 $274,980

Technical Risks:How Bi g is the Impact?Technical Risks:How Bi g is the Impact?

* Lost revenue assumes a $1 million-per-day site where 20% of transactions are lost during downtime. Costs due
to brand erosion and decreased customer satisfaction are not included in these estimates

Forrester Research Inc. Jan. 1999

Why Why ContinouslyContinously Test E-Business Test E-Business
Applications?Applications?

■ If the Application breaks the
Business stops

■ E-Business applications are Part of
the product sold to customers

● Poor customer experience = lost
customers and business

■ Application Performance and
Reliability = Business Performance

● Too Slow, never again
● Not available, we go elsewhere

5

Testing helps protect revenue stream!Testing helps protect revenue stream!

“8-Second Rule” Impacts Revenue“8-Second Rule” Impacts Revenue

■ Web page download time is key in determining
success and user satisfaction

■ Up to $4.35B annually in e-commerce sales may
be lost due to unacceptable download times!
*Zona Research, 1999

Non-Stop E-Business is The DriverNon-Stop E-Business is The Driver

■ 92% of users chose reliability as most important
feature *
● Application reliability means higher value to

consumers

■ 46% of users have on at least one occasion
been driven to alternative sites because their
preferred site failed*
● Application reliability protects revenue stream

* Jupiter Communications Survey - Date

6

What is different about the Internet?What is different about the Internet?

■ Complexity
● Evolving new technolgies
● Combinations of technologies

■ Unpredictability of usage
■ Dynamic Content

● Applications change daily, if not
more often

● 1-to-1 : customization of user
experience

..Com’s Com’s Experience Barriers to TestingExperience Barriers to Testing

■ No time
● Can’t delay production for lengthy testing

cycles

■ No resources
● No testers, no hardware, no budget

■ No testing expertise
● Traditional testing tools are intimidating

7

Introducing: Introducing: Astra Astra &&
TestSuiteTestSuite Enterprise 6.0 Enterprise 6.0

■ Astra - Fast, simple web
testing

● Astra QuickTest, Astra
LoadTest, Astra SiteManager

● ActiveScreen technology
simplifies testing

● Architected from the ground
up for web testing

● First testing tools you can “try
& buy” on the Web

■ TestSuite Enterprise 6.0 - an
Integrated suite of
Enterprise testing tools...

● TestDirector 6.0 for test
management

● WinRunner 6.0 for functional
& regression testing

● LoadRunner 6.0 for load
testing

…ensure higher reliability and a
positive end-user experience

AstraAstra

8

AstraAstra
Fast, simple web testing

■ Astra QuickTest (HTML Client)
● Verifies that web applications work as expected by

mirroring end user behavior to shorten testing cycles

■ Astra LoadTest (HTTP/S Protocol)
● Validates web site performance by generating load of

hundreds of users to identify and pinpoint bottlenecks

■ Astra SiteManager
● Visual web site management tool

www.www. astratryandbuyastratryandbuy .com.com
First “Try & Buy” Testing SiteFirst “Try & Buy” Testing Site

❶ Download Astra from the “Try” site to evaluate
❷ Come back to web site to “Buy”
❸ Web-based support

9

TestSuite Enterprise TestSuite Enterprise 6.06.0

WinRunnerWinRunner Supports the Widest Range of
Enterprise Environments

Legacy
• 3270 Emulators
• 5250 Emulators
• vT100 Emulators

Custom C/S
• VB 4, 5, 6
• PB 4, 5, 6
• Oracle Dev 2000
• Forte 3.0.l.1
• Delphi 2, 3, 4

ERP
• Baan IVc, V
• SAP R/3 3, 4
• Oracle Apps 10, 10.7, 11
• Peoplesoft 6, 7, 7.5

E-Biz
• IE 4.x, IE 5.x
• NS 4.0 & higher
• DHTML
• AWT from JDK 1.1.7
• JFC 1.0.x
• Symantec Visual Café 2.5
• Oracle Dev 1.6.x (web)

Web & Java
• Animated Images
• XML
• JDK 1.1.8 & 1.2.x
• Oracle Jinitiator
• Symantec Café 3.0
• JFC 1.1
• Silverstream

10

LoadRunner LoadRunner Supports the Widest Range ofSupports the Widest Range of
Enterprise EnvironmentsEnterprise Environments

Legacy
• 3270
• 5250
• vT100, vT200, …
• APPC (AS/400)
• X Windows

3-Tier C/S
• Java
• Jolt 1.1
• Tuxedo 6.0-6.4

ERP
• SAP R/3 3, 4
• Peoplesoft 6, 7, 7.5
• Oracle Apps 10, 10.7,11
• Baan IVc, V

E-Biz
• HTTP
• SSL
• NTLM
• Digital Certificates

Object & Web Protocols
• CORBA

•Visibroker, Orbix, M3
• DCOM
• JDBC
• LDAP
• POP3

2-Tier C/S
• Oracle 7-8
• MS SQL Svr 6, 6.5, 7
• Sybase 10-11
• Informix 7.1-7.23
• ODBC 2.1- 3.5
• Winsock 1.1

LoadRunner’s LoadRunner’s Integrated Monitors DisplayIntegrated Monitors Display
Transaction Performance in Real-timeTransaction Performance in Real-time

■ Identify and isolate system problems as they occur to
accelerate problem resolution
● Monitors performance of transactions, application servers,

web servers, TUXEDO servers, network delays, SNMP
devices, and databases

11

TestDirector Provides Access to DefectTestDirector Provides Access to Defect
Management via the WebManagement via the Web

■ Allows anytime, anywhere access through any browser
● Analyze application readiness status and trends
● View, insert, and change status of defects

Application PerformanceApplication Performance
ManagementManagement

12

Application Performance ManagementApplication Performance Management
TodayToday

■ Performance is not measured at the business
process level
● Various “System” monitors generate confusing data

■ Application availability data is not meaningful to
end-users
● Reports are difficult to extrapolate outside of IT

■ IT is unable to anticipate application disruptions
● IT is forced to be reactive to user demands

Current SolutionsCurrent Solutions
 Existing tools are net/server centricExisting tools are net/server centric

Total requests made per hour/done/outstanding

Status of each server

Detailed report on the domain configuration

Boot and shut down by domain, machine, group
and server

Monitors status of the Process Scheduler

Monitors status of jobs queued through the
process scheduler

Tracks Process Server statistics

Lots of Data, No End User Perspective

13

Introducing: “Topaz”Introducing: “Topaz”

Web ServerBrowser Network

■ “Topaz” measures end-user experience
– Client perspective

– Proactively measures actual business processes as opposed to system data

– Provides meaningful data on application performance and availability

Back End Server

Real-time Application StatusReal-time Application Status

■ “Topaz” provides “health” summary of application

14

Data Meaningful to UsersData Meaningful to Users

■“Topaz” presents pertinent application data in simple terms

Data for ManagingData for Managing SLA’s SLA’s

■ “Topaz” reports validate Service Level performance

15

What Does “Topaz” Do?What Does “Topaz” Do?

Proactively run
Transactions on all

machines

LAN/WAN

Dial up

 Intranet

Web Server

App. Server

Database

 Internet

Define Thresholds
Collect Data
Send Alarms

Browse reports on-line,
from any machine

“Topaz” Console

Record user experience

“Topaz” Benefits“Topaz” Benefits

■ Bridges gap between business users and IT
organizations
● Talks the language of the user - Transactions &

Business Processes

■ Delivers quantifiable, measurable user experience
to optimize application and infrastructure
● Define and enforce Service Level Agreements

● Maintain quality control of outsourcing agreements

■ Helps identify performance problems proactively
● Alert business user to application problems, before they

find them

16

E-Business E-Business EcoSystemEcoSystem

The The E-Business E-Business EcoSystemEcoSystem

■ New Software Vendors
● Application Platforms, Application Servers, Others …

■ Web System Integrators
● Established SIs, New Web-only SIs

■ Internet Service Providers (ISPs)
● Exodus, UUNET, Oleane, …

■ Application Service Providers (ASPs)
● Matra Grolier Association, USI, Quest, Corio, …

■ Packaged Application Vendors
■ Hardware/Infrastructure Players

17

E-Business Alliance Partners

 Select E-business Customers Select E-business Customers

18

ConclusionConclusion

■ To avoid the Headlines of Web Disasters,
talk to Mercury Interactive

1

ESSI Project 27649 - SEPIE

Software Engineering Process
Improvement Experiment

Who are Optimal Systems Ltd. ?

¾Optimal Group in existence since 1985

¾Developers of Engineering & Survey applications

¾ISO 9001 & TickIT Certification

¾Third Party Software Developer’s with Intergraph

Corp, Bentley Systems, Autodesk Inc.

¾A team of professional engineers & surveyors

2

What was the problem ?

• Configuration Management - paper based
system not working

• Geographic spread of agents

• Requirements management (compounded
by email)

• Test Planning

• Information flow was base problem

Information Flow Problem

8

3

0

3

10

28

38

43

5

43

25

6

26

11

22

13

0

5

10

15

20

25

30

35

40

45

50

Jan-96 Feb-96 Mar-96 A pr-96 May -96 Jun-96 Jul-96 A ug-96 Sep-96 Oc t-96 Nov -96 Dec -96 Jan-97 Feb-97 Mar-97 A pr-97

M onth

N
u

m
b

e
r

o
f

S
u

p
p

o
rt

 C
a

(n
o

t
in

cl
 E

n
h

a
n

ce
m

e
n

t

V5:0:0.0 Release W ish Lis t form
Optim al Pac ific
(reques ted)

3

After QMS Improvements
Fig 1 : Tre nd Ana lysis

26

10

22

13
14

5

11
12

9

13 13

9

0

5

10

15

20

25

30

Jan-97 Feb-97 Mar -97 A pr -97 May -97 Jun-97 Ju l-97 A u g-97 S ep-97 Oc t-97 Nov -97 Dec -97

M on th

N
u

m
b

e
r

o
f

S
u

p
p

o
rt

 C
a

(n
o

t
in

cl
 E

n
h

a
n

ce
m

e
n

t

R eleas e o f v 5 :0 :4 .2

Selection of software tool

• PVCS Version Manager & Tracker

• Industry standard

• Review of other tools done prior to
experiment

4

Implementation of VM v6.0

• Problems with VM v6
– staff reaction

– poor user interface

– training absolute necessity

• Reaction to VM v6.5
– very positive

Overall reaction to VM

• Experience with v6.0 regrettable

• Experience with v6.5 positive

• Functionality in both v6.0 & v6.5 seen as
positive

5

Implementation of Tracker

• This is the main experimental area to
improve information flow

• No problems initially
– very positive reaction

• Problems experienced when upgrade
received

• Overall an easy implementation

Project Results

• Change from VM v6.0 to v6.5 caused delay

• 20% saving on change request management

• Information flow has improved

• 30% time saving in creation of Test Plans

• 70% saving in creation of Release Notes

• 10 Man Days per programmer saved annually on
Code Documentation

• 45% saving on disk space due to compression
technology used by PVCS VM tool

6

Lessons Learned

• Do not under estimate number of licences
required

• Complexity of Technology under estimated

• Hidden costs discovered (SQL Server)

• ESSI support required to give momentum to
objectively access contribution of
technology

Lessons Learned

• Learning curve for tools are steep but must
be overcome

• Poor user interfaces will not be accepted by
staff

• Not all customers will be happy to be
involved in experiments

7

Way Forward

• Continued use of PVCS Technology

• Positive impact on information flow

• PVCS will have a large impact on Quality
System

• Metric collection to be revised for better
management control

WebSite Testing

Edward Miller
Software Research, Inc.

901 Minnesota Street
San Francisco, CA 94107 USA

© 1999 by Software Research, Inc.

Email comments to miller@soft.com
See also the companion paper The WebSite Quality Challenge.

ABSTRACT

The instant worldwide audience of a WebSite's make its quality and reliability crucial factors in its success.
Correspondingly, the nature of the WWW and WebSites pose unique software testing challenges. Webmasters,
WWW applications developers, and WebSite quality assurance managers need tools and methods that meet their
specific needs. Mechanized testing via special purpose WWW testing software offers the potential to meet these
challenges. Our technical approach, based on existing WWW browsers, offers a clear solution to most of the
technical needs for assuring WebSite quality.

BACKGROUND

WebSites impose some entirely new challenges in the world of software quality!

Within minutes of going live, a WWW application can have many thousands more users than a conventional,
non-WWW application. The immediacy of the WWW creates immediate expectations of quality and rapid application
delivery, but the technical complexities of a WebSite and variances in the browser make testing and quality control
that much more difficult, and in some ways, more subtle, than "conventional" client/server or application testing.
Automated testing of WebSites is an opportunity and a challenge.

DEFINING WEBSITE QUALITY & RELIABILITY

Like any complex piece of software there is no single, all inclusive quality measure that will fully characterizes a
WebSite.

Dimensions of Quality. There are many dimensions of quality; each measure will pertain to a particular WebSite in
varying degrees. Here are some common measures:

Timeliness: WebSites change often and rapidly. How much has a WebSite changed since the last upgrade?
How do you highlight the parts that have changed?
Structural Quality: How well do all of the parts of the WebSite hold together? Are all links inside and outside
the WebSite working? Do all of the images work? Are there parts of the WebSite that are not connected?
Content: Does the content of critical pages match what is supposed to be there? Do key phrases exist
continually in highly-changeable pages? Do critical pages maintain quality content from version to version?
What about dynamically generated HTML (DHTML) pages?
Accuracy and Consistency: Are today's copies of the pages downloaded the same as yesterday's? Close
enough? Is the data presented to the user accurate enough? How do you know?
Response Time and Latency: Does the WebSite server respond to a browser request within certain
performance parameters? In an E-commerce context, how is the end-to-end response time after a SUBMIT?
Are there parts of a site that are so slow the user discontinues working?
Performance: Is the Browser->Web->WebSite->Web->Browser connection quick enough? How does the
performance vary by time of day, by load and usage? Is performance adequate for E-commerce applications?
Taking 10 minutes -- or maybe even only 1 minute -- to respond to an E-commerce purchase may be
unacceptable!

Impact of Quality. Quality remains is in the mind of the WebSite user. A poor quality WebSite, one with many
broken pages and faulty images, with Cgi-Bin error messages, etc., may cost a lot in poor customer relations, lost
corporate image, and even in lost sales revenue. Very complex, disorganized WebSites can sometimes overload the

user.

The combination of WebSite complexity and low quality is potentially lethal to Company goals. Unhappy users will
quickly depart for a different site; and, they probably won't leave with a good impression.

WEBSITE ARCHITECTURAL FACTORS

A WebSite can be qite complex, and that complexity -- which is what provides the power, of course -- can be a real
impediment in assuring WebSite Quality. Add in the possibilities of multiple WebSite page authors, very-rapid
updates and changes, and the problem compounds.

Here are the major pieces of WebSites as seen from a Quality perspective.

Browser. The browser is the viewer of a WebSite and there are so many different browsers and browser options
that a well-done WebSite is probably designed to look good on as many browsers as possible. This imposes a kind
of de facto standard: the WebSite must use only those constructs that work with the majority of browsers. But this
still leaves room for a lot of creativity, and a range of technical difficulties. And, multiple browsers' renderings and
responses to a WebSite have to be checked.

Display Technologies. What you see in your browser is actually composed from many sources:

HTML. There are various versions of HTML supported, and the WebSite ought to be built in a version of
HTML that is compatible. This should be checkable.
Java, JavaScript, ActiveX. Obviously JavaScript and Java applets will be part of any serious WebSite, so the
quality process must be able to support these. On the Windows side, ActiveX controls have to be handled
well.
Cgi-Bin Scripts. This is link from a user action of some kind (typically, from a FORM passage or otherwise
directly from the HTML, and possibly also from within a Java applet). All of the different types of Cgi-Bin
Scripts (perl, awk, shell-scripts, etc.) need to be handled, and tests need to check "end to end" operation. This
kind of a "loop" check is crucial for E-commerce situations.
Database Access. In E-commerce applications you are either building data up or retrieving data from a
database. How does that interaction perform in real world use? If you give in "correct" or "specified" input
does the result produce what you expect?

Some access to information from the database may be appropriate, depending on the application, but this is
typically found by other means.

Navigation. Users move to and from pages, click on links, click on images (thumbnails), etc. Navigation in a
WebSite often is complex and has to be quick and error free.

Object Mode. The display you see changes dynamically; the only constants are the "objects" that make up
the display. These aren't real objects in the OO sense; but they have to be treated that way. So, the quality
test tools have to be able to handle URL links, forms, tables, anchors, buttons of all types in an "object like"
manner so that validations are independent of representation.

Server Response. How fast the WebSite host responds influences whether a user (i.e. someone on the
browser) moves on or gives up. Obviously, InterNet loading affects this too, but this factor is often outside the
Webmaster's control at least in terms of how the WebSite is written. Instead, it seems to be more an issue of
server hardware capacity and throughput. Yet, if a WebSite becomes very popular -- this can happen
overnight! -- loading and tuning are real issues that often are imposed -- perhaps not fairly -- on the
WebMaster.

Interaction & Feedback. For passive, content-only sites the only real quality issue is availability. For a
WebSite that interacts with the user, the big factor is how fast and how reliable that interaction is.

Concurrent Users. Do multiple users interact on a WebSite? Can they get in each others' way? While
WebSites often resemble client/server structures, with multiple users at multiple locations a WebSite can be
much different, and much more complex, than complex applications.

WEBSITE TEST AUTOMATION REQUIREMENTS

Assuring WebSite quality requires conducting sets of tests, automatically and repeatably, that demonstrate
required properties and behaviors. Here are some required elements of tools that aim to do this.

Test Sessions. Typical elements of tests involve these characteristics:
Browser Independent. Tests should be realistic, but not be dependent on a particular browser, whose
biases and characteristics might mask a WebSite's problems.
No Buffering, Caching. Local caching and buffering -- often a way to improve apparent performance --
should be disabled so that timed experiments are a true measure of the
Browser-Web-WebSite-Web-Browser response time.
Fonts and Preferences. Most browsers support a wide range of fonts and presentation preferences,
and these should not affect how quality on a WebSite is assessed or assured.
Object Mode. Edit fields, push buttons, radio buttons, check boxes, etc. All should be treatable in object
mode, i.e. independent of the fonts and preferences.

Object mode operation is essential to protect an investment in test suites and to assure that test suites
continue operating when WebSite pages experience change. In other words, when buttons and form
entries change location on the screen -- as they often do -- the tests should still work.

However, when a button or other object is deleted, that error should be sensed! Adding objects to a
page clearly implies re-making the test.
Tables and Forms. Even when the layout of a table or form varies in the browser's view, tests of it
should continue independent of these factors.
Frames. Windows with multiple frames ought to be processed simply, i.e. as if they were multiple
single-page frames.

Test Context. Tests need to operate from the browser level for two reasons: (1) this is where users see a
WebSite, so tests based in browser operation are the most realistic; and (2) tests based in browsers can be
run locally or across the Web equally well. Local execution is fine for quality control, but not for performance
measurement work, where response time including Web-variable delays reflective of real-world usage is
essential.

WEBSITE DYNAMIC VALIDATION

Confirming validity of what is tested is the key to assuring WebSite quality -- the most difficult challenge of all.
Here are four key areas where test automation will have a significant impact.

Operational Testing. Individual test steps may involve a variety of checks on individual pages in the
WebSite:

Page Consistency. Is the entire page identical with a prior version? Are key parts of the text the same
or different?
Table, Form Consistency. Are all of the parts of a table or form present? Correctly laid out? Can you
confirm that selected texts are in the "right place".
Page Relationships. Are all of the links on a page the same as they were before? Are there new or
missing links? Are there any broken links?
Performance Consistency, Response Times. Is the response time for a user action the same as it was
(within a range)?

Test Suites. Typically you may have dozens or hundreds (or thousands?) of tests, and you may wish to run
tests in a variety of modes:

Unattended Testing. Individual and/or groups of tests should be executable singly or in parallel from
one or many workstations.
Background Testing. Tests should be executable from multiple browsers running "in the background"
on an appropriately equipped workstation.
Distributed Testing. Independent parts of a test suite should be executable from separate workstations
without conflict.
Performance Testing. Timing in performance tests should be resolved to the millisecond; this gives a
strong basis for averaging data.
Random Testing. There should be a capability for randomizing certain parts of tests.
Error Recovery. While browser failure due to user inputs is rare, test suites should have the capability

of resynchronizing after an error.
Content Validation. Apart from how a WebSite responds dynamically, the content should be checkable
either exactly or approximately. Here are some ways that content validation could be accomplished:

Structural. All of the links and anchors should match with prior "baseline" data. Images should be
characterizable by byte-count and/or file type or other file properties.
Checkpoints, Exact Reproduction. One or more text elements -- or even all text elements -- in a page
should be markable as "required to match".
Gross Statistics. Page statistics (e.g. line, word, byte-count, checksum, etc.).
Selected Images/Fragments. The tester should have the option to rubber band sections of an image
and require that the selection image match later during a subsequent rendition of it. This ought to be
possible for several images or image fragments.

Load Simulation. Load analysis needs to proceed by having a special purpose browser act like a human
user. This assures that the performance checking experiment indicates true performance -- not performance
on simulated but unrealistic conditions. There are many "http torture machines" that generate large numbers
of http requests, but that is not necessarily the way real-world users generate requests.

Sessions should be recorded live or edited from live recordings to assure faithful timing. There should be
adjustable speed up and slow down ratios and intervals.

Load generation should proceed from:
Single Browser Sessions. One session played on a browser with one or multiple responses. Timing
data should be put in a file for separate analysis.
Multiple Independent Browser Sessions. Multiple sessions played on multiple browsers with one or
multiple responses. Timing data should be put in a file for separate analysis. Multivariate statistical
methods may be needed for a complex but general performance model.

TESTING SYSTEM CHARACTERISTICS

Considering all of these disparate requirements, it seems evident that a single product that supports all of
these goals will not be possible. However, there is one common theme and that is that the majority of the
work seems to be based on "...what does it [the WebSite] look like from the point of view of the user?" That is,
from the point of view of someone using a browser to look at the WebSite.

This observation led our group to conclude that it would be worthwhile trying to build certain test features into
a "test enabled web browser", which we called CAPBAK/Web in the expectation that this approach would let
us do the majority of the WebSite quality control functions using that engine as a base.

Browser Based Solution. With this as a starting point we determined that the browser based solution had to
meet these additional requirements:

Commonly Available Technology Base. The browser had to be based on a well known base (there
appear to be only two or three choices).
Some Browser Features Must Be Deletable. At the same time, certain requirements imposed
limitations on what was to be built. For example, if we were going to have accurate timing data we had
to be able to disable caching because otherwise we are measuring response times within the client
machine rather than "across the web."
Extensibility Assured. To permit meaningful experiments, the product had to be extensible enough to
permit timings, static analysis, and other information to be extracted.

Taking these requirements into account, and after investigation of W3C's Amaya Browser and the
open-architecture Mozilla/Netscape Browser we chose the IE Brower as our initial base for our
implementation of CAPBAK/Web.

User Interface. How the user interacts with the product is very important, in part because in some cases the
user will be someone very familiar with WebSite browsing and not necessarily a testing expert. The design we
implemented takes this reality into account.

Pull Down Menus. In keeping with the way browsers are built, we put all the main controls for
CAPBAK/Web on a set of Pull Down menus, as shown in the accompanying screen shot.

Figure 1. CAPBAK/Web Menu Functions.
"C" Scripting. We use interpreted "C" language as the control language because the syntax is well
known, the language is fully expressive of most of the needed logic, and because it interfaces well with
other products.
Files Interface. We implemented a set of dialogs to capture critical information and made each of them
recordable in a text file. The dialogs are associated with files that are kept in parallel with each browser
invocation:

Keysave File. This is the file that is being created -- the file is shown line by line during script
recording as the user moves around the candidate WebSite.
Timing File. Results of timings are shown and saved in this file.
Messages File. Any error messages encountered are delivered to this file. For example, if a file
can't be downloaded within the user-specified maximum time an error message is issued and
the playback continues. (This helps preserve the utility of tests that are partially unsuccessful.)
Event File. This file contains a complete log of recording and playback activities that is useful
primarily to debug a test recording session or to better understand what actually went on during
playback.

Operational Features. Based on prior experience, the user interface for CAPBAK/Web had to provide for
several kinds of capabilities already known to be critical for a testing system. Many of these are critically
important for automated testing because they assure an optimal combination of test script reliability and
robustness.

Capture/Replay. We had to be able both to capture a user's actual behavior online, and be able to
create scripts by hand.
Object Mode. The recording and playback had to support pure-Object Mode operation. This was
achieved by using internal information structures in a way that lets the scripts (either recorded or
constructed) to refer to objects that are meaningful in the browser context.

A side benefit of this was that playbacks were reliable independent of the rendering choices made by
the user. A script plays back identically the same independent of browser window size, type-font
choices, color mappings, etc.
[Adjustable] True-Time Mode. We assured realistic behavior of the product by providing for recording
of user-delays and for efficient handling of delays by incorporating a continuously variable "playback
delay multiplier" that can be set by the user.
Playback Synchronization. For tests to be robust -- that is, to reliably indicate that a feature of a
WebSite is working correctly -- there must be a built-in mode that assures synchronization so that
Web-dependent delays don't interfere with proper WebSite checking. CAPBAK/Web does this using a
proprietary playback synchronization method that waits for download completion (except if a specified
maximum wait time is exceeded).
Timer Capability. To make accurate on-line performance checks we built in a 1 millisecond resolution
timer that could be read and reset from the playback script.
Validate Selected Text Capability. A key need for WebSite content checking, as described above, is
the ability to capture an element of text from an image so that it can be compared with a baseline
value. This feature was implemented by digging into the browser data structures in a novel way (see
below for an illustration). The user highlights a selected passage of the web page and clicks on the
"Validate Selected Text" menu item.

Figure 2. Illustration of CAPBAK/Web Validate Selected Text Feature.
What results is a recorded line that includes the ASCII text of what was selected, plus some other
information that locates the text fragment in the page. During playback if the same text is not found at
the same location an error message is generated.
Multiple-playback. We confirmed that multiple playback was possible by running separate copies of the
browser in parallel. This solved the problem of how to multiply a single test session into a number of
test sessions to simulate multiple users each acting realistically.

Test Wizards. In most cases manual scripting is too laborious to use and making a recording to achieve a
certain result is equally unacceptable. We built in several test wizards that mechanize some of the most
common script-writing chores.

Link Wizard. This wizard creates a script based on the current Web page that visits every link in the
page. Scripts created this way are the basis for "link checking" test suites that confirm the presence
(but not necessarily the content) of URLs.

Here is a sample of the output of this wizard, applied to our standard sample test page
example1.html :

 void name()
 {
 /* Produced by CAPBAK/Web [IE] Ver. 1.5 Link Wizard */
 /* (c) Copyright 1999 by Software Research, Inc. */

 WT_InitLink("http://www.soft.com/Products/Web/CAPBAK/example1/");
 WT_GotoLink("http://www.soft.com/Products/Web/CAPBAK/example1/#target");
 WT_GotoLink("http://www.soft.com/Products/Web/CAPBAK/example1/#notdefined");
 WT_GotoLink("http://www.soft.com/Products/Web/CAPBAK/example1/example1.out.html");
 WT_GotoLink("http://www.soft.com/Products/Web/CAPBAK/example1/example1.notoutside.html");
 WT_GotoLink("http://www.soft.com/Products/Web/CAPBAK/example1/#topofpage");
 }

Figure 3. Sample of Output of Link Test Wizard.

FORM Wizard. For E-Commerce testing which involves FORMS we included in the system a FORM
Wizard that generates a script that:

Initializes the form.
Presses each pushbutton by name.
Presses each radio button by name.
Types a pre-set script fragment into each text field.
Presses SUBMIT.

Here is a sample of the output of this wizard, applied to our standard test page: example1.html :

 void name()
 {
 /* Produced by CAPBAK/Web [IE] Ver. 1.5 Form Wizard */
 /* (c) Copyright 1999 by Software Research, Inc. */

 WT_InitLink("http://www.testworks.com/Products/Web/CAPBAK/example1/");
 WT_SubmitForm(FORM:0:12, "RESET FORM");
 WT_SelectOneRadio(FORM:0:0, "now", "TRUE");
 WT_SelectOneRadio(FORM:0:1, "next", "TRUE");
 WT_SelectOneRadio(FORM:0:2, "look", "TRUE");
 WT_SelectOneRadio(FORM:0:3, "no", "TRUE");
 WT_SelectCheckBox(FORM:0:4, "concerned", "TRUE");
 WT_SelectCheckBox(FORM:0:5, "info", "TRUE");
 WT_SelectCheckBox(FORM:0:6, "evaluate", "TRUE");
 WT_SelectCheckBox(FORM:0:7, "send", "TRUE");
 WT_FormTextInput(FORM:0:8, "TestWorks");
 WT_FormTextInput(FORM:0:9, "TestWorks");
 WT_FormTextInput(FORM:0:10, "TestWorks");
 WT_FormTextInput(FORM:0:11, "TestWorks");
 WT_SubmitForm(FORM:0:13, "SUBMIT FORM");
 }

Figure 4. Sample of Output of FORM Test Wizard.

The idea is that this script can be processed automatically to produce the result of varying
combinations of pushing buttons. As is clear, the wizard will have pushed all buttons, but only the
last-applied one in a set of radio buttons will be left in the TRUE state.
Text Wizard. For detailed content validation this wizard yields up a script that includes in confirmation
of the entire text of the candidate page. This script is used to confirm that the content of a page has not
changed (in effect, the entire text content of the subject is recorded in the script).

EXAMPLE USES

Early application of the CAPBAK/Web system have been very effective in producing experiments and
collecting data that is very useful for WebSite checking. While we expect CAPBAK/Web to be the main
engine for a range of WebSite quality control and testing activities, we've chosen two of the most typical -- and
most important -- applications to illustrate how CAPBAK/Web can be used.

Performance Testing Illustration. To illustrate how CAPBAK/Web measures timing we have built a set of
Public Portal Performance Profile TestSuites that have these features:

Top 20 Web Portals. We selected 20 commonly available WebSites on which to measure response
times. These are called the "P4" suites.
User Recording. We recorded one user's excursion through these suites and saved that keysave file
(playback script).
User Recording. We played back the scripts on a 56 kbps modem so that we had a realistic
comparison of how long it would take to make this very-full visit to our selected 20 portals.
P4 Timings. We measured the elapsed time it took for this script to execute at various times during the
day. The results from one typical day's executions showed a playback time range of from 457 secs. to
758 secs (i.e. from -19% of the average to +36% of the average playback time).
Second Layer Added. We added to the base script a set of links to each page referenced on the same
set of 20 WebSites. This yielded the P4+ suite that visist some 1573 separate pages, or around 78 per
WebSite. The testsuite takes around 20,764 secs (~5 Hrs 45 mins) to execute, or an average of 1038
secs per WebSite. per WebSite).
Lessons Learned. It is relatively easy to configure a sophisticated test script that visits many links in a
realistic way, and provides realistic user-perceived timing data.

E-Commerce Illustration. This example shows a typical E-Commerce product ordering situation. The script
automatically places an order and uses the Validate Selected Text sequence to confirm that the order was
processed correctly. In a real-world example this is the equivalent of (i) selecting an item for the shopping
basket, (ii) ordering it, and (iii) examining the confirmation page's order code to assure that the transaction
was successful. (The final validation step of confirming that the ordered item was actually delivered to a
specific address is not part of what CAPBAK/Web can do.)

Example Form. We base this script on a sample page shown below. This page is intended to have a
form that shows an ordering process. On the page the "Serial Number" is intended as a model of a
credit card number.

Figure 5. Sample Input Form For E-Commerce Example.
Type-In with Code Number. Starting with the FORM Wizard generated script, we modify it to include
only the parts we want, and include the code number 8889999 .
Response File. Once the playback presses the SUBMIT button the WebServer response page shows
up, as shown below.

Figure 6. Response Page for E-Commerce Example.
Error Message Generated. If the Cgi-Bin scripts make a mistake this will be caught during playback
because the expected text 8889999 will no be present.
Completed TestScript. Here is the complete testscript for CAPBAK/Web that illustrates this sequence

of activities.

 void name()
 {
 /* Recording by CAPBAK/Web [IE] Ver. 1.5
 (c) Copyright 1999 by Software Research, Inc. */

 WT_InitLink("http://www.soft.com/Products/Web/CAPBAK/example1/example1broken.html");
 WT_SelectOneRadio(FORM:1:0, "buying-now", "TRUE");
 WT_SelectOneRadio(FORM:1:1, "next-month", "FALSE");
 WT_SelectOneRadio(FORM:1:2, "just-looking", "FALSE");
 WT_SelectOneRadio(FORM:1:3, "no-interest", "FALSE");
 WT_SelectOneRadio(FORM:1:4, "Yes", "TRUE");
 WT_SelectOneRadio(FORM:1:5, "Yes", "TRUE");
 WT_SelectOneRadio(FORM:1:6, "Yes", "TRUE");
 WT_SelectOneRadio(FORM:1:7, "Yes", "TRUE");
 WT_FormTextInput(FORM:1:8, "Mr. Software");
 WT_FormTextInput(FORM:1:9, "415-550-3020");
 WT_FormTextInput(FORM:1:10, "info@soft.com");
 WT_FormTextInput(FORM:1:11, "8889999");
 WT_SubmitForm(FORM:1:13, "SUBMIT FORM");
 WT_Wait(3425);
 WT_ValidateText(12, 143, "88899999");
 }

Figure 7. Script for E-Commerce Test Loop.

Lessons Learned. This examples illustrates how it is possible to automatically validate a website using
CAPBAK/Web by detecting when an artificial order is mis-processed.

FUTURE EXPANSION AND EXTENSIONS

We are presently using CAPBAK/Web in support of various customers' WebSite quality control activities. Yet,
as rich as we believe our implementation of a test enabled web browser is with CAPBAK/Web, there are
many areas where there is need for expansion.

Obviously we need to expand the capability to the Mozilla class of browsers, and possibly others as well. And,
certain of the user-control functions have to be refined to get the best use out of the product set.

SUMMARY

All of these needs and requirements impose constraints on the test automation tools used to confirm the
quality and reliability of a WebSite. At the same time they present a real opportunity to amplify human
tester/analyst capabilities. Better, more reliable WebSites should be the result.

REFERENCES

This paper is based on many sources; it relies heavily on a prior White Paper The WebSite Quality Challenge.

You can learn more about the test system being described in a Tour of CAPBAK/Web.

There is detailed information about the P4 Examples and the P4+ Examples.

You can study the E-commerce example described above by going to these URLs:

example1.html Input Page :
example1.html Response Page:

Readers may also be interested in seeing one way that the CAPBAK/Web product is applied by considering
subscribing to one of the family of eValid Test Services.

The Impact on Staff of the
Implementation of PVCS Technology

Author: Dermot Hore
Project Manager

Company: Optimal Systems Ltd
Molesworth House
1 South Frederick Street
Dublin 2
Ireland.

Email: dermot.hore@optimal.ie
Phone: +353 1 6779555
Fax: +353 1 6779642

Related European Project: ESSI Project number 27469
Acronym : SEPIE (Software Engineering Process Improvement Experiment)

Abstract

Optimal Systems provides a comprehensive solution for interactive modelling, design, and analysis of
transmission and distribution lines. Through regular surveillance audits, information flow has been
identified as the underlying cause of a number of problems being experiencing. These include project
overruns, continual requirements change, and errors in transition from change requests/bugs received via
email too, requirements specification and onwards to system test.

The experiment will assess the performance of PVCS Version Control and Tracker modules to improve the
information flow between the agents and development staff and also among the development staff.

The experiment, funded by the European Commission, will test the expectation that for small to medium
size software development companies, improved information flow, through the use of software tools, will
improve the quality of the end product, gain better control over project effort and improve effort estimation
and scheduling.

Introduction
This paper sets out the experiences of the staff of Optimal Systems Ltd in using PVCS (Tracker and
Version Manager modules) to support improvements in communication flow within the organisation. The
process was supported by ESSI as the SEPIE project, Number 27469. Optimal Systems Ltd is a Dublin
based company that is engaged in the design, development and delivery of application software for the
Electrical Supply Industry worldwide. Positive staff reaction is critical to the successful implementation of
new technologies.

The process improvement experiment on which this paper is based is an 11-month project that commenced
in July 1998 and was completed in June 1999. This paper focuses on the impact on staff on the use of the
new technology and their assessment of how it contributes to improving the development process.

Background
Optimal Systems is typical of many small software development organisations insofar as there is a strong
dependency on individuals and there is a tendency to informality in the modification of requirements during
the development process. Optimal also has a very dispersed agent base who provide input to the
requirements gathering and approval process. At the time the experiment commenced a number of issues
had been identified that were of major concern:

• Code error accounted for 18% of defects and indicated the need for improvements in user and
acceptance testing. These difficulties were arising in part from the failure to generate appropriate test
plans from the requirement specification.

• There were poor control over requirement changes with some requests sent directly to the developer
with a know negative impact on version control

• Change requests were sent by email but there was no system for logging and linking similar requests
into a formal requirements specification. This has a negative impact on the effort required to create
accurate requirements specification.

• The level of effort required from the completion of testing to product release was a major contributor
to project overruns.

The expectation was that the implementation of PVCS modules would have a positive impact on each of
these issues resulting in:

• Improved Information flow
• More comprehensive and efficient testing
• More consistent and thorough requirements gathering
• Reduced project overruns

Approach
The experiment was broken down into three distinct phases. During the first phase of the project the PVCS
modules were procured and training received. In addition historical data within the organisations was
assessed in order to facilitate the objective assessment of the contribution of PVCS to the software
development process.

The second phase is the main data gathering phase of the project against which the performance of PCVS
modules will be evaluated from both technical and staff perspectives.

The third phase is concerned with the comparative data analysis.

A key component of the assessment of PVCS is the impact on staff. Staff acceptance was regarded as
critical to successful implementation. In order to assess staff reaction throughout the experiment regular
workshops were held with staff and also an attitude questionnaire was developed and distributed at key
points. The remainder of this paper concentrates on this data.

Overview of PVCS

Version Manager Module
This is designed for organising, managing and protecting software assets. Version Manager enables teams
of any size and location to co-ordinate concurrent development with secure access and complete audit trail.
Version Manager claims to improve quality and accelerate team development by eliminating problems
caused by lost changes, overwrites and content errors and by increasing reuse and automating common
tasks. Within Version Manager you can
a) Help document and control change through multiple revisions
b) Trace changes and allow parallel development
c) Secure archives and all project code and documentation.

Tracker Module
This module is design to manage technical and business issues. It captures, manages and communicates
feature requests, defect reports and changes. Within Tracker you can

a) Track enhancement requests, change requests and defect reports
b) Establish priorities, assign ownership, manage hand-offs and track issues through their lifecycle
c) Automatic notification is possible when ownership of an issue is assigned.

Staff Reaction to PVCS Following Training
The initial staff reaction was obtained by questionnaire following training. This questionnaire was broken
into the following sections:

• Overall reaction to the Module Capabilities
• Screen Layout
• Terminology
• Learning

From the outset it was clear that the reaction to the Version Manager was radically different to that of
Tracker. This reflects the different level of development of the two modules and their interface style.

Overall reaction to the Module Capabilities
The Tracker module was rated very positively at the end of the training session. This is the more modern
component of the PVCS suite. The reaction to Version control was very poor in particular the staff found it

difficult to know which options they were to choose from. Neither did they find the system satisfying to
use.

Despite their negative reaction to the interface however they did still recognise that the application
functionality would meet the needs of Optimal.

Module Capabilities
Two topics were addressed in relation to module capabilities. These were speed and the rate of display of
information. The key area of concern in relation to speed was the time required to check files in and out.
The staff voiced concern over the time it would take to carry out this activity in a real world scenario rather
than the sample cases used in training. Following technical support from Intersolve Inc. (suppliers of
PVCS) it was discovered that the virus protection software in combination with the PVCS modules was the
source of the speed problem. Removing some of the virus protection enabled the PVCS modules to operate
at an acceptable speed.

Screen Layout
The screen layout is a key element in supporting the user in their interaction with an application. This is an
area where the PVCS Version Manager module received very poor ratings. From the participants
comments it would seem that while the logic/process flow seemed ok the level of feedback to the user was
poor and so they had difficulty in determining whether or not they had engaged in the correct action.

The poor screens may cause potential problems in future. In the short term, all users of Version Manager
module should determine whether they need to establish a “ how to” list for the activities that they will be
using regularly to support them in their tasks.

It is likely however that the poor nature of the interface will discourage individuals from exploring the full
potential of the system.

Terminology
The poor rating of error messages is a cause for concern as it is reasonable to expect that in a system as
large and as complex as PVCS that users will make mistakes. The difficulty seems to be that the users
ended up in places where they didn’t want to be. However they did acknowledge that the navigation
process itself was quite clear. One user comment deserves particular mention:

“You always know where you were…. You may not have wanted to be there”

Taken together with the poor ratings on screen layout there is a high risk that the Optimal staff will find
these modules difficult to use on an ongoing basis and this may have a negative impact on their adoption of
the technology. Every effort should be made in the short term to concentrate on a small number of core
interactions that the staff learn well.

Learning
Despite the negative responses to earlier sections the staff did feel that the modules were learnable,
although there were some difficulties to be overcome. There was an acknowledgement that training in the
application was essential. However for an organisation of the size of Optimal this was a realistic goal. The
main reservation of the staff was on the poor quality of the user interfaces rather than the functionality of
the system that was perceived positively.

Staff Reaction Following the Input of Historical Data

Version Manager v6.0
The first module to be implemented was the Version Manager Module. Having completed the task of
implementing the data from an historical project the staff reaction was very bi-polar. At one extreme the
amount of functionality was recognised as being very extensive and extremely useful to the user. At the
opposite end the interface seems to be linked on to a legacy system and very difficult to interact with.

Version Manager v6.5
It is acknowledged that the new updated interface (v6.5) is now available. The new update was delivered
and reaction is positive. However most of the users within Optimal would want to run the product in the
background and the new version does not include any changes to the SCC interface used within specific
development environments such as Microsoft Visual Studio.

Tracker
The Tracker module was implemented to handle email. As a change control system it is working well. The
new interface contained in this module is considered more positively than the Version Manager interface.
The module is having a positive impact on the effort expended recording and tracking customer issues both
during a project life cycle and general maintenance issues.

Currently we are investigating the possibility of standardising the format of the submission of customer
issues in order to reduce the effort of data input to allow more time to be allocated to issue resolution.

Project Results
• Change from VM v6.0 to v6.5 caused delay
• 20% saving on change request management
• Information flow has improved
• 30% time saving in creation of Test Plans
• 70% saving in creation of Release Notes
• 10 Man Days per programmer saved annually on Code Documentation
• 45% saving on disk space due to compression technology used by PVCS VM tool

Lessons Learned
• Do not under estimate number of licences required
• Complexity of Technology under estimated
• Hidden costs discovered (SQL Server)
• ESSI support required to give momentum to objectively access contribution of technology
• Learning curve for tools are steep but must be overcome
• Poor user interfaces will not be accepted by staff
• Not all customers will be happy to be involved in experiments

Way Forward
PVCS is a very complex product with tremendous capability. There was a strong need for the interface to
be overhauled to better support user interaction, v6.5 of the Version Manager module has address this issue.
The negative reaction to the Version Manager v6.0 experienced by the Optimal staff following training and
initial implementation has resulted in the staff avoiding using the product.

The Tracker module on the other hand is being used successfully within the organisation and is making a
positive contribution to the quality issues recognised by the organisations at the start of this technology
experiment. It is hoped to automate the data input to further improve the use of this module.

1

IQUIP
99.0225 SCT 1

Test tool selection

by
Mark Paap

m.j.paap@iquip.nl

IQUIP
99.0225 SCT 2

Agenda

• Introduction
• The test tool selection process
• Aspects that need special attention
• Preparing for implementation
• Real-life examples

2

IQUIP
99.0225 SCT 3

Introduction

Why do organizations buy test tools?

+ to optimize the testing process
+ to decrease lead time of test execution
+ to decrease the need for human resources
+ to improve quality of testware and test execution
+ to standardize the products of the testing process

- to avoid (manual) testing
- to solve organizational problems

IQUIP
99.0225 SCT 4

Introduction

What is the problem with test tool selection?

• current test process not structured
• unrealistic expectations
• no clear goals and scope
• done for the wrong reasons
• no knowledge of test tools
• no experience in selecting tools

3

IQUIP
99.0225 SCT 5

The test tool selection process (1/5)

Longlist & RFI

Shortlist & RFP

Detailed criteria

Proof of
concept

Decide

Prepare for
implementation

Define knock-out criteria

Set goals and define the scope Expectations

Reality

IQUIP
99.0225 SCT 6

The test tool selection process (2/5)

• Set goals and define the scope

• Define knock-out criteria
– hardware and operating system platform
– development tools used
– runtime environment of system under test

• Longlist & RFI
– knock-out criteria
– questions (explicit, business case,

product information, open invitation)

Longlist & RFI

Shortlist & RFP

Detailed criteria

Proof of
concept

Decide

Define knock-out criteria

Set goals and define the scope

4

IQUIP
99.0225 SCT 7

The test tool selection process (3/5)

• Detailed criteria
– interviews
– documentation
– build an evaluation team

• Shortlist & RFP
– send detailed criteria to vendors
– demos and reference sites
– evaluate proposals
– make a choice Longlist & RFI

Shortlist & RFP

Detailed criteria

Proof of
concept

Decide

Define knock-out criteria

Set goals and define the scope

IQUIP
99.0225 SCT 8

Real-life example

Demo sessions on site

• AS/400, Terminal emulator, financial applications
• TPI®, evaluation team (4 members)
• well prepared demo sessions on site (4)
• 2 tools remained
• choice based on :

– support of Terminal emulator
– response on questions

• proof of concept resulted in guide lines
• implementation by evaluation team members

5

IQUIP
99.0225 SCT 9

The evaluation team

• Consists of
– future users of the tool
– support representative
– (future) champions and change agents
– consultant

• Activities
– prepare demos and visit reference sites
– evaluate proposals
– make a choice
– perform proof of concept
– prepare for implementation

IQUIP
99.0225 SCT 10

The test tool selection process (4/5)

• Proof of concept

– user acceptance test of the tool
– try and learn
– collect metrics to quantify the benefits

• For Capture & Playback tools investigate
– synchronization
– object recognition
– data driven
– checking
– error recovery

Longlist & RFI

Shortlist & RFP

Detailed criteria

Proof of
concept

Decide

Define knock-out criteria

Set goals and define the scope

6

IQUIP
99.0225 SCT 11

Real-life example

Customer rule the waves

• tool vendor promised a 35 % cost reduction for Y2K
testing (est. 80 man years)

• vendor was invited for proof of concept
• customer selected tests to automate on strategic

platforms (4)
• during proof of concept, metrics were collected
• savings were less than 15 %
• customer decided to optimize the usage of already

available tools with already available resources

IQUIP
99.0225 SCT 12

The test tool selection process (5/5)

• Decide, based on
– criteria
– proof of concept findings
– expected return on investment
– goals

Longlist & RFI

Shortlist & RFP

Detailed criteria

Proof of
concept

Decide

Define knock-out criteria

Set goals and define the scope

7

IQUIP
99.0225 SCT 13

Aspects that need special attention

• integration with the existing test process
• integration with other tools
• split between technical and non-technical users
• maintenance of test products
• support for different environment(s)
• object recognition (GUI, Terminal emulator, browser)
• synchronization

IQUIP
99.0225 SCT 14

Preparing for implementation

• Take care of

– expectations & reality
– support organization
– guidelines
– pilot project

• Communicate in order to
– justify the choice
– bridge the gap between expectations and reality
– (re)set goals and scope of tool usage

Longlist & RFI

Shortlist & RFP

Detailed criteria

Proof of
concept

Decide

Prepare for
implementation

Define knock-out criteria

Set goals and define the scope Expectations

Reality

8

IQUIP
99.0225 SCT 15

Real-life example

Architecture of an integrated test suite

• customer wishes to obtain an integrated testsuite
that can support the overall testing process

• current test tool usage was investigated
• for each missing type of test tool a selection process
• the proof of concept was done on the integrated test

suite
• integration based on an architecture
• architecture became the key to assembling and

implementation
• preparing for implementation was a major effort

IQUIP
99.0225 SCT 16

Questions ?

Longlist & RFI

Shortlist & RFP

Detailed criteria

Proof of
concept

Decide

Prepare for
implementation

Define knock-out criteria

Set goals and define the scope Expectations

Reality

Managing the E-Business Operations

Dr Fawzy Soliman

School of Management,

University of Technology, Sydney

P.O. Box 123, Broadway, Sydney, NSW, 2007, AUSTRALIA.

Fawzy.Soliman@uts.edu.au

ABSTRACT

In the past few years, the number of Internet users has growing very steeply with most of this growth coming
from newly registered commercial enterprises. The Internet is an effective method for shortening the
development cycle of new products, communicating with suppliers and experts from around the world,
receiving customer feedback, and accessing supercomputers for research and development. Advances in the
Internet technology have created an information infrastructure for moving information between and within
organizations.

Conducting business on the Internet is a complex process, which can be divided into three evolutionary
stages. The first stage begins with a Corporate Web-site presence. The second stage known as the Electronic
Commerce (E-Commerce) stage involves more business activities than the first stage. In the third stage
companies can use the internet for a full scale business transactions. This stage is known as the Electronic
Business (E-Business) stage.

Increased competition and globalization in the business arena have had a major impact on business
organizations and have forced many business operations all around the world to move away from the
traditional methods of communication to the Internet driven Electronic Business (E- Business) Operations.

This paper presents a model for the management of E- Business Operations and highlights the key driving
forces for the adoption of E-Business. In addition, the paper analyses the economic values, and strategic
benefits of using Internet-based E- Business operations. The model, depicts how companies can develop and
implement Internet E-Business to support their operations.

Key Words: Internet, Electronic Commerce, Competitive Advantage, Economic Value.

1. Introduction

Business operations are increasingly facing unstable business environment which is influenced by fast
advances in information technology (IT). These changes have occurred due to increased global competition,
significant advances in international business, and changes in political and economical environments around
the world.

The Internet Technology has been developing very rapidly and as such it is difficult to predict the level and
extent of Internet usage in business operations. However, expert predictions show that Internet-Based
Business Operations already started to change the way of conducting business.

Business Operations over the Internet are very much in their infancy. They are rapidly becoming the new
method to conduct business and to interact with customers, suppliers and partners. Electronic Business
Operations cover many aspects of buying/selling relationships and also many operations within
manufacturing.

According to Soliman and Gide (1997), “over the next ten years, the growth of Internet-Based E-Commerce
will outstrip the growth of traditional commerce. It is the commercialization of the Internet that is leading the
way to this remarkable growth in Electronic Business Operations”.

There has been a phenomenal growth in commercial presence on the Internet in recent times. In the last 2
years the commercial domain registrations of the entire Internet have grown to represent some 85% of all
organizations. This effectively kills the myth that the Internet is an academic and research playground. Facts
and figures from industry analysis show that (Gide and Soliman, 1997a):

1. Internet-Based E-Business is expected to reach $150 billion by the year 2000 and more than $1 trillion
by the year 2010. Sales generated via the Web have grown from $17.6 million in 1994 to nearly $400
million in 1995 (a growth rate of over 2100%). The number of sites using the Internet for product
transactions has increased from 14% in 1995 to 34% in 1996 and to a projected increase of 44% in the
next 3 years.

2. The Internet has reduced the number of letters, voice calls and faxes around the globe. Thirty per cent of
Internet users in one survey stated that Internet usage had resulted in new business opportunities and
43% said that it has increased productivity (Soliman, 1998).

According to ActivMedia (1997), projections indicate that global Web sales through 2002 could total $1.5
trillion, or about 3% of combined Gross Domestic Product (GDP) for all countries worldwide. The study
tracked eight Web business segments: manufacturing, computers and software, business and professional,
consumer, travel, investment/finance, publishing, and real estate. In addition the market research firm Paul
Kagan and Associates released 10-year revenue projections for the interactive media industry, showing that
in the year 2007, the Internet-related income is expected to be $46 billion, having risen from a projected
$11.1 billion for 1997. Electronic Commerce, revenue is expected to increase from $0.9 billion in 1997 to
$11.7 billion over the next 10 years.

Books and computer hardware and software are the items most people purchase most via the Web, according
to data from the most recent study of Internet demographics by Nielsen Media Research and Industry Trade
Association CommerceNet. The study shows that 5.6 million people have purchased books online, while 4.4
million people have purchased hardware, and 4 million people have purchased software via the Internet.

According to Nielsen Media Research and CommerceNet, 78 million people used the Web during the first
six months of 1998, and 20 million of those users made purchases via the Web. The following are the
highlights of shopping and purchasing activities from a recent study (Gide and Soliman, 1998):

q 48 million Web shoppers - increase of 37% from September 1997.
q 20 million Web purchasers - increase of 100% from September 1997.
q 71% of Web purchasers are men, 29% are women - unchanged from September 1997.
q Women represent 36% of all online book buyers and 12% of all online computer hardware buyers.
q Among persons age 16-24, the top items purchased on the Web are books, CDs/cassettes/videos, and

clothing.
q Among persons 50 years and older, the top items purchased on the Web are books, software and

computer hardware.
q Consumers under the age of 35 represent 65% of all persons buying clothing on the Web, and 64% of all

persons buying CDs/cassettes/videos.
q Consumers 35 years old and over represent 63% of all persons buying computer hardware on the Web,

59% of all persons buying software and 58% of all persons buying books.

Businesses are aggressively adopting inter-company trade over the Internet because they want to cut costs,
reduce order-processing time, and improve information flow (Cronin, 1996b). For most firms, the rise in
trade over the Internet also coincides with a marked decrease in telephone and facsimile use, allowing
salespeople to concentrate on pro-actively managing customers’ accounts rather than serving as information
givers and order takers.

The Internet and its application tools have led to a global business information infrastructure, which now
rivals the conventional telephone systems in size, coverage and popularity. As the commercial use of the
Internet grows, it is becoming increasingly recognized that this is a very different business environment from
its physical counterpart. According to Hoffman and Novak (1996), marketing approaches, which work well
for broadcast or print media, may not perform as well on the Internet. Common ways of exploiting the
Internet as a business tool include marketing and information distribution; electronic mail for inter-company
communication; and provision of services and products. Rayport and Sviokla (1995) also suggested that

businesses could use the Internet to help them gain access to marketplaces (or “marketspaces”), which might
otherwise be inaccessible.

It is widely accepted that companies are using the Internet because they believe they can gain competitive
advantage. Poon and Swatman (1995) suggested that integration of Internet usage with business strategy is
critical to its success. They also reported that the amount of and reasons for integration, or lack of it, are still
unknown.

During the last two decades, many companies adopted the Electronic Data Interchange (EDI) technology to
enter into the paperless economy. With the passage of time this has changed and now experts are debating
whether businesses will abandon the well structured, and planned EDI processes in favor of E-Business.
Many businesses choose EDI as a fast, inexpensive and safe method of sending purchase orders, invoices,
shipping notices and other frequently used business documents.

2. What Electronic-Business Operation is?

Electronic Commerce, Electronic Trading and Electronic Business are often used interchangeably and many
times there is a perception that these terms principally refer to the procurement cycle - the ordering and
paying for goods or services either via electronic commerce technologies such as EDI or, more recently and
growing in popularity, on-line Internet shopping.

Internet-Based E- Business is not an extension of EDI (Electronic Data Interchange) which has been
primarily limited to computer-to-computer transactions, and has not been associated with major
transformations of firms. However, the Internet-Based E-Business is giving a new way to conduct Business
Operations, with different characteristics and is an evolution from EDI (Soliman and Gide, 1997).

There is no exact definition of E-Business Operations. Since, Internet commerce is still immature, so is the
definition. However, one definition made by Kalakota (1996), as
into value- added outputs”. Basically, this process involves taking information as raw material and producing
value added information-based products or services out of the original raw information (Soliman, 1998).

E-Business Operations refers to an on-line production process owned by intermediaries. Producers of
information interact with services and other processed information, such as orders, payments or instructions.
In reality, Internet Business Operation is about businesses and consumers adopting a new process or
methodology in dealing with each other. These processes are in essence supported by electronic interactions
that replace close physical presence requirements or other traditional means(Gide and Soliman, 1997b).
Basically, the Internet E-Business process involves taking information as raw material and producing value
added information-based products or services out of the original raw information as shown in the following
figure (Figure 2).

Receiving Production Inspection Dispatch

Suppliers Customers

Raw
Information Information

Based
Products
Services

Output

INTERNET INTERNET INTERNET INTERNET

Input Input Input Input

User
Interface
Platform

INTERNET
Security
Platform

Physical Model

Conceptual Model

Figure 2: Illustration of the E-Business as a value Process.

The above figure shows two models for E-Business Operations (Physical and Conceptual) Models. In the
Physical Model raw material enters the system and leaves as finished goods. In the Conceptual Model the
Internet operates through two platforms (User and Security Platforms) here raw data enters the system and
leaves as processed information.

Producers of information interact with services and other processed information, such as orders, payments or
instructions. In reality, Internet E-Business operation is about businesses and consumers adopting a new
process or methodology in dealing with each other. These processes are supported by electronic interactions
that replace close physical presence requirements and traditional means.

Some authorities are already claiming that the main benefit of the Internet to-date is better customer service.
However, there is a wide debate about where future investments will be made, that is: a) to support business-
to-business processes, or b) to back office processes. The technologies and products which will enable
businesses to do business with each other over the Internet is generally agreed to be attracting between 5 and
8 times the near-term future investment.

3. Key Values of Electronic Business Operations

There are various types of key measurements that must be tracked prior to embarking on a full
implementation. Some of the important key elements to measure business value are:

Ø Improving customer service: Providing customers self-access to their accounts, transactions and
orders, is a valuable service. The level of satisfaction for those customers interacting electronically will
undoubtedly rise.

Ø Reducing costs: The most basic cost reductions could be related to publishing costs, which include the
cost of production, printing and distribution. Furthermore, marketing and selling costs are also lower in
an electronically enabled business environment.

Ø Providing Business Intelligence: In the Electronic Business Operations world, businesses need to know
much more about their clients. Electronic commerce makes it possible to market to specific individuals
based on their patterns of (purchasing and browsing) behavior. Hence they need to capture, and to
analyze, as much information as possible about each individual purchase (or cancelled purchase) in
order to build up customer's profiles. This is achieved in much the same way that neighborhood stores
once did, through personal acquaintance with the consumer and continuous contact. The use of this
analyzed data leads to what is being called "market response" systems or "adaptive marketing".

Ø Process simplification: Instead of using paper, using the World Wide Web (WWW) simplifies and
speeds the approval process.

Ø Generating new revenue: The new Internet-Based Electronic Marketplace generates new revenue by
selling new products and services specifically designed for the electronic marketplace. Existing product
or services can also be sold on the Internet.

Ø Taking faster decisions: By receiving information about competition through an Intranet information
retrieval database, it would be possible to develop a competitive strategy much faster than otherwise.
The drivers for business are customer’s needs and time. Time is a major source of competitive advantage
and competitive pressures requiring production schedules to be shortened.

4. Types of Internet E-Business Operations

At present, there are three types of Internet Business Operations, these three types are:

Ø Business to Business
Ø Business to Consumer, and
Ø Business to Employee.

Business-to-Business Operation is complementary to EDI in that it is beginning to be used for non-
production, non-replenishment applications. The widely used current terms used to describe the function of
Electronic Business Operations are "Business to Business" and "Business to Consumer". The expression
"business-to-business" is inexact and sometimes misleading. In Electronic Business Operations it is not
always possible to tell who is accessing the automated point of sale/point of contact. It could be a retail
consumer buying in wholesale quantities; it could be a business buying in retail quantities-and many other
variants. Business-to-Business automated ordering processes are designed to empower business managers.
The business server can only be accessed through the corporate Intranet, or an Extranet for "communities of
interest".

Businesses-to-business operations involve companies and their suppliers while consumer markets include
home shopping, banking, health care and broadband--or high-power--communications to the home.

In manufacturing, traditionally Design Engineering, Procurement and Production Departments communicate
with each other using paper based methods. However the introduction of Internet–Based Electronic Business
Operations and its superiority of over traditional EDI is adding new dimension to reducing the cost of
manufacturing. So, in a typical manufacturing setting Design Engineering Department supply design
drawings and specification to Procurement Department to procure material, commence production, and
ultimately deliver goods to customers as per orders. In a general manufacturing setting, there are three types
of flows: a) Material flow, b) Clerical flow and c) Information flow. Improvement in the movement of raw
material, Work-In-Process and Finished Goods is likely to occur as a result of using the Internet-Based
Electronic Business Operations. The main benefit to manufacturing from the Internet lies in the second and
third types of flow.

The number of parts used in production could be in the order of thousands of items. These parts are usually
purchased from suppliers on the basis of price, quality, and delivery on time and suppliers financial position
and reputation in the industry.

Accordingly Material Procurement professionals must be equipped with timely and valuable information on
parts and their suppliers. The Internet-Based Electronic Business Operations provide them with a fast and
efficient way of obtaining comprehensive information of the market, feedback from the industry and the
performance of suppliers.

The following figure (Figure 3) illustrates how clerical and production information can be efficiently and
cost-effectively communicated throughout the supply chain using the Internet-Based Electronic Business
Operations.

Customer

Supplier

Inspection

Dispatch

Receiving

Production

Procurement

Design

INTERNET
Material (Physical)

Drawings (Clerical)

E-Commerce (Electronic)

INTERNET

Figure 3: Supply Chain Communication in Manufacturing using Internet-Based Electronic Business
Operations.

The Business-to-Consumer Operation complements normal retail shopping, mail order and direct
marketing. It can accommodate delivery of soft (digital) goods, such as published material, software, audio
and video products.

Business-to-Employee Operation is beginning to develop a new market place. A checkpoint on an
emerging application area. As with buying a T-shirt from the company shop; many companies now allow
employee to buy using the corporate Intranet. A variant from an emulated business-to-consumer application
is where employees may have purchases deducted from the payroll, or from allowances. Allowances or
entitlements for clothes or equipment are often the norm in the armed services, police, fire services, airlines,
banks, health services and so on.

5. Internet Benefits to Business Operations

To date the major benefits from the Internet include improved internal and external communications. The
Web has specifically brought a new marketing medium and enhanced information resource. Innovative
applications are starting to appear which allow for sales and database interrogation. Other benefits such as e-
mail and file transfer functionality, Web utilization gave many companies 'Internet presence' and provided
them with opportunities to develop and expand new services.

According to the Cisco Systems Inc. (a leading maker of Internet equipment), estimated more than $1 trillion
to $2 trillion worth of goods and services will be sold on the Net by 2002. According to the Cisco, part of the
reason for the low-ball estimates by market analysts is that many exaggerate the importance of business-to-
business operations and underestimate the potential growth of the consumer market as the Net becomes more
mainstream. On the other hand, Gartner, a leading industry consulting firm, has estimated business-to-
business electronic operations will be 12 to 15 times larger than consumer markets for the next few years,
with consumer sales only catching up with business markets midway into the next decade.

The Internet can be used to interconnect companies, by-passing any of the standard structures of EDI and
VANs. A more significant role for the Internet has been explained by Socka (1996). In Socka’s views, the
regular EDI structured transactions are treated as a special type of e-mail attachment by the Multipurpose
Internet Message Extension (MIME) standard. At the receiving end, the messages are simply printed out
without any further translation. Furthermore, the Internet browsers, with their Hypertext Mark-up Language
(HTML), are easy to adapt to many types of information exchange compared to EDI standards which are
very structured and rigid. In addition, the Internet is very easy to use, while EDI requires trained personnel to
operate it.

The Internet offers some impressive possibilities including the Internet transmissions rates, which are
cheaper than EDI. According to Bell (1998: 16) the traditional EDI can reduce the cost of ordering to about
$2.50 per order. However, the Internet could reduce that cost even further to less than $2 per order. In
addition, through the Internet, messages can be sent faster compared to EDI, because they are sent directly
from one computer to another computer via web routers. Most EDI users today send EDI transmission in
overnight batches to save time. EDI usually takes eight to ten hours and often twenty-four hours, while
messages through Internet arrive in minutes not hours or days. Pyron, (1996: 84) stated that: “ The speed is
actually higher than over a VAN because there is no mailboxing”. Pyron also added: “ We’ll often have
people tell us they’ve received an order we’ve just sent while we’re on the phone with them”.

According to Garrison (1998), manufacturers are showing more interest in Internet technology over
Electronic Data Interchange. Furthermore, Garrison (1998) stated: “Despite EDI’s active part in
manufacturing, suppliers and customers linkage, price quotes and shipping notifications, among other data,
Product data change, the medium’s adoption has been limited”. This means, manufacturers are more
interested in Internet, because it potentially offers a more feasible means for manufacturers and trading
partners to communicate electronically. Garrison (1998) further reported that three-quarters of the
respondents to a recent survey said that Internet is a useful communications tool and that only a few
manufacturers use EDI often.

Manufacturers embarking on using the Internet initially develop corporate web sites to use as a promotional
vehicle, to promote their company’s icon and/or to attain new sales prospects. On the other hand, those
manufacturers who are sticking with EDI, found that distributors saw Value Added Network charges as
discouraging, and would often fail to check warehouse inventories because of the added communication
costs. According to Gallo (1997), “These cost-avoidance habits would lead to inefficiencies, such as ordering
from warehouses that no longer stocked a product”. The Internet-based technology provides a cheaper
solution to this problem.

There are various many of key measurements that could be used to measure the benefits obtainable from E-
Business Operations. Some of these important key measurements are:

• Improving Customer Service: Providing customers self-access to their accounts, transactions and
orders, is a valuable service. The level of satisfaction for those customers interacting electronically will
undoubtedly rise.

• Reducing Costs: The most basic cost reductions could be related to publishing costs, which include the
cost of production, printing and distribution. Furthermore, marketing and selling costs are also lower in
an electronically enabled commerce environment.

• Providing Business Intelligence: In the Electronic Business Operations world, businesses need to know
much more about their clients. Electronic commerce makes it possible to market to specific individuals
based on their patterns of (purchasing and browsing) behavior. Hence they need to capture, and to
analyze, as much information as possible about each individual purchase (or cancelled purchase) in
order to build up customer's profiles. This is achieved in much the same way that neighborhood stores
once did, through personal acquaintance with the consumer and continuous contact. The use of this
analyzed data leads to what is being called "market response" systems or "adaptive marketing".

• Process Simplification: Instead of using paper, using the World Wide Web (WWW) simplifies and
speeds the approval process.

• Generating New Revenue: The new Internet-Based Electronic Marketplace generates new revenue by
selling new products and services specifically designed for the electronic marketplace. Existing product
or services can also be sold on the Internet.

• Taking Faster Decisions: By receiving information about competition through an Intranet information
retrieval database, it would be possible to develop a competitive strategy much faster than otherwise.
The drivers for manufacturing are customer’s needs and time. Time is a major source of competitive
advantage and competitive pressures requiring production schedules to be shortened.

According to Iacovou et al. (1995), the benefits obtained from EDI use include both direct and indirect
benefits. Direct benefits, such as reduced transaction costs or lower inventory levels, are relatively easy to
quantify. On the other hand, indirect benefits such as better customer services and improved trading partner
relationships are difficult to quantify. According to Tengende (1993), and Quach (1995), direct benefits take
a longer time to eventuate. Furthermore, Swatman (1993) pointed out that to achieve longer-term benefits

from telecommunications-based information systems, an organization needs to combine its inter-
organizational systems strategy with existing business strategy.

It is interesting to note that many of the companies interviewed did not state that they had gained direct
benefits from the Internet use. In fact, they indicated that the savings and incomes obtained were small.
Furthermore, none of the participants suggested that the lack of direct benefits would lead them to cease
using the Internet. This suggests that the indirect and non-immediate benefits could be as important (if not
more) as direct gains.

6. Success Factors for E-Business Operations

Soliman and Soar (1997) reported that there is a positive relationship between Success Factors and the
perception of users of Information systems. This implies that, an efficient way for determining success
factors for information systems is through the identification of users’ perception of the benefits obtainable
from E-Business Operations. Accordingly, this research surveyed the perception of Internet users in a
number of manufacturing companies. The pilot survey revealed that users believed that many of the benefits
obtainable from using E-Business Operations could include reduced transaction costs; better customer
service; more efficient information access; global communications; and shortened communication cycles. In
additions users also identified a number of obstacles (impeding) factors. The perception of users were then
translated into the following seven success factors for E-Business Operations:

1. Security of E-Business Operations: Security of conducting of information transmitted through the
Internet has been identified as a major success factor. Although, security is currently being improved by
available encryption methods, but the biggest security threat is still there according to McCartney
(1997). This is emerging as a major deterrent for using the Internet. Accordingly, the better the security
of transactions, the more likely manufacturers will use E-Business Operations.

2. Support for E-Business Operations and availability of Help Desks and Hot Lines: One important issue
is the overall network reliability that strikes as a structural feature of the Internet. No one is responsible
for its performance. Orr (1996) stated: “If you have any problem, there is no toll free number you can
call for customer service”. Therefore the availability of help desks and hot lines support is also a success
factor for E-Business Operations in manufacturing.

3. Speed of transmission using E-Business Operations: It is notable that heavy usage of the Internet
(heavy traffic on the Internet) can slow down the processes and ultimately affect the business usage of
the Internet. Accordingly the faster the speed of transmitting information trough the Internet, the more
likely manufacturers will use E-Business Operations.

4. Sufficient business volume to justify E-Business Operations: Many small firms do not see ample
benefit from using the Internet. For example, small companies do not indulge in large transactions and
may not be engaged in Global Supply Chains. Therefore, sufficient business volume to justify the use of
the Internet is also a success factor for E-Business Operations in manufacturing.

5. Value Adding of E-Business Operations: In general, small companies are nervous and overly cautious
when it comes to spending money on technologies that are not absolutely necessary for their operations
i.e. Non Value Added technologies. In other words, if the implementation of the Internet results is
directly related to the production of goods, then the manufacturers will more likely use the Internet.
Therefore Value Adding is also a success factor for E-Business Operations in manufacturing.

6. Users Training on using E-Business Operations: It has been widely recognised that users’ training is
an important success factor. In other words, if users are appropriately trained on using E-Business
Operations, they are more likely to use it efficiently and effectively. Therefore users’ training is also a
success factor for E-Business Operations in manufacturing.

7. Change management due to the implementation of E-Business Operations: The implementation of E-
Business Operations will result in inevitable changes. There are three types of Change Management;
namely a) Structural Changes, b) Technical Changes and c) Cultural Changes. Managing the three types
of changes will reduce fear and would positively impact on use of E-Business Operations in

manufacturing companies. Therefore change management is also a success factor for E-Business
Operations in manufacturing.

Yap, et al (1992) and Cragg and King (1993) have identified the level of management involvement as a
critical success factor of IT. Soliman and Gide (1998) have also identified management involvement and
support as a critical success factor.

Because, different organizations establish different alternative business environments on the Internet, where
they can carry out their usual business and networking activities “virtually”, it would expected that additional
success factors applicable to individual organizations should exist.

7. Current Challenges to Internet-Based E-Business Operations

Analysts acknowledge that there are a number of problems facing management in using the Internet to
conduct their businesses. Some of these challenges are:

• Providing high quality service to the customer.
• Maintaining service delivery capability, richness of experience and certainty of transaction.
• Generating profits as well as revenues.
• Increasing efficiency and effectiveness of business process.
• Deciding on the level of investment in this technology.
• What to do with existing Electronic Data Interchange (EDI), and when to shift away from it?
• How to use the Internet to create competitive advantage for tomorrow?
• How to focus on delivering solutions to the Internet commerce markets’ space?
• How to leverage IT leadership to drive growth and direction of the Internet market?
• How the Internet leads to best business practices?
• How to deliver a viable, cost effective and compelling Electronic Business solution?
• How to expand into new markets?

The phenomenal predictions of the size of the Internet market should be interpreted with some other factors
in mind. There is scant evidence that the Internet is actually creating new sales. Certainly, the Internet is
beginning to generate new sales channels, especially for products and services, which can be delivered
digitally over the net. And there is no doubt that bank-assumed risk from credit card transactions through
SET processes will accelerate traditional retail sales over the Internet. But these sales are still generally no
more than sales substitution, or sales that would previously have been made by personal visits, mail order or
the like.

There are two main drawbacks or challenges in using Internet-Based Electronic Business Operations, these
are: security issues and payment tools. These two issues are receiving the highest priority and the best
attention they deserve, both from vendors and users and implementers.

The cost-benefit justification of Internet access and Information Systems in general is, and always be, a
difficult one to prove but due to access of real time data, this would provide long term benefit of
immeasurable value. To be able to analyze the value of Internet Commerce usage, it is helpful to have a
measuring ruler. For individuals, one can compare the cost of an Internet connection to the cost of using the
telephone. It has been demonstrated that e-mail is cheaper than phone to communicate long distance with a
number of people. The Internet Commerce usage can make it possible to reduce the amount of time or effort
required to perform certain tasks: cost savings and benefits from providing sales and customer support online
and increase the potential of collaborative partnerships established over the Internet.

7.1 Security and Privacy Issues

While EDI users enjoy a high level of reliability and security, they are often restricted to the exchange of
data with users of the same Value Added Network (VAN). For electronic commerce to really transform the
way we do business a secure solution that works globally is required. To achieve this, a series of
international standards needs to be agreed and vendors need to carry out a rigorous program of
interoperability tests. Moreover, as trade moves beyond national boundaries, a common legal infrastructure

must be agreed. For example, a contract that has been digitally signed in one country needs be recognized in
other countries.

On the other hand, a recent Forrester Research report found that security has fallen from first place in 1995
to fifth place in 1996. This indicates that there is a growing confidence in solving the Internet security issues
that have been very widely publicized. Even though security is a challenge it is not a barrier to Electronic
Business Operations.

Security is fairly new to the Internet, so it has not matured yet. However, computer security professionals
have known about the Internet security for years and are now improving it.

7.2 Payment Tools

There is confusion over the availability and choice of Internet payments tools. In addition, there are no
interoperability standards to make one work with another. Over the past two years, new payment tools from
small companies have emerged.

There are many traditional methods of payment available in the real world such as: Cash, Cheques, Credit
Cards, Traveller’s Cheques, Prepaid Cards, Debit Cards, Physical Tokens, Bank Notes, Secure Wire
Transfers, Money Orders, Letters of Credit, etc. However, none of these mechanisms is directly transferable
in an unmodified form to suit the Internet. This is because each method assumes a physical presence or that
there is a delay incurred in the processing of funds so that fraud can be detected and stopped. Some of the
new Electronic Business Operations payment tools that can be used in business operations are:

1. Electronic Cash (Digital Cash)- It is a token-based currency which translates into equivalent real
currency units that are guaranteed by a bank. Usually, there is a trusted authority that allows the user to
conduct and pay for transactions of this nature. This usually takes place after a pre-determined
relationship has been established (e.g. DigiCash).

2. Smart Cards- Smart Cards can be used with or without a stored value. Usually, the user is able to pay
with them without having to connect to a remote system. If they have a stored value which contains “real
digital cash”, they are known as “Cash Cards” because they replace carrying cash (e.g. Mondex).

3. Electronic Cheques- These are the equivalent of paper based cheques. They are initiated during an on-
screen dialog which results in the payment transaction. Authentication and verification are usually
performed instantaneously by using digital signatures and time-stamping controls during the transaction
(e.g. CheckFree).

4. Encrypted Credit Cards- There are varying degrees of encryption implementations credit of credit cards
over the Internet, with the SET (Secure Electronic Transactions) holding the most promise (e.g.
CyberCash).

8. Barriers to Implementing E-Business:

Some experts admit that the Internet gives a platform where small companies can do business with one
another even with large suppliers. But they do not expect large corporations to abandon their well-structured
and planned EDI networks in the near future. This is largely due to 3 main reasons, which are:

⇒ Security on the Internet: Security on the Internet is a major problem. This is currently being handled by
available encryption methods, but the biggest security threat is still there according to McCartney
(1997).

⇒ No one owns the Internet: One important issue is the overall network reliability that strikes as a
structural feature of the Internet. No one is responsible for its performance. Orr (1996) stated: “If you
have any problem, there is no toll free number you can call for customer service”.

⇒ Heavy traffic may delay the business operations: It is also notable that heavy usage of the Internet can
slow down the processes and ultimately affect the business.

⇒ Method of Payment: There is no universally accepted method of payment over the Internet.

9. Model For E-Business Implementation:

Soliman (1999) has shown that the introduction of the Internet in organizations is a very complex and is an
evolutionary process and that organizations embarking on using the Internet to conduct their business

operations or part of them will soon discover that they have to pass through the following three distinct but
interrelated stages:

1. Searching for Business Opportunities (The Interactive Marketing Stage).
2. Communicating with suppliers and customers (The E-Commerce Stage).
3. Conducting full-scale business transactions (The E-Business Stage).

A model for describing the three phases of development and introduction of E-Business has been provided
by Soliman (1999) and is illustrated below in Figure 3 below.

The model shows that as the relationship between Business-Business, Business-Customers and Business-
Employees matures, the pattern of information exchange becomes more structured and intensive. The model
is useful in analyzing how organizations use the Internet to supplement their typical business activities and
how much it is used as E-Business.

The E-Business Implementation Model

Business Stages

 Interactive Marketing:

 - Establish Web Presence
 - Create Home Page
 - Provide Corporate Information
 - Deliver Marketing Materials

 E-Commerce:

 - On-line Catalogues
 - On-line Order Taking
 - Secure Transaction
 - Invoicing and Billing
 - Vendors and Customers
 communication
 - Delivery

 E-Business:

 - Merchandising and
 Catalogue Management
 - Order entry, confirmation
 and fulfillment
 - Returns
 - Shipping and freight
 - Warehousing and
 inventory management
 - Promotions, competitive
 inquiries, intelligence and
 trading Information
 - Financial accounting
 - Reporting
 - Customer profiling

Realisation
of Benefits

Business
Objectives

Stage I Stage II Stage III

Low

High

Medium

Customers Business Employees

Exploration of Collaborative Partnerships
Consolidation of Business Activities

Information Exchange

Figure 3: Model for the development and introduction of E-Business

The model also illustrates that the three phases of E-Business introduction are distinctively different in their
business focus as explained below:

Stage I: Searching for Business Opportunities

The Internet, and in particular mailing lists and Usenet newsgroups, can be used to explore potential business
opportunities. This is the Web Presence Stage and is the most elementary stage. During this stage the user is
mainly concerned with delivering to potential clients and customers marketing and promotional material. The
process of Searching for Business Opportunities can be either a one- or two-way approach. For example, the
company which has a Web page to advertise and market its products can do so through Usenet newsgroups
(such as alt.industrial). The company responds to enquires and at the same time provides product
information. The main activities at this stage are:

• Establish web presence,
• Create home page,
• Provide corporate information, and
• Deliver marketing materials.

Stage II: The E-Commerce

Once the first stage achieves its aims and the company is still willing to pursue the use of the Internet to carry
out some of its operations, the second stage the Electronic Commerce Stage begins. The Electronic
Commerce stage enables companies to conduct some of their usual operations on the Internet. Following are
some of the activities that can be conducted during the Electronic Commerce stage:

• Creating online catalogues;
• Online order taking and order placing;
• Communicating with suppliers;
• Conducting banking and making payments;
• Securing transactions; and
• Making delivery.

Stage III: The E-Business

The third stage the Electronic Business Stage commences when the company decides to embark on full-scale
business activities on the Internet. The most important business functions that are likely to be conducted
during this stage are:

• Merchandising and catalogue management;
• Order entry, confirmation and fulfillment;
• Returns;
• Shipping and freight;
• Warehousing and inventory management;
• Pricing - promotions, taxes, duties and freight;
• Payment cycles-credit cards, digital cash, bank transfers;
• Financial accounting;
• Reporting; and
• Customer profiling.

The model also shows the introduction of the Internet result in the emergence and strengthening of following
three important E-Business Operations:

9.1 E-Business Operation 1: Exploration of Collaborative Partnerships

During each stage, the Internet is used as a medium to explore collaboration possibilities, without incurring
heavy time or expense overheads. This is achieved through enquires posted on a mailing list and a number of
Usenet newsgroups. This enables the manufacturer to make contact with a user who has published on this
particular issue. Although the Internet is a very useful tool to explore collaboration possibilities, further
consolidation of the initial business contacts requires more direct interaction or perhaps another
communication medium.

9.2 E-Business Operation 2: Consolidation of Business Activities

After identifying collaboration activities and pinning down preliminary collaboration plans, most participants
feel comfortable, at least partially, in resorting to electronic mail for further exchanges. By now, the
collaborators have already established a more in-depth business relationship and they know the people with
whom they are communicating. What seems to be important is the ‘handshake’, which makes further virtual
communications worthwhile. All participants agreed that Internet-based communication is preferred if it is
more convenient and effective to both parties involved in the communication. At the same time, all agreed
that telephone, fax, post and most often face-to-face meetings are still necessary. Electronic mail and the
Web had been used during the various stages of business development.

9.3 E-Business Operation 3: Information Exchange

All users tend to use the Internet fairly extensively during all stages of business development. Again,
electronic mail is the principal service used to exchange documents and information. It appears from the
variety of activities that carried out on the Internet, the Internet seems to be most useful for opportunity
search and routine message exchange. However, when deeper mutual understanding is needed, richer
communication media such as teleconferencing or even face-to-face interaction are important.

Information exchange increases the ability to seize business opportunities quickly and exploit them to the
manufacturer’s full advantage so that future competitiveness is consolidated. This is similar to the ability to
perceive the market potential of a new product and carry out rapid product development to capture market
share. Both the ability to conceive bright ideas and to make them work in practice, will transform intangible
benefits to tangible outcomes in Internet use. Furthermore, it appears that the manufacturer can gain and
preserve their edge by continuously applying Entrepreneurship in business use of the Internet.

10. The Strategic importance of E-Business Operations

For gaining strategic advantage through Information Technology managers must understand not just the
technology but also the “value chain” in which their company operates. Information technology and in
particular Internet E-Business will have an impact on each activity along the value chain. In fact, E-Business
Operations are transforming the way value activities are performed and the nature of the linkages among
them. These basic effects explain why information technology (Internet) has acquired strategic significance
and is different from the many other technological business use.

The Internet can make a significant contribution to each components of a company’s value chain (Mougayar,
1997). To uncover and evaluate new avenues for competitive advantage through use of the Internet,
companies need to analyze their relationships with suppliers and vendors, the existing role of information in
the organization of the company, internal production mechanisms, and the points of contact with customers.

The Internet can make a significant contribution to each components of a company’s value chain (Cronin,
1994). To uncover and evaluate new avenues for competitive advantage through use of E-Business
Operations, companies need to analyze their relationships with suppliers and vendors, the existing role of
information in the organization of the company, internal production mechanisms, and the points of contact
with customers. Management via Internet-Based E-Business Operations could improve the competitive
advantage is shown below in Figure 4.

ManagementCustomers' Demands Suppliers' Performance

Advances in
Internet

Technology

Competition
due to

Globalisation

Figure 4: Management via Internet-based E-Business to improve the business Competitive Advantage.

The above figure indicate that management of modern organizations will come under pressure from four
different but interrelated fronts:

1. Customers’ Demands: Customers demand, better quality, faster response and cheaper goods and
services.

2. Suppliers’ Performance: Suppliers’ performance is crucial to organization's ability to meet its customers'
demands. In addition suppliers demand flexibility, faster and timely response and faster method of
payment.

3. Competition due to Globalization: Globalization has resulted in intense competition. This requires
flexibility, productivity, and ability to make fast decisions using accurate, timely and up-to-date
information.

4. Advances in Internet Technology: To meet its strategic objectives, an organization needs to implement
E-Business Operations and systems which are compatible with those used by its suppliers, customers
and stakeholders. These systems are in fact Strategic Systems. (Soliman, 1999)

Clearly, the Internet provides very fast, reliable connections to suppliers, and customers around the world.
Using E-Business Operations companies can communicates with vendors in any location, without incurring
additional communication costs. Sometimes even overnight delivery of information may be too slow when
critical decisions are waiting to be made. Many vendors offer electronic pricing and ordering information to
overcome these limitations.

The availability of electronic distribution software, publications, and other items provides immediate access
to many products and makes On-line tracking of orders and inventory are viable E-Business Operations. This
ensures that companies are aware of delivery dates, and reduces delays in the distribution process. Many
companies have found that product support over the Internet significantly reduces the time lost due to system
performance problems (Cronin 1996a). For some companies, the efficiencies and cost savings generated by
dealing directly with suppliers over the Internet have more than justified their investment in the network.

The global connectivity of the Internet offers companies immediate savings in long-distance
telecommunications. A dedicated Internet connection allows unlimited exchange of data and e-mail with
locations around the world. Even a low-cost, shared dial-up connection with an hourly use charge is more
economical than long-distance telephone charges. In the longer term, the ability to exchange information
quickly and easily facilitates the relationships with business partners and customers, encouraging more joint
ventures. For employees, connecting to an international information source promotes global awareness. It
allows companies to monitor economic and political developments in countries targeted for market
expansion.

The Internet allows direct interactions with customers to be spread through many divisions of a company;
technical and development staff, documentation providers, production workers, and researchers find out first
hand how customers respond to company products.

In addition to that, strategic use of the Internet based on an analysis of the value chain encourages companies
to focus on areas where they can measurably improve performance. The benefits of the Internet will vary
from business to business. One thing is certain that for companies seeking competitive advantage, the global
network is essential management resource.

11. The Strategic use of E-business Operations

In this rapidly changing environment, businesses are taking a look at their own organizations, structures, and
processes in an effort to become more competitive. Many companies are using e-mail and group
conferencing to engage in business process re-engineering projects. Maintaining good communication to
exchange data and documents is critical in the re-engineering of business processes. The competitive benefits
of the Internet E-Business Operations are illustrated below in Figure 5.

Strategic use
of

E-Business
Operations

Jut-In-Time
Communications

Corporate
Logistics

Information
Resources and

Intelligence

Collaboration and
Development

Customer
support and
Satisfaction

Vendors' support
and Networking

Figure 5: The strategic use of the Internet E-Business Operations

In addition, the ability to have the latest information about the marketplace and awareness of the state-of-the-
art in the industry allows a company to keep its competitive edge. Learning what other companies are doing,
knowing the kinds of information available, and discovering new markets can assist a company in
maintaining a competitive advantage.

More companies use the Internet in the search for “best practices.” As businesses try to become more
competitive, many want to find existing practices that can help them improve their activities. Businesses can
also use the communications abilities of the Internet to engage in a Total Quality Management (TQM) plan.
Some companies use the Internet to maintain corporate process control across all company locations
including even continents. Many companies use the Internet commerce tools to search for successful
practices of corporate and product improvement.

Competitive intelligence can be gained due to access to state-of-the art information on products, materials,
new ideas and even the status quo in a given industry. Companies can use the Internet to engage “techno-
watch”- keeping a finger on the pulse of emerging and new technologies, and the market response to those
technologies, both anecdotal and in terms of financial performance and the stock market. The main strategic
benefits of using the Internet-based E-Business in operations are briefly summarized as below:

11.1 Just-In-Time Communications

The Internet offers a business the opportunity for just in time (JIT) communications with people and
organizations across the globe. Being on the Internet allows a company to truly have a world market. Good
communications enable more global corporate management control, aiding in consistency of results.
Companies can be in touch with suppliers, branches, and subsidiaries in an effort to exert more control over
variables. Companies can establish, negotiate, and maintain standards on-line and find out: What are other
businesses doing? What kinds of information are available? Who are the main competitors in a specific
business?

11.2 Corporate Logistics

Logistical concerns can dominate planning and customer service in many corporations. Since the Internet is
the anywhere-anytime-network, employees, suppliers, customers, and stakeholders can keep in touch more
efficiently. The use of e-mail and teleconferencing facilitates communication between markets. In addition,
Just-In-Time communication is also possible. Using the Internet for communication removes distance and
time barriers.

11.3 Collaboration and Development

The development team and project participants often use the Internet to keep in touch, and to exchange data,
programs, and working papers from any locations. The Internet also allows several small businesses to band
together much more easily for product development. In another words, formation of partnerships among
companies is increasingly common, and the Internet facilitates the collaboration for product or service
design, vendor channels, research, and development. Collaborative approaches can be greatly enhanced by
the Internet with its wealth of information, its capacity of supporting telecommuting and time-shifted
communication.

11.4 Customer Satisfaction Through Support

In this highly competitive and dynamic global marketplace, the company that can reach and satisfy customers
will have an advantage- and the Internet E-Business Operations can help in maintaining relationships with
customers. With its global reach, the Internet can assist business in locating new suppliers and keeping in
better touch with them to aid, for example, in lower sometimes even zero inventory planning.

One of the main business uses of the Internet E-Business Operations is in the area of customer support.
Customers can reach a company’s homepage on their own schedules any time and be able to obtain
information regardless where they are. Many companies maintain World Wide Web sites, Gophers, and FTP
sites for customers use during working and non-working hours. These services enable customers to receive
assistance, get product information, and leave questions for replies during working hours and offer
information files on Frequently Asked Questions (FAQs) for customers or potential customers.

11.5 Vendor Support and Networking

The Internet provides a fast method for networking with vendors and suppliers, increasing speed and variety
in procurement process. The Internet can help businesses locate new suppliers and keeping better touch with
them. In addition, small suppliers can network with and compete with larger, better-known suppliers.
Furthermore, the Internet assists companies in maintaining low inventory levels because of speed of
communications. Relationships with vendors and outlets can also be maintained via the Internet. Companies
can do actual sales transactions on the Internet. Companies can arrange product delivery through the Internet,
where companies can establish and support actual distribution channels.

11.6 Information Resources and Competitive Intelligence

With more than 20 million (1998) machines connected to the Internet, the system has a multitude of
databases, Web sites, Usenet, Gopher sites, FTP (File Transfer Protocol) sites, Listserver discussion lists,
and conferences, the amount information available is staggering. Scientific and research data is available in
large quantities. Furthermore, some companies find that the Internet is useful in helping employees learn
new tasks and processes. There are many simulations, manuals, training aids, and tools available for software
running on a variety of platforms, from UNIX tutorials to Windows tips and hints. There are also large
quantities of instructional materials available on-line regarding the use of the Internet.

12. Conclusions

Business Operations over the Internet is very much in the early stages. Early indications are that the-Internet
is a viable trading medium. The problems of cost, standards and a lack of interactivity will prohibit
traditional batch-EDI scenarios. Success in Internet-Based Electronic Business Operations depends on how
organizations strategically position their products and services through other Internet-based electronic

communities and intermediaries, as well as on how they facilitate the interactions with their customers,
suppliers, and partners. Even though Electronic Business Operations make sense theoretically, the reality is
that it has to integrate with internal and external processes that are already in place. Sometimes, this
integration is a challenge linked to a major re-engineering exercise accompanied by resistance to change.
Moreover, since implementation of Electronic Business Operations is, in many cases, evolutionary,
organizations need to react to change the business processes as demand increases.

On the other hand, as discussed early the Internet Commerce is one of the most important strategic tools for
manufacturing management. Businesses of all types and sizes can also find that the Internet serve a large
variety of their needs as a strategic tool to gain competitive advantage over their rivals, including marketing,
customer and vendor support, the exchange of information, and joint ventures for research and development.

With the aid of the Internet-based E-Commerce, companies also can develop new products, communicate in
real time, take orders, receive electronic publications and documents, and retrieve data from specialty
databases. Businesses can find technical advice, establish and maintain business relationships, obtain market
intelligence, ferret out good deals, locate people with needed skills, and even provide products directly.

Despite these benefits and success stories, a number of issues remain to be resolved such as security, privacy
and payment tools. Other issues regarding the growth of the Internet are the lack of: a public key
infrastructure (particularly for international trade), governmental stance, access, reliability (service levels),
integrated applications and understanding/awareness of the Internet-Based Electronic Business Operations
capabilities, and finally the relative cost of required technologies.

The results of this study suggest that perceived benefits and management involvement are two factors
common for all the participating companies with a positive effect on E-Business use. By reviewing the way
in which the Internet is used during the different stages of a business relationship, it would be possible to
construct a model for manufacturers’ use of E-Business. The limitations of the results generated by this study
are partly due to the small sample size used.

By interviewing a group of three E-Business users from a variety of manufacturing sectors, it was possible to
discover that while competitive advantage does appear possible, it can as yet be described only as a
“perceived” benefit. The results of the interviews were a key factor in constructing the model that reflects the
way in which the E-Business has been used during the different stages of business development.

Finally, this paper outlined the research method used and provided a summarized background of E-Business
and the case study used. Perceived benefits of the Internet and management involvement in adopting the
Internet for business use appear to be key driving forces for continued Internet use. With the aid of the
developed model and the case study results, it was possible to analyze the ways in which the Internet is used
as a supplement to the traditional business environment.

13. Recommendations:

It is suggested that further research needs to be carried out to extend the in-depth study of factors such as
entrepreneurial approaches to E-Business use among small businesses. Examination of the importance of
external factors, such as business culture and technology availability, during the implementation of E-
Business is also recommended.

References

1. ActiveMedia (1996), www.activemedia.com
2. Bell, S. in Sliwa, C. (1998), “Internet used to extend EDI’s reach”, Computer world, Vol. 32(8), pp. 1-

16.
3. Cisco Systems Inc. (1998), www.cisco.com
4. CommerceNet (1998), www.commerce.net
5. Cronin, M. J. (1994), Doing Business on the Internet: How the Electronic Highway is Transforming

American Companies, Van Nostrand Reinhold, New York.
6. Cronin, M. J., (1996a), Global Advantage on the Internet, Van Nostrand Reinhold, USA
7. Cronin, M. J., (1996b), The Internet Strategy Handbook: Lessons from the New Frontier of Business,

Harvard Business Press, USA.

8. Cragg, P. B. and King, M. (1993), “Small-Firm Computing: Motivators and Inhibitors”, MIS Quarterly,
March, pp. 47-60.

9. Forrester Research’s Business Trade & Technology Strategies Service,
(http://www.internetnews.com/ec-news/cur/1997/07/3005-bb.html)

10. Gallo, J in Abcede, A. (1997), “ EDI, Internet Connects as data goes electronic”, National Petroleum
News, Vol. 89(11), pp. 110-114.

11. Garrison, S. (1998), “Survey: Extranets could deliver what EDI didn’t”, Systems Management, Vol.
26(2), p. 34.

12. Gartner (1998), www.gartner.com.
13. Gide, E. and Soliman, F. (1999), “Framework for E-Commerce Implementation in Business

Operations”, Proceedings of the 2nd International Conference on Innovation Through Electronic
Commerce, Manchester (UK), November 1-3, 1999, In press.

14. Gide, E. and Soliman, F. (1998): “Framework for the Internet-Based E-Commerce in Manufacturing and
Business Operations”, Proceedings of the “NETIES’98: Networking for the Millennium”, Leeds, 15 – 16
October, pp 66-72.

15. Gide, E., and Soliman, F. (1998), “A Model for the Implementation of E-Commerce Over the Internet in
in the Proceedings of IMS’98 International Conference, Sakarya, 6-7 August

1998, pp. 801-811.
16. Gide, E., and Soliman, F., (1997a): “Analysis of Conducting Business on the Internet, in the

Proceedings of Inet-tr’97 Conference, Ankara, 21-23 November 1997.
17. Gide, E., and Soliman, F., (1997b): “Key Drivers for Using the Internet in Australia,” in the Proceedings

of Inet-tr’97 Conference, Ankara, 21-23 November 1997.
18. Hoffman, D. and Novak, T. (1996), “A New Marketing Paradigm for Electronic Commerce”, URL:

http://www2000.ogsm.vanderbilt.edu/novak/new.marketing.paradigm. html.
19. Paul Kagan and Associates (1997), www.paulkagan.com
20. Iacovou, C. L., Benbasat, I. and Dexter, A. S. (1995), “Electronic Data Interchange and Small

Organizations: Adoption and Impact of Technology”, MIS Quarterly, December, pp. 465-485.
21. Kalakota, R., and Whinston, A. B., (1996), Frontiers of Electronic Commerce, Addison Wesley, USA.
22. McCartney, L. (1997), “ A safety net”, Industry week, Vol. 246(8), pp. 74-78.
23. Mougayar, W.,(1997), Opening Digital Markets, CyberManagement, Canada.
24. Nielsen Media Research (1998), www.nielsen.com
25. Orr, B. (1996), “ Will the Internet get EDI going”, ABA Banking Journal, Vol. 88(2), p. 70.
26. Poon, S. and Swatman, P. (1995), “The Internet for Small Businesses: an enabling infrastructure for

competitiveness”, Proceedings of the Fifth Internet Society Conference, Hawaii, June, pp. 221-231.
27. Pyron, G., in Ubois, J. (1996), “ Net dreams for EDI”, The Magazine for Chief Financial Officers, Vol.

12(11), pp. 83 - 85.
28. Quach L.C. (1995), “Cost-Benefit Analysis of EDI: A Means for Justification”, Department of

Information Systems Honours thesis, Monash University, Melbourne, Australia.
29. Rayport, J. F. and Sviokla, J. J. (1995), “Exploiting the Virtual Value Chain”, Harvard Business Review,

Nov-Dec, pp. 75-85.
30. Socka, G. (1996), “EDI meets the Internet”, Cost and Management, Vol. 70(5), pp. 14-17.
31. Soliman, F. (1999), “Success Factors for Implementation of Internet-Based E-Business”, Proceedings of

the1999 International Wireless and Telecommunications Symposium”, 17-21 May, Shah Alam,
Malaysia: 354-359.

32. Soliman, F. (1998): “A Model for the Introduction of E-Business”, Proceedings of the “NETIES’98:
Networking for the Millennium”, Leeds, 15 – 16 October, pp 55-59.

33. Soliman, F., and Gide, E., (1997): “Impact of Internet-based E-Commerce on Manufacturing and
Business Operations,” in the Proceedings of Inet-tr’97 Conference, Ankara, 21-23 November.

34. Soliman, F. and Soar, J., (1997), “Physician Clinical Communication Systems - An Australian
Perspective, Journal of Medical Systems, Vol. 21, No. 2: pp 99-106, April 1997.

35. Swatman P. (1993), “Integrating Electronic Data Interchange with Existing Organizational Structure and
Internal Application Systems: the Australian Experience”, PhD Thesis, Curtin University of Technology,
Perth, Western Australia.

36. Tengende P.K. (1993), “Developing a Metric for Cost Benefit Analysis of EDI Projects”, Master of
Science (Computing) thesis, Curtin University of Technology, Perth, Western Australia.

37. Yap, C. S., Soh, C. P. P. and Raman, K. S. (1992), “Information Systems Success Factors in Small
 International Journal of Management Sciences, Vol. 20(5-6), pp. 597-609.

0DQDJLQJ�WKH�(�%XVLQHVV0DQDJLQJ�WKH�(�%XVLQHVV

2SHUDWLRQV2SHUDWLRQV

Dr Fawzy Soliman
School of Management

University of Technology, Sydney, Australia
E-mail: Fawzy.Soliman@uts.edu.au

 4XDOLW\�:HHN�(XURSH������

4:(¶��

1RYHPEHU������������%UXVVHOV��%HOJLXP1RYHPEHU������������%UXVVHOV��%HOJLXP

10/4/99 2

 Dr Fawzy Soliman QWE’99

$JHQGD$JHQGD
✦ 2EMHFWLYHV�RI�5HVHDUFK�

✦ 'HILQLWLRQV��([DPSOHV��

✦)XWXUH�EXVLQHVV�RXWORRN�

✦ 5ROH�RI�,QWHUQHW�(�%XVLQHVV�

✦ %HQHILWV�

✦ 2EVWDFOHV�

✦ 'ULYLQJ�)RUFHV�IRU�(�%XVLQHVV�

✦ 0RGHO�)RU�(�%XVLQHVV�,PSOHPHQWDWLRQ�

✦ 5HVHDUFK�3UREOHP�$QG�0HWKRGRORJ\�

✦ 5HVXOWV��7\SHV��&KDOOHQJHV�DQG�6WDJHV��

✦ &RQFOXVLRQV�

10/4/99 3

 Dr Fawzy Soliman QWE’99

✦ 6WXG\�KRZ�RUJDQLVDWLRQV
FRQGXFW�EXVLQHVV�RQ�WKH
,QWHUQHW�

✦ 3UHVHQW�D�PRGHO�RI�KRZ
RUJDQLVDWLRQV�GHYHORS�DQG
LPSOHPHQW�,QWHUQHW�(�
%XVLQHVV�

✦ 6WXG\�EHQHILWV�DQG�SRWHQWLDO
EXVLQHVV�RSSRUWXQLWLHV�IRU
FRPSDQLHV�IURP�,QWHUQHW�(�
%XVLQHVV�

'HILQLWLRQV"'HILQLWLRQV"

LPVLPV

10/4/99 4

 Dr Fawzy Soliman QWE’99

:KDW�LV�,QWHUQHW:KDW�LV�,QWHUQHW

(�%XVLQHVV"(�%XVLQHVV"

✦ (OHFWURQLF�&RPPHUFH�

✦ (OHFWURQLF�7UDGLQJ�

✦ (OHFWURQLF�'DWD�,QWHUFKDQJH��(',��

✦ &RPSXWHU�WR�&RPSXWHU�WUDQVDFWLRQV�

✦ 0DMRU�WUDQVIRUPDWLRQV�RI�ILUPV�

✦ 1R�H[DFW�GHILQLWLRQ"

3URFHVV�RI�(�%XVLQHVV�3URFHVV�RI�(�%XVLQHVV�

10/4/99 5

 Dr Fawzy Soliman QWE’99

3URFHVV�RI�(�%XVLQHVV3URFHVV�RI�(�%XVLQHVV

��.DODNRWD��.DODNRWD

�������������³WKH�³WKH

SURFHVV�RISURFHVV�RI

FRQYHUWLQJFRQYHUWLQJ

GLJLWDO�LQSXWVGLJLWDO�LQSXWV

LQWR�YDOXH�LQWR�YDOXH�

DGGHGDGGHG

RXWSXWVRXWSXWV´�´�

Receiving Production Inspection Dispatch

Suppliers Customers

Raw
Information Information

Based
Products
Services

Output

INTERNET INTERNET INTERNET INTERNET

Input Input Input Input

User
Interface
Platform

INTERNET
Platform

Physical Model

Conceptual Model 6XSSO\�&KDLQ"6XSSO\�&KDLQ"

10/4/99 6

 Dr Fawzy Soliman QWE’99

6XSSO\�&KDLQ�XVLQJ�WKH�,QWHUQHW6XSSO\�&KDLQ�XVLQJ�WKH�,QWHUQHW

Customer

Supplier

Inspection

Dispatch

Receiving

Production

Procurement

Design

INTERNET

INTERNET
Material (Physical)

Drawings (Clerical)

E-Business (Electronic)

)XWXUH�%XVLQHVV�2XWORRN")XWXUH�%XVLQHVV�2XWORRN"

10/4/99 7

 Dr Fawzy Soliman QWE’99

)XWXUH�%XVLQHVV�2XWORRN)XWXUH�%XVLQHVV�2XWORRN
✦ '\QDPLF�DQG�WXUEXOHQW�EXVLQHVV
HQYLURQPHQW�

✦ *OREDOLVDWLRQ�RI��EXVLQHVV�RSHUDWLRQV�

✦ 3URFHVV�)RFXVHG��%35�DQG�'RZQ�6L]LQJ�

✦ 0HUJLQJ�DQG�FRQVROLGDWLRQ�RI�PDUNHWV�

✦)UDJPHQWHG�FRQVXPHU�PDUNHWV�

✦ 5DSLGO\�FKDQJLQJ�WHFKQRORJLHV�

✦ 3UHVVXUH�IURP�FXVWRPHUV�

✦)LHUFH�FRPSHWLWLRQ�

✦ %XVLQHVV�,QWHOOLJHQFH�

:KDW�:KDW�FDQ�,QWHUQHW�GRFDQ�,QWHUQHW�GR""

10/4/99 8

 Dr Fawzy Soliman QWE’99

,QWHUQHW",QWHUQHW"
✦ 7KH�,QWHUQHW�LV�D�NH\�SDUW�RI�,QIRUPDWLRQ�LQIUDVWUXFWXUH�

✦ 5HFHQW�VXUYH\�RI�86�VPDOO�EXVLQHVV�XVLQJ�WKH�,QWHUQHW�

S m a l l F i r m s
O v e r a l l

(%)

Im p o r t e r s
(%)

E x p o r t e r s
(%)

U s e o f t h e In te r n e t 2 3 3 5 3 9
C o n d u c t r e s e a r c h
o n t h e In te r n e t

1 7 2 1 2 6

H o s t /h a v e a W e b p a g e 8 1 4 1 7

R e a s o n fo r U s in g In te rn e t
C o m m e rce

P e rce n ta g e (%)

C o s t S a v in g s 3 5
C u s to m e r S e rv ice 3 2

R e v e n u e G e n e ra t io n 1 8
M a rk e t in g 1 3

O th e rs 2

10/4/99 9

 Dr Fawzy Soliman QWE’99

8VDJH�RI�WKH�,QWHUQHW�IRU�%XVLQHVV

Industry Type 1997 % Sales 1997 $Billion

Manufacturers of electronics and aeroplane parts 37.5% 3

Vendors of computer-related and office supplies 37.5% 3

Services and utilities providers 25% 2

Item s P u rch a sed Ju n e , 1 9 9 8
(m il l ion p e op le)

S ep tem b er , 1 9 9 7
(m il l ion p e op le)

B ook s 5 .6 2 .3
C om p u te r H a rd w a re 4 .4 2 .0
C om p u te r S o ftw a re 4 .0 2 .8
T rave l (a i r l in e t ick e ts ,
h ote l & ca r re se rva t ion s)

2 .8 1 .2

C lo th in g 2 .7 0 .9

10/4/99 10

 Dr Fawzy Soliman QWE’99

,QWHUQHW�(�%XVLQHVV�5HYHQXHV,QWHUQHW�(�%XVLQHVV�5HYHQXHV

0

100

200

300

400

500

600

1996 1997 1998 1999 2000 2001 2002

Business
Segment
($billion)

Consumer
Segment
($billion)

%HQHILWV"

10/4/99 11

 Dr Fawzy Soliman QWE’99

✦ %HQHILWV�FDQ�EH�GLUHFW�DQG�LQGLUHFW
EHQHILWV�

✦ 'LUHFW�EHQHILWV��UHODWLYHO\�HDV\�WR
TXDQWLI\��

± UHGXFHG�WUDQVDFWLRQ�FRVWV�

± UHGXFHG�F\FOH�WLPH�DQG

± ORZHU�LQYHQWRU\�OHYHOV�

✦ ,QGLUHFW�EHQHILWV��GLIILFXOW�WR�TXDQWLI\��

± EHWWHU�FXVWRPHU�VHUYLFHV��DQG

± LPSURYHG�WUDGLQJ�SDUWQHU�UHODWLRQVKLSV�

± PDNH�IDVWHU�GHFLVLRQV�

2EVWDFOHV"2EVWDFOHV"

%HQHILWV"%HQHILWV"

10/4/99 12

 Dr Fawzy Soliman QWE’99

✦ /DFN�RI�NQRZOHGJH�RQ�

± %HQHILWV IURP ,QWHUQHW (�%XVLQHVV�

± +RZ WR LPSOHPHQW DQG ,QWHJUDWH"

✦ /DFN�RI�

±)LQDQFLDO MXVWLILFDWLRQ�

± 9DOXH $GGHG DQDO\VLV�

± 6XSSRUW IURP 0DQDJHPHQW� DQG (PSOR\HHV�

✦ ,QDSSURSULDWHQHVV�RI�,QWHUQHW�LQ�DQ�LQGXVWU\�

✦ ([WHQVLYH�,7�,6�FKDQJHV�RU�%35�UHTXLUHG�

✦ 2WKHU�IDFWRUV�

⇒6HFXULW\ RQ WKH ,QWHUQHW�

⇒0HWKRG RI SD\PHQW�

⇒1R RQH RZQV WKH ,QWHUQHW�

⇒+HDY\ WUDIILF RQ ,QWHUQHW PD\ GHOD\ EXVLQHVV RSHUDWLRQV DQG FDQ VORZ GRZQ
SURFHVVHV�

Φ 6PDOO�FRPSDQLHV��(FRQRPLF�,QMXVWLFH�

'ULYLQJ)RUFHV"

2EVWDFOHV2EVWDFOHV

10/4/99 13

 Dr Fawzy Soliman QWE’99

'ULYLQJ�)RUFHV�IRU�,QWHUQHW�(�'ULYLQJ�)RUFHV�IRU�,QWHUQHW�(�

%XVLQHVV�,PSOHPHQWDWLRQ%XVLQHVV�,PSOHPHQWDWLRQ
✦ 3UHVVXUH�IURP�FXVWRPHUV��VXSSOLHUV�
JOREDOLVDWLRQ�DQG�FRPSHWLWRUV�

✦ 1HHG�WR�FDSWXUH�PRUH�PDUNHW�VKDUH
�JOREDOO\��

✦ 1HHG�WR�LPSURYH�ILUP¶V��LPDJH�

✦ 1HHG�WR�UHGXFH�PDQXIDFWXULQJ�FRVW�

✦ 1HHG�WR�LQFUHDVH�SURGXFWLYLW\�

✦ $FKLHYH�FRPSHWLWLYH�DGYDQWDJH�

✦ 5HTXHVW�IURP�%RDUG�RI�'LUHFWRUV�

+RZ�WR�LPSOHPHQW"+RZ�WR�LPSOHPHQW"

10/4/99 14

 Dr Fawzy Soliman QWE’99

Realisation
of Benefits

Business
Objectives

The E-Business Implementation Model

 Interactive Marketing:

 - Establish Web Presence
 - Create Home Page
 - Provide Corporate Information
 - Deliver Marketing Materials

Phase I

 E-Commerce:

 - On-line Catalogues
 - On-line Order Taking
 - Secure Transaction
 - Invoicing and Billing
 - Vendors and Customers
 communication
 - Delivery

Phase II

 E-Business:

 - Merchandising and
 Catalogue Management
 - Order entry, confirmation
 and fulfillment
 - Returns
 - Shipping and freight
 - Warehousing and
 inventory management
 - Pricing, promotions, taxes,
 digital cash, bank transfers
 - Financial accounting
 - Reporting
 - Customer profiling

Phase III

Low High

Level of Information Exchange

0RGHO�IRU�(�%XVLQHVV0RGHO�IRU�(�%XVLQHVV

,PSOHPHQWDWLRQ,PSOHPHQWDWLRQ

10/4/99 15

 Dr Fawzy Soliman QWE’99

5HVHDUFK�3UREOHP�DQG5HVHDUFK�3UREOHP�DQG

0HWKRGRORJ\0HWKRGRORJ\

✦ &DVH�VWXG\�DSSURDFK�EHFDXVH�
◆ 7KH UHVHDUFKHU KDV OLWWOH FRQWURO RYHU WKH HQYLURQPHQW�

◆ 7KH HYHQWV XQGHU LQYHVWLJDWLRQ DUH FRQWHPSRUDU\� DQG

◆ 7KH FRQWH[W RI WKH UHVHDUFK LV LPSRUWDQW�

✦ 5HVHDUFK�SUREOHP�

³:K\�DQG�KRZ�GR�$XVWUDOLDQ�FRPSDQLHV�XVH�WKH�,QWHUQHW�IRU
FRPSHWLWLYH�SXUSRVHV"´

✦ &RPSDQLHV��VL]H�RI�FRPSDQ\��YLHZV�RQ�FRPSHWLWLYH
DGYDQWDJH�RI�,QWHUQHW�DQG�EXVLQHVV�VHFWRU�

✦ ,QWHUYLHZV�DQG�VLWH�YLVLWV�RU�WHOHSKRQH�LQWHUYLHZV�

10/4/99 16

 Dr Fawzy Soliman QWE’99

✦ ([SORUDWLRQ�2I�&ROODERUDWLYH�3DUWQHUVKLSV�

✦ &RQVROLGDWLRQ�2I�%XVLQHVV�$FWLYLWLHV�

✦ ,QIRUPDWLRQ�([FKDQJH�

✦ 7KUHH�W\SHV�RI�%XVLQHVVHV�

¾%XVLQHVV�WR�%XVLQHVV�

¾%XVLQHVV�WR�&XVWRPHUV��DQG

¾%XVLQHVV�WR�(PSOR\HHV�

✦ &ULWLFDO�6XFFHVV�IDFWRUV�

± ,7�,QIUDVWUXFWXUH�

± 8VHU�WUDLQLQJ�

± 6HFXULW\�

± 8VHU�$SSUHFLDWLRQ��,QYROYHPHQW�DQG�VDWLVIDFWLRQ��

± ,7�'HSDUWPHQW¶V�6XSSRUW�IRU�,QWHUQHW�LPSOHPHQWDWLRQ�

± 0DQDJHPHQW�FRPPLWPHQW�DQG�6XSSRUW�

5HVXOWV5HVXOWV

10/4/99 17

 Dr Fawzy Soliman QWE’99

5HVXOWV��7\SHV�RI�(�%XVLQHVV5HVXOWV��7\SHV�RI�(�%XVLQHVV

2SHUDWLRQV2SHUDWLRQV

Businesses

Customers Employees

Business
Operations using

Internet B-EB-C

B-B¾¾%XVLQHVV�WR�%XVLQHVV�%XVLQHVV�WR�%XVLQHVV�

¾¾%XVLQHVV�WR�&XVWRPHUV��DQG%XVLQHVV�WR�&XVWRPHUV��DQG

¾¾%XVLQHVV�WR�(PSOR\HHV�%XVLQHVV�WR�(PSOR\HHV�

10/4/99 18

 Dr Fawzy Soliman QWE’99

5HVXOWV��5HVXOWV��&KDOOHQJHV�7R�,QWHUQHW&KDOOHQJHV�7R�,QWHUQHW

(�%XVLQHVV(�%XVLQHVV

✦ 1RQ�,7�,6�PHWKRGV�WR
FRPPXQLFDWH�ZLWK�VXSSOLHUV�

✦ 6XSSOLHUV�GR�QRW�VXSSRUW�(�
%XVLQHVV�LPSOHPHQWDWLRQ�

✦ 5HVLVWDQFH�WR�&KDQJH�

± 6WUXFWXUDO�&KDQJH�

± &XOWXUDO�&KDQJH�

± 7HFKQLFDO�&KDQJH�

✦ 6HFXULW\�LVVXHV�

✦ 3D\PHQW�WRROV�

10/4/99 19

 Dr Fawzy Soliman QWE’99

5HVXOWV��6WDJHV�DQG�W\SHV�RI5HVXOWV��6WDJHV�DQG�W\SHV�RI

,QWHUQHW�(�,QWHUQHW�(�%XVLQHVV%XVLQHVV

/LQNDJH�WR�(QWHUSULVH�6WUDWHJLF�3ODQV"/LQNDJH�WR�(QWHUSULVH�6WUDWHJLF�3ODQV"

%HOLHI%HOLHI $WWLWXGH$WWLWXGH ,QWHQWLRQ,QWHQWLRQ%XVLQHVV��%XVLQHVV��

%XVLQHVV%XVLQHVV

'HYHORSLQJ'HYHORSLQJ ,PSOHPHQWDWLRQ,PSOHPHQWDWLRQ3ODQLQJ3ODQLQJ

%XVLQHVV��%XVLQHVV��

&XVWRPHUV&XVWRPHUV
%XVLQHVV��%XVLQHVV��

(PSOR\HHV(PSOR\HHV

10/4/99 20

 Dr Fawzy Soliman QWE’99

&RQFOXVLRQV&RQFOXVLRQV

❋ %HQHILWV�RI�,QWHUQHW�(�%XVLQHVV�

❋ ([DPLQHG�2EVWDFOHV�

❋ ,QYHVWLJDWHG�NH\�GULYLQJ�IRUFHV�

❋ +LJK�LPSOHPHQWDWLRQ�FRVWV�

❋ ,QDGHTXDWH�UHVRXUFHV�

❋ ,QVXIILFLHQW�H[WHUQDO�DVVLVWDQFH�

❋ ,PSURYLQJ�FXVWRPHU�VHUYLFH�

❋ 5HGXFLQJ�FRVWV�

❋ 3URYLGLQJ�%XVLQHVV�,QWHOOLJHQFH�

❋ 3URFHVV�VLPSOLILFDWLRQ�

❋ 7DNLQJ�IDVWHU�GHFLVLRQV�

10/4/99 21

 Dr Fawzy Soliman QWE’99

10/4/99 22

 Dr Fawzy Soliman QWE’99

5HFRPPHQGDWLRQV5HFRPPHQGDWLRQV

✦)DFWRUV�DQG�GHJUHH�RI�LQYROYHPHQW�GXULQJ�6WDJHV
�3ODQQLQJ��'HYHORSPHQW��DQG�,PSOHPHQWDWLRQ��DQG��7\SHV
RI�,QWHUQHW�(�%XVLQHVV��%XVLQHVV�%XVLQHVV��%XVLQHVV�
&XVWRPHUV�DQG�%XVLQHVV�(PSOR\HHV��

✦ (QWUHSUHQHXULDO�IDFWRUV�DIIHFWLQJ�WKH�LQWURGXFWLRQ�RI
,QWHUQHW�(��%XVLQHVV�DPRQJ�EXVLQHVVHV��VL]H��W\SH�DQG
PDQDJHPHQW�VW\OH��

✦ &KDQJH�0DQDJHPHQW�IDFWRUV��VXFK�DV�6WUXFWXUDO�&KDQJH�
&XOWXUDO�&KDQJH�DQG�7HFKQLFDO�&KDQJH�

✦ ,PSRUWDQFH�RI�EXVLQHVV�FXOWXUH�DQG�WHFKQRORJ\�DYDLODELOLW\�
GXULQJ�LPSOHPHQWDWLRQ�RI�,QWHUQHW�(��%XVLQHVV�

10/4/99 23

 Dr Fawzy Soliman QWE’99

)RU�IXUWKHU�LQIRUPDWLRQ���)RU�IXUWKHU�LQIRUPDWLRQ���

7HO�������������������
)D[������������������
0RE�����������������

(�0DLO��)DZ]\�6ROLPDQ#XWV�HGX�DX

7HO�������������������
)D[������������������
0RE�����������������

(�0DLO��)DZ]\�6ROLPDQ#XWV�HGX�DX

'U��)DZ]\�6ROLPDQ
6FKRRO�RI�0DQDJHPHQW
8QLYHUVLW\�RI�7HFKQRORJ\��6\GQH\
32�%R[����
%URDGZD\������
$XVWUDOLD

'U��)DZ]\�6ROLPDQ'U��)DZ]\�6ROLPDQ

6FKRRO�RI�0DQDJHPHQW6FKRRO�RI�0DQDJHPHQW

8QLYHUVLW\�RI�7HFKQRORJ\��6\GQH\8QLYHUVLW\�RI�7HFKQRORJ\��6\GQH\

32�%R[����32�%R[����

%URDGZD\������%URDGZD\������

$XVWUDOLD$XVWUDOLD

10/4/99 24

 Dr Fawzy Soliman QWE’99 The

 End

Pearson Education is a division of the international media group Pearson and
was formed as a result of the recent merger of Addison Wesley Longman,
Financial Times Management and Simon& Schuster’s educational business.
Pearson Education is the world’s leading education business. From primary to
postgraduate, teachers, students, professionals and parents can choose Pearson
Education resources to meet their needs with confidence. Our imprints stand for
quality, consistency and innovation in education throughout the world.

Pearson Professional Education is the largest supplier of Trade and Professional
Computer books in the English language and consists of the well-known imprints:
Adobe Press, Addison Wesley, Brady Games, Cisco Press, Hayden Books,
JAMSA Press, Manning, Macmillan Technical Publishing, New Riders, Peachpit
Press, Prentice Hall PTR, Que, and Sams.
All of these books can be ordered in the at our offices in Amsterdam, or in the
UK.

Pearson Education Pearson Education
Concertgebouwplein 25 Customer Services
1071 LM Amsterdam PO Box 88
The Netherlands Edinburgh Gate

Harlow
Essex CM20 2JE

Tel: +31 (0) 20 575 5800 Tel: +44 (0) 1279 623 925
Fax: +31 (0) 20 664 5334 Fax: +44 (0) 1279 623 627

We are proud to be supporting two of our authors at the 3rd International
Software Quality Week Europe ’99, Suzanne Robertson, author of Mastering the
Requirements Process and Martin Pol, author of Test Process Improvement.

Computer Associates International, Inc.

Developing & Deploying Applications in Internet Time.

Business has to respond to both these kinds of challenge, and respond quickly. Whilst
business strategy may appear to be easy to change, the actual business processes
embodied in our existing applications may not adapt readily to our new requirements.
Building the flexibility to accommodate business change into applications is more than
just a technology issue. It may also require a shift in an organization’s development
culture, in the development process, in the methods and best practices for development
Certainly there has never been a greater need for effectively managed development
projects. Similarly, the need to deploy applications in “Internet time” is becoming
increasingly critical.

Whether you are looking to design and build new applications or re-purpose existing
ones, you will find much value in meeting with us.

Computer Associates International, Inc. (NYSE: CA), the world leader in mission-critical
business computing, provides software, support and integration services in more than 100
countries around the world. CA has more than 17,500 employees and had revenue of
$5.3 billion in fiscal year 1999.

For more information about CA and CA Belgium, please call +32 2 773 28 11 or email
info@cai.com.

CA's Web address is www.cai.com or www.cai.com/offices/belgium/belgium.htm

CMG FINANCE CMG TRADE, TRANSPORT & INDUSTRY CMG PUBLIC SECTOR CMG TELECOMMUNICATIONS & UTILITIES CMG BUSINESS SERVICES

Organizations operate in a turbulent market. More and more the need is felt to prevent inter-
ruptions of core business processes by computer failure. CMG has gained a wealth of experience
in setting up test organizations using their full scale method for structured testing, named
TestFrame. The emphasis in TestFrame is on the strategic support of the complete testing
processes, from organization to test execution, in which all test products are put in place and
related to one another. The underlying concept of TestFrame is that a test is set up right from
the start with maintenance in mind, so that future checks can be carried out with the minimum
adjustment to the test material. Because the testing products are re-usable, you will have
recouped your investment after just a few re-tests.
For more information please contact the TestFrame Research Centre
of CMG, telephone +31 348 45 40 00, fax +31 348 45 40 13, e-mail
testframe@cmg.nl, Internet: www.testframe.com.

Information Technology
Organizations are stronger with CMG.

Getting testing
under control

99057730_wereldbol_nieuw 09-09-1999 08:59 Pagina 1

TestFrame

Getting testing under control

CMG plc is a leading European IT services company, providing business information
solutions through consultancy, systems and services to clients world wide. Established
in 1964, CMG now operates in more than 40 countries from its bases in the UK, The
Netherlands, Germany, France and Belgium. The company is listed on the London and
Amsterdam stock exchanges. CMG supplies services and products in the finance, trade
and industry, transport, telecommunications, energy and public sectors. The Group
also provides managed information processing services, including networks, payroll and
personnel.

Over the years, CMG has gained considerable experience in the setting-up of testing
procedures and testing organisations. Based on this experience, CMG has developed
an open test method TestFrame™. TestFrame is based on three principles: Fitting,
Structuring and Tooling. First, the process must always be appropriate to the
organisation in which it is to be adopted: it must fit. Second, testing can only offer quality
control if it is approached structurally and allows for ready maintenance. And third, the
use of tooling is essential to any modern testing process. This test method leads to re-
usable test products so that future checks can be carried out with minimum adjustment
to the test material.

CMG is dedicated to helping its clients and their people become more successful
through the quality of its services and staff. Strong employee commitment ensures the
Group's long term success and hence the success of its clients.

More information:
For more information please contact the
TestFrame Research Centre of CMG,
e-mail : testframe@cmg.nl
telephone : +31 348 454000
fax : +31 348 454013

Découvrez comment nos logiciels et nos services peuvent aider votre entreprise à profiter
des avantages du commerce électronique en visitant notre site www.compuware.be

©
19

99
Co

m
pu

w
ar

e
SA

/N
V
 0

2/
71

5.
99

.0
0LE COMMERCE

ÉLECTRONIQUE

OUVRE LES

PORTES DU MONDE

ENTIER À VOTRE

ENTREPRISE.

NOUS VOUS

PERMETTONS DE

SAISIR CETTE

OPPORTUNITÉ

AVEC LA

TECHNOLOGIE

QUE VOUS

POSSÉDEZ DÉJÀ.

Compuware Corporation
 Farmington Hills, MI
 800-521-9353
 www.compuware.com

 Compuware Corporation offers software tools and professional services
 that help the world's largest companies more efficiently build,
 maintain and enhance their most critical business applications. Our
 unique combination of productivity tools and services has helped make
 us both the world leader in software testing and quality assurance and
 the world's fifth largest independent software vendor.

 Compuware offers our 14,000 customers a one-vendor solution that
 extends across the application lifecycle, from development, through
 testing, and managing application service levels in production. Our
 tools and services extend across the enterprise, whether your
 application is mainframe, distributed, and/or web-based. Compuware's
 testing tools include QACenter, NuMega, File-AID, XPEDITER and
 EcoSYSTEMS.

ErgoLight Ltd., 6 Giv'on St.,
Haifa 34335, Israel
Email: info@ergolight-sw.com
Web: www.ergolight-sw.com

Tel:
Fax:
USA:

+972-4-826-3012
+972-4-825-8199
1-877-Use-Ergo
1-877-873-3746

ErgoLight Company and Product Description
ErgoLight Usability Software
6 Giv'on St.,
Haifa 34335, Israel
Phone: +972-4-826-3012, +1-877-Use-Ergo (+1-877-873-3746)
Fax: +972-4-825-8199
Email: info@ergolight-sw.com
Web: www.ergolight-sw.com

Are you a developer of a productivity-critical system? A safety critical system? Or, a
revision of a not-so-friendly system?

If the answer to any of these questions is yes, then you NEED ErgoLight tools.
Why? Because common method and practices of usability testing target product
learnability, which is not your project main concern.

ErgoLight Ltd. develops and markets software tools and services that enable
Windows application developers to get the user feedback via the internet, to
conduct user testing that focus on user productivity and reliability and to
obtain objective measures of the product usefulness.

Are you concerned about the user productivity, operation reliability and long range
product credibility? The single most important factor that determines these concerns
is the software’s capability to respond gracefully to user errors. ErgoLight tools are
the only means available today that provides the information required to detect and
evaluate critical user errors.

Looking for objective measures of product quality? ErgoLight’s usage profiles
show which GUI controls are used often and which are not used at all. In addition,
the profiles enable you to pinpoint activities that consume most of the product
operation time and to understand the reasons why.

Does your customer support understand the user feedback? Much of the support
time is spent on user complaints about unexpected system behavior, which actually
results from undetected user errors. By differentiating between GUI design flaws
and software bugs, ErgoLight tools will save your programmers wasted debugging
time and reduce your support costs.

e-Strategy

e-Strategy is a business consultancy and software VAR based in Brussels,
Belgium, specializing in analytical tools for business and project
management support. Interested participants are welcome
to visit our booth in the Exhibit Hall to see an in-depth demonstration,
pick up product literature, or receive a complimentary copy of the
RiskDRIVER CD-ROM.

RiskDRIVER is a European web-based initiative to promote best practices
in project risk management. The RiskDRIVER website, www.riskdriver.com,
is a one-stop source for risk management practitioners, expert and novice.

RISKMAN is the only software package to provide thorough support of a
risk management methodology and full integration of risk management in
all phases of project management. RISKMAN provides a systematic approach
to project risk management, guiding the user through the 5 steps of the
RISKMAN methodology:

- Risk Identification: the Risk Catalogue facilitates the identification and
classification of risks, together with their respective causes and
mitigation actions. The Catalogue supports checklists, risk sheets, and
transfer of risk data to and from projects.

- Risk Assessment: RISKMAN lets you choose an impact scale (cost, duration,
quality) and determine unacceptable risks in terms of financial loss,
delays, defects, . Use RISKMAN's budget management function to calculate and
display graphically your budget for risk mitigation and provision for
contingencies.

- Risk Action Plan: RISKMAN helps you define mitigation actions for
unacceptable risks, which can be planned as tasks in Microsoft Project.
Advanced Monte Carlo simulation takes into account uncertainties to analyse
the effectiveness of mitigation actions and estimate the actual cost and end
date of the project.

- Follow-up: RISKMAN makes it easy to track multiple risks, causes, actions,
events and budgets throughout the project, producing customised reports in
Microsoft Word and Excel formats.

- Knowledge capitalisation: the Risk Catalogue is an expanding knowledgebase
that captures your corporate risk data and lets you share risk experience
with project teams.

RISKMAN is a user-friendly Windows application that is fully compatible with
Microsoft Project, available in English and French language versions.
Download a 30-day evaluation copy from the RiskDRIVER website at
www.riskdriver.com/riskmantool. Registered contributors to the RiskDRIVER
site may also download a fully functional copy of the RISKMAN Catalogue.

EWO Software, Inc.

Company Overview - For over 30 years Information Systems organizations in
the Fortune 2000 have had to deal with the programming staff having to sift through the
massive applications programs and data to assemble the complete package to do either
maintenance or write a major modification. EWO has solved this problem by providing a
complete and comprehensive software package called “Prescient®”, meaning
“forethought”. The Prescient family of products consists of eight modules individually
designed to solve the various problem of manually searching for all the constituent
elements of an application or production job, inventory analysis and program cross
references to mention a few.

The company markets the “Prescient” product Worldwide to the MVS user base. The
company believes that with the modular orientation of its products directed towards
particular Information Systems department solutions, and further, provided at reasonable
cost, with superior service/support availability is a winning approach and will continue to
be successful.

The concept of the Prescient Suite is to essentially automate the analysis and setup
function that is currently being done manually by Mainframe applications programmers
in every data center in the world having the IBM MVS or the new OS/390 Operating
System. The software solutions from the Company need to be presented and sold using a
consultative technical approach. The MVS market needs to be trained in the use of the
tools and shown exactly how the tools work. The good news is that this takes only a two-
day period to get the applications staff fully productive with the software.

The Company’s experience has been that the customer looks at the Prescient products as
beneficial because the products make their business more productive and therefore more
profitable. In addition, it has been readily accepted because it truly helps the Information
Systems group moves faster through its applications as they solve the Year 2000 problem
and/or provide maintenance for their applications.

EWO has established a reputation in the marketplace for developing high value products
that deliver cost effective, timesaving products which are sold at fair market value for
uses in the Mainframe and Internet market. We have achieved this by developing cutting
edge product development with a close understanding of market trends and needs.

Business Description - EWO was founded in 1991. It was organized to provide
innovative software products for the IBM - MVS Operating System and those companies
that use this system. This is predominately the Fortune 2000 worldwide. EWO started
out meaning “Easy Way Out” which referred to the ease of use and the problem solving
nature of the initial product called Documentor. Because of the broad base of the
company products in the MVS environment, the EWO acronym can best be referred to as
Enterprise Wide Operation.

The PreScient Product Line - The major modules included in the PreScient product line
are identified as follows by their application, which provide greater control in the SCM
market. The product lines all share in the core technology which consists of the "smart
parser". There are also other modules within PreScient that will be addressed later in the
plan.

1. Documentor
Documentor is a complete analysis package for identifying the overall program inventory
in the customer’s MVS – OS/390 system. Proper inventory identification is a major
problem today that surfaced as a result of the Year 2000 problem. It will address the
inventory requirements of the Fortune 2000 and will allow companies to truly exercise a
“clean management” system.

2. Replicator
Replicator is an extension of the Downloader, however it includes the ability to handle
both programs and data. It is useful in setting up test beds for applications and assures
that all the elements are identified for the subsequent test. Using Replicator can save
hours and sometimes days of programmer time in setting up an accurate test plan. EWO
Software is the first to market a product like Replicator.

3. LoadSync
LoadSync represents a new approach to the not so obvious problem of out-of-sync load
libraries. LoadSync validates and verifies the actual synchronization of library load
modules in the effort to identify potential date mismatches of static and dynamic call
programs which are a result of the serial program compiling process. This is perceived to
be a major problem particularly in view of the Year 2000 problems facing everyone.

4. Downloader
Downloader has been a valuable tool for customers having to move applications from
point A to point B. This product allows applications to be moved in complete form (JCL,
programs, copybooks, etc) from Mainframe to Mainframe or from Mainframe to alternate
platforms for such use as code remediation or re-hosting. It addresses the needs of the
entire range of OS/390 customers as do all the modules in the PreScient software suite.

Services, Custom Development/Training/Consulting - EWO Software also provides
consulting services for Mainframe support.

Technology - Proprietary Technology - The software products are proprietary in their
design and in their software architecture and methodology. The software is protected by
copyrights and a trademark has been applied for. In addition, the software is shipped as
executables and the source code is present only on our development system. Software
routines are used to provide time dependent usage and can be activated by use of unique
serial numbers and passwords.

TPI® (Test Process Improve m e nt) is the ongoing process to improve the test proce s s e s.
The T P I ® - m odel is a pra ct i cal ste p - by - s tep guide to upg rade the quality of your te s t s.

Our serv i ce s :

• Test adv i ce

• St ru ct u ring test proce s s e s

• Improving test proce s s e s

• Training and coaching in te s t i n g

• Test planning and test management

• Test design and test exe c u t i o n

TMa p ® (Test Ma n a g e m e nt approach) is a stru ct u red approach for testing softwa re applicat i o n s.
The approach is based on four co rn e r s to n e s :

q u a l i t y
in stru ct u red testing

• Life cyc l e

• Te c h n i q u e s

• Infra s t ru ct u re and too l s

• Org a n i s at i o n

Gi tek is the exc l u s i ve distri b u tor of TMap® and TPI® in Be l g i u m .

Gi te k , Si nt - Pi e tersvliet 3, 2000 Antwe rpe n , te l .0 3 / 2 3 1 . 1 2 . 9 0 , fax 03/226.10.83, e-mail gite k @ g i te k . be, visit www. g i te k . be

9940026AD-GITEK 215*175 08-10-1999 14:24 Page 1

Gitek nv

Gitek nv was founded in 1986 . Over 100 employees support customers in delivering
quality information systems. Gitek has also specialised in testing software
applications using TMap® the structured testing approach developed by its partner
IQUIP. With 40 professional testers it is the leading testing company in Belgium.
Gitek has the exclusive rights for Belgium for TMap® and its related products : TPI®
(Test Process Improvement), TAKT♥ (Test Automation) and TSite® (Test
Laboratory).

Gitek nv
St.-Pietersvliet 3
B-2000 Antwerpen
Belgium
Phone : 00/32/3 231 12 90
Fax : 00/32/3 226 10 83
e-mail : gitek@gitek.be
www : www.gitek.be

INTEGRI
Leuvensesteenweg 325
B-1932 Zaventem, Belgium
Tel 32.2.712.07.50, Fax 32.2.712.07.67
info@integri.be
www.integri.be

PRODUCTS AND SERVICES
Integri provides its clients with two different services : On the one hand,
Integri can organise and execute acceptance and certification tests for
it's clients, acting as an independent test company. The client provides
Integri with detailed functional specifications of a project. From these
functional specifications, Integri derives the tests, executes them on the
unit under test and issues a test report. On the other hand, Integri can
provide the client test team with a full test environment. A number of
off-the-shelf tools are available, such as THALES (for testing and
emulating smartcards) and CERTO (for testing and emulating
host interfaces). However Integri's software can easily be adapted to the
client's specific requirements. Integri's tools Typical systems and projects
for which Integri's test technology and methodology is suited for are :
smartcard masks, smartcard terminals, security systems, authorisation
host interfaces, etc…

CLIENTS
Integri's customers are large national and international payment system
providers, smartcard and payment terminal manufacturers, based in various
European countries. Typical clients are Banksys Belgium, APSS Austria,
Europay International, EPCI Belgium, Giesecke & Devrient Germany, Graphium
Denmark, Incard Italy, Telekurs Switzerland, SSB Italy, SWIFT, TSP Italy, etc.

Integri also started providing services to GSM operators, as the THALES test
tool have been extended for the GSM 11.11, GSM 11.14 and GSM 11.17
standards.

IPL Information Processing Ltd

Software quality can only be assured through proper application of
a number of activities and techniques. One of the foremost of these
is of course testing, and in particular testing at the early stages of
the code production process. These activities go by the general
name of 'unit' (or 'module'), and 'integration' testing. The problem
tends to be that these activities are time-consuming. The way out
of this dilemma is to use tools which can to a reasonable degree
automate the activities, and that is the purpose of the IPL tools,
AdaTEST (for Ada) and Cantata/++ (for C/C++).

These products have achieved outstanding reputations for
themselves in their particular field since their initial release eight
years ago. In the various fields of civil and military avionics, air
traffic control, space, telecommunications, automotive and railway,
and all areas where the need for reliability dominates AdaTEST and
Cantata have played their roles.

Specifically the products allow software components to be fully
executed in an automated and repeatable fashion, and providing full
isolation (where appropriate) from external software. These tests
can be executed in both host (PC and Unix) and target
environments. The tools also allow coverage of these tests to be
measured, thus allowing the developers to ascertain a 'confidence'
factor in their testing. Finally, a wide range of static analysis
metrics facilities allows developers to monitor their source code
against various criteria to ascertain its 'quality' and maintainability.

At QWE'99 IPL will be exhibiting all their tools and services. The
Vendor Technical Presentation will be devoted to a short
presentation of Cantata++ for testing C++.

IPL Information Processing Ltd
Eveleigh House
Grove Street
Bath BA1 5LR
United Kingdom

Tel (DDI): +44 (0)1225-475114
Fax: +44 (0)1225-444400
E-mail: iang@iplbath.com
World Wide Web http://www.iplbath.com/tools

In this day and age, organizations are often hampered by software bugs when using information systems. One of

the reasons for this is that the integration of business processes and related innovations, such as the Internet,

electronic commerce or knowledge management, produce new challenges time and again. This could, for instance,

result in the requirement that all components of tailor-made software should be able to function together. And this

would make prior testing of systems not only essential but would also demand a new approach to testing.

At I Q U I P w e a r e u s e d t o t h i n k i n g t h i n g s t h r o u g h . For this reason we are

always searching for new testing methods. With TMap®, IQUIP has developed a successful,

structured test approach. TMap® is already being used by more than 200 companies in the

Netherlands, Belgium and other European countries. In addition, IQUIP offers TAKT (automated

testing), TSite® (Test Factory) and TPI® (stepwise improvement of test processes) which provide excellent

opportunities for securing the future of testing organizations. IQUIP is constantly seeking integrated, total solutions

for its customers, under which each organization remains flexible under all conditions. And where management can

have complete faith in the information system, in order to take advantage of market developments as they occur.

Would you like to know more about what our vision of the future could mean for your organization? Then please call

Martin Pol, + 31 (0)20 660 66 00 for further information.

IQUIP Informatica B.V. Head Office: Wildenborch 3 PO Box 263 1110 AG Diemen The Netherlands Phone: +31 (0)20 660 66 00 Fax: +31 (0)20 698 14 37 E-mail: info@iquip.nl www.iquip.nl

A S tanda rd i n I T

Shou ld management
be dependent

on in format ion sys tems?

www.iquip.nl

IQUIP Informatica B.V.

Since 1972 IQUIP Informatica B.V. has been supporting organisations in carrying out
their core processes. With its 1400 employees IQUIP does this by constructing,
maintaining, testing and implementing application software systems. IQUIP increasingly
concentrates on carrying out assignments with result responsibility. In testing, IQUIP
achieves this through her dedicated division Components & Testing (300 employees),
using the structured testing approach TMap®. TMap® was developed by IQUIP itself
and has become a widely used international standard. TMap® related methods such as
TAKT© (test automation), TSite® (test laboratory) and TPI® (Test Process
Improvement®) have recently completed the product range. A dedicated R&D team is
continuously improving these methods and, if required, develops new products.

IQUIP Informatica B.V.
Head Office: Wildenborch 4
Address: Postbus 263

1110 AG DIEMEN
The Netherlands

Phone: +31 (0)20 660 6600
Fax: +31 (0)20 698 1437
E-mail: info@iquip.nl
WWW: www.iquip.nl

McCabe & Associates (UK)
Chancery Court
Lincoln Road
High Wycombe
Bucks
HP12 3RE
Tel: +44 (0) 1494 463 233
Fax: +44 (0) 1494 463 288
Email: sales@mccabe.co.uk
http://www.mccabe.com

McCabe & Associates is an international leader in software solutions for
improving the quality and reliability of enterprise software applications.
Based on over twenty years of research and experience in software quality,
testing and re-engineering, McCabe IQ (TM) is an integrated approach to
building quality into your software development lifecycle. McCabe IQ
combines a strong theoretical foundation with practical, visual tools to
help organisations:

- Accurately assess software quality, complexity, and testing requirements
- Pinpoint potential problems and high-risk areas
- Eliminate redundant code
- Thoroughly test applications
- Validate coverage of high-risk areas

McCabe IQ (TM) supports developments in Java, C++, C, VB, COBOL, FORTRAN and
Ada

Since 1977, we have been working closely with our customers to improve the
quality of large-scale, mission-critical software. Many of our world most
influential corporations and government organisations have used our products
successfully to test, re-engineer, and verify the quality of over 30 billion
lines of mission-critical code. Today, we are one of the most highly respected
vendors of products for source code analysis and testing. Our structured
testing methodology has been adopted and published by the National Institute
of Standards and Technology(NIST).

Solidly based on source code analysis technology, McCabe IQ integrates the
build, test and change phases of software development. By linking these
processes through advanced visualisation, industry standard metrics and
dynamic monitoring, McCabe IQ raises the quality standards of your deliverables,
reduces your overall development costs, decreases your time to market and
lets you focus your resources where they will have the greatest impact.

Mercury Interactive
1325 Borregas Avenue
Sunnyvale, CA 94089 USA
T: (800) TEST911
 (408) 822-5200
F: (408) 822-5300
For local offices worldwide, visit our Web site at www.merc-int.com

Mercury Interactive Corporation develops, markets and supports a suite of
solutions that automate testing, quality assurance and application performance
management , from Internet/e-business applications and front office
applications—like sales force automation or help desk—to back office ERP
applications.

We help people deploy software with confidence.

And we offer the solutions, the support, the technology and the commitment to
help you.

TestDirector®

An integrated enterprise application for organizing and managing the entire
testing process.
By combining planning, execution and defect tracking with open test architecture
and a central repository, TestDirector consolidates and manages the testing
process to determine application readiness.

WinRunner® and XRunner®

Enterprise functional testing tools that verify Windows and UNIX applications
work as expected. By capturing and replaying user interactions automatically,
WinRunner and XRunner identify defects and ensure that applications work
flawlessly the first time and remain reliable.

LoadRunner®

A load testing tool that predicts system behavior and performance. It exercises
the entire enterprise infrastructure by emulating thousands of users to isolate
problems, optimize performance and accelerate application deployment.

QuickTest™
A family of business process testing tools designed to be employed by the end-
user.

TestSuite®

A set of product suites designed for specific market segments, including:
• TestSuite Enterprise—for managing testing procedures for ERP applications
• TestSuite 2000—for managing Year 2000 testing challenges
• TestSuite Euro—for managing Euro currency conversion issues

Astra™
A family of e-business testing tools, including:
• Astra SiteTest, a load-testing tool
• Astra SiteManager, a comprehensive visual Web site management tool suite
• Astra QuickTest, an icon-based functional testing product

Mission statement of ps-testware:

“To offer the best solution to quality problems
of computer systems by using its test expert knowledge

in a professional way.”

Tiensesteenweg 329 • 3010 Leuven • Tel.: +32-16-359380 • Fax: +32-16-359388 • e-mail: info@pstestware.com • http://www.pstestware.com

• Best solution: the solution that

provides the highest contribution.

• Computer systems: hardware as

well as software under all forms,

such as IT, automation, embedded

systems, etc.

• Test expert knowledge:

the intellectual asset of ps-testware,

a profound and complete knowledge

regarding verification and validation

(testing).

• Professional: the courage to really

provide what has been promised.

ps_testware

The mission of ps_testware:

To offer the best solution to quality problems of computer systems by using its
test expert knowledge in a professional way.

ü Best solution: the solution that provides the highest contribution.

ü Computer systems: hardware as well as software under all forms, such as IT,
automation, embedded systems, etc.

ü Test expert knowledge: the intellectual asset of ps_testware, a profound and
complete
knowledge regarding verification and validation (testing).

ü Professional: the courage to really provide what has been promised.

Don't hesitate and visit our website: http://www.pstestware.com

Q-Labs

Q-Labs is dedicated to providing software engineering solutions to the
industry, enhancing software development capabilities. Q-Labs' expertise is
as a change facilitator, which includes providing 'state-of-the-art solutions'
as well as supporting dissemination of 'industry standard best practices.'
Our approach is to keep our customers steps ahead in software engineering.
Q-Labs products and services include:
o Software Management
 (Business Analysis, Software Process Improvement, ROI Calculations, ...)
o Software Process Improvement
 (SW-CMM-based Software Process Improvement, SE-CMM, Measurements, ...)
o Technology Transfer and Deployment services (Inspections, UML, SDL, ...)
o Cleanroom Software Engineering
 (Statistical Usage Testing, Sequence Based Specifications, Incremental
 Development)
o Humanics (Teamwork, P-CMM)
o Software Acquisition services (SA-CMM, Supplier Evaluations, External QA,
 ...)
o Test Support (Daily Builds, Automated test)
o Contract Development Services
 (software specification, development and test for customer projects)
Our goal is customer success. For example, Q-Labs in its role as the primary
provider of SPI support for the Ericsson System Software Initiative, helped
Ericsson save 60 million USD in 1997 due to improved software quality.
Q-Labs works with a number of customers around the world, including Alcatel,
Bosch, CTI, Ericsson, IBM, Siemens, and the U.S. Army.
Q-Labs was founded in 1989 and has over 60 employees at offices located in
Sweden, Germany, US, Ireland, and Norway. We have a very strong international
network and a strong capability to support global customers. Q-Labs is a
joint venture between DNV and Ericsson.
For more details, visit us at www.q-labs.com or send write us at
info@q-labs.com.

Qualityhouse

Qualityhouse is the Netherlands’ leading independent company aimed at Quality-assurance in
ICT. Qualityhouse does not involve itself in software development whatsoever and is thus able to
use its unique position in the market to offer a truly independent quality assessment. The range of
services offered by Qualityhouse include:

Testing software
Qualityhouse supports software testing by placing testers as consultants within projects. These
consultants are highly educated and skilled specialists in the field of software testing. Projects can
be performed in-house at the client’s site. Additionally Qualityhouse offers the possibility of
outsourcing the entire test process.

Improving test processes
As a specialised software testing company, Qualityhouse can help you improving your test
processes. Qualityhouse can provide assistance in adjusting current test processes to a changing
environment or in designing the structure for an entirely new test process.

Improving software development processes
Qualityhouse has extensive experience in assessing software development processes. Using the
Capability Maturity Model, assistance can be given in improving software development cycles.
Qualityhouse can effectively lead diverse groups, working towards successfully establishing a
more efficient development process.

Training
Qualityhouse shares its in-depth knowledge and experience in software testing by offering a
variety of courses and workshops. A full six week in depth course on software testing can be
followed by prospective software testers. Additionally in-house courses are given on a selection
of relevant software testing subjects.

Qualityhouse is the Netherlands’ leading independent
company aimed at Quality-assurance in ITC.

Qualityhouse focuses on:

■ testing software
■ improving testprocesses
■ improving software

development processes
■ courses on testing

Qualityhouse supports software testing
by placing testers as consultants within
projects and by offering the possibility
of outsourcing the entire testprocess.
Qualityhouse does not involve itself
in software development whatsoever.
As a result of this unique position
Qualityhouse is capable of offering
a truly independent quality assessment.

Qualityhouse BV,
P.O. Box 5138, 1410 AC Naarden, The Netherlands
Tel: +31 (0)35 699 02 22 Fax: +31 (0)35 699 02 29

E-mail: info@qualityhouse.nl

Rational Software Corporation

Rational Software (NASDAQ: RATL), creator of the Unified
Modeling Language (UML), is the leading provider of a solution that unifies
proven software development principles, tools, and services to improve the
productivity of project teams and individuals. Rational's products span the
critical activities of requirements management, visual modeling, testing,
and configuration and change management.

Rational's mission is to ensure the success of customers who
depend on their ability to develop the software upon which their businesses
depend. Rational enables its customers to achieve business objectives by
turning software into a source of competitive advantage, decreasing
time-to-market, reducing the risk of failure, and improving software
quality.

Rational's comprehensive solution unifies proven principles
of software development, an integrated family of market-leading tools, and
technical consulting services into a set of software Best Practices
applicable through the development lifecycle by all members of a development
team. Rational's products can be purchased and used individually or
integrated with other Rational products, leveraging the power of each
individual product.

Rational has more than 1900 employees worldwide, with
corporate headquarters in Cupertino, California. Major development centers
are located in California, Massachusetts, Oregon, Colorado, North Carolina,
Washington, Pennsylvania, Sweden, and India. For more information, visit
Rational's Website at www.rational.com <http://www.rational.com> .

Before taking another step, make sure your
mission-critical applications are bug-free

Reasoning, Inc. is the leading provider of automated software inspection services that finds bugs in
software fast and at 1/10th the cost of testing. Whether you are concerned about the reliability of mission-
critical applications or eBusiness applications that must run flawlessly—24 by 7 by 365—Reasoning’s
highly automated Inspector Plus services can reduce the risk of application failures and enhance the
quality of your software. Let Reasoning be your software reliability safety net.

To find out more about Reasoning and how to contact a Reasoning representative in your area, visit our
web site at www.reasoning.com.

© 1999 Reasoning, Inc. Reasoning, Inspector Plus, and the Reasoning logo are either trademarks and/or service marks of Reasoning, Inc.

Reasoning Inspector Plus
Automated Software Quality and Reliability Services

The Value of Inspector Plus Services

Inspector Plus services significantly enhance application reliability and data integrity by
finding defects early in the development cycle. This approach reduces disruptions,
coding rework, and recurring testing that prolong the development cycle and increase
the chances of introducing new errors. Inspector Plus is extremely effective when used
either before or after testing. The optimal approach is to inspect code prior to testing
and to re-inspect during maintenance.

automated software inspection

System downtime resulting from undetected software defects cost organizations $85 billion

in 1998 despite the billions of dollars spent on software testing and maintenance.

To help enterprises and commercial software developers avoid the problems caused by

software defects, Reasoning, Inc., the world leader in software inspection services, offers

Inspector Plus.SM Inspector Plus augments resource-constrained software development and

quality assurance teams by automatically pinpointing a wide range of software defects that

can cause application failures and data corruption. Based on the results of the inspection,

Reasoning’s consultants also provide an assessment of the overall quality and reliability of

an organization’s software.

The service employs a highly automated software inspection toolset that is based on

Reasoning’s advanced Code-base Management System (CBMS). The toolset uses

sophisticated software re-engineering technology and artificial intelligence to analyze,

learn, and adapt to different coding styles. This unique capability combined with a

proven software inspection methodology, enables fast and highly accurate inspections.

Analysis and
Coding Testing Production

Integration
Inspector Plus

Inspection
Inspector Plus
Re-Inspection

Where Inspector Plus fits in the development cycle

Inspector Plus:

• Identifies defects early

• Finds defects that testing misses

• Finds defects faster at one-tenth
the cost of testing

• Verifies and validates software
modifications

• Assesses compliance with
corporate coding standards

• Improves reliability

Reasoning can customize Inspector Plus technology
to detect violations of corporate coding
standards including:

• Naming standards, such as defined field
lengths and restrictions on first characters
in names

• Formatting rules, such as enclosing literals
in quotes and indenting certain clauses

• Size restrictions, such as the number of
statements in a module

• Prohibited verbs, such as GO TO and STOP

• Documentation rules, such as requirements
for documentation of program function and
output messages

phase1Phase 1: Preliminary Inspection

Certified inspection analysts using Reasoning’s automated
Inspector Plus technology start the inspection process by
analyzing a sampling of source code to identify defects that
could cause application failure, data corruption, incorrect
behavior, or unpredictable results. Reasoning analysts check the
preliminary computer-generated results and review potentially
serious defects with the client.

Reasoning’s automated inspections detect over
35 different types of defects, which can cause
data corruption and system abends, including:

• Computational defects, such as size truncation
or arithmetic overflow

• Data handling defects, such as uninitialized
data elements or lack of end-of-file checks

• Interface defects, such as missing subroutine
arguments or lack of return code checks

• Fragility defects, such as deeply nested IF
statements or overlapping unstructured code

• Resource defects, such as memory leaks or
improper memory deallocation

phase2

Inspector Plus at Work

Inspector Plus combines an exhaustive, high-speed analysis
of software with the expertise of analysts in a five-phase
methodology that provides fact-based technical information
and a results-oriented Action Plan. The automated software
inspection process detects a broad range of software defects
and identifies error-prone programs. In addition, Inspector
Plus classifies the defects recorded in an organization’s defect
tracking system to determine their root causes and highlight
areas that may require process improvement. Using the results
of Inspector Plus analysis, Reasoning consultants prepare
an Action Plan to improve the reliability of the software
and decrease the time and cost of maintenance.

Phase 2: Technical Review

After the preliminary inspection, Reasoning consultants
collaborate with the client’s IT management and application
subject matter experts to identify and prioritize the focus
areas of the final inspection. Focus areas may include specific
types of defects, compliance to corporate coding standards,
and process improvements. Objectives are set for broadening
the scope of the final inspection to include an analysis of the
defect database. Information gleaned from the defect database
augments the inspection process and can have a significant
impact on Reasoning’s findings and recommendations.

Technical
Review

Final
Inspection

Final
Report

Periodic
Re-inspections

Preliminary
Inspection

Automated Inspection
of Source Code

Analysis of
Defect Database

Source Code

Phase 1 Phase 2

Phase 5

Phase 3

Phase 4

Sent
via the
Internet
or on
Media

Reasoning
Automated
Software

Inspection Center

Inspector Plus five-phase methodology

phase4

phase3

Phase 3: Final Inspection

The purpose of the final inspection is to generate an Action
Plan to cover the following areas:

• Software Defect Action Items

• Software Fragility Action Items

• Software Process Action Items

Software Defect Action Items identify critical software
defects that should be removed to improve the reliability
of the application. These defects are identified by integrating
the results of the code inspection and defect database
analysis together with the feedback from the application
development team.

Software Fragility Action Items identify those modules
of an application that are most fragile by measuring each
module’s software fragility index (SFI). This index determines
the likelihood that code will fail by analyzing code structure.
The steps required to reduce its fragility is also determined.

Software Process Action Items include a set of recommended
best practices that could reduce frequently occurring defects
that are recorded in an organization’s defect tracking database.
Process recommendations may eliminate defects introduced
at any point in the life cycle including requirements analysis,
design, coding, and testing.

Comprehensive Reporting

• Software Defect Summary Report: identifies
defects in each program that may cause it to
function unreliably

• Software Defect Cross-Tabulation Report:
describes the number and specific type of defects
by program

• Software Defect Detailed Report: notes the file,
line, defect class, statement, and data elements
for each defect

• Software Fragility Report: identifies modules
that are most likely to break as a result of
maintenance actions

• Defect Classification Report: classifies the types
of defects reported in the defect tracking database

• Standards Compliance Report: lists corporate
standards violations by program and type
of violation

Phase 4: Final Report

In the final management briefing and report, Reasoning
presents and documents the Action Plan. The plan
describes Reasoning’s recommendations for both software
and process improvements.

Software Recommendations
The action plan defines specific defects in the code that
could affect future output. Fragile modules that are at
highest risk are also pinpointed. Reasoning delivers software
recommendations that enable managers to focus their
resources, improve the reliability of their software, and
reduce its fragility.

Process Recommendations
Based on the results of defect classification and coding
standards analyses, Reasoning recommends best practices
that can reduce the occurrence of defects and improve
compliance coding standards. Inspector Plus deliverables
include a complete set of summary and detailed reports that
provide the foundation for the recommendations documented
in the Final Report.

Reasoning Inspector Plus

©1999 Reasoning, Inc. Reasoning, Inspector Plus, and the Reasoning logo are either trademarks and/or service marks of
Reasoning, Inc. All other product or service names may be trademarks of the companies with which they are associated.

Reasoning, Inc.
700 East El Camino Real
Mountain View, CA 94040
U.S.A. Tel: +1 650.429.0350 Fax: +1 650.429.0222 Web: www.reasoning.com Email: info@reasoning.com

Summary

Reasoning offers Inspector Plus services to help software
development organizations produce highly reliable software
faster and at a lower cost—without placing new demands
on in-house IT departments. These services complement
testing and are more accurate and scalable than manual
software inspections. Inspector Plus provides a safety net that
helps protect enterprises and commercial software developers
from the serious and costly consequences of software failures.

Language Support

• C

• C++

• COBOL

• PL/I

Advanced Technology for Automated Code Inspections

Inspector Plus is one of many tool-based processes that are
integrated with the Reasoning5™ CBMS—a revolutionary code
object store and software analysis/transformation engine. Using
the Software Developer Kit, Reasoning and technology partners
have built many Language Gateways and CBMS Plug-Ins for
automated software inspection, Y2K compliance, and the
transformation of applications to new platforms.

Parse Tree

Advanced
Parser

Generator

CQML
Compiler

Report
Writer

GUI
Toolkit

Code Query and Manipulation Language
(CQML)

Storage Engine

Logic Flow
Graph

Data
Flow Graph

COBOL

PL/I

C

C++

SQL

Other

Language
Gateways

CBMS Plug-Ins (CPI)

Reasoning5 Code-base Management System
(CBMS)

Software
Developer
Kit (SDK)

Software
Inspection Year 2000Software

Transformation

Source Code

Reasoning Code-base Management System

phase5

Phase 5: Periodic Re-inspection

Periodic Re-inspections leverage the clients’ investment and
the knowledge gained in the initial inspection process to
ensure applications remain defect-free during redevelopment
and maintenance.

Reasoning/Inspector Plus
Automated Software Quality and Reliability Services

Despite the billions of dollars spent on software testing and maintenance, defects in software
frequently cause serious and costly business disruptions.

To help enterprises and commercial software developers avoid the problems caused by
software defects, Reasoning Incorporated, the world leader in software inspection services
offers Inspector Plus™. Inspector Plus assesses the overall quality and reliability of software
and pinpoints a wide range of software defects in applications that can cause failures and data
corruption.

Inspector Plus combines the power of computers with the expertise of analysts in a five-phase
consultative process designed to provide fact-based technical information and a results
oriented action plan. It relies on an automated software inspection process to detect many
classes of software defects and to identify error-prone programs. In addition, Inspector Plus
classifies defects recorded in an organization's defect tracking system to determine the root
causes of defects and highlight areas that may require process improvement. Using the results
of its analysis, Reasoning’s consultants prepare an Action Plan to enhance the reliability of the
software and decrease the time and cost of maintenance.

Inspector Plus can help your software development and quality assurance teams develop and
maintain highly reliable software faster and at a lower cost. Implemented as a service,
Inspector Plus is faster and more cost-effective than in-house code inspections because it
uniquely combines advanced technology, software inspection experts, and a repeatable
software inspection process. It helps enterprises reduce the risk of costly software failures,
before testing, and long before they impact the enterprises where they are deployed.

or service names may be trademarks of the companies with which they are associated.

Reasoning

"Reasoning provides a new class of e-services to enhance the
quality and reliability of Internet and legacy applications.

Reasoning's Inspector Plus uses a combination of automated
software inspection technology and a repeatable methodology to
rapidly inspect software for defects that cause software failures
and data corruption.

Unlike conventional solutions, Reasoning's Inspector Plus services
does not require large investments in staff, tools, and training.
The benefits are more reliable software, reduced testing costs and
faster time to deployment."

Software Research, Inc.
901 Minnesota Street
San Francisco, CA 94107 USA
http://www.soft.com

Software Research, Inc. is a leading edge company that develops, markets and supports
the TestWorks suite of automated software and website testing tools. We work in
partnership with top level managers, developers and QA organizations to assist them in
meeting their product goals. We deliver industry-leading products, educational seminars,
product training and technical support.

TestWorks is a fully integrated suite of tools that help ensure the quality of software
products. TestWorks offers an end-to-end solution that covers all aspects of the process
life cycle, including: test design and development, test data generation, test execution and
evaluation, reporting and test management, code comprehension, coverage analysis,
metrics and maintenance, and the development and maintenance of WWW technology.

Our latest tool, CAPBAK/Web [IE] Ver. 1.5, is a TEST-ENABLED WEB BROWSER for
Windows 95/98/NT, aimed at validation and verification features and activities of complex
websites. CAPBAK/Web is an object-oriented capture replay system, based on the
Microsoft Internet Explorer [IE] browser. Webmasters now have a highly reliable test
engine to help determine that a website is acceptable and credit card transactions are
functioning properly. In the age of e-commerce, with multi-million dollar web transactions
hanging in the balance, CAPBAK/Web will help assure the reliability and quality of
e-commerce operations.

At Software Research, we believe that high quality products and services empower our
customers to be successful. With our broad suite of products, our customers continually
enhance their QA process, reduce costs and schedule overruns, and improve their overall
product quality.

1

Testing E-Business Applications

Regis Mauger

European Field Market Manager

TopicsTopics

■ Introduction
■ How to capture Business Processes
■ How to use Business Processes captures

● To do Functional Testing

● To do Load Testing

● To monitor the Service level delivered in production

■ Mercury Interactive Background

2

Introduction

The Reality: Enterprise ComplexityThe Reality: Enterprise Complexity

■ Heterogeneous Systems
■ Variety of tools used in implementations
■ Shortage of IT resources

Custom Client/ServerCustom Client/Server

SAPSAP
Oracle AppsOracle Apps
PeoplesoftPeoplesoft
BaanBaan

ERP AppsERP Apps

JavaJava
Active/XActive/X

HTMLHTML

E-businessE-business Y2000Y2000

MTSMTSDCOMDCOM

DatabaseDatabase

EuroEuro
CORBACORBA

3

&XVWRP &OLHQW�6HUYHU&XVWRP &OLHQW�6HUYHU

5HJUHVVLRQ)XQFWLRQDO 7HVWLQJ�5HJUHVVLRQ)XQFWLRQDO 7HVWLQJ� :LQ5XQQHU:LQ5XQQHU
/RDG DQG 3HUIRUPDQFH 7HVWLQJ�/RDG DQG 3HUIRUPDQFH 7HVWLQJ� /RDG5XQQHU/RDG5XQQHU

:HE�H�EXVLQHVV:HE�H�EXVLQHVV 3DFNDJHG $SSOLFDWLRQV3DFNDJHG $SSOLFDWLRQV

:LQ5XQQHU:LQ5XQQHU 		
/RDG5XQQHU/RDG5XQQHU IRU�IRU�

%DDQ%DDQ
6$36$3
2UDFOH $SSOLFDWLRQV2UDFOH $SSOLFDWLRQV
3HRSOHVRIW3HRSOHVRIW

<�.�(XUR<�.�(XUR

:LQ5XQQHU:LQ5XQQHU 		
/RDG5XQQHU/RDG5XQQHU

IRU�IRU�

<�. � (XUR<�. � (XUR
7HVWLQJ7HVWLQJ

Open Test Architecture :Open Test Architecture : Integrate Other Application Lifecycle Mgmt Tools Integrate Other Application Lifecycle Mgmt Tools

Mercury Interactive’s Testing Solutions

:LQ5XQQHU:LQ5XQQHU 		 /RDG5XQQHU/RDG5XQQHU IRU�IRU�
7HVWLQJ (QWHUSULVH :HE�EDVHG $SSOLFDWLRQV7HVWLQJ (QWHUSULVH :HE�EDVHG $SSOLFDWLRQV

$VWUD$VWUD IRU�IRU�
)DVW� VLPSOH ZHE WHVWLQJ)DVW� VLPSOH ZHE WHVWLQJ

7HVW 0DQDJHPHQW�7HVW 0DQDJHPHQW� 7HVW'LUHFWRU7HVW'LUHFWRU

AstraAstra & & TestSuiteTestSuite Enterprise 6.0 Enterprise 6.0

■ Astra - Fast, simple web
testing

● Astra QuickTest, Astra
LoadTest, Astra SiteManager

● ActiveScreen technology
simplifies testing

● Architected from the ground
up for web testing

● First testing tools you can “try
& buy” on the Web

■ TestSuite Enterprise 6.0 - an
Integrated suite of
Enterprise testing tools...

● TestDirector 6.0 for test
management

● WinRunner 6.0 for functional
& regression testing

● LoadRunner 6.0 for load
testing

…ensure higher reliability and a
positive end-user experience

4

How to capture Business
Processes

Internet

www.hotbot.com

What is a Business Process?What is a Business Process?

www.nashvillebootco.com

Copyright © 1994-99 Wired Digital Inc. All rights reserved.

5

Press RecordRecord to start the Business
Process Recording

Conduct Business Process...Conduct Business Process...

6

Conduct Business Process...Conduct Business Process...

Conduct Business Process...Conduct Business Process...

7

Press Press Stop Stop to end the Business Processend the Business Process
RecordingRecording

Replay a Business ProcessReplay a Business Process

8

How to use Business Processes
captures

Functional Testing

9

Automated Testing BenefitsAutomated Testing Benefits

■ Speed
■ Repeatability
■ Programming capabilities
■ Coverage
■ Reliability
■ Reusability

Record user
actions in
script

Record user
actions in
script

11
Add
verification
statements to
check AUT

Add
verification
statements to
check AUT

33

Run test or
suite of tests
Run test or
suite of tests

4422
Synchronize

script to
application
under test

Automated Testing processAutomated Testing process

10

A statement that instructs functional
testing tool to wait for a certain
response from the application during
playback.

What Is a Synchronization Point?What Is a Synchronization Point?

11

Wait for a
bitmap to
refresh

BITMAP

Wait for a
window

WINDOW

No visual cue;
just wait for
set time to
elapse

ELAPSED
TIME

Establish Visual Cue to SynchronizeEstablish Visual Cue to Synchronize
ExamplesExamples

Wait for an
object state

OBJECT
STATE

What Is Verification?What Is Verification?

Verify that the visual cues are
appearing as expected and
database operations are done
as expected.

12

GUI Object VerificationGUI Object Verification

■ Check the state or attributes of GUI objects:
● Is the window the correct size?
● Is the OK button enabled?
● What's the content of the Name field?

Bitmap Image VerificationBitmap Image Verification

■ Check non-GUI
object areas of
the application
by capturing a
bitmap

■ Capture bitmap
of window, object,
or area of screen

13

Text VerificationText Verification

■ Read and verify text from bitmap areas or non-
GUI objects based interfaces (e.g., ASCII)

Database VerificationDatabase Verification
■ Compares database values with end-user input to ensure

transaction accuracy.

14

Report Tree
pane

Report Tree
pane

Report
Details
pane

Report
Details
pane

m
erc_toys.qtp

 Results file

result 1

merc_toys

View the Execution SummaryView the Execution Summary

&XVWRP &OLHQW�6HUYHU&XVWRP &OLHQW�6HUYHU

5HJUHVVLRQ)XQFWLRQDO 7HVWLQJ�5HJUHVVLRQ)XQFWLRQDO 7HVWLQJ� :LQ5XQQHU:LQ5XQQHU

:HE�H�EXVLQHVV:HE�H�EXVLQHVV 3DFNDJHG $SSOLFDWLRQV3DFNDJHG $SSOLFDWLRQV

:LQ5XQQHU:LQ5XQQHU IRU�IRU�

%DDQ%DDQ
6$36$3
2UDFOH $SSOLFDWLRQV2UDFOH $SSOLFDWLRQV
3HRSOHVRIW3HRSOHVRIW

<�.�(XUR<�.�(XUR

:LQ5XQQHU:LQ5XQQHU

IRU�IRU�

<�. � (XUR<�. � (XUR
7HVWLQJ7HVWLQJ

Open Test Architecture :Open Test Architecture : Integrate Other Application Lifecycle Mgmt Tools Integrate Other Application Lifecycle Mgmt Tools

Functional Testing Solutions

:LQ5XQQHU:LQ5XQQHU IRU�IRU�
7HVWLQJ (QWHUSULVH :HE�EDVHG $SSOLFDWLRQV7HVWLQJ (QWHUSULVH :HE�EDVHG $SSOLFDWLRQV

$VWUD$VWUD 4XLFN7HVW4XLFN7HVWIRUIRU��
)DVW� VLPSOH ZHE WHVWLQJ)DVW� VLPSOH ZHE WHVWLQJ

7HVW 0DQDJHPHQW�7HVW 0DQDJHPHQW� 7HVW'LUHFWRU7HVW'LUHFWRU

15

Load Testing Testing

■ Minimizes the risk involved in deploying complex enterprise
systems by predicting behavior and performance. It helps
optimize the system by identifying and isolating performance
bottlenecks

■ Supports the widest range of environments

■ Simple, easy to use graphical interface accelerates testing
process

■ Integration gives a complete testing solution

BenefitsBenefits

16

Database

GUI-Vuser

GUI-Vuser

GUI-Vuser

Application
Server

NonGUI Vuser

Virtual Users on Real SystemsVirtual Users on Real Systems

■ GUI Vusers
● End to end simulation of a real GUI user

■ ‘NonGUI Vusers’
● The next possible level below the GUI

● Exercise the whole architecture behind the
GUI

Capture
business
processes
to create the
virtual users

Capture
business
processes
to create the
virtual users

11

Run the load
scenario
Run the load
scenario

33
Analyze and
interpret the

results

Analyze and
interpret the

results

4422
Create the

load
scenario

Load Testing processLoad Testing process

Tune/optimize System

17

An end-to-end measurement of
one or more user actions
within a recorded business
process.

Transaction

Input Order Information Measure Save Order

Measure Entire Update OrderMeasure Entire Update Order

Setting up Transactions –ExampleSetting up Transactions –Example

Measure Logon processTransaction 1

Transaction 2 Overall measurement of all
non-logon processes

Transaction 3 Measure a database-
intensive process within main
transaction

18

The Start and Stop Transaction IconsThe Start and Stop Transaction Icons

Common icons and usage examples

Start Transaction
Set starting point for
measurement

End Transaction
Set end point for
measurement

Transaction Analysis – ExampleTransaction Analysis – Example

Transaction
name

Transaction
name

Performance
summary

Performance
summary

19

The events and conditions that
define a load test, such as:

Scenario

• Number of Vusers
• Vuser actions (scripts)
• Machines that Vusers run on(hosts)

virtual
users

load
conditions

host
machines

results
location

test
scripts

Host 1 Host 2

Creating a ScenarioCreating a Scenario
Controller

Server(s)

Vusers VusersScripts Scripts

20

What the Controller ProvidesWhat the Controller Provides
■ Before scenario execution

● creates scenario
● sets up run-time configuration

■ During scenario execution
● runs many Vusers simultaneously
● controls each Vuser (load, run, pause, stop)
● displays execution status of each Vuser
● displays execution messages from each Vuser
● collects performance data

■ After scenario execution
● launches the Analysis tools
● analyzes system performance

Controller Main WindowController Main Window

Host
machinesScripts

Run
Vuser

Initialize
Vuser

Vuser
status

21

What MI’s Load Testing Tools ProvideWhat MI’s Load Testing Tools Provide

■ Automatic Programmatic IP-Multicasting
● feature that emulates different IP addresses for virtual users

■ Allowing users to :
● Exercise network devices (hubs, bridges, routers)
● Test firewall security impact on performance

■ Ability to handle 50,000+ virtual users
■ Scheduler

● allows automatic ramp up of virtual users during a scenario

■ Web performance monitors
● that measures & displays transaction time spent on Web

server, network, & app server

Isolates bottlenecksIsolates bottlenecks

■ Collects and presents data from client, network, & server
● Transaction Breakdown Monitor, Network Delay Monitor, Server

Monitor
● SNMP Monitor, Tuxedo Monitor

Client Network delay Database/OS delays

End-to-end response time

22

Percentile GraphPercentile Graph

50% of the
transactions completed in

57 seconds or less

Transaction DistributionTransaction Distribution

Great! 21 of the
25 total transactions

took less than
6 seconds.

23

Cross-Scenario GraphsCross-Scenario Graphs

This comparison
shows that the tuning

performed in between runs
is working.

Transaction Performance Summary ReportTransaction Performance Summary Report

24

&XVWRP &OLHQW�6HUYHU&XVWRP &OLHQW�6HUYHU

/RDG DQG 3HUIRUPDQFH 7HVWLQJ�/RDG DQG 3HUIRUPDQFH 7HVWLQJ� /RDG5XQQHU/RDG5XQQHU

:HE�H�EXVLQHVV:HE�H�EXVLQHVV 3DFNDJHG $SSOLFDWLRQV3DFNDJHG $SSOLFDWLRQV

/RDG5XQQHU/RDG5XQQHU IRU�IRU�

%DDQ%DDQ
6$36$3
2UDFOH $SSOLFDWLRQV2UDFOH $SSOLFDWLRQV
3HRSOHVRIW3HRSOHVRIW

<�.�(XUR<�.�(XUR

/RDG5XQQHU/RDG5XQQHU

IRU�IRU�

<�. � (XUR<�. � (XUR
7HVWLQJ7HVWLQJ

Open Test Architecture :Open Test Architecture : Integrate Other Application Lifecycle Mgmt Tools Integrate Other Application Lifecycle Mgmt Tools

Load Testing Solutions

/RDG5XQQHU/RDG5XQQHU IRU�IRU�
7HVWLQJ (QWHUSULVH :HE�EDVHG $SSOLFDWLRQV7HVWLQJ (QWHUSULVH :HE�EDVHG $SSOLFDWLRQV

$VWUD /RDG7HVW$VWUD /RDG7HVW IRU�IRU�
)DVW� VLPSOH ZHE WHVWLQJ)DVW� VLPSOH ZHE WHVWLQJ

7HVW 0DQDJHPHQW�7HVW 0DQDJHPHQW� 7HVW'LUHFWRU7HVW'LUHFWRU

Application PerformanceApplication Performance
ManagementManagement

25

Application Performance Management TodayApplication Performance Management Today

■ Performance is not measured at the business process level
● Various “System” monitors generate confusing data

■ Application availability data is not meaningful to end-users
● Reports are difficult to extrapolate outside of IT

■ IT is unable to anticipate application disruptions
● IT is forced to be reactive to user demands

Current SolutionsCurrent Solutions
 Existing tools are net/server centricExisting tools are net/server centric

Total requests made per hour/done/outstanding

Status of each server

Detailed report on the domain configuration

Boot and shut down by domain, machine, group
and server

Monitors status of the Process Scheduler

Monitors status of jobs queued through the
process scheduler

Tracks Process Server statistics

Lots of Data, No End User Perspective

26

Introducing: “Topaz”Introducing: “Topaz”

Web ServerBrowser Network

■ “Topaz” measures end-user experience
– Client perspective

– Proactively measures actual business processes as opposed to system data

– Provides meaningful data on application performance and availability

Back End Server

“Topaz” Benefits“Topaz” Benefits

■ Bridges gap between business users and IT organizations
● Talks the language of the user - Transactions & Business Processes

■ Delivers quantifiable, measurable user experience to
optimize application and infrastructure

● Define and enforce Service Level Agreements
● Maintain quality control of outsourcing agreements

■ Helps identify performance problems proactively
● Alert business user to application problems, before they find them

27

How Does “Topaz” Work?How Does “Topaz” Work?

LAN/WAN

Dial up

 Intranet

Web Server

App. Server

Database

 Internet

Define Thresholds
Collect Data
Send Alarms

Browse reports on-line,
from any machine

Topaz Console

Record user experience

Proactively run
Transactions on all

machines

Real-time Application StatusReal-time Application Status

■ “Topaz” provides “health” summary of application

28

Data Presented in End-User’s TermsData Presented in End-User’s Terms

■ “Topaz” provides pertinent application data in simple end-user terms

Data for ManagingData for Managing SLA’s SLA’s

■ “Topaz” reports validate Service Level performance

29

“Topaz” Capabilities“Topaz” Capabilities

■ Measuring & reporting End-user experience
● Availability, Performance.

■ Drive simulated users, replacing the real users
■ On-line monitoring of the end-user experience
■ Real-time alerts (E-mail, pager) based on

thresholds
■ "Anytime, Anywhere” monitoring - browser

based SLM graphs and reports

Mercury InteractiveMercury Interactive
BackgroundBackground

30

Mercury Interactive WorldwideMercury Interactive Worldwide

� Founded in August 1989
� IPO in October 1993 -- NASDAQ : MERQ
� Headquarter in Sunnyvale, Silicon Valley
� 600+ employees in 30 worldwide locations
� Regional HQ in München, Paris, London, Brussels,

Stockholm

13
23.5

39.5
54.6

76.7

121

-15

5

25

45

65

85

105

125

1993 1994 1995 1996 1997 1998

80%80%

68%68%

38%38%

41%41%

58%58%

M
ill

io
ns

 $

Mercury Interactive :Mercury Interactive :
Accelerating GrowthAccelerating Growth

■ $21.8m Net Profit in 1998

31

Independent Analysts confirm
Mercury Interactive’s leading position:

Forrester
Gartner Group
Giga
IDC
Meta Group
Yankee Group

Mercury Interactive :Mercury Interactive :
Undisputed Dominant LeadershipUndisputed Dominant Leadership

The Industry ConfirmsThe Industry Confirms : :
MI’s ThoughtMI’s Thought Leadership Leadership

STAR Award-Winning Customer Support
Recognized for excellence in Electronic Support
Only Testing Tool company ever recognized

"Mercury Interactive continues to raise the bar in delivering
automated testing tools...it succeeds in delivering depth of
capabilities across a breadth of custom, packaged application,
Internet and Year 2000 and Euro testing environments."

The Case for Auditing
Year 2000 Software Repairs
How to Mitigate the Risks of Computer Failures and Reduce the
Cost of Year 2000 Compliance

Version 3.0

 The Case for Auditing Year 2000 Software Repairs

1 www.reasoning.com

 The Case for Auditing Year 2000 Software Repairs

2 www.reasoning.com

Table of Contents

1. Introduction ... 3

2. Why Audits of Year 2000 Software Repairs Are Necessary ... 5

3. The Benefits of Software Inspections .. 7

4. How Inspections Lowers Testing Risks and Costs ... 8

5. How to Perform an Inspection ... 11
Who Should Perform an Inspection .. 12

6. Inspection Scenarios.. 12
Internally Remediated Applications .. 12
Offsite or Offshore Factory-Remediated Code.. 13
Consulting Project Audits ... 13
Independent Validation and Verification (IV&V) ... 13
Vendor Software Packages.. 13
Key Supplier Applications... 14
Maintaining Compliance After Remediation .. 14

7. Inspection Case Studies .. 15
Telecommunications Company #1 .. 15
Telecommunications Company #2 .. 15
Utility Company .. 15
Aerospace Company.. 16
Health Insurance Company.. 16

8. Conclusion.. 16

9. Footnotes .. 17

10. About Reasoning, Inc.. 18

 The Case for Auditing Year 2000 Software Repairs

3 www.reasoning.com

THE CASE FOR AUDITING YEAR 2000 SOFTWARE
REPAIRS

HOW TO MITIGATE THE RISKS OF COMPUTER FAILURES AND
REDUCE THE COST OF YEAR 2000 COMPLIANCE

1. Introduction

Unprecedented information technology (IT) resources are now being devoted to resolving the
Year 2000 software crisis. It is a profound business problem with a fast approaching
immovable deadline. Many companies still face a staggering amount of software repair and
testing work with too few resources.

The Year 2000 problem is an extreme case of software maintenance where thousands of extra
bugs per million lines of code will have to be identified, repaired, and tested. When software
applications require such extensive debugging and modification, even the most skilled
programmers under the best of circumstances cannot find all the bugs and invariably introduce
new bugs. As we enter the next century, somehow all fixes must be completed correctly and
validated to ensure that business operations are uninterrupted.

Business disruptions caused by faulty software can be costly and sometimes devastating in
terms of lost business, damage to customers, and declines in stock value, which in turn may
lead to litigation. Reports of serious disruptions caused by software bugs are commonplace.
The following recent examples were found in The New York Times online news:

• A large telecommunications company’s 800 services outage: A 1.5-hour outage caused by a
software problem cost customers several hundred million dollars.

• New Jersey Department of Motor Vehicles computer problem: A new software program
failed in the first hour after installation, forcing all 45 field offices to turn away thousands
seeking licenses, registrations, and other services.

• Oxford Health Plans billing problem: Billing and payment software problems resulted in
failure to collect hundreds of millions of dollars from member hospitals and doctors,
causing large losses and a drop in Oxford’s market value of $3 billion in one day.

• Union Pacific tracking problems: Software problems resulted in massive rail tie-ups,
costing businesses billions of dollars.

• Snap-On, Inc. order processing problem: Software bugs in a new order entry system cost
the company $50 million in sales for the first half of 1998 and caused second quarter
earnings to drop 40 percent compared with the same period in 1997.

Due to the pervasiveness and complexity of Year 2000 software bugs, experts believe that
serious business disruptions will escalate exponentially. Every company needs to ask itself
whether it has done enough to ensure that operations will continue into the next century and, if
so, whether the company can withstand the anticipated onslaught of litigation and survive
unscathed.

 The Case for Auditing Year 2000 Software Repairs

4 www.reasoning.com

This paper explains how audits of remediated software offer companies a strategic line of
defense against Year 2000 risks from a business operability and legal protection perspective.
The main benefit of auditing software repairs is that it dramatically increases the chances of
finding fatal errors that have been omitted, introduced, or fixed incorrectly during the Year
2000 remediation process. Section 2 explains why traditional software testing generally
regarded as the final software quality safety-net doesn’t ensure all serious errors will be found
in a Year 2000 scenario. It is well documented that standard testing misses many errors and in
certain circumstances, inadequate testing is inevitable because of insufficient test data, testing
skills, subject matter expertise, cost, and lack of time.

Inadequate Year 2000 testing in particular may expose a company to serious legal liabilities
and compromise a successful legal defense by serving to indict a company for reckless or
negligent behavior in the face of a known risk. The legal community has been mobilizing to
deal with Year 2000-related litigation and in fact several cases have already been filed and the
case load is starting to build. Robert T. Russell, an attorney specializing in Year 2000
insurance matters for the Silicon Valley law firm of Gray, Carey, Ware & Freidenrich, warns
that a wave of Year 2000-related lawsuits are inevitable and that companies should not assume
existing business insurance protects the company or individual officers from liability.
According to Mr. Russell, common property/business interruption and commercial general
liability policies are unlikely to cover the more common types of Year 2000 claims while
certain forms of errors and omissions and directors and officers liability policies may offer
limited protection. Consequently, attorneys and risk management consultants advise corporate
clients to use software audits as a means of enhancing a company’s due diligence file to
support the use of the “business judgement rule” as a defense against Year 2000-related
shareholder actions and negligence law suits.

 The Case for Auditing Year 2000 Software Repairs

5 www.reasoning.com

2. Why Audits of Year 2000 Software Repairs Are Necessary

In an ideal world, where all software development and maintenance are properly done the first
time, there is no reason to conduct testing to validate the functionality and performance of
software. Unfortunately, errors in software are inevitable in the real world. The complexity
and breadth of Year 2000 compliance issues in application software, processes, and embedded
systems make it impossible for any analysis or remediation method to identify and fix all
possible problems. The software testing process has traditionally served as the last line of
defense, protecting business operations from disastrous failures and legal liabilities. That is
why testing has been designated as the most critical phase of a Year 2000 compliance effort.

The primary goal of testing is to find and eliminate as many errors as possible. However, based
on the recent findings of several industry authorities and real-world case studies (see Section
7), it is evident that traditional testing practices are often inadequate for verifying Year 2000
compliance, and that audits of Year 2000 software repairs are necessary for many reasons:

• Testing misses many Year 2000 software defects.

• New errors are introduced during the remediation process. Leading Year 2000 consultants,
Ian Hayes and William Ulrich state in their book, The Year 2000 Software Crisis - The
Continuing Challenge, that programmers, regardless of skill level, on average introduce
three new errors for every 100 changes they make to the code.

• The quality of Year 2000 software repairs performed by external service providers is
suspect. According to the Gartner Group, 90 percent of the remediation jobs performed by
external service providers contain quality problems.

• A high percentage of applications repaired internally contain fatal errors and inconsistent
repairs. A recent survey conducted by the Information Technology Association of America
found that 44 percent of the respondents experienced Year 2000 failures after remediation
under operating conditions and 67 percent reported failures during tests.

• Compliant applications put back into production have been “re-contaminated” through
routine maintenance procedures or interaction with noncompliant systems. A survey
conducted in March 1998 by Market Perspectives Inc., reported that 12 percent of the 300
companies surveyed reported Year 2000 re-contamination problems.

• Vendor packages and supply chain systems are not Year 2000 compliant.

This data begs the question of why software testing fails to identify a significant number of
Year 2000 bugs and is an insufficient means of ensuring compliance. The answer is that Year
2000 testing poses the following unique challenges, different from standard software testing.

 The Case for Auditing Year 2000 Software Repairs

6 www.reasoning.com

• Fixed timeframe. The end date of a Year 2000 project cannot be postponed. Many
applications will encounter date-related windows of failure even before the century
transition. Adequate testing must be completed before these event horizons.

• Inadequate test environments. Year 2000 testing requires specialized tools and techniques
including the ability to simulate future-dated environments, manipulate test data and
perform intelligent comparisons. Executing a large volume of concurrent tests also requires
additional hardware capacity.

• Lack of testing skills. While most programmers have experience in performing
maintenance changes and generating simple test cases to exercise those changes, Year 2000
testing requires far more extensive testing skills. A skilled Year 2000 tester must be able to
create and manipulate test data, conduct rigorous tests of all types (regression, future date,
boundary) and at all levels (unit, integration, system), and to perform test coverage analysis.

• Lack of subject matter expertise. Few Year 2000 testing teams have the luxury of fully
understanding the applications they are testing. Few applications have adequate
documentation, and in most cases, the original experts have long since moved to other jobs.
Application expertise enables testers to make informed decisions on where best to apply
their efforts. Without this experience, testers are forced to rely on the adequacy of their
testing techniques and the depth of their test coverage.

• Far more changes to test. In a single application of one million lines of code, 2,000 to
3,000 or more Year 2000-related modifications are typically required. This is a far greater
number of changes than required during routine maintenance, and the changes span
multiple programs and databases. These changes also tend to be scattered throughout the
code, making it difficult for programmers to consistently implement fixes.

• Poor test data. Most applications have little, if any, test data. Lack of test data can lead to
low levels of test coverage, which can easily allow defects to slip through testing into
production. Many testers plan to rely on subsets of production data as the basis for their
tests. Production data rarely covers more than 20 to 30 percent of the paths in an
application.

• Insufficient resources. Companies must test almost every application, operating system,
platform, package, and environment for Year 2000 compliance. With little time remaining,
hundreds of concurrent test projects will compete for the same hardware and human
resources.

 The Case for Auditing Year 2000 Software Repairs

7 www.reasoning.com

Because basic testing already accounts for 50 percent or more of the average Year 2000 project
resources and costs, extreme testing is not feasible in most cases. Compounding the problem,
recent industry statistics show that remediation projects are behind schedule since many
organizations have miscalculated the complexity, time, and resources required to implement
repairs. For example, a survey published by CapGemini on July 20, 1998, found that the
percentage of companies missing Year 2000 project milestones from December 1997 through
April 1998 rose from 78 percent to 84 percent. And according to the META Group, a
prominent IT advisory firm in Stamford, Connecticut, more users are falling behind in Year
2000 remediation (META FAX July 13, 1998). To make matters worse, a recent Gartner Group
survey of 6,000 companies worldwide found that more than 50 percent said they are not
planning to do any Year 2000 compliance testing because of lack of time and resources.
Testing can get even more complicated for companies that must also perform tests on packaged
software and the interdependent software programs used by key suppliers. All this means that
many organizations will have to cut short the time available for basic testing, as illustrated in
Figure 1.

3. The Benefits of Software Inspections

Given the limitations of testing, companies must seek other means to compensate and increase
the odds of catching Year 2000 bugs. The solution is to use the same proven software auditing
and quality assurance method that leading software firms such as IBM, SAP, PeopleSoft,
Oracle, Adobe, and others use to improve quality and reduce development costs and time—
software inspections. Every error identified during an inspection means fewer errors to find
during testing. This holds true when inspections are used in the Year 2000 software
remediation lifecycle. Inspections can significantly increase the probability of finding Year
2000 noncompliances before testing and reduce the time and cost to complete Year 2000
projects. Properly executed, inspections provide a number of additional benefits:

Repair

Y
e
a
r

2
0
0
0

Testing!

Inventory /
AnalysisPlanning

Project Schedule Slippage

Figure 1: Testing is constrained by Year 2000 repair overruns.

 The Case for Auditing Year 2000 Software Repairs

8 www.reasoning.com

• Protect against application failures. Inspections reduce the risk that an application will
fail in production. When the Year 2000 arrives, an extraordinary number of date-related
failures may occur simultaneously. A single error or failure can produce a ripple effect
throughout operations. Minor errors can compound, resulting in damages far exceeding the
sum of the individual errors. Unmanageable failures can paralyze operations. Each error
caught during inspection, can mean far fewer problems later.

• Reduce the impact of failures that may still occur and improve testing efforts. Production
errors are costly and time-consuming to fix. Inspections help focus testing efforts by
identifying the likely failure points and the particularly tricky or risky areas in application
logic, so contingency plans can be developed to handle potential errors. These preparations
decrease the time needed to recover from errors, reducing their overall impact and cost.

• Provide legal protection. Inspections increase the chances that applications and systems
will work reliably, as designed. In litigation over software failures, inspection and testing
practices demonstrate the level of care taken by a company to reduce the risk of failure.
The combination of inspection and testing efforts becomes a persuasive argument in
avoiding legal liability.

• Provide audit coverage. Inspections produce documentation that demonstrates to auditors,
insurers, government regulators, customers, and partners that extra measures have been
taken to ensure software is Year 2000 compliant. Retaining inspection documentation will
provide a paper trail to satisfy these entities and provide a foundation for legal defenses.

4. How Inspections Lowers Testing Risks and Costs
In a traditional software inspection, a programmer manually reviews modified source code, line
by line.1 Today, an inspection is a tool-assisted analysis and quality assurance review
performed on modified software prior to testing. In the Year 2000 context, the purpose of
inspections is to audit, validate, and document the compliance of remediated source code and
to ensure that compliance specifications (standards for achieving compliance) and quality
standards are observed. By providing the means to evaluate source code before testing, the
inspection process does not disrupt project schedules or ongoing processes. Quite the
opposite: with inspections, overall cycle time is reduced, and resources can be redeployed.
In fact, with Reasoning’s highly automated inspection toolset and process, inspections of
millions of lines of code can now be completed in just a few days (see Section 7).

As shown in Figure 2, inspections are not meant to replace testing. Rather, they serve as an
adjunct to testing by reducing the probability of “show stopper” defects making it to
production. It is also a good policy to re-inspect code periodically after it is put back into
production. This practice helps detect Year 2000 defects that infect compliant applications,
including defects introduced during ongoing maintenance, and corruption through links with
noncompliant systems and data.

 The Case for Auditing Year 2000 Software Repairs

9 www.reasoning.com

 To understand how inspections save effort and associated costs, it is important to understand
the testing process and the actions that occur when an error is discovered. Figure 3 depicts a
typical testing phase with recurring efforts. Recurring tasks are performed each time a test is
executed. It is far more costly to assemble an application for testing, set up a test environment,
execute a test, detect an error, fix the error, and retest than it is to find the error in an inspection
prior to testing. Multiple studies on software inspections have found that a company can
achieve a return of 10 to 1 on its inspection investments by reducing the recurring testing
efforts and the costs associated with finding and fixing defects during the testing process.2
These findings are not surprising since an application often needs to undergo several testing
cycles before it can be certified as Year 2000 compliant.

 Figure 3: Year 2000 recurring testing efforts.

Unit Program
Testing

Example: Testing of an entire
payroll system (all programs
running together) and types and
volumes of transactions to validate
performance and functionality before
and after the Year 2000.

10. Develop system test scripts
11. Set up test on hardware
12. Run test
13. Halt due to related error
14. Analyze error, find location
15. Return program for correction
16. Wait for program return
17. Reinsert into test suite
18. Begin again at step 2 or 11

Example: Testing of individual
payroll program modules to validate
performance and functionality before
and after the Year 2000.

1. Develop program test scripts
2. Set up test on hardware
3. Run test
4. Halt due to related error
5. Analyze error, find location
6. Return program for correction
7. Wait for program return
8. Reinsert into test suite
9. Begin again at step 2

System
Testing

Integration
Testing

Example: Testing of payroll,
production, and financial systems
running together, interacting with and
processing all transaction types, and
simulating peak volumes to validate
performance and functionality before
and after the Year 2000.

19. Develop integration test scripts
20. Set up test on hardware
21. Run test
22. Halt due to related error
23. Analyze error, find location
24. Return program for correction
25. Wait for program return
26. Reinsert into test suite
27. Begin again at step 2, 11, or 20

Analysis and
Remediation Inspection Testing

Production
Integration

Figure 2: Where inspection fits in a Year 2000 project life cycle.

Re-Inspection

 The Case for Auditing Year 2000 Software Repairs

10 www.reasoning.com

 The greatest cost of an error that evades testing is likely to be the ramifications of the failure
itself, which can range from inconvenience to significant damage to downstream operations to
huge monetary losses. As the real-world examples cited in the Introduction of this paper
illustrate, serious production errors can result in millions or billions of dollars in losses and
liabilities. In the most likely scenario, an application will have already undergone several
testing cycles before failing due to an unresolved production error.

 Figure 4 demonstrates the effectiveness of software inspections as a means for improving the
efficiency of a standard testing process. In this example, a very conservative percentage of
changes still results in over 2,000 modifications in an application consisting of a million lines
of code (LOC). A study of software reengineering projects found that programmers routinely
make three errors for every 100 modifications, leading to 60 expected defects. Error types
include omissions, modifying code that should not be changed, and making incorrect changes.
Although overall productivity varied greatly, this study found little difference in the error rate
between experienced and inexperienced programmers.

 Figure 4: The impact of Year 2000 software inspections.

Scenario 1 Scenario 2 Scenario 3
No Testing Testing Only Testing with

Inspection

Example Application
 Application Size (LOC) 1,000,000 1,000,000 1,000,000
 % of Code Changed 0.2%
 Number of Changes 2,000 2,000 2,000
 Expected Error Rate 3 3%
 Expected Defects 60 60 60

Effect of Inspections
 Inspection Efficiency 4 60%
 Errors Caught NA NA 36

Effect of Testing
 Testing Efficiency 5 30%
 Errors Caught NA 18 76

Remaining Errors 60 42 17

Probable Impact
 Show Stoppers 7 5% 3 2 1
 Mission Impact 7 20% 12 8 3
 Minor 7 30% 18 13 5
 Unresolved7 45% 27 19 8

 The Case for Auditing Year 2000 Software Repairs

11 www.reasoning.com

 The 60 percent inspection efficiency rate is taken from the published experience of the
Hewlett-Packard Company, while the 30 percent testing efficiency rate assumes the use of
production data as the basis for regression tests. The Probable Impact section categorizes the
effect of errors that reach production. Show stoppers prevent the application from operating
until they are resolved. Mission impact errors have a significant impact on application
operations or cause damage to downstream operations. Minor errors result in inconvenience,
while unresolved errors cause intermittent problems or remain dormant waiting to be triggered.

 An examination of these three scenarios clearly demonstrates the benefits of using inspections
to supplement testing efforts. At the depicted level of coverage, the standard testing procedures
shown in scenario 2 are obviously inadequate. Overall testing efficiency would have to reach
72 percent to equal the combined benefits of inspection and testing as shown in scenario 3.
Scenario 3 assumes that testing will detect an incremental set of errors in conjunction with
inspection because some errors, such as faulty interactions with other software, cannot be found
through inspection alone.

 Although this data may seem to de-emphasize testing in favor of inspections, the combination
of the two approaches provides the greatest benefits. By eliminating a large percentage of
errors before testing, the inspection process reduces the number of errors that must be caught
during testing (24 rather than 60), thereby reducing testing cycles and the number of errors that
will slip into production.

5. How to Perform an Inspection
 Performing an inspection is conceptually simple. In a Year 2000 project, an inspection is
performed on a remediated application prior to testing. First, an extremely accurate and
automated analysis tool must be used to rapidly analyze a remediated application to detect all
date instances that are suspect. It is important to note that a different analysis toolset,
process, and personnel should be used than the toolset, process, and personnel originally
used to analyze and locate date defects in code. Otherwise, the value of the inspection is
severely diluted and the fundamental benefit of an independent audit is forfeited.

 Speed and accuracy are critical technical capabilities for Year 2000 inspections because one of
the primary objectives is to reduce the time and cost of the Year 2000 project life cycle.
According to the META Group, Reasoning’s software analysis technology delivers the
automation, speed, and accuracy needed to perform reliable inspections, and stands out as the
yardstick by which other inspection offerings should be measured.8

 The automated analysis step produces information or reports locating and describing suspect
date occurrences along with problematic remediated code. All components of an application
are analyzed together so that the consistency of remediation strategies used throughout the
application can be verified. The information produced by the analysis step is then used to
reconcile areas of concern. The inspector uses this information to review all date-sensitive
items to determine whether they were modified or fixed correctly, and whether those fixes had
any inadvertent side effects. As part of the review, the inspector also compares the remediated
application to its initial compliance specification (compliance policy) to reconcile any
discrepancies. For example, if the original compliance policy stated that all year fields should

 The Case for Auditing Year 2000 Software Repairs

12 www.reasoning.com

 be expanded to four digits but the remediation process failed to expand all the specified fields,
this discrepancy would be identified and reconciled during the inspection. After noting all
defects and discrepancies, the inspector can take several actions, depending on the particular
scenario. For internally remediated applications, the application can be recycled for correction
and further inspection. For vendor-packaged software or factory, or consultant-remediated
code, the IT organization can demand corrective action or negotiate some other remedy. All
inspection reports should be retained to establish a paper trail for future audits or litigation.

 To streamline the inspection process, the inspection tool must not “over-report” or “under-
report” suspected date instances. Over-reporting date instances increases workloads as
valuable time is wasted examining and eliminating non-date suspects. Even worse, under-
reporting compromises Year 2000 efforts by missing date instances that could cause production
errors. An advanced tool like Reasoning/2000 for Inspection can be configured to minimize
over-reporting and automatically locate only those classes of Year 2000 faults specified by the
compliance policy, thus increasing the speed and accuracy of the inspection. In addition it uses
the latest technology, including advanced parsing, control and data flow analysis, and artificial
intelligence to minimize under-reporting, and to provide accurate information to the user.

Who Should Perform an Inspection

 A variety of people including programmers, systems analysts, consultants, and auditors can
perform inspections, but no one should ever inspect his or her own work. To derive the full
benefits of an inspection, reviewers must be objective, without any preconceived notions about
an application or its remediation. The more familiar reviewers are with the remediated
application, the less objective they can be and the more difficult it is to detect errors.

6. Inspection Scenarios
 The scenarios below illustrate how IT organizations can use inspections to audit the Year 2000
compliance and quality of remediated software. Project managers may use inspections to
review the work done by their own programmers, outside contractors, and software vendors.
Auditors and legal staff may use inspections to monitor the performance of IT and Year 2000
progress, and to help create protective paper records in the event of future litigation.

Internally Remediated Applications
No IT organization, with the time and resources remaining, can create a Year 2000 test
environment that is thorough enough to detect all errors introduced or overlooked during
remediation. Given this limitation, there is a pressing need to detect the defects in a methodical
manner rather than through hit-or-miss testing. Inspections can be used on internally
remediated applications to:

• Verify compliance, ensuring that all affected dates have been found and fixed correctly
without adversely impacting other functionality.

• Check for adherence to quality standards and compliance specifications.
• Direct testing efforts to likely failure points.

 The Case for Auditing Year 2000 Software Repairs

13 www.reasoning.com

Offsite or Offshore Factory-Remediated Code
Offsite or offshore factory-remediated code is exposed to a variety of risks, including gaps in
the vendor’s quality assurance procedures (leading to poor code quality), lack of subject matter
expertise (leading to incorrect remediation decisions), and language barriers or poor
communications with internal staff (leading to incorrect remediation decisions). Inspections
can be used to:

• Verify the compliance of remediated code and adherence to compliance specifications.
• Detect “error profiles” of common errors produced by the vendor’s tools or techniques for

early correction before errors proliferate.
• Monitor software quality. The vendor’s manual versus automated methods, commercial

versus those developed in-house, quality assurance processes, and standards enforcement
all affect the quality and accuracy of the final product.

Consulting Project Audits
The remediated code produced by consulting vendors needs inspections because of various
possible risks, including lack of subject matter expertise, inexperienced consultants, and gaps
in the vendor’s quality assurance procedures. The current IT resource shortage coupled with
skyrocketing salaries has forced many consulting firms to staff with junior-level workers,
especially when fixed-price contracts constrain salaries. Depending on the experience of the
consultants, code quality can vary enormously.

Independent Validation and Verification (IV&V)
A growing number of commercial industry sectors such as financial services and public
utilities, as well as government agencies are now required by regulators, legislation, or business
policies to perform IV&V as a means of certifying Year 2000 compliance. Audits of software
repairs via inspections provide organizations with a proven approach to satisfy IV&V
requirements.

Vendor Software Packages
Most IT organizations rely on vendors to ensure the quality of their software, testing only
internal modifications to the software. Consequently, these organizations are not equipped to
test the functionality of a new release. Companies have already encountered problems with
supposedly compliant software packages. For example, Household International, a financial
services company, reported that it conducted tests on a reportedly compliant version of
VisionPlus, a credit-card processing system from PaySys International Inc., only to find Year
2000 defects.9 Similar stories abound. Inspections can be used to:

• Verify the compliance of packages.
• Determine the level of testing required. If the inspection reveals compliance or quality

problems, the organization should perform additional tests and use the inspection reports to
pressure the vendor for fixes.

 The Case for Auditing Year 2000 Software Repairs

14 www.reasoning.com

• Substitute for testing when testing is impractical or impossible. This scenario is likely to
occur when a vendor delivers a release too late to permit testing or when IT does not have
the test data or resources to perform testing.

Key Supplier Applications
Most companies depend on one or more key suppliers whose failure to provide goods or
services could seriously impact corporate operations. For this reason, most companies are
engaged in supplier management programs designed to ascertain supplier Year 2000
compliance and determine legal due diligence defenses. The problem is, without hard
evidence, no company can blindly rely on a supplier’s compliance claims. Confidentiality
concerns can be addressed by having neutral third parties, such as consulting firms, perform the
inspection. In some cases, contractual arrangements may give a company the right to audit its
suppliers’ operations. Inspections of key supplier applications are an excellent means of
determining the supplier’s true level of compliance. Inspections can be used to:

• Gain valuable insight into supplier Year 2000 operability.
• Verify the compliance of a key supplier’s applications. This effort ensures that all critical

applications have been properly fixed to avoid Year 2000 problems that could cause
interruptions in services or supplies.

• Provide mutual benefits to a company and its suppliers. Although suppliers may initially
resist inspection as too intrusive, the results can also benefit their business.

Maintaining Compliance After Remediation
Once an application has been remediated, tested, certified as compliant, and released to
production, ongoing maintenance may cause it to become noncompliant in the future.
Compliant modules may be inadvertently overlaid by noncompliant versions or be
contaminated by noncompliant changes. Solid configuration management can help prevent
module overlays, and training can help prevent programmers from making future non-
compliant changes, but there is no way to guarantee that applications will remain compliant.
For example, one large company accidentally discovered that 14 noncompliant changes had
been introduced into certified, compliant code. Having to fix and retest contaminated
applications not only wastes time and money, but also exposes weaknesses in internal controls
and procedures, and provides the basis for lawsuits. Inspections can be used to monitor and
audit the ongoing compliance of certified applications. While a random auditing program may
suffice for most applications, critical applications should always undergo inspections to ensure
their continuing compliance.

 The Case for Auditing Year 2000 Software Repairs

15 www.reasoning.com

7. Inspection Case Studies

The following case studies summarize the results of five early inspection pilot projects
performed by Reasoning. In four out of the five cases, the code had been previously
remediated. In the remaining case the application was developed using Year 2000 compliant
coding standards and was thought to be free of Year 2000 defects. The identities of the
companies have been withheld at their request. All five companies are Fortune 500 class and
have decided to perform Year 2000 software inspections on a broader set of applications.

Telecommunications Company #1

• Application: Various financial and accounting programs
• Lines of source code: 4,500,000
• Remediation method used: tool-assisted analysis and manual remediation
• Time to complete inspection: 3 weeks
• Year 2000 problems: 11 places in the code were found that would positively fail when

processing dates that span the century; testing would not have detected these errors due to
constraints on the test coverage plan. In addition this application was remediated using
date field expansion to four digit years yet 1,637 date related variables with a 2-digit year
were found as well as 114 hard-coded century “19s”.

Telecommunications Company #2

• Application: Service tracking system
• Lines of source code: 130,000
• Remediation method used: tool-assisted analysis and remediation
• Time to complete inspection: 4 days
• Year 2000 problems: This code had already been tested and put back into production. 21

places in the code were located that would positively fail when processing dates that span
the century boundary. Description of failures:
− One copybook that had a hard coded ‘19’ would have caused 9 programs to fail
− Hard coded centuries were found which would have caused 2 programs to fail
− Internal Sorts were found which would have caused 3 programs to fail
− Date computations were found which would have caused 7 programs to fail
− Date comparisons were found which would have caused 8 programs to fail

Utility Company

• Application: Service request and tracking system—this application was developed in
accordance with Year 2000 compliant coding standards including four-digit DB2 Date
Type year fields and was thought to be Year 2000 compliant

• Lines of source code: 2,334,011
• Time to complete inspection: 2 weeks
• Year 2000 problems: more than 1,000 fatal or serious errors were found including 254 date

calculation errors, 192 date comparison errors, 537 erroneous move year errors, 105 date
field errors, and 102 date windowing errors.

 The Case for Auditing Year 2000 Software Repairs

16 www.reasoning.com

Aerospace Company

• Application: Purchase Order System
• Lines of source code: 106,249
• Remediation method used: tool-assisted analysis and manual remediation
• Time-to-complete inspection: 2.5 days
• Year 2000 problems: 6 fatal errors plus 12 potentially serious defects were found.

Health Insurance Company

• Application: Claims system
• Lines of source code: 30,065
• Remediation method used: tool-assisted analysis and remediation
• Time-to-complete inspection: 1 day
• Year 2000 problems: 51 fatal errors plus 20 potentially serious defects were found.

8. Conclusion

The value of inspections was best summarized by Watts Humphrey, a highly respected expert
in software development. The following quote is from chapter 10 of his landmark book,
Managing the Software Process (see footnote 1).

“Inspections are an important way to find errors. Not only are they
 more effective than testing in finding many types of problems, but they
 also find them early in the project when the cost of making corrections
 is far less.

 Inspections should be a required part of every well-run software
 process, and they should be used for every software design, every
 program implementation, and every change made either during
 original development, in test, or in maintenance.”

The Year 2000 crisis poses risks to every business, no matter the size, location, or industry.
There will not be enough time to test all mission critical software to the degree necessary to
guarantee complete safety before the new millennium. Organizations need another safety net—
software inspection. Inspections offer a powerful way to find errors, improve the quality and
productivity of the software remediation process, and to help companies minimize the risks of
Year 2000-related operational disruptions and their associated costs and legal liabilities.

 The Case for Auditing Year 2000 Software Repairs

17 www.reasoning.com

9. Footnotes

1. The traditional inspection consisted of a peer review of a programmer’s work to uncover
problems and improve quality. Humphrey, Watts S. Managing the Software Process.
Addison-Wesley, 1989, Chapter 10.

2. “…you can expect a yield of about 10 to 1 (not of total engineering costs, rather compared
to what you would spend finding and fixing the same defects in test).” Grady, Robert B.
Successful Software Process Improvement. Prentice Hall PTR, 1997, Chapter 13, p. 233.

3. In an unpublished study conducted by Ian S. Hayes of Clarity Consulting, Inc., South
Hamilton, Massachusetts, programmers performing software reengineering work were
found to commit an average of 3 mistakes for every 100 programming changes.

4. Inspections save 60 percent of rework costs. Grady, Robert B. Successful Software Process
Improvement. Prentice Hall PTR, 1997, Chapter 13, p. 252.

5. Assumes 30% test path coverage, which is typical for test data taken from production.

6. 60 - 36 = 24 x 30% = 7.

7. Jensen, Randall W., and Tonies, Charles C. Software Engineering. Prentice Hall, 1979,
Chapter 5, p. 404.

8. “Y2K Inspection Services: Auditing Y2K Finders and Fixers.” META Group, Inc.
Enterprise Data Center Strategies, May 20, 1998.

9. Caldwell, Bruce “The Year 2000 Double Take—Project Managers Struggle to Cope as
Software Vendors Fail to Deliver on Promises.” Information Week, May 18, 1998,
www.techweb.com.

For more information on the subject of software inspection, an excellent collection of
references and information is available at http://www.ics.hawaii.edu/~johnson/FTR/. This site
is maintained by Computer Science Professor Philip Johnson at the University of Hawaii.

 The Case for Auditing Year 2000 Software Repairs

18 www.reasoning.com

10. About Reasoning, Inc.

Headquartered in Mountain View, California, Reasoning, Inc. is a leading provider of e-
services that accelerate the readiness of applications for the Internet through a unique
combination of automated and repeatable software inspection and transformation processes for
large enterprises, independent software vendors and Internet companies. Reasoning's
technology also ensures the reliability of mission-critical legacy applications. Founded in 1984,
the company provides sales and services in North America and a growing network of
subsidiaries and distributors in Europe and Asia-Pacific.

Reasoning, Inc. Tel: +1 (650) 429-0350
700 East El Camino Real Fax: +1 (650) 429-0222
Mountain View, CA 94040 Email: info@reasoning.com

Web: www.reasoning.com

.

©1999 Reasoning, Inc. All rights reserved. Reasoning, Reasoning5, Reasoning/2000 for Inspection, and the
Reasoning logo are trademarks of Reasoning, Inc. All other product or service names may be trademarks of the
companies with which they are associated.

.

http://www.reasoning.com/

 The Case for Auditing Year 2000 Software Repairs

19 www.reasoning.com

Notes

1

� ���� 5HDVRQLQJ ,QF�

�

www.reasoning.com

5HDVRQLQJ
,QVSHFWRU�3OXV
Software Quality and Reliability Services

Michael Jacobsen-Rey,
Brussels - November 3, 1999

� ���� 5HDVRQLQJ ,QF�

�

www.reasoning.com

$JHQGD

• Reasoning - the Company

• Why testing is not enough

• Software Inspection

• Inspector Plus

• Fundamentals

• Inspection Classes

• Service Methodology

• Getting started

2

� ���� 5HDVRQLQJ ,QF�

�

www.reasoning.com

������������������&RPSDQ\

• Founded 1984, privately held

• Jim Treybig joins as Chairman of Board in 1996
(Founder & Former CEO of Tandem Computers)

• Headquarters in Mountain View, CA

• Offices in North America, Europe and Japan

• Stanford University re-engineering technology heritage

• Pioneer in automated software transformation and defect
filtering technology

• Recognized as industry leader in 2nd-generation
software analysis and transformation technology

� ���� 5HDVRQLQJ ,QF�

�

www.reasoning.com

:K\�WHVWLQJ�LV�QRW�HQRXJK

• Even the most rigorous testing performed by U.S.
companies finds only 85% of all software defects.
[Capers Jones, 1997]

• Most testing programs only test 30% to 40% of an
application. [The Standish Group, 1998]

• “Testing is never finished, only abandoned”
[Encyclopedia of Software Engineering]

• Testing is capital and labor intensive

3

� ���� 5HDVRQLQJ ,QF�

�

www.reasoning.com

�3UHVVXUH�WR�VKRUWFKDQJH�WHVWLQJ

• Comes at end of Software
Development Life Cycle

• Project overruns lead to cuts in testing
to meet deadlines

P
ro

je
ct

 D
ea

dl
in

e
P

ro
je

ct
 D

ea
dl

in
e

CodingCoding

Testing!Testing!

AnalysisAnalysis
Plan-Plan-
ningning

Slippage

� ���� 5HDVRQLQJ ,QF�

�

www.reasoning.com

6RIWZDUH�LQVSHFWLRQ

Software inspection is an egoless, peer
review of software to find problems and
improve quality.

Proof reading…….

4

� ���� 5HDVRQLQJ ,QF�

�

www.reasoning.com

6RIWZDUH�LQVSHFWLRQV�FDQ�EH
PRUH�HIIHFWLYH�WKDQ�WHVW

• NASA Goddard Space Flight Center

• Code inspection was found to be more effective than
either functional testing or structural testing

V.R. Basili and R.W. Selby, “Comparing the Effectiveness of
Software Testing Strategies,” IEEE Transactions on Software
Engineering

� ���� 5HDVRQLQJ ,QF�

�

www.reasoning.com

/HVV�GHIHFWV�DIWHU
,QVSHFWLRQ

�

������

������

������

������

�������

�������

�������

�0 �0 �0 �0 �0 �0 �0 �0 �0 ��0

Without inspection

With inspection

6RXUFH� Capers Jones, Software Productivity Group

'HIHFWV

/LQHV RI FRGH �PLOOLRQV�

Based on 1 defect
per 100 loc

5

� ���� 5HDVRQLQJ ,QF�

�

www.reasoning.com

,QVSHFWLRQ�	�4$�3URFHVV

• Ideally occur after development/maintenance is
complete and prior to testing

• May occur after testing

• May occur during maintenance

$QDO\VLV DQG

&RGLQJ
,QVSHFWLRQ 7HVWLQJ

3URGXFWLRQ

,QWHJUDWLRQ
5H�LQVSHFWLRQ

� ���� 5HDVRQLQJ ,QF�

��

www.reasoning.com

,QVSHFWLRQ�DFFHOHUDWHV
GHYHORSPHQW�DQG�UHGXFHV�FRVWV

• Inspection finds up to 65% of all defects prior to
testing, thus reducing test time and cost.1

• The cost of fixing a defect in testing is 10 times
the cost of finding a defect prior to testing.2

• Inspections save 60% of rework costs.3

1. Capers Jones, Software Productivity Research, Inc.
2, 3. Robert B. Grady, Successful Software Process Improvement,
Prentice Hall PTR, 1997.

6

� ���� 5HDVRQLQJ ,QF�

��

www.reasoning.com

0DQXDO�6RIWZDUH
�����,QVSHFWLRQ

Defined
Fault

Classes

Defined
Fault

Classes

Inspection
Report Human

Reviewers

• Time consuming
• Labor intensive
• Expensive
• Incomplete

� ���� 5HDVRQLQJ ,QF�

��

www.reasoning.com

$XWRPDWHG�6RIWZDUH
�������,QVSHFWLRQ

Defined
Fault

Classes

Defined
Fault

Classes

Inspection
Report

Computers/Analysts

• Fast
• Accurate
• Scalable
• Inexpensive
• Comprehensive

7

� ���� 5HDVRQLQJ ,QF�

��

www.reasoning.com

,QVSHFWRU�3OXV

Reasoning5
CBMS

Inspector Plus
Technology and

 Services

• Recognizes Defects

• Improves Reliability

• Measures Software Fragility

• Checks on Coding standards

• Provides Process
Improvement

• Ongoing Process possible

• Fast and Accurate

� ���� 5HDVRQLQJ ,QF�

��

www.reasoning.com

)XQGDPHQWDOV

Reasoning/2000 Inspector
Plus

 Ingres ABF -
Oracle

Designer

CBMS

Control
Flow
Graph

Data
Flow
Graph

Abstract
Syntax
Tree

CQML CQML

CBMS

Solaris

CQML
Compiler

SDK

Report
Writer

GUI
ToolKit

Advanced
Parser

Generator

FortranFortran

PL/IPL/I

NATURALNATURAL

•••
Ingres ABFIngres ABF

Sprachen

COBOLCOBOL

AdaAda

CC

FORTRANFORTRAN

8

� ���� 5HDVRQLQJ ,QF�

��

www.reasoning.com

'HIHFW�LQVSHFWLRQ�FODVVHV��VDPSOHV�

• Interface (causes application to crash)
• Incorrect number/type/size of arguments

• SQL/CICS Return code unchecked

• Initialization (leads to unpredictable behavior)
• Uninitialized data element

• Record used fields partially set

• Computation (causes incorrect behavior)
• Arithmetic overflow

• Unsigned subtraction

• Alphanumeric to numeric

� ���� 5HDVRQLQJ ,QF�

��

www.reasoning.com

'HIHFW�LQVSHFWLRQ�FODVVHV��FRQW��

• Assignment (results in data corruption)
• Size truncation

• Precision truncation

• Sign truncation

• Fragility (makes program error-prone)
• GO TO out of perform range

• GO TO into perform range

• GO TO out of paragraph

• Deeply nested IF statement

• Unreachable paragraph (dead code)

9

� ���� 5HDVRQLQJ ,QF�

��

www.reasoning.com

3RWHQWLDO�YLRODWLRQV�SHU�0/2&

0

200

400

600

800

1000

,QWHUIDFH �� ���

,QLWLDOL]DWLRQ �� ��

&RPSXWDWLRQ ��� ���

$VVLJQPHQW �� ���

3UHOLPLQDU\ ����./2&� �0/2&

� ���� 5HDVRQLQJ ,QF�

��

www.reasoning.com

Phase 1
Preliminary
Inspection

Phase 2
 Technical
 Review

Phase 4
Final

Report

Source
 Code

Automated Software
Inspection Center

 Internet or
on Media

Defect
Database

 Phase 3
Final

Inspection

Automated
Inspection of
Source Code

Analysis of
Defect

Database

WORKING-
STORAGE

Phase 5
Periodic

Re-inspections

WORKING-
STORAGE

,QVSHFWLRQ�SURFHVV

10

� ���� 5HDVRQLQJ ,QF�

��

www.reasoning.com

'HOLYHUDEOHV

• Comprehensive Reporting
• Software Defect Reports

• Software Fragility Report

• Defect Classification Report (Defect DB)

• Standards Compliance Report

• Action Plan
• Software Defect Action Items
• Software Fragility Action Items
• Software Process Action Items

• Final Report and Recommendations to
Management

� ���� 5HDVRQLQJ ,QF�

��

www.reasoning.com

$XWRPDWHG�LQVSHFWLRQ
FDVH�VWXG\

• 300K lines of code
• 5 company employees inspecting the same

code in parallel, manually

Results:
• Reasoning's service was 1/3 the cost
• 1/30 the time, and
• Found all errors (manual effort missed 3)

11

� ���� 5HDVRQLQJ ,QF�

��

www.reasoning.com

%HQHILWV�RI�,QVSHFWRU�3OXV�6HUYLFHV

• Independent review

• Leading Inspection technology

• Proven Inspection methodology and expertise

• Minimum impact on development and project
management resources

• High productivity, fast turnaround

• High quality, low cost

� ���� 5HDVRQLQJ ,QF�

��

www.reasoning.com

6XPPDU\

• Improves software reliability

• Offers insurance against costly
business disruptions

• Decreases the costs of software
development and maintenance

• Speeds the time to deliver new releases

Inspector Plus:

12

� ���� 5HDVRQLQJ ,QF�

��

www.reasoning.com

• Preliminary inspection, including consultancy

• Fixed price engagement

• Includes value added management consulting:

• Defect database analysis

• Software development process analysis and
recommendations

*HWWLQJ�VWDUWHG

� ���� 5HDVRQLQJ ,QF�

��

www.reasoning.com

7KH�ILQDO�ZRUG

 “ Inspections are an important way to find errors.
Not only are they more effective than testing in
finding many types of problems, but they also
find them early in the project when the cost of
making corrections is far less.

 Inspections should be a required part of every
well-run software process....”

 Watts Humphrey, Managing the Software Process, Addison-Wesley,
1989, Chapter 10

Page 1

1

Test Environment for TerminalTest Environment for Terminal
CertificationCertification

Dr. Cristian Dr. Cristian RaduRadu
Integri n.v.,

Leuvensesteenweg 325,

Zaventem, BELGIUM

e-mail : cradu@integri.be

Slide 2

OutlineOutline of the talkof the talk

• Motivation

• Terminal environment

• Test management

• TERTIO - Terminal test environment tool

• Graphical User Interface

• Implementation aspects of the test environment

QWE ‘99, November 3, 1999, Brussels ©Integri, 1999

Page 2

Slide 3

 MotivationMotivation

QWE ‘99, November 3, 1999, Brussels ©Integri, 1999

The processing of the terminal is described in its functional specifications, which typically cover:

§ the interface with each entity, specifying the format of the command/response pairs or the
format of the messages exchanged with the host computers;

§ the data structures managed by the terminal, like the Transactions Journal, Terminal
Parameters, and Red Lists;

§ the protocol of each transaction supported by the terminal;

§ the messages displayed for the Merchant and the Cardholder;

§ the sequence of keys that is needed to trigger a certain function provided by the terminal;

§ the initialization and error recovery procedures.

The behaviour of the terminal is completely determined through its interfaces with the entities
composing the terminal environment.

Terminal certification makes sure that the implementation of the terminal
complies with its functional specifications êê Need for certification tools:

TERTIO = TERTERminal TTest EnvIIrOOnment tool

Slide 4

 Terminal environmentTerminal environment

QWE ‘99, November 3, 1999, Brussels ©Integri, 1999

Page 3

Slide 5

It can be noticed that a number of interfaces can be defined between the terminal and each party
that interacts with the terminal:

§ User card interface -- it consists of the set of all the command/response pairs exchanged
between the terminal and the card.

§ SAM interface -- it is the set of all the command/response pairs exchanged between the
terminal and the SAM.

§ Man-machine interface -- it consists of the specialised display, keyboard, and printer that
allow the interaction of the POS terminal with the Cardholder and/or the Merchant.

§ Authorisation Host interface -- it represents the set of all messages exchanged between
the Authorisation Host and the terminal for authorising debit and credit transactions.

§ Clearing Host interface -- it represents the set of all messages exchanged between the
Clearing Host and the terminal during a collection transaction.

QWE ‘99, November 3, 1999, Brussels ©Integri, 1999

The behaviour of the terminal is completely determined through its interfaces with the entities
composing the terminal environment.

Slide 6

 Test managementTest management

The certification process starts with an analysis of the functional specifications of the terminal to
define all the representative test cases. Representative tests should fulfil the following
requirements:

§ effective: the main purpose is that tests should find errors;

§ exemplary: the tests should be representative for as many cases as possible;

§ maintainable: the effort to adapt tests, if the functional specifications of the terminal change
should be minimal;

§ economical: the tests should be written and executed with as little effort as possible, such
that the time needed to execute tests should be minimal.

§ robust: the tests should not be sensitive to the state of the unit under test. If the state does
not correspond to the pre-requisite of the test, the test is able to recover from this situation
and bring the unit into this desired state.

§ repeatable: it must be possible to repeat the test. Note however that this does not imply that
exactly the same input/output will occur because this is not always possible, e.g., due to
random numbers generated by the unit under test, or due to counters maintained by the unit
under test. However it is important that the same test case can be repeated.

QWE ‘99, November 3, 1999, Brussels ©Integri, 1999

Page 4

Slide 7

Slide 8
QWE ‘99, November 3, 1999, Brussels ©Integri, 1999

TERTIO - Terminal test environment toolTERTIO - Terminal test environment tool

The test environment is defined like a set of Test Agents interacting with the terminal to be tested
under the control of a specialised program referred to as the Terminal Test Environment Tool, or
shortly TERTIO. A Test Agent in the test environment plays the role of an entity in the terminal
environment. A Test Agent is featured by the following four characteristics:

§ A Test Agent emulates the external behaviour of the corresponding entity from the terminal
environment by the point of view of the interface with the terminal. Thus, the terminal under
test does not sense the difference between interacting with the Test Agent or with the
corresponding entity.

§ If the data coming from the terminal is erroneous, the Test Agent will detect the anomaly.

§ A Test Agent is able to induce errors in the data forwarded to the terminal. Examples of
errors are format errors in the response of the user card, a time-out in operating a sequence
of keys expected in a certain status of the terminal, or a wrong MAC verification value
returned by the SAM.

§ A Test Agent can be controlled by TERTIO during all of the three stages of execution of a
test.

Page 5

Slide 9
QWE ‘99, November 3, 1999, Brussels ©Integri, 1999

Slide 10

******* PRE_REQUISITE

BufferStr1 = TestProp("Test Node Path")

Call XT_Set(THALES_ITMC_STREAM, THALES_ITMC_TIMEOUT, "UC.Emulation.CurrentTest",
BufferStr1)

Call XT_Set(THALES_ITMC_STREAM, THALES_ITMC_TIMEOUT, "CSM.PassThrough.CurrentTest",
BufferStr1)

Call XT_Set(HOST_ITMC_STREAM, HOST_ITMC_TIMEOUT, "AuthorisationHost.Data.CurrentTest",
BufferStr1)

******* EVENT SCRIPT

RespAuthorisation

Call T_Set ("Response.msg_crc","824A")

Call Compile_Msg

******* POST_REQUISITE

Action = "Please check if the terminal has rejected the Auth_Resp"

Call TestGrid_Add("<Screen.ERROR>")

Call TestGrid_Show

QWE ‘99, November 3, 1999, Brussels ©Integri, 1999

TEST SCRIPTS

Page 6

Slide 11

Terminal Host Emulator

Auth_CmdTrigger
Authorisation Parse, Validate

Send

Compile

Script

RespAuthorisation

Prepare Resp

Auth_Resp

Call T_Set ("Response.Msg_Crc","FABC")
Call Compile_Msg

Auth_Cmd

QWE ‘99, November 3, 1999, Brussels ©Integri, 1999

Triggering of an event-script on a remote Test Agent

Slide 12
QWE ‘99, November 3, 1999, Brussels ©Integri, 1999

 Graphical User Interface Graphical User Interface

Project Tree

It defines various test sessions. Each
test session contains the references
to the objects that are loaded when a
test session is opened, e.g., terminal
data tree, state transition tree, test
list, test library, log, and links to the
Test Agents.

Page 7

Slide 13
QWE ‘99, November 3, 1999, Brussels ©Integri, 1999

Terminal Data Tree

It stores terminal parameters, red
lists, screen messages to be
displayed by the terminal, and
records of the Transactions Journal.
This information can be used for the
programming of the test scripts and
of the State Transition Tree of the
terminal.

Slide 14
QWE ‘99, November 3, 1999, Brussels ©Integri, 1999

Page 8

Slide 15
QWE ‘99, November 3, 1999, Brussels ©Integri, 1999

Test List Tree

It describes the tests
that are necessary to
be executed on the
terminal under test
in order to certify it
according to its
functional
specifications.

Slide 16
QWE ‘99, November 3, 1999, Brussels ©Integri, 1999

Test Script Library

It contains the actual
test scripts to be
executed. TERTIO is
provided with an
extended set of
software libraries
offering cryptographic,
numeric, bit-wise, and
string operations,
including support for
manipulating data
trees.

Page 9

Slide 17
QWE ‘99, November 3, 1999, Brussels ©Integri, 1999

Test Grid Modal Window

In case a Test Agent
cannot be automated,
test grids are displayed
for the Test Operator in
order to assist him
managing the Test
Agent.

Slide 18

Implementation aspects of the test environmentImplementation aspects of the test environment

• THALES software package

• Definitions Tree data structure

• Card Tree data structure

• DLL that implements the behaviour of the card

• PC running THALES

• THALES Hardware Adapter -- STAR 1150

QWE ‘99, November 3, 1999, Brussels ©Integri, 1999

Page 10

Slide 19QWE ‘99, November 3, 1999, Brussels ©Integri, 1999

Slide 20

Integration with other INTEGRI tools

• THALES Test Tool: to prepare physical test smart cards;

• THALES Emulator: to fully emulate a smart card;
• THALES Pass-Through: forwards requests from the terminal to a physical
 smart card , optionally modifying response data from the smart card before
 returning it to the terminal;
• CERTO -- to emulate a host or a cash register interface.

Hardware and software requirements

• Windows NT ® 4 SP 3

• 64 Mbyte RAM

• 40 Mbyte harddisk space
• TCP/IP if RTC is used

Presentation
Title : TestFrame, organising the use of record and playback tools with Action Words.
Category : Advanced Testing Techniques

Abstract
CMG has introduced an entirely new method to the market that improves the use of record
and playback tools in an end user environment: Automated testing with action words. This
method is five years old now and is used by hundreds of people in countless mainly large and
complex projects. Using available test tools standard test software has been developed which
improves the use of those tools. In separate files (i.e. spread sheets) called clusters, records
are defined containing an action word and all the parameters used during this action. The
action word is linked to one or more functions in tailor made test scripts. The main
advantages of this method are:
• Early start of test development: since the test logic is defined in separate clusters the

definition of test cases can start as soon as the development of the system has started.
• Test software is easy to maintain: Test script are programmed, not record. This implies a

clear structure of the technical test products
• Separation between test scripts and test logic: Test cases can be accessed by peaple

who are not experts in test tools or even testing in general
• Clear functional report back of the results of the test in separate test reports

1

Page 1

Chris Schotanus
CMG

THE NETHERLANDS
e-mail: Kris.Schotanus@cmg.nl

TestFrame

Testing with Action Words

TestFrameTestFrame

CMG’s CMG’s integratedintegrated method for: method for:
test developmenttest development
test automationtest automation
testtest organization organization

2

Page 2

TheThe Action Action Word Word Method Method

• not a magic wand

• just a brick in the wall

testing istesting is necessary necessary

• there are always faults

• faults are risks until they are found

• finding them later will cost you more

TIC

TIC
TIC

BOM

3

Page 3

planning and
specification development test

but testing often gets under but testing often gets under pressurepressure

but testing often gets under but testing often gets under pressurepressure

planning and
specification development test

4

Page 4

quality aspectsquality aspects software software
((sourcesource ISO/IEC 9126) ISO/IEC 9126)

• functionality
• reliability
• usability
• efficiency
• maintainability
• portability

test
test
assess
test
assess
partly test

common experienced problemscommon experienced problems
with testing and test automationwith testing and test automation

• costly
• time consuming
• boring to do
• you can’t start early
• often neglected
• difficult to manage:

– what is the progress

– what is the quality

• the proper resources (users, specialists) are not
available when needed

• automated scripts hard to maintain
• ...

5

Page 5

some reasons for automatingsome reasons for automating the the
testtest process process

• saving time by repeating tests automatically

• less boring work

• consistent test execution

• higher reliability of outcomes

((not our approachnot our approach...)...)

record and playbackrecord and playback

6

Page 6

schematicschematic overview overview record & record &
playbackplayback

target
system

log

recorded test
scripts

CAST tool
(invisible for the

system under test)

test data,
entered by the

Tester

““RECORD & PLAYBACKRECORD & PLAYBACK””
•• oneone time time recording recording of of

actionsactions and and checks checks
•• multimulti time playback time playback

•• actionsactions
•• checkschecks
•• resultsresults

•• actionsactions
•• checkschecks

But beware of pitfalls...But beware of pitfalls...

• highly sensitive for maintenance

• test cases difficult to access

• dependant on a working system

• only suitable for on-line systems

bewarebeware pitfallspitfalls

7

Page 7

an alternativean alternative ::
Action WordsAction Words

re-usable test products in TestFramere-usable test products in TestFrame

 A B C D
. . .
transfer Houston Klein 210
check balance Klein 210
transfer Savy Klein 150
check balance Klein 360
. . .

case action
 “transfer”: ...
 “check balance”: ...
end

functional

technical

cluster with scenarios
(in a spreadsheet)

navigation script
(test tool)

8

Page 8

• test development aimed at the
production of “clusters”

– input and expected results
– test language with “action

words”

– in spreadsheets

• automatic execution by a
“navigation script”

– written in the script language of
the cast tool

– general part: the engine
– specific part: the action words

separationseparation of test development and of test development and
test executiontest execution

 A B C D
. . .
transfer Houston Black $210
check balance Black $210
. . .

case action of
 “transfer”: ...
 “check balance”: ...
end case

functional

technical

CAST tool

navigation script

target
systemseparation

report

test design

• test conditions
• test lines

test clusters
(text file)

test plan

• actual results
• comparison with

expectations
• management

information

• input data
• expected outcomes
• documentation

automation
organisation organisation

management

system
development

QA/Auditors

end users

9

Page 9

cluster EXAMPLE OF A TEST CLUSTER
version 1.0
author Hans Buwalda

section 1. Entering clients and balances
last name first name account nr balance

enter client Green John 458473948 1500
enter client Wood Anna 422087596 2100

section 2. Money Transfers
from to sum

transfer 458473948 422087596 500
transfer 422087596 785793025 1201

section 3. Checking names and numbers
account nr last name first name

check name 458473948 Green John
check name 422087596 Wood Anna

account nr sum
check balance 458473948 1000
check balance 422087596 1399

input

expected output

action words test data example of a clusterexample of a cluster

documentary

==
cluster name : EXAMPLE OF A CLUSTER
cluster version : 1.0
cluster author : Hans Buwalda

script name : CMG CAST Navigation Script for MS Test
script version : 1.0
script release date : February 1997

run date and time : 3-03-97 13:39:16
===

SECTION 1 - Relation management

 1 (6): enter client Johnson Jean 458473948 f 1500

 2 (7): enter client Juet Christian 422087596 f 2100

 3 (8): enter client Savy Anne 785793025 f 1700

 4 (9): autonum on

 5 (10): enter client Puk Pierre &keep 01 f 1000

exampleexample of a cluster of a cluster level level report (1) report (1)

10

Page 10

exampleexample of a cluster of a cluster level level report (2) report (2)

 11 (20): check name 76392763 Puk Pierre

 12 (23): check balance 458473948 f 1000

 13 (24): check balance 422087596 f 1400
 ->FAILED: f 1399

===
end of cluster : EXAMPLE OF A CLUSTER
finished at : 3-03-97 13:39:26
time used : 15

number of cluster lines : 26
number of test lines : 13
number of checks : 10
number of checks : 10
number passed : 9
number failed : 1
percentage passed : 90 %

failed at test lines (see above report):
 13
===

exampleexample test test condition condition

nr description

...
3.11 it is checked that the exit date is after the entry date
...

begin condition 3.11

name entry date exit date
enter employment Bill Goodfellow 1996-10-02 1996-10-01
check error message The exit date must be after the entry date.

coupled with the actual test lines in the cluster

11

Page 11

Clusters

Test Conditions

Test Cases

Specifications Experts

• Boundary value analysis
• Equivalence partitioning
• Coverage methods

• Decision tables
• Graphs
• Data flow analyses
• Entity life cycle techniques

• Joint specification development

• Joint testware development

• Functional breakdown
• Quality attributes
• Architectural breakdown

lay out of the navigationlay out of the navigation

action
word

engine

action
word

action
word

action
word

action
word

action
word

target
system

interface layer

clusters
(cast tool)

12

Page 12

the method does not rely on athe method does not rely on a
specific toolspecific tool

• Winrunner/XRunner
• QA Run
• Hiperstation
• MS/Visual Test
• Rational
• ATF
• Autotester
• SilkTest
• ...

StrategicStrategic Context of TestFrame Context of TestFrame

TIME TO MARKETTIME TO MARKET
QUALITY TO MARKETQUALITY TO MARKET

RE-USABLE TESTPRODUCTSRE-USABLE TESTPRODUCTS

SS
TT
RR
UU
CC
TT
UU
RR
II
NN
GG

TT
OO
OO
LL
II
NN
GG

FF
II
TT
TT
II
NN
GG

13

Page 13

tasks related totasks related to the the method method
((examplesexamples))

• within a project
– test consultancy: formulating the test mission (functional,

technical)

– test management: managing the change process
– test analysis: production of the test clusters

– navigation: production of the scripts for automatic execution

• general, at the organisation level
– support on the method

– keeping navigation script

– keeping test clusters

OrganisationOrganisation and project and project level level

activities at organisation levelactivities at organisation level

activities at project level

activities at project level

activities at project level

14

Page 14

• design clusters
• build clusters
• logical test
 environment

• select CAST tool
• design navigation
• build navigation
• technical test
 environment

• execute tests
• produce reports
• follow up outcomes

• keep tests
• maintain tests

• establish test mission
• investigate feasability
• identify risks and problems
• organisation and procedures
• identify clusters
• plan test environment

SUHSDUDWLRQ

DQDO\VLV

QDYLJDWLRQ

H[HFXWLRQ
DQG

IROORZ XS

PDLQWHQDQFH

Activities at project levelActivities at project level

ActivitiesActivities at at Organisation Level Organisation Level

• one or more pilots
• training and handbooks
• resourcing (pooling, hiring)
• auditing and reviewing
• r&d
• development of common products
• ...

15

Page 15

somesome special special applications applications

• performance and multi user testing
• testing of batch systems
• testing of large scale conversion like year 2000 and

euro
• regression testing
• test generation
• test result analysis
• fault tracking
• interface testing

TheThe Action Action Word Word Method Method

• not a magic wand

• just a brick in the wall

1

Test AutomationTest Automation

C
op

yr
ig

ht
 ©

 1
99

9
ps

_t
e

st
w

a
re

 -
 G

ee
rt

 P
in

xt
e

n
-T

e
st

 A
ut

om
a

tio
n

 -
 1

1 9 9 4 - 1 9 9 9

Sof tw are Testing Serv i ces

5 th A n n iv e rsary

Levering your test resultsLevering your test results

1 9 9 4 - 1
 9 9 9

Sof tw are Test ing Ser vi ce

s

5 th A n n iv e rsary

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation 2

Info
Info

Less.
Less.

T
B

T
B

P
hase III.

P
hase III.

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
toc

Geert Pinxten
Development Co-ordinator

Test AutomationTest Automation

Levering your test resultsLevering your test results

2

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 3

Info
Info

Less.
Less.

T
B

T
B

P
hase III

P
hase III

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
tocAgendaAgenda

•• Introduction to test automationIntroduction to test automation

•• How it startedHow it started

•• Phase II: data-drivenPhase II: data-driven

•• Phase III: script programmingPhase III: script programming

•• Automated script generationAutomated script generation

•• Introduction toIntroduction to ps ps__testwaretestware

1 9 9 4 - 1
 9 9 9

Sof tw are Test ing Ser vi ce

s

5 th A n n iv e rsary

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation 4

Info
Info

Less.
Less.

T
B

T
B

P
hase III.

P
hase III.

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
toc

Introduction to testIntroduction to test
automationautomation

ScopeScope

Where does it start?Where does it start?

Why automating tests?Why automating tests?

BenefitsBenefits

ProblemsProblems

3

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 5

Info
Info

Less.
Less.

T
B

T
B

P
hase III

P
hase III

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
tocScopeScope

•• GUI-applicationsGUI-applications

•• Test Automation with record-playbackTest Automation with record-playback
toolstools

•• System test -> Functional testSystem test -> Functional test

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 6

Info
Info

Less.
Less.

T
B

T
B

P
hase III

P
hase III

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
tocWhere does it start?Where does it start?

•• DesignDesign
–– Translate requirementTranslate requirement

into testinto test
•• LogicalLogical

•• PhysicalPhysical

–– Test scriptTest script

Follow-upFollow-up

Exec.Exec.DevDev..PlanPlan

•• BuildBuild
–– Record test procedureRecord test procedure

D
e

si
gn

B
ui

ld

4

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 7

Info
Info

Less.
Less.

T
B

T
B

P
hase III

P
hase III

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
tocWhy automating tests ?Why automating tests ?

When tests have to be
re-executed this is a
time-consuming job.

When tests have to beWhen tests have to be
re-executed this is are-executed this is a
time-consuming job.time-consuming job.

When executing a lot of
repetitive tests, a tester can
easily lose his concentration
and consequently no longer
see the defects.

When executing a lot ofWhen executing a lot of
repetitive tests, a tester canrepetitive tests, a tester can
easily lose his concentrationeasily lose his concentration
and consequently no longerand consequently no longer
see the defects.see the defects.

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 8

Info
Info

Less.
Less.

T
B

T
B

P
hase III

P
hase III

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
tocBenefitsBenefits

•• Automated testing allows focussing onAutomated testing allows focussing on
dynamic areas in the application under testdynamic areas in the application under test

•• Automated testing speeds up the turnaroundAutomated testing speeds up the turnaround
timetime

TestTest
RequirementRequirement

CoverageCoverage
(%)(%)

Test Test
DevelopmentDevelopment Test ExecutionTest Execution

Target Release Target Release TimeTime

5

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 9

Info
Info

Less.
Less.

T
B

T
B

P
hase III

P
hase III

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
tocProblemsProblems

•• Automated tests are not cheapAutomated tests are not cheap

•• Automated tests postpone the finding of errorsAutomated tests postpone the finding of errors

•• Automated tests reveal only regression errorsAutomated tests reveal only regression errors

•• Automated tests requires maintenanceAutomated tests requires maintenance

1 9 9 4 - 1
 9 9 9

Sof tw are Test ing Ser vi ce

s

5 th A n n iv e rsary

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation 10

Info
Info

Less.
Less.

T
B

T
B

P
hase III.

P
hase III.

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
toc

How it startedHow it started

Case descriptionCase description

Approach for scriptingApproach for scripting

ConclusionsConclusions

6

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 11

Info
Info

Less.
Less.

T
B

T
B

P
hase III

P
hase III

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
tocCase descriptionCase description

•• Home banking application R1.0Home banking application R1.0
–– Different releases plannedDifferent releases planned

–– 50.000 home users50.000 home users

–– Critical success factorsCritical success factors
•• StabilityStability

•• PerformancePerformance

•• Functional correctFunctional correct

•• RAD developmentRAD development

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 12

Info
Info

Less.
Less.

T
B

T
B

P
hase III

P
hase III

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
tocApproach for scriptingApproach for scripting

•• Way of workingWay of working
–– Started automating on first releaseStarted automating on first release

–– Planned intermediate releases (#5)Planned intermediate releases (#5)

–– Test designsTest designs

–– Basic programming techniques in scriptingBasic programming techniques in scripting

AUTAUT
Test ScriptTest Script

Defect solvingDefect solving

7

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 13

Info
Info

Less.
Less.

T
B

T
B

P
hase III

P
hase III

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
tocConclusionsConclusions

•• ProblemsProblems
–– Unexpected functional changesUnexpected functional changes

–– Initial software quality lowInitial software quality low

–– Many intermediate releases (#20)Many intermediate releases (#20)

–– Low anticipation on way defects solvedLow anticipation on way defects solved

•• Resulting inResulting in
–– Test script maintenance 284% of budgetedTest script maintenance 284% of budgeted

time (15% of lap time)time (15% of lap time)

–– Regression test took too longRegression test took too long

–– Test designs not up-to-dateTest designs not up-to-date

Limited success

Limited success

1 9 9 4 - 1
 9 9 9

Sof tw are Test ing Ser vi ce

s

5 th A n n iv e rsary

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation 14

Info
Info

Less.
Less.

T
B

T
B

P
hase III.

P
hase III.

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
toc

Phase II: Data-drivenPhase II: Data-driven

Case descriptionCase description

Approach for scriptingApproach for scripting

ConclusionsConclusions

8

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 15

Info
Info

Less.
Less.

T
B

T
B

P
hase III

P
hase III

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
tocCase descriptionCase description

•• Home banking application R2.0Home banking application R2.0
–– Functionality extendedFunctionality extended

•• Improvements in test processImprovements in test process
–– Introduction of intake criteriaIntroduction of intake criteria

–– Communication rulesCommunication rules

–– Test designs changedTest designs changed

–– Still started from first releaseStill started from first release

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 16

Info
Info

Less.
Less.

T
B

T
B

P
hase III

P
hase III

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
tocApproach for scriptingApproach for scripting

•• Data-drivenData-driven

•• Scripting standardsScripting standards

•• Understandable scripts (comments, indentations) Understandable scripts (comments, indentations)
•• Anticipate on application changes Anticipate on application changes
•• Test scripts should test Test scripts should test
••

TestTest
datadata

ScriptScript AUTAUT

9

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 17

Info
Info

Less.
Less.

T
B

T
B

P
hase III

P
hase III

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
tocConclusionsConclusions

•• ImprovementImprovement
–– Test script maintenance: 130%Test script maintenance: 130%

–– Full regression test fastestFull regression test fastest

•• ProblemsProblems
–– Many intermediate releases (#20)Many intermediate releases (#20)

–– Low anticipation on way defects solvedLow anticipation on way defects solved

–– Test Designs still not up-to-dateTest Designs still not up-to-date

•• New problemNew problem
–– Testers require programming skills (IO-files)Testers require programming skills (IO-files)

1 9 9 4 - 1
 9 9 9

Sof tw are Test ing Ser vi ce

s

5 th A n n iv e rsary

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation 18

Info
Info

Less.
Less.

T
B

T
B

P
hase III.

P
hase III.

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
toc

Phase III: ScriptPhase III: Script
programmingprogramming

Approach for scriptingApproach for scripting

ConclusionsConclusions

10

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 19

Info
Info

Less.
Less.

T
B

T
B

P
hase III

P
hase III

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
tocApproach for scriptingApproach for scripting

•• Way of workingWay of working
–– Start automating on first release!Start automating on first release!

–– AUT separated from test scriptAUT separated from test script
•• Technical script designTechnical script design

•• Use of function librariesUse of function libraries

TestTest
datadata

ScriptScript AUTAUT

LibLib

LibLib

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 20

Info
Info

Less.
Less.

T
B

T
B

P
hase III

P
hase III

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
tocConclusionsConclusions

•• ImprovementImprovement
–– Test script maintenance: 110%Test script maintenance: 110%

–– Full regression test in two man-daysFull regression test in two man-days

–– Re-usabilityRe-usability

•• DisadvantageDisadvantage
–– Contact tester/AUT lowerContact tester/AUT lower

•• Main problemMain problem
–– Advanced programming techniques requiredAdvanced programming techniques required

–– Test designs still not updatedTest designs still not updated

11

1 9 9 4 - 1
 9 9 9

Sof tw are Test ing Ser vi ce

s

5 th A n n iv e rsary

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation 21

Info
Info

Less.
Less.

T
B

T
B

P
hase III.

P
hase III.

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
toc

Automated script generationAutomated script generation

TOP BOXTOP BOX

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 22

Info
Info

Less.
Less.

T
B

T
B

P
hase III

P
hase III

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
tocWhat is TOP BOXWhat is TOP BOX

•• Automatic test procedure generationAutomatic test procedure generation

•• Translation of design into scriptTranslation of design into script

•• Same principles as in phase IIISame principles as in phase III

Action file

Test design

TOPBOX

input file

A U T

12

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 23

Info
Info

Less.
Less.

T
B

T
B

P
hase III

P
hase III

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
tocTop Box/LibrariesTop Box/Libraries

Testontwerp

TOPBOX

InputfileActiefile

Applicatie

TOPBOX

GLOBAL_ALG.SBH MAIN_LIB.SBH FUNC_LIB.SBH

MAIN_LIB.SBL FUNC_LIB.SBL

GLOBAL.SBL

APPLICATIE - ???
???_NAV.SBH ???_GLOBAL.SBH ???_VAR.SBH
 ???_NAV.SBL ???_VAR.SBL

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 24

Info
Info

Less.
Less.

T
B

T
B

P
hase III

P
hase III

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
tocAdvantagesAdvantages

•• Standardisation of all scripting activitiesStandardisation of all scripting activities

•• Maintenance limitedMaintenance limited

•• Test designs always up-to-dateTest designs always up-to-date

•• Testers do not need test tool knowledgeTesters do not need test tool knowledge

•• Independent of test toolIndependent of test tool

13

1 9 9 4 - 1
 9 9 9

Sof tw are Test ing Ser vi ce

s

5 th A n n iv e rsary

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation 25

Info
Info

Less.
Less.

T
B

T
B

P
hase III.

P
hase III.

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
toc

Lessons learnedLessons learned

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 26

Info
Info

Less.
Less.

T
B

T
B

P
hase III

P
hase III

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
tocLessons learnedLessons learned

•• Test Automation is software developmentTest Automation is software development

•• Staffing requirementsStaffing requirements
–– Testers testTesters test

–– Developers automateDevelopers automate

•• Automation takes timeAutomation takes time

•• Script maintenance effort can be controlledScript maintenance effort can be controlled

14

1
9

9
4

 -
 1

 9
 9

 9

So
f t

w
ar

e
Te

st
in

g
Se

rv
ic

es

5t
h

A
nn

iv
er

sa
ry

C
op

yr
ig

ht
 ©

 1
99

9
ps

_t
e

st
w

a
re

 -
 G

ee
rt

 P
in

xt
e

n
-

T
e

st
 A

ut
om

a
tio

n
27

InfoInfoLess.Less.TBTBPhase III.Phase III.Phase IIPhase IIStartStartIntroIntrotoctoc

Q
ue

st
io

ns
Q

ue
st

io
ns

1
9

9
4

 -
 1

 9
 9

 9

So
ft

w
ar

e
Te

st
in

g
Se

rv
ic

es

5t
h

A
nn

iv
er

sa
ry

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 28

15

Tiensesteenweg Tiensesteenweg 329329
B-3010 B-3010 LeuvenLeuven
Tel.: +32 (16) 35.93.80Tel.: +32 (16) 35.93.80
Fax: +32 (16) 35.93.88Fax: +32 (16) 35.93.88
e-mail: ps_testware@e-mail: ps_testware@compuservecompuserve.com.com
http://www.http://www. pstestwarepstestware.com.com

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 29

Info
Info

Less.
Less.

T
B

T
B

P
hase III.

P
hase III.

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
toc

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 30

Info
Info

Less.
Less.

T
B

T
B

P
hase III

P
hase III

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
tocpsps_testware_testware

•• StartedStarted in in 19911991

•• 1993:1993: Tools Tools & &
technicaltechnical services services
–– ToolTool Training Training

–– CoachingCoaching

•• 19951995:: Methodological Methodological
ServicesServices
–– ConsultancyConsultancy

•• 19961996: Software: Software
TestingTesting Services Services
–– TestTest Assignments Assignments

–– Test PlanTest Plan

–– Test ReportTest Report

•• 19971997: Software: Software
TestingTesting Services Suite Services Suite
–– TestTest Assessments Assessments

–– Y2K trainingY2K training

•• 19981998: PSTI: PSTI
–– Office @NLOffice @NL

–– Total OutsourcingTotal Outsourcing

–– PartnershipsPartnerships

•• 19991999:Testing :Testing HillHill ™™
CampusCampus
––

666

666

555

151515

+ 28?+ 28?+ 28?

252525

333333

16

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 31

Info
Info

Less.
Less.

T
B

T
B

P
hase III

P
hase III

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
tocOur BusinessOur Business

•• Structured Software TestingStructured Software Testing

•• MethodologyMethodology

•• Implementation ModelImplementation Model CodingCoding

Audit testAudit test

Acceptance testAcceptance test

System testsSystem tests

Integration testsIntegration tests

Modular testsModular tests

Strategic choicesStrategic choices

User requirementsUser requirements

Logical designLogical design

Physical designPhysical design

Program designProgram design

FollowFollow--upup

TestTest
executionexecution

TestTest
DevelopDevelop--

mentment

TestTest
PlanningPlanning

TestTest RepairRepair RetestRetestScopeScope PlanPlan DesignDesign BuildBuild

™

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 32

Info
Info

Less.
Less.

T
B

T
B

P
hase III

P
hase III

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
tocOur ServicesOur Services

•• Training Training (see (see ps_testware instituteps_testware institute))

•• CoachingCoaching

•• ConsultancyConsultancy

•• Outsourcing Outsourcing (now also Total Outsourcing)(now also Total Outsourcing)

Provided by:Provided by:
–– Test EngineersTest Engineers

–– Test ConsultantsTest Consultants

–– Management ConsultantsManagement Consultants

17

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 33

Info
Info

Less.
Less.

T
B

T
B

P
hase III

P
hase III

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
tocOur ProductsOur Products

•• TestTest AssessmentAssessment

•• Test AssignmentTest Assignment

•• Test PlanTest Plan

•• Test ReportTest Report

•• Test AdviceTest Advice

•• Test AuditTest Audit

•• Test Pack™Test Pack™

•• Test LaboratoryTest Laboratory

•• ToolsTools

New

New

New

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 34

Info
Info

Less.
Less.

T
B

T
B

P
hase III

P
hase III

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
tocReferencesReferences

•• KredietbankKredietbank

•• Barco GraphicsBarco Graphics

•• Exact MaatwerkExact Maatwerk

•• ING BankING Bank

•• BankBank Card Company Card Company

•• JanssenJanssen
PharmaceuticaPharmaceutica

•• TessaTessa

•• Europese RaadEuropese Raad

•• LernoutLernout & & Hauspie Hauspie

•• OriginOrigin

•• SpecsSpecs

•• GemeentekredietGemeentekrediet

•• SiemensSiemens

•• ING ING 22

•• YokogawaYokogawa

•• LinkLink

•• Alcatel BellAlcatel Bell

•• MobistarMobistar

18

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 35

Info
Info

Less.
Less.

T
B

T
B

P
hase III

P
hase III

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
tocCredoCredo

ps_testware’s first responsibility goes to the customers who use our
services. Our services must be of high quality and must be a reference
for our customers. In line with our primary business, Structured
Software Testing, we may not indulge in pressure, quantity or quick
profit.

We are responsible to our members, the men and women who work with
us. Every member must be respected as an individual and must be
rewarded personal and fair. We must support our members via a
competent management, an adequate working environment and proper
working conditions. Our members must have the means to provide and
receive feedback, allow them and the organisation to learn continuously.
We must support our members in their family responsibilities. Our
actions must be just and ethical.

Our final responsibility is to our stockholders. Our business must make a
sound profit. We must innovate and continuously improve our methods
and techniques. We must develop new services and implement them
effective and efficient. We must create reserves to provide for adverse
times. Our stockholders must receive a fair return on their investments.

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 36

Info
Info

Less.
Less.

T
B

T
B

P
hase III

P
hase III

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
tocThe MissionThe Mission

To offer the To offer the best solutionbest solution to quality problems of to quality problems of computercomputer
systemssystems by using its test expert knowledge in a by using its test expert knowledge in a professionalprofessional

way.way.

Best solutionBest solution: the solution that provides the highest contribution.: the solution that provides the highest contribution.

Test expert knowledgeTest expert knowledge: the intellectual asset of: the intellectual asset of ps ps__testwaretestware, a profound, a profound
and complete knowledge regarding verification and validation (testing).and complete knowledge regarding verification and validation (testing).

ProfessionalProfessional: the courage to really provide what has been promised.: the courage to really provide what has been promised.

19

Tiensesteenweg Tiensesteenweg 329329
B-3010 B-3010 LeuvenLeuven
Tel.: +32 (16) 35.93.80Tel.: +32 (16) 35.93.80
Fax: +32 (16) 35.93.88Fax: +32 (16) 35.93.88
e-mail: ps_testware@e-mail: ps_testware@compuservecompuserve.com.com
http://www.http://www. pstestwarepstestware.com.com

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 37

Info
Info

Less.
Less.

T
B

T
B

P
hase III

P
hase III

P
hase II

P
hase II

S
ta

rt
S

ta
rt

Intro
Intro

toc
toc

1

Test Automation

C
op

yr
ig

ht
 ©

 1
99

9
ps

_t
e

st
w

a
re

 -
 G

ee
rt

 P
in

xt
e

n
-T

e
st

 A
ut

om
a

tio
n

 -
 1

1 9 9 4 - 1 9 9 9

Sof tw are Testing Serv i ces

5 th A n n iv e rsary

Levering your test results

1 9 9 4 - 1
 9 9 9

Sof tw are Test ing Ser vi ce

s

5 th A n n iv e rsary

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation 2

Info
Less.

T
B

P
hase III.

P
hase II

S
ta

rt
Intro

toc

Geert Pinxten
Development Co-ordinator

Test Automation

Levering your test results

2

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 3

Info
Less.

T
B

P
hase III

P
hase II

S
ta

rt
Intro

tocAgenda

• Introduction to test automation

• How it started

• Phase II: data-driven

• Phase III: script programming

• Automated script generation

• Introduction to ps_testware

1 9 9 4 - 1
 9 9 9

Sof tw are Test ing Ser vi ce

s

5 th A n n iv e rsary

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation 4

Info
Less.

T
B

P
hase III.

P
hase II

S
ta

rt
Intro

toc

Introduction to test
automation

Scope

Where does it start?
Why automating tests?

Benefits

Problems

3

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 5

Info
Less.

T
B

P
hase III

P
hase II

S
ta

rt
Intro

tocScope

• GUI-applications

• Test Automation with record-playback
tools

• System test -> Functional test

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 6

Info
Less.

T
B

P
hase III

P
hase II

S
ta

rt
Intro

tocWhere does it start?

• Design
– Translate requirement

into test
• Logical
• Physical

– Test script

Follow-up

Exec.Dev.Plan

• Build
– Record test procedure

D
e

si
gn

B
ui

ld

4

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 7

Info
Less.

T
B

P
hase III

P
hase II

S
ta

rt
Intro

tocWhy automating tests ?

When tests have to be
re-executed this is a
time-consuming job.

When executing a lot of
repetitive tests, a tester can
easily lose his concentration
and consequently no longer
see the defects.

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 8

Info
Less.

T
B

P
hase III

P
hase II

S
ta

rt
Intro

tocBenefits

• Automated testing allows focussing on
dynamic areas in the application under test

• Automated testing speeds up the turnaround
time

Test
Requirement

Coverage
(%)

Test
Development Test Execution

Target Release Time

5

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 9

Info
Less.

T
B

P
hase III

P
hase II

S
ta

rt
Intro

tocProblems

• Automated tests are not cheap

• Automated tests postpone the finding of errors

• Automated tests reveal only regression errors

• Automated tests requires maintenance

1 9 9 4 - 1
 9 9 9

Sof tw are Test ing Ser vi ce

s

5 th A n n iv e rsary

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation 10

Info
Less.

T
B

P
hase III.

P
hase II

S
ta

rt
Intro

toc

How it started

Case description

Approach for scripting
Conclusions

6

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 11

Info
Less.

T
B

P
hase III

P
hase II

S
ta

rt
Intro

tocCase description

• Home banking application R1.0
– Different releases planned

– 50.000 home users

– Critical success factors
• Stability

• Performance

• Functional correct

• RAD development

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 12

Info
Less.

T
B

P
hase III

P
hase II

S
ta

rt
Intro

tocApproach for scripting

• Way of working
– Started automating on first release

– Planned intermediate releases (#5)

– Test designs

– Basic programming techniques in scripting

AUT
Test Script

Defect solving

7

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 13

Info
Less.

T
B

P
hase III

P
hase II

S
ta

rt
Intro

tocConclusions

• Problems
– Unexpected functional changes

– Initial software quality low

– Many intermediate releases (#20)

– Low anticipation on way defects solved

• Resulting in
– Test script maintenance 284% of budgeted

time (15% of lap time)

– Regression test took too long

– Test designs not up-to-date

Limited success

1 9 9 4 - 1
 9 9 9

Sof tw are Test ing Ser vi ce

s

5 th A n n iv e rsary

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation 14

Info
Less.

T
B

P
hase III.

P
hase II

S
ta

rt
Intro

toc

Phase II: Data-driven

Case description

Approach for scripting
Conclusions

8

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 15

Info
Less.

T
B

P
hase III

P
hase II

S
ta

rt
Intro

tocCase description

• Home banking application R2.0
– Functionality extended

• Improvements in test process
– Introduction of intake criteria

– Communication rules

– Test designs changed

– Still started from first release

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 16

Info
Less.

T
B

P
hase III

P
hase II

S
ta

rt
Intro

tocApproach for scripting

• Data-driven

• Scripting standards

• Understandable scripts (comments, indentations)
• Anticipate on application changes
• Test scripts should test
• ...

Test
data

Script AUT

9

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 17

Info
Less.

T
B

P
hase III

P
hase II

S
ta

rt
Intro

tocConclusions

• Improvement
– Test script maintenance: 130%

– Full regression test fastest

• Problems
– Many intermediate releases (#20)

– Low anticipation on way defects solved

– Test Designs still not up-to-date

• New problem
– Testers require programming skills (IO-files)

1 9 9 4 - 1
 9 9 9

Sof tw are Test ing Ser vi ce

s

5 th A n n iv e rsary

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation 18

Info
Less.

T
B

P
hase III.

P
hase II

S
ta

rt
Intro

toc

Phase III: Script
programming

Approach for scripting

Conclusions

10

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 19

Info
Less.

T
B

P
hase III

P
hase II

S
ta

rt
Intro

tocApproach for scripting

• Way of working
– Start automating on first release!

– AUT separated from test script
• Technical script design

• Use of function libraries

Test
data

Script AUT

Lib

Lib

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 20

Info
Less.

T
B

P
hase III

P
hase II

S
ta

rt
Intro

tocConclusions

• Improvement
– Test script maintenance: 110%

– Full regression test in two man-days

– Re-usability

• Disadvantage
– Contact tester/AUT lower

• Main problem
– Advanced programming techniques required

– Test designs still not updated

11

1 9 9 4 - 1
 9 9 9

Sof tw are Test ing Ser vi ce

s

5 th A n n iv e rsary

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation 21

Info
Less.

T
B

P
hase III.

P
hase II

S
ta

rt
Intro

toc

Automated script generation

TOP BOX

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 22

Info
Less.

T
B

P
hase III

P
hase II

S
ta

rt
Intro

tocWhat is TOP BOX

• Automatic test procedure generation

• Translation of design into script

• Same principles as in phase III

Action file

Test design

TOPBOX

input file

A U T

12

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 23

Info
Less.

T
B

P
hase III

P
hase II

S
ta

rt
Intro

tocTop Box/Libraries
Testontwerp

TOPBOX

InputfileActiefile

Applicatie

TOPBOX

GLOBAL_ALG.SBH MAIN_LIB.SBH FUNC_LIB.SBH

MAIN_LIB.SBL FUNC_LIB.SBL

GLOBAL.SBL

APPLICATIE - ???
???_NAV.SBH ???_GLOBAL.SBH ???_VAR.SBH
 ???_NAV.SBL ???_VAR.SBL

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 24

Info
Less.

T
B

P
hase III

P
hase II

S
ta

rt
Intro

tocAdvantages

• Standardisation of all scripting activities

• Maintenance limited

• Test designs always up-to-date
• Testers do not need test tool knowledge

• Independent of test tool

13

1 9 9 4 - 1
 9 9 9

Sof tw are Test ing Ser vi ce

s

5 th A n n iv e rsary

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation 25

Info
Less.

T
B

P
hase III.

P
hase II

S
ta

rt
Intro

toc

Lessons learned

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 26

Info
Less.

T
B

P
hase III

P
hase II

S
ta

rt
Intro

tocLessons learned
• Test Automation is software development

• Staffing requirements
– Testers test

– Developers automate

• Automation takes time

• Script maintenance effort can be controlled

14

1
9

9
4

 -
 1

 9
 9

 9

So
f t

w
ar

e
Te

st
in

g
Se

rv
ic

es

5t
h

A
nn

iv
er

sa
ry

C
op

yr
ig

ht
 ©

 1
99

9
ps

_t
e

st
w

a
re

 -
 G

ee
rt

 P
in

xt
e

n
-

T
e

st
 A

ut
om

a
tio

n
27

InfoLess.TBPhase III.Phase IIStartIntrotoc

Q
ue

st
io

ns

1
9

9
4

 -
 1

 9
 9

 9

So
ft

w
ar

e
Te

st
in

g
Se

rv
ic

es

5t
h

A
nn

iv
er

sa
ry

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 28

15

Tiensesteenweg 329
B-3010 Leuven
Tel.: +32 (16) 35.93.80
Fax: +32 (16) 35.93.88
e-mail: ps_testware@compuserve.com
http://www.pstestware.com

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 29

Info
Less.

T
B

P
hase III.

P
hase II

S
ta

rt
Intro

toc

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 30

Info
Less.

T
B

P
hase III

P
hase II

S
ta

rt
Intro

tocps_testware

• Started in 1991

• 1993: Tools &
technical services
– Tool Training
– Coaching

• 1995: Methodological
Services
– Consultancy

• 1996: Software
Testing Services
– Test Assignments
– Test Plan
– Test Report

• 1997: Software
Testing Services Suite
– Test Assessments
– Y2K training

• 1998: PSTI
– Office @NL
– Total Outsourcing
– Partnerships

• 1999:Testing Hill™
Campus
– ...

6

6

5

15

+ 28?

25

33

16

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 31

Info
Less.

T
B

P
hase III

P
hase II

S
ta

rt
Intro

tocOur Business

• Structured Software Testing

• Methodology

• Implementation Model Coding

Audit test

Acceptance test

System tests

Integration tests

Modular tests

Strategic choices

User requirements

Logical design

Physical design

Program design

Follow-up

Test
execution

Test
Develop-

ment

Test
Planning

Test Repair RetestScope Plan Design Build

™

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 32

Info
Less.

T
B

P
hase III

P
hase II

S
ta

rt
Intro

tocOur Services

• Training (see ps_testware institute)

• Coaching

• Consultancy

• Outsourcing (now also Total Outsourcing)

Provided by:
– Test Engineers

– Test Consultants

– Management Consultants

17

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 33

Info
Less.

T
B

P
hase III

P
hase II

S
ta

rt
Intro

tocOur Products

• Test Assessment

• Test Assignment

• Test Plan

• Test Report

• Test Advice

• Test Audit

• Test Pack™

• Test Laboratory

• Tools

New

New

New

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 34

Info
Less.

T
B

P
hase III

P
hase II

S
ta

rt
Intro

tocReferences
• Kredietbank

• Barco Graphics

• Exact Maatwerk

• ING Bank

• Bank Card Company

• Janssen
Pharmaceutica

• Tessa

• Europese Raad

• Lernout & Hauspie

• Origin

• Specs

• Gemeentekrediet

• Siemens

• ING 2

• Yokogawa

• Link

• Alcatel Bell

• Mobistar

18

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 35

Info
Less.

T
B

P
hase III

P
hase II

S
ta

rt
Intro

tocCredo

ps_testware’s first responsibility goes to the customers who use our
services. Our services must be of high quality and must be a reference
for our customers. In line with our primary business, Structured
Software Testing, we may not indulge in pressure, quantity or quick
profit.

We are responsible to our members, the men and women who work with
us. Every member must be respected as an individual and must be
rewarded personal and fair. We must support our members via a
competent management, an adequate working environment and proper
working conditions. Our members must have the means to provide and
receive feedback, allow them and the organisation to learn continuously.
We must support our members in their family responsibilities. Our
actions must be just and ethical.

Our final responsibility is to our stockholders. Our business must make a
sound profit. We must innovate and continuously improve our methods
and techniques. We must develop new services and implement them
effective and efficient. We must create reserves to provide for adverse
times. Our stockholders must receive a fair return on their investments.

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 36

Info
Less.

T
B

P
hase III

P
hase II

S
ta

rt
Intro

tocThe Mission

To offer the best solution to quality problems of computer
systems by using its test expert knowledge in a professional

way.

Best solution: the solution that provides the highest contribution.

Test expert knowledge: the intellectual asset of ps_testware, a profound
and complete knowledge regarding verification and validation (testing).

Professional: the courage to really provide what has been promised.

19

Tiensesteenweg 329
B-3010 Leuven
Tel.: +32 (16) 35.93.80
Fax: +32 (16) 35.93.88
e-mail: ps_testware@compuserve.com
http://www.pstestware.com

Copyright © 1999 ps_testware - Geert Pinxten - Test Automation - 37

Info
Less.

T
B

P
hase III

P
hase II

S
ta

rt
Intro

toc

1

RiskDRIVER Project Risk Management Quality Week Europe '991

,PSURYH�\RXU�3URFHVVHV

���2SWLPLVH�\RXU�%XVLQHVV%XVLQHVV

E\

��������0DQDJLQJ�\RXU�5LVNV5LVNV

RiskDRIVER Project Risk Management Quality Week Europe '992

:KDW�LV�5LVN'5,9(5"

A European initiative launched by a consortium of
international partners, RiskDRIVER aims to promote
best practices in risk management for projects
and process improvement .

2

RiskDRIVER Project Risk Management Quality Week Europe '993

5LVN�0DQDJHPHQW�3URFHVV��,62�,(&�������

ISO/EIC TR 15504 Part 2
A reference model for processes and process capability

Management process category (MAN)

• MAN.1 Management Process
• MAN.2 Project Management Process
• MAN.3 Quality Management Process
• MAN.4 Risk Management Process

The purpose of the Risk management process is to identify and mitigate the
project risks continuously throughout the life-cycle of a project. The process
involves establishing a focus on monitoring of risks at both the project and
organisational levels.

RiskDRIVER Project Risk Management Quality Week Europe '994

:KDW�LV�3URMHFW�5LVN"

A project risk is an uncertainty that may impact the
execution or outcome of the project.

Risk is measured in terms of cost (its effect on the
project budget) or time (its effect on the project
schedule). It may be negative - a threat risk - or
positive - an opportunity risk.

RISK

Threat (–)

Opportunity (+)

3

RiskDRIVER Project Risk Management Quality Week Europe '995

Actual Route
Dublin

New York

Planned Route

7KH�3URMHFW�3ODQ�LV�ZKDW�\RX·UH�127�JRLQJ�WR�GR�

Because of project risk , the sailor does not expect to travel precisely
along the planned route or baseline. Throughout the trip readings are
taken to establish position and adjust the course as needed.

Risk management is not just contingency planning for when things
go wrong, it is inextricably bound to the project plan which must be
constantly revised.

Consider the project of sailing from Dublin to New York:

RiskDRIVER Project Risk Management Quality Week Europe '996

Struc-
tured

risk data

Risk analysis
and control

support techniques

Risk management process
Risk-driven project management

Procedures for effective communication
and, if necessary, culture change

Sound theoretical base and
practical philosophy for application

5,6.0$1
7KH (XURSHDQ 3URMHFW 5LVN 0DQDJHPHQW 0HWKRGRORJ\

The two central processes of the
RISKMAN methodology are:

• The risk management process

• The risk-driven project
 management process

These are surrounded
 by four supporting

 elements of data
 and people

 management

4

RiskDRIVER Project Risk Management Quality Week Europe '997

7KH�2QH�0LQXWH�3URMHFW�5LVN�0DQDJHU

Monitoring
& Control

Reporting &
Strategy

Development

Risk Modelling
(risk analysis)

 Quantification
 &

 Classification

The
Risk

Management
Process

Identification &
Documentation

Mitigation
&

Optimisation

The Risk Management Process

Project risk management is a cyclical process
within the framework of risk-driven project
management.

• The risk management process is like the
 second hand on a stopwatch, going around
 several times as the project proceeds.

• The risk-driven project management
 process represents a sequence of
 stages that runs its course just once
 through the life-cycle of the project,
 like the minute hand of the stopwatch.

RiskDRIVER Project Risk Management Quality Week Europe '998

��6WHS�5LVN�0DQDJHPHQW�3URFHVV

5

RiskDRIVER Project Risk Management Quality Week Europe '999

5LVN�,GHQWLILFDWLRQ

■ Existing project documentation
■ Structured interviews
■ Company experts or external consultants
■ Brainstorming sessions
■ Standard questionnaires and checklists
■ Risk databases and expert systems
■ Methodological approaches

RiskDRIVER Project Risk Management Quality Week Europe '9910

&ODVVLILFDWLRQ�RI�5LVN

Project

Product

Enterprise

Environment

Client

strategic
external

contractual
marketing

organisation

process definition

operational/
maintenance

financial

technical

planning

6

RiskDRIVER Project Risk Management Quality Week Europe '9911

5LVN�$VVHVVPHQW

■ Estimate impact and probability of each risk
■ Assign weighting to each risk based on risk exposure

Risk Exposure is the relative
value that can be ascribed to
any one risk, or to the sum of the
risks faced. It is used to justify
expenditures on mitigation, or on
contingencies for risks that
cannot be justifiably mitigated.

■ Prioritise risks according to category, classification,
 weighting, imminence

RiskDRIVER Project Risk Management Quality Week Europe '9912

5LVN�$FWLRQ�3ODQ

Risk Mitigation
■ Action to reduce, eliminate or avert the impact or probability of risks

■ Intended for risks assessed with medium to high exposure or those
 rated as unacceptable or critical risks

■ Requires up-front investment of time and money that cannot be
 recovered later if the risk does not occur

Contingency
■ Provision of time and/or funds to be used in the future should the risk
 actually materialise

■ Covers risks that are assessed to be of a low likelihood and impact,
 and residual risks that have not been revealed during the
 identification process

■ Can be recovered or reallocated if the risk does not occur

7

RiskDRIVER Project Risk Management Quality Week Europe '9913

0LWLJDWLRQ�3DWKV

Transference
Yes

Yes

Yes

Yes

No

No

No

No

Avoidance

Reduction

Management

• remove causes
• low-risk alternatives
• contract disclaimer

• risk sharing
• joint venture
• subcontractors

• insurance
• information, consulting support
• capital investment

• monitoring, control, reporting
• allocation of resources
• back-up plans

Risk ContingencyResidual
Risks

RiskDRIVER Project Risk Management Quality Week Europe '9914

.QRZOHGJH�&DSLWDOLVDWLRQ�

7KH�5LVN'5,9(5�ZHEVLWH

www. riskdriver .com is a risk management portal site
offering free access to the following resources:

◆ Online and downloadable Risk Catalogues

◆ RiskProbe self-assessment tool

◆ Compiled best practices

◆ Discussion forums

◆ Case studies

◆ Risk management tool directory

◆ News, events, links to other relevant sites

8

RiskDRIVER Project Risk Management Quality Week Europe '9915

ZZZ�ULVNGULYHU�FRP

RiskDRIVER Project Risk Management Quality Week Europe '9916

6HOI�$VVHVVPHQW�7RRO

9

RiskDRIVER Project Risk Management Quality Week Europe '9917

5LVN�&DWDORJXH

RiskDRIVER Project Risk Management Quality Week Europe '9918

5,6.0$1�6RIWZDUH

10

RiskDRIVER Project Risk Management Quality Week Europe '9919

5,6.0$1�6RIWZDUH
,QWHJUDWLRQ�ZLWK�2IILFH�$SSOLFDWLRQV

Reports

Project planning

Metrics

RiskDRIVER Project Risk Management Quality Week Europe '9920

• Sylvain Schieber CR2A-DI (France)
• Stefano Allari IBK (Germany)
• Miklos Biro IT (Hungary)
• Jouko Luukas CCC Software Professionals (Finland)
• Larry Moffett e-Strategy (Belgium)
• Jose Maria Sanz European Software Institute (Spain)
• James Stein OPL UK (UK)
• David Storch RADICALmedia (Portugal)

Supported by the

7KH�5LVN'5,9(5�&RQVRUWLXP

1

Lessons Learned in the Real WorldLessons Learned in the Real World
VT7 - Thursday November 4th at 11:00VT7 - Thursday November 4th at 11:00

David David EadeEade
McCabe & Associates

QWE’99QWE’99

0F&DEH

$VVRFLDWHV ��

6RIWZDUH�'HYHORSPHQW6RIWZDUH�'HYHORSPHQW

■■ :DWHUIDOO:DWHUIDOO

±± 7UDGLWLRQDO�0RGHO7UDGLWLRQDO�0RGHO

±± 9�0RGHO9�0RGHO

■■ 6SLUDO6SLUDO

±± (YROXWLRQDU\(YROXWLRQDU\

±± 5$'5$'

■■ $GDSWLYH���([WUHPH$GDSWLYH���([WUHPH�(WF��(WF�

2

0F&DEH
$VVRFLDWHV ��

6RIWZDUH�0DLQWHQDQFH6RIWZDUH�0DLQWHQDQFH

■■ 3HUIHFWLYH3HUIHFWLYH

±± 3HUIRUPDQFH�%HKDYLRXU3HUIRUPDQFH�%HKDYLRXU

■■ &RUUHFWLYH&RUUHFWLYH

±± %XJ�)L[HV%XJ�)L[HV

■■ $GDSWLYH$GDSWLYH

±± 1HZ�)XQFWLRQDOLW\1HZ�)XQFWLRQDOLW\

Code ModificationCode Modification

On-Going DevelopmentOn-Going Development

Corrective

Perfective

Adaptive

0F&DEH

$VVRFLDWHV ��

AnalyseAnalyse

CodeCode

DesignDesign TestTest ReleaseReleaseCodeCode

CodeCode
Project
Start

Project
End

:DWHUIDOO���7UDGLWLRQDO���9:DWHUIDOO���7UDGLWLRQDO���9
IssuesIssues

Code QualityCode Quality
Developer TestingDeveloper Testing

Code ReviewsCode Reviews

Quality: Coding Standards
Different Testing Practices
Code Reviews

ChallengesChallenges
Multiple ProgrammersMultiple Programmers

3

0F&DEH
$VVRFLDWHV ��

Project
Start

Project
End

:DWHUIDOO���7UDGLWLRQDO���9:DWHUIDOO���7UDGLWLRQDO���9

AnalyseAnalyse

CodeCode

DesignDesign TestTest ReleaseReleaseCodeCode

CodeCode

IssuesIssues
Code Quality

Developer Testing
Code Reviews
Testing TimeTesting Time

Defect ReductionDefect Reduction
TimescalesTimescales

TimeScales: Reduced Testing Time
 Increased Defects

IssuesIssues
Code Quality

Developer Testing
Code Reviews

ChallengesChallenges
Multiple Programmers

Variable WorkloadsVariable Workloads

0F&DEH

$VVRFLDWHV ��

IssuesIssues
Code Quality

Developer Testing
Code Reviews
Testing Time

Defect Reduction
Timescales

IssuesIssues
Code Quality

Developer Testing
Code Reviews
 Testing Time+ Testing Time+

 Defect Reduction+ Defect Reduction+
 TimescalesTimescales++

:DWHUIDOO���7UDGLWLRQDO���9:DWHUIDOO���7UDGLWLRQDO���9

Project
Start

Project
End

AnalyseAnalyse

CodeCode

DesignDesign TestTest ReleaseReleaseCodeCode

CodeCode

DesignDesign CodeCode

Late Delivery
Reduced Testing Time
Increased Defects

ChallengesChallenges
Multiple Programmers

Variable Workloads
New Requirements

Perfective Enhancements

4

0F&DEH
$VVRFLDWHV ��

IssuesIssues
Code Quality

Developer Testing
Code Reviews
 Testing Time+

 Defect Reduction+
 Timescales+

IssuesIssues
 Code Quality+ Code Quality+

Developer Testing
Code Reviews
 Testing Time+

 Defect Reduction+
 Timescales+
TestednessTestedness

ComprehensionComprehension

:DWHUIDOO���7UDGLWLRQDO���9:DWHUIDOO���7UDGLWLRQDO���9

AnalyseAnalyse DesignDesign ReleaseRelease

Project
Start

Project
End

CodeCode TestTest

ChallengesChallenges
Multiple Programmers

Variable Workloads
New Requirements

Perfective Enhancements

ChallengesChallenges
Multiple Programmers

Variable Workloads
New Requirements

Perfective Enhancements
Code Re-UseCode Re-Use

Code Quality
Testedness
Comprehension

0F&DEH

$VVRFLDWHV ��

IssuesIssues
 Code Quality+

Developer Testing
Code Reviews
 Testing Time+

 Defect Reduction+
 Timescales+
Testedness

Comprehension

IssuesIssues
 Code Quality+

Developer Testing
Code Reviews
 Testing Time+

 Defect Reduction++ Defect Reduction++
 TimescalesTimescales++++

Testedness
Comprehension

:DWHUIDOO���7UDGLWLRQDO���9:DWHUIDOO���7UDGLWLRQDO���9

AnalyseAnalyse DesignDesign

Project
Start

Project
End

CodeCode TestTest

ChallengesChallenges
Multiple Programmers

Variable Workloads
New Requirements

Perfective Enhancements

ChallengesChallenges
Multiple Programmers

Variable Workloads
New Requirements

Perfective Enhancements
Code Re-Use

ChallengesChallenges
Multiple Programmers
Variable Workloads
New Requirements

Perfective Enhancements
Code Re-Use

Poorly Defined End-Point for TestingPoorly Defined End-Point for Testing
Ever-Increasing FunctionalityEver-Increasing Functionality

Timescales
Defects in Delivered Software

ReleaseRelease

5

0F&DEH
$VVRFLDWHV ��

6SLUDO���(YROXWLRQDU\���5$'6SLUDO���(YROXWLRQDU\���5$'
IssuesIssues

 Code Quality+
Developer Testing

Code Reviews
 Testing Time+

 Defect Reduction++
 Timescales++

Testedness
Comprehension

ChallengesChallenges
Multiple Programmers
Variable Workloads
New Requirements

Perfective Enhancements
Code Re-Use

Poorly Defined End-Point for Testing
Ever-Increasing Functionality

0F&DEH

$VVRFLDWHV ����

6SLUDO���(YROXWLRQDU\���5$'6SLUDO���(YROXWLRQDU\���5$'
IssuesIssues

 Code Quality+Code Quality+
Developer TestingDeveloper Testing

Code ReviewsCode Reviews
 Testing Time+ Testing Time+

 Defect Reduction++ Defect Reduction++
 TimescalesTimescales++++

TestednessTestedness
ComprehensionComprehension

ChallengesChallenges
Multiple ProgrammersMultiple Programmers
Variable WorkloadsVariable Workloads
New Requirements

PerfectivePerfective Enhancements Enhancements
Code Re-UseCode Re-Use

Poorly Defined End-Point for TestingPoorly Defined End-Point for Testing
Ever-Increasing FunctionalityEver-Increasing Functionality

6

0F&DEH
$VVRFLDWHV ����

IssuesIssues
 Code Quality++Code Quality++
Developer Testing

Code Reviews
 Testing Time+

 Defect Reduction++
 Timescales++

Testedness
 Comprehension+Comprehension+
Metrics TrendingMetrics Trending

6SLUDO���(YROXWLRQDU\���5$'6SLUDO���(YROXWLRQDU\���5$'

Code Quality
Comprehension
Variance from Original Design

ChallengesChallenges
Multiple Programmers
Variable Workloads
New RequirementsNew Requirements

Perfective Enhancements
Code Re-Use

Poorly Defined End-Point for Testing
Ever-Increasing Functionality

0F&DEH

$VVRFLDWHV ����

IssuesIssues
 Code Quality+++Code Quality+++
Developer Testing

Code Reviews
 Testing Time+

 Defect Reduction++
 Timescales++

Testedness
 Comprehension++Comprehension++

Metrics Trending

0DLQWHQDQFH0DLQWHQDQFH
ChallengesChallenges
Multiple Programmers
Variable Workloads
New Requirements

Perfective Enhancements
Code Re-Use

Poorly Defined End-Point for Testing
Ever-Increasing Functionality

Change
Request

Change
Request

Code
Modification

Code
Modification Assessment Assessment Regression

Test

Regression
Test

ChallengesChallenges
Multiple Programmers
Variable Workloads
New Requirements

Perfective Enhancements
Code Re-Use

Poorly Defined End-Point for Testing
Ever-Increasing Functionality

Impact of ChangeImpact of Change

Code Quality
Comprehension

7

0F&DEH
$VVRFLDWHV ����

IssuesIssues
 Code Quality+++
Developer Testing

Code Reviews
 Testing Time+

 Defect Reduction++
 Timescales++
 Testedness+Testedness+

 Comprehension++
Metrics Trending

Coverage of Changed CodeCoverage of Changed Code
Tracking ChangesTracking Changes

0DLQWHQDQFH0DLQWHQDQFH

Change
Request

Change
Request

Code
Modification

Code
Modification Assessment Assessment Regression

Test

Regression
Test

Coverage of Changed Code
Tracking Changes

ChallengesChallenges
Multiple Programmers
Variable Workloads
New Requirements

Perfective Enhancements
Code Re-Use

Poorly Defined End-Point for Testing
Ever-Increasing Functionality

Impact of Change
Testing Modified CodeTesting Modified Code

0F&DEH

$VVRFLDWHV ����

IssuesIssues
Code QualityCode Quality

Developer TestingDeveloper Testing
Code ReviewsCode Reviews
Testing TimeTesting Time

Defect ReductionDefect Reduction
TimescalesTimescales
TestednessTestedness

ComprehensionComprehension
Metrics TrendingMetrics Trending

Coverage of Changed CodeCoverage of Changed Code
Tracking ChangesTracking Changes

8

0F&DEH
$VVRFLDWHV ����

Code QualityCode Quality
Developer TestingDeveloper Testing

Code ReviewsCode Reviews
Testing TimeTesting Time

Defect ReductionDefect Reduction
TimescalesTimescales
TestednessTestedness

ComprehensionComprehension
Metrics TrendingMetrics Trending

Coverage of Changed CodeCoverage of Changed Code
Tracking ChangesTracking Changes

0F&DEH

$VVRFLDWHV ����

Code QualityCode Quality
Developer TestingDeveloper Testing

Code ReviewsCode Reviews
Testing TimeTesting Time

Defect ReductionDefect Reduction
TimescalesTimescales
TestednessTestedness

ComprehensionComprehension
Metrics TrendingMetrics Trending

Coverage of Changed CodeCoverage of Changed Code
Tracking ChangesTracking Changes

0F&DEH�4$
0F&DEH
7HVW

0F&DEH
&KDQJH

0F&DEH
7HVW&RPSUHVV

0F&DEH
&RPSDUH

0F&DEH
6OLFH

0F&DEH
'DWD

0F&DEH
5H7HVW

9

0F&DEH
$VVRFLDWHV ����

McCabe QAMcCabe QA
Code QualityCode Quality

Code ReviewsCode Reviews
Defect ReductionDefect Reduction
ComprehensionComprehension
Metrics TrendingMetrics Trending

0F&DEH

$VVRFLDWHV ����

'HPRQVWUDWLRQ'HPRQVWUDWLRQ

McCabe IQMcCabe IQ
McCabe QAMcCabe QA

McCabe ReengineerMcCabe Reengineer

10

0F&DEH
$VVRFLDWHV ����

McCabe TestMcCabe Test
Developer TestingDeveloper Testing

Testing TimeTesting Time
TimescalesTimescales
TestednessTestedness

Coverage of Changed CodeCoverage of Changed Code

0F&DEH

$VVRFLDWHV ����

'HPRQVWUDWLRQ'HPRQVWUDWLRQ

McCabe IQMcCabe IQ
McCabe TestMcCabe Test

McCabe ReengineerMcCabe Reengineer

1

Lessons Learned in the Real World
VT7 - Thursday November 4th at 11:00

David Eade
McCabe & Associates

QWE’99

0F&DEH

$VVRFLDWHV �

6RIWZDUH�'HYHORSPHQW

■ :DWHUIDOO

± 7UDGLWLRQDO�0RGHO

± 9�0RGHO

■ 6SLUDO

± (YROXWLRQDU\

± 5$'

■ $GDSWLYH���([WUHPH�(WF�

2

0F&DEH
$VVRFLDWHV �

6RIWZDUH�0DLQWHQDQFH

■ 3HUIHFWLYH

± 3HUIRUPDQFH�%HKDYLRXU

■ &RUUHFWLYH

± %XJ�)L[HV

■ $GDSWLYH

± 1HZ�)XQFWLRQDOLW\

Code Modification

On-Going Development

Corrective

Perfective

Adaptive

0F&DEH

$VVRFLDWHV �

Analyse

Code

Design Test ReleaseCode

Code
Project
Start

Project
End

:DWHUIDOO���7UDGLWLRQDO���9
Issues

Code Quality
Developer Testing

Code Reviews

Quality: Coding Standards
Different Testing Practices
Code Reviews

Challenges
Multiple Programmers

3

0F&DEH
$VVRFLDWHV �

Project
Start

Project
End

:DWHUIDOO���7UDGLWLRQDO���9

Analyse

Code

Design Test ReleaseCode

Code

Issues
Code Quality

Developer Testing
Code Reviews
Testing Time

Defect Reduction
Timescales

TimeScales: Reduced Testing Time
 Increased Defects

Issues
Code Quality

Developer Testing
Code Reviews

Challenges
Multiple Programmers

Variable Workloads

0F&DEH

$VVRFLDWHV �

Issues
Code Quality

Developer Testing
Code Reviews
Testing Time

Defect Reduction
Timescales

Issues
Code Quality

Developer Testing
Code Reviews
 Testing Time+

 Defect Reduction+
 Timescales+

:DWHUIDOO���7UDGLWLRQDO���9

Project
Start

Project
End

Analyse

Code

Design Test ReleaseCode

Code

Design Code

Late Delivery
Reduced Testing Time
Increased Defects

Challenges
Multiple Programmers

Variable Workloads
New Requirements

Perfective Enhancements

4

0F&DEH
$VVRFLDWHV �

Issues
Code Quality

Developer Testing
Code Reviews
 Testing Time+

 Defect Reduction+
 Timescales+

Issues
 Code Quality+

Developer Testing
Code Reviews
 Testing Time+

 Defect Reduction+
 Timescales+
Testedness

Comprehension

:DWHUIDOO���7UDGLWLRQDO���9

Analyse Design Release

Project
Start

Project
End

Code Test

Challenges
Multiple Programmers

Variable Workloads
New Requirements

Perfective Enhancements

Challenges
Multiple Programmers

Variable Workloads
New Requirements

Perfective Enhancements
Code Re-Use

Code Quality
Testedness
Comprehension

0F&DEH

$VVRFLDWHV �

Issues
 Code Quality+

Developer Testing
Code Reviews
 Testing Time+

 Defect Reduction+
 Timescales+
Testedness

Comprehension

Issues
 Code Quality+

Developer Testing
Code Reviews
 Testing Time+

 Defect Reduction++
 Timescales++

Testedness
Comprehension

:DWHUIDOO���7UDGLWLRQDO���9

Analyse Design

Project
Start

Project
End

Code Test

Challenges
Multiple Programmers

Variable Workloads
New Requirements

Perfective Enhancements

Challenges
Multiple Programmers

Variable Workloads
New Requirements

Perfective Enhancements
Code Re-Use

Challenges
Multiple Programmers
Variable Workloads
New Requirements

Perfective Enhancements
Code Re-Use

Poorly Defined End-Point for Testing
Ever-Increasing Functionality

Timescales
Defects in Delivered Software

Release

5

0F&DEH
$VVRFLDWHV �

6SLUDO���(YROXWLRQDU\���5$'
Issues

 Code Quality+
Developer Testing

Code Reviews
 Testing Time+

 Defect Reduction++
 Timescales++

Testedness
Comprehension

Challenges
Multiple Programmers
Variable Workloads
New Requirements

Perfective Enhancements
Code Re-Use

Poorly Defined End-Point for Testing
Ever-Increasing Functionality

0F&DEH

$VVRFLDWHV ��

6SLUDO���(YROXWLRQDU\���5$'
Issues

 Code Quality+
Developer Testing

Code Reviews
 Testing Time+

 Defect Reduction++
 Timescales++

Testedness
Comprehension

Challenges
Multiple Programmers
Variable Workloads
New Requirements

Perfective Enhancements
Code Re-Use

Poorly Defined End-Point for Testing
Ever-Increasing Functionality

6

0F&DEH
$VVRFLDWHV ��

Issues
 Code Quality++
Developer Testing

Code Reviews
 Testing Time+

 Defect Reduction++
 Timescales++

Testedness
 Comprehension+
Metrics Trending

6SLUDO���(YROXWLRQDU\���5$'

Code Quality
Comprehension
Variance from Original Design

Challenges
Multiple Programmers
Variable Workloads
New Requirements

Perfective Enhancements
Code Re-Use

Poorly Defined End-Point for Testing
Ever-Increasing Functionality

0F&DEH

$VVRFLDWHV ��

Issues
 Code Quality+++
Developer Testing

Code Reviews
 Testing Time+

 Defect Reduction++
 Timescales++

Testedness
 Comprehension++

Metrics Trending

0DLQWHQDQFH
Challenges
Multiple Programmers
Variable Workloads
New Requirements

Perfective Enhancements
Code Re-Use

Poorly Defined End-Point for Testing
Ever-Increasing Functionality

Change
Request

Code
Modification

 Assessment
Regression

Test

Challenges
Multiple Programmers
Variable Workloads
New Requirements

Perfective Enhancements
Code Re-Use

Poorly Defined End-Point for Testing
Ever-Increasing Functionality

Impact of Change

Code Quality
Comprehension

7

0F&DEH
$VVRFLDWHV ��

Issues
 Code Quality+++
Developer Testing

Code Reviews
 Testing Time+

 Defect Reduction++
 Timescales++
 Testedness+

 Comprehension++
Metrics Trending

Coverage of Changed Code
Tracking Changes

0DLQWHQDQFH

Change
Request

Code
Modification

 Assessment
Regression

Test

Coverage of Changed Code
Tracking Changes

Challenges
Multiple Programmers
Variable Workloads
New Requirements

Perfective Enhancements
Code Re-Use

Poorly Defined End-Point for Testing
Ever-Increasing Functionality

Impact of Change
Testing Modified Code

0F&DEH

$VVRFLDWHV ��

Issues
Code Quality

Developer Testing
Code Reviews
Testing Time

Defect Reduction
Timescales
Testedness

Comprehension
Metrics Trending

Coverage of Changed Code
Tracking Changes

8

0F&DEH
$VVRFLDWHV ��

Code Quality
Developer Testing

Code Reviews
Testing Time

Defect Reduction
Timescales
Testedness

Comprehension
Metrics Trending

Coverage of Changed Code
Tracking Changes

0F&DEH

$VVRFLDWHV ��

Code Quality
Developer Testing

Code Reviews
Testing Time

Defect Reduction
Timescales
Testedness

Comprehension
Metrics Trending

Coverage of Changed Code
Tracking Changes

0F&DEH�4$
0F&DEH
7HVW

0F&DEH
&KDQJH

0F&DEH
7HVW&RPSUHVV

0F&DEH
&RPSDUH

0F&DEH
6OLFH

0F&DEH
'DWD

0F&DEH
5H7HVW

9

0F&DEH
$VVRFLDWHV ��

McCabe QA
Code Quality

Code Reviews
Defect Reduction
Comprehension
Metrics Trending

0F&DEH

$VVRFLDWHV ��

'HPRQVWUDWLRQ

McCabe IQ
McCabe QA

McCabe Reengineer

10

0F&DEH
$VVRFLDWHV ��

McCabe Test
Developer Testing

Testing Time
Timescales
Testedness

Coverage of Changed Code

0F&DEH

$VVRFLDWHV ��

'HPRQVWUDWLRQ

McCabe IQ
McCabe Test

McCabe Reengineer

Cantata++ Technical Presentation May 1998

1 © Copyright IPL Information Processing Limited 1998

1 1

Cantata++
”C++ Software Testing”

Cantata++
”C++ Software Testing”

A Technical Presentation
by

Ian Gilchrist

2 2

Cantata++ what you will seeCantata++Cantata++ what you will see what you will see

� Introduction - Dynamic Testing

� ‘Black Box’ testing a class

�Coverage Analysis of tests

� ‘White Box’ testing a class (‘Friends’)

�Simulating external software
(‘Stubs/Wrappers’)

�Conclusions

Cantata++ Technical Presentation May 1998

2 © Copyright IPL Information Processing Limited 1998

3 3

Who is it for?Who is it for?Who is it for?

Who is Cantata++ for?

� Developers of ‘high-reliability’ software, using C++
• improve reliability by fully testing software at the

component level

� People who want to do coverage analysis on C++
systems
• discover weaknesses in their systems tests, and thus

hopefully improve these

4 4

Dynamic TestingDynamic TestingDynamic Testing

Cantata++ Technical Presentation May 1998

3 © Copyright IPL Information Processing Limited 1998

5 5

Dynamic TestingDynamic TestingDynamic Testing

�Dynamic testing is the most fundamental
form of verification
● Check that the software behaves according to its

specification - “Does it work?”

�Cantata++ makes dynamic testing
● REPEATABLE and AUDITABLE

● AUTOMATED - hence fast

● REUSABLE - contributes to cost-effectiveness

6 6

Dynamic Testing TechniquesDynamic Testing TechniquesDynamic Testing Techniques

�Cantata++ supports:
● UNIT and INTEGRATION testing

● BLACK BOX and WHITE BOX testing

● SIMULATION of external classes/calls

● REGRESSION testing

● TIMING analysis

Cantata++ Technical Presentation May 1998

4 © Copyright IPL Information Processing Limited 1998

7 7

How Cantata++ fits togetherHow How Cantata++Cantata++ fits together fits together

Test
Executable

Compile

Results
Summary

Run

Test
Script

Results
File

SUT

Stubs

‘Other’
Libraries

Cantata++
Libraries

Link

8 8

Black Box Testing 1Black Box Testing 1Black Box Testing 1

Public Private

Inputs

Outputs

Cantata++ Technical Presentation May 1998

5 © Copyright IPL Information Processing Limited 1998

9 9

Black Box Testing 2Black Box Testing 2Black Box Testing 2

�Black box testing means testing a class
purely by its public interface.

�Call class methods in a planned sequence,
passing in known values and setting checks
on return values.

�Test script written in C++ using the
Cantata++ Test Harness (CPPTH).

10 10

Black Box Testing - Demo 1Black Box Testing - Demo 1Black Box Testing - Demo 1

Class Stack has the public interface:
¾ ‘constructor’
¾ is_empty
¾ push (with new_error exception)
¾ pop (with empty_pop exception)
¾ ‘copy constructor’
¾ ‘destructor’

Private component is pointer to first node in
linked list.

Cantata++ Technical Presentation May 1998

6 © Copyright IPL Information Processing Limited 1998

11 11

Black Box Testing - Demo 2Black Box Testing - Demo 2Black Box Testing - Demo 2

�Two test cases to begin with:
● “empty stack”

¾ ‘is_empty’ should be true

¾ ‘pop’ should throw ‘empty_pop’ exception

● “push/pop”
¾ ‘push’ some known numbers

¾ ‘is_empty’ should be false

¾ ‘pop’ numbers and check values

¾ ‘is_empty’ should be true

¾ no exceptions should be thrown
Laptop computer

Cantata++
Demo

12 12

Black Box Testing - Demo 3Black Box Testing - Demo 3Black Box Testing - Demo 3

What happened?
� ‘empty class’ seems to work

� ‘push’ contained a bug

� Inspection of code revealed probable cause of
the bug

�Code was changed and the retest passed!

So can we conclude the code is ready to use?

Have we finished testing?

Cantata++ Technical Presentation May 1998

7 © Copyright IPL Information Processing Limited 1998

13 13

How Much Testing ?How Much Testing ?How Much Testing ?

Acceptable

Confidencec

� An ‘acceptable’ level of confidence is achievable,
but needs to be set in objective terms using
coverage analysis.

100 %

Test Effort

14 14

Coverage AnalysisCoverage AnalysisCoverage Analysis

Cantata++ Technical Presentation May 1998

8 © Copyright IPL Information Processing Limited 1998

15 15

Coverage Analysis - Why ?Coverage Analysis - Why ?Coverage Analysis - Why ?

� If the purpose of software testing is to gain
“An acceptable level of confidence in the
software...”,then this needs to be measured.

�Coverage Analysis is the objective
measurement of acceptability, against which
the effectiveness of test effort can be judged.

�Testing can then be controlled
“… at an acceptable level of cost”.

16 16

Coverage Analysis - When?Coverage Analysis - When?Coverage Analysis - When?

�Builds upon Dynamic Testing
● Measure the “amount” of the software under test

which has been exercised

● The more coverage the more confidence

● Lots of definitions of “amount”!

�Can be used with Unit, Integration or System
level testing

�Coverage can integrated with Cantata++
dynamic testing or ‘standalone’

Cantata++ Technical Presentation May 1998

9 © Copyright IPL Information Processing Limited 1998

17 17

Coverage Analysis - What?Coverage Analysis - What?Coverage Analysis - What?

�Structural coverage metrics
● entrypoint, statements, decisions, boolean

operators etc.

�OO coverage metrics
● coverage of inheritance

● template instantiations

�Other Metrics
● “masking” MC/DC

● boundary (relational) coverage

18 18

Coverage Analysis - How?Coverage Analysis - How?Coverage Analysis - How?

Coverage analysis is carried out by:

� Instrumenting code under test
● enables coverage by inserting software ‘probes’

�Adding Cantata++ Analysis to the test script
● checks and reports (textual and graphic)

�Re-running test and look at results:
● coverage check - Pass, Fail or Warning?

● coverage diagnostics show where code not executed

Cantata++ Technical Presentation May 1998

10 © Copyright IPL Information Processing Limited 1998

19 19

How Coverage fits inHow Coverage fits inHow Coverage fits in

Test
Executable

Compile

Results
Summary

Run

Cantata++
Coverage

Instrumenter

Test
Script

SUT

Results
File

Instru-
mented

SUT

Stubs

‘Other’
Libraries

Cantata++
Libraries

Link

Coverage
Directives

20 20

Coverage Analysis - DemoCoverage Analysis - DemoCoverage Analysis - Demo

�Back to the ‘stack’ class

�Set up up coverage analysis to check
● Pass/Fail on 100% Entrypoint coverage

¾ (I.e. all methods called)

● Warnings on 100% Statement

 and Decision coverage

Laptop computer

Cantata++
Demo

Cantata++ Technical Presentation May 1998

11 © Copyright IPL Information Processing Limited 1998

21 21

Coverage Analysis - Demo 2Coverage Analysis - Demo 2Coverage Analysis - Demo 2

What happened?
�Entrypoint coverage failed with < 100%

● Showed that the copy constructor had not been
executed - we need a new test case.

�Statement and Decision coverage produced
warnings with < 100%
● We will deal with these later

22 22

White Box Testing 1White Box Testing 1White Box Testing 1

Public Private

Inputs

Outputs

Cantata++ Technical Presentation May 1998

12 © Copyright IPL Information Processing Limited 1998

23 23

White Box Testing 2White Box Testing 2White Box Testing 2

�White box testing means testing a class with
access to the private implementation
details.

�Uses the ‘Friends’ mechanism.
● Testability Instrumentation is run on class under

test to declare that the test class is a ‘friend’ of
the class under test.

● This is completely automatic.

24 24

White Box Testing 3White Box Testing 3White Box Testing 3

� ‘Friends’ allows test to :
● call private methods directly

¾ gain a high level of coverage more easily

● set and check private data directly
¾more direct so more efficient testing

¾ better at finding obscure implementation faults such as
pointers left corrupted

Cantata++ Technical Presentation May 1998

13 © Copyright IPL Information Processing Limited 1998

25 25

How White Box Testing fits inHow White Box Testing fits inHow White Box Testing fits in

Test
Executable

Compile

Results
Summary

Run

Cantata++
Testability

Instrumenter

Test
Script

SUT

Results
File

SUT
with

‘Friends’

Stubs

‘Other’
Libraries

Cantata++
Libraries

Link

26 26

White Box Testing - Demo 1White Box Testing - Demo 1White Box Testing - Demo 1

�Back to ‘stack’ class

�Want to do a test on the copy constructor,
and ensure that ‘deep copy’ has taken place.

�Use Testability
Instrumentation to add
‘friend’ to class under test.

�Add new test case
to test script.

Laptop computer

Cantata++
Demo

Cantata++ Technical Presentation May 1998

14 © Copyright IPL Information Processing Limited 1998

27 27

‘Shallow’ Copy

Shallow and Deep CopyShallow and Deep Copy

Original
Stack

‘Deep’ Copy
Original

Head
Pointer

New
Head

Pointer

Original
Head

Pointer

New
Head

Pointer

Original
Stack

New
Stack

28 28

White Box Testing - Demo 2White Box Testing - Demo 2White Box Testing - Demo 2

What happened?
�The Black Box checks indicated that the copy

had worked as it should.

�The White Box check however showed that
only a shallow copy had taken place.

�Code was corrected.

�The test was forced by Coverage Analysis
and enabled by the ‘Friend’ technique.

�Coverage ‘Warning’ for an external call.

Cantata++ Technical Presentation May 1998

15 © Copyright IPL Information Processing Limited 1998

29 29

Cantata++ and External Calls 1Cantata++Cantata++ and External Calls 1 and External Calls 1

SUT

External
Software

External
Software

30 30

Cantata++ and External Calls 2Cantata++Cantata++ and External Calls 2 and External Calls 2

�External calls can be treated in two different
ways with Cantata++
● STUBS - replace ‘real’ function with a local

substitute
¾ works very well with function calls

● WRAPPERS - intercept call to real external
software
¾ intended to solve the C++ ‘stubbing problem’

Cantata++ Technical Presentation May 1998

16 © Copyright IPL Information Processing Limited 1998

31 31

Cantata++ and External Calls 3Cantata++Cantata++ and External Calls 3 and External Calls 3

STUB

SUT

External
Software

External
Software

‘Before’
Wrapper

‘After’
Wrapper

STUB

32

Stubbing or WrappingStubbing or WrappingStubbing or Wrapping
Stubbing Wrapping

Check call order 9 9 (optional)

Check parameters 9 (optional) 9 (optional)

Call original function 8 9

Set return value 9 9 (optional)

Throw exception 9 (optional) 9 (optional)

Change output parameters 9 (optional) 9 (optional)

Call original with modified params8 9

Use with system calls 8 9

Use selectively 8 9

Original function linked with test 8� 9

Cantata++ Technical Presentation May 1998

17 © Copyright IPL Information Processing Limited 1998

33 33

Cantata++ and External Calls 6Cantata++Cantata++ and External Calls 6 and External Calls 6

�When do we use wrappers?
● Example - software under test accesses database

¾Uses DBQuery class

¾DBQuery is provided as a library so cannot change
source

¾DBQuery constructors cannot be stubbed

● Want to check that correct calls have been made
¾Check correct parameters passed

¾Perhaps check order calls made ...
... but sometimes we don’t care as long as they happen

¾Sometimes force return values

34 34

How Wrappers fit inHow Wrappers fit inHow Wrappers fit in

Test
Executable

Compile

Results
Summary

Run

Cantata++
Testability

Instrumenter

Test
Script

SUT

Results
File

Wrapper
Function
Template

Wrapped
SUT

Stubs

‘Other’
Libraries

Cantata++
Libraries

Link

Cantata++ Technical Presentation May 1998

18 © Copyright IPL Information Processing Limited 1998

35 35

Wrappers - DemoWrappers - DemoWrappers - Demo

�Back to ‘stack’ class demo

�Coverage has shown lack of completeness in
the area of ‘new’ error response. What to do?

�Answer - wrap the call to ‘new’!
● intercept the AFTER call

and change the return value
to Null.

● Does the software do what
it should do:
(throw the new_error exception)?

Laptop computer

Cantata++
Demo

36 36

Demo - SummaryDemo - SummaryDemo - Summary
� This demo has been conducted in five parts:

● Simple Black Box tests - found a bug, and Coverage
Analysis showed some gaps in the testing:

¾ ‘Copy’ method not called

¾ The error branch of ‘new’ in push not executed.

● A White Box test (enabled through the ‘Friend’ technique)
showed that the ‘copy’ method contained a serious bug.

● Wrapping ‘new’ allowed an error code to be returned, thus
finishing the job.

Cantata++ Technical Presentation May 1998

19 © Copyright IPL Information Processing Limited 1998

37 37

Demo - not shownDemo - not shownDemo - not shown

�There has not been time or space to show:
● ‘Reuse’ Testing - Derived Classes

● Static Analysis

● OO Coverage

● Template testing

38 38

Read all about it!Read all about it!Read all about it!

The IPL paper “C++. It’s Testing, Jim, But Not
As We Know It!” additionally describes:

�Design for Testability
● Abstract Base Classes

�Test Case Reuse
● Factory Classes

�Coverage in Context
● Polymorphism

● State-based coverage

Cantata++ Technical Presentation May 1998

20 © Copyright IPL Information Processing Limited 1998

39 39

Training from IPLTraining from IPLTraining from IPL

�Training for Cantata++ is offered as two one-
day courses:
● ‘Introduction to Testing C++ with Cantata++’

● ‘Using Cantata++’

�Both days can be provided in classroom format
(‘public’ or ‘private’).

�Both days are available on CD-ROM.

40 40

ConclusionConclusionConclusion

�Since its introduction C++ code has always
been difficult to test. This has frequently been
made an excuse to do no testing.
● Result - Test the application not the code, with

consequent (very) extended system testing.

�Cantata++ makes dynamic testing of C++
● REPEATBLE and AUDITABLE

● AUTOMATED

● REUSABLE

Cantata++ Technical Presentation May 1998

21 © Copyright IPL Information Processing Limited 1998

41 41

 Cantata++ Cantata++Cantata++

Any more
questions?

1

Automating Cleanroom Management QWE’99

$XWRPDWLQJ�&OHDQURRP
0DQDJHPHQW

$XWRPDWLQJ�&OHDQURRP
0DQDJHPHQW

5RQQLH�9DQ�3DULMV

&$�%HOJLXP
ronnie.vanparijs@CAI.COM

5RQQLH�9DQ�3DULMV

&$�%HOJLXP
ronnie.vanparijs@CAI.COM

QWE’99

$XWRPDWLQJ�&OHDQURRP
0DQDJHPHQW
$XWRPDWLQJ�&OHDQURRP
0DQDJHPHQW

◗ What is Clean Room Management

◗ Change and Configuration

Management Benefits

◗ Endevor: The Solution

2

Automating Cleanroom Management QWE’99

:KDW�LV�&OHDQURRP�0DQDJHPHQW":KDW�LV�&OHDQURRP�0DQDJHPHQW"

Cleanroom, as defined by IBM, is a “managerial and

technical process for the development of software with ultra-

high quality with certified reliability”

“Management of the Cleanroom process is based on an

incremental life cycle in which development and certification

are conducted in a pipeline of user-function increments.”

,QFUHPHQWDO�/LIH�&\FOH,QFUHPHQWDO�/LIH�&\FOH

◗ Composed of site-defined requirements executed in

the system environment, designed to accumulate

changes into a final product.

– Integration is top-down and continuous

– Implementation of process key to ensure change

process is error free

– Each change increment implemented onto of the last,

following the same procedures

3

Automating Cleanroom Management QWE’99

,QFUHPHQWDO�/LIH�&\FOH,QFUHPHQWDO�/LIH�&\FOH

Automation, the Key to Success

◗ Components of change increment move together

◗ Required processes and tests can be automated -- ensuring

accuracy

◗ Audit trail of all activities

Stage 1 Stage 2 Stage 3 Production

&KDQJH�DQG�&RQILJXUDWLRQ
0DQDJHPHQW
&KDQJH�DQG�&RQILJXUDWLRQ
0DQDJHPHQW

The ability to manage,The ability to manage,

control and improve thecontrol and improve the

process of building,process of building,

changing and operatingchanging and operating

software systems.software systems.

4

Automating Cleanroom Management QWE’99

&&0�%HQHILWV&&0�%HQHILWV

◗ Desired business standards are applied…everytime

◗ Audit requirements are achieved

◗ Concurrent development is under control

◗ Prior executables recreated quickly and correctly

◗ Accurate source to executables trace

&&0�%HQHILWV&&0�%HQHILWV

◗ Track all components of a change

◗ All required components are included

◗ Appropriate approvals performed in a timely fashion

◗ Reduced downtime

◗ Improve time to market

5

Automating Cleanroom Management QWE’99

7KH�6ROXWLRQ���(QGHYRU7KH�6ROXWLRQ���(QGHYRU

Endevor features:

◗ Version control

◗ Change control

◗ Configuration control

◗ Life-cycle modeling

◗ Concurrency protection

◗ Auditing and reports

Standards Enforcement

9HUVLRQ�DQG�&KDQJH�&RQWURO9HUVLRQ�DQG�&KDQJH�&RQWURO

◗ Know who, when, why change made

◗ Ensure the right people get involved

BaseBase

ChangeChange
LevelsLevels

Version 1 Level 0Version 1 Level 0

Version 1 Level 1Version 1 Level 1

Version 1 Level 2Version 1 Level 2

Version 1 Level 3Version 1 Level 3

6

Automating Cleanroom Management QWE’99

Standards Enforcement

&RQILJXUDWLRQ�0DQDJHPHQW&RQILJXUDWLRQ�0DQDJHPHQW

◗ Creates executables when source is changed

– Standards defined and enforced

– Standard processes implemented

– Repeatable procedures established

◗ Footprinting

– Prevents movement of executables into any environment

without corresponding source code(s)

Standards Enforcement

/LIH�F\FOH�0RGHOLQJ/LIH�F\FOH�0RGHOLQJ

◗ Establish and enforce site-specific standards for life

cycle administration

◗ For specific change increments, individual

applications or across the organization

◗ Ensures process control

7

Automating Cleanroom Management QWE’99

ENVIRONMENT: MVSPROD

Stage 1
INT

Stage 2
PRD

ENVIRONMENT: MVTEST

Stage 1
UT

Stage 2
QA

ENVIRONMENT: MVTEST

Stage 1
UT

Stage 2
QA

ENVIRONMENT: MVPROD

Stage 1
INT

Stage 2
PRD

Route 1:
Standard
Development

Route 2:
Emergency
Fixes

/LIH�&\FOH�0RGHOLQJ/LIH�&\FOH�0RGHOLQJ

◗◗ Map - Defines the path of migration Map - Defines the path of migration

A A signinsignin-signout facility -signout facility prevents unintentionalintentional
overlaying of codeoverlaying of code

Parallel Development Management

&RQFXUUHQF\�3URWHFWLRQ&RQFXUUHQF\�3URWHFWLRQ

Prog A

8

Automating Cleanroom Management QWE’99

EMU

Stage 3 Production

&RQFXUUHQF\�3URWHFWLRQ&RQFXUUHQF\�3URWHFWLRQ

Normal
Maintenance

EMU

Stage 2

Y2K

MERGE

WIP Reports

 Merge Reports

WIP

 Merge
 Output File

REV 1

Program X

REV 2

Program X

ROOT

Program X

3DUDOOHO�'HYHORSPHQW�0DQDJHPHQW3DUDOOHO�'HYHORSPHQW�0DQDJHPHQW

9

Automating Cleanroom Management QWE’99

$XGLWLQJ�DQG�5HSRUWLQJ$XGLWLQJ�DQG�5HSRUWLQJ

 Use ad hoc or predefined reports

with selection criteria

◗ Application logical classification

◗ Activity

◗ Application changes

On-Line

Component
Used by Report

Component
Where Used

Report

Related
Entity Report

Impact AnalysisImpact Analysis

From Synchronize Reports or

$XGLWLQJ�DQG�5HSRUWLQJ$XGLWLQJ�DQG�5HSRUWLQJ

10

Automating Cleanroom Management QWE’99

:KDW�LV�&OHDQURRP�0DQDJHPHQW":KDW�LV�&OHDQURRP�0DQDJHPHQW"

Cleanroom, as defined by IBM, is a “managerial and

technical process for the development of software with ultra-

high quality with certified reliability”

“Management of the Cleanroom process is based on an

incremental life cycle in which development and certification

are conducted in a pipeline of user-function increments.”

EndevorEndevor
 Workstation Workstation

Endevor for MVSEndevor for MVS

CCC/HarvestCCC/Harvest

One common user-interface between NT, Unix and MVSOne common user-interface between NT, Unix and MVS

Endevor WorkbenchEndevor Workbench

(QGHYRU���LQWHJUDWLRQ(QGHYRU���LQWHJUDWLRQ

µ

4�/DEV DFWV DV FKDQJH IDFLOLWDWRUV� SURYLGLQJ LQGXVWU\

ZLWK VWDWH�RI�WKH�DUW VROXWLRQV GHVLJQHG WR NHHS RXU

FXVWRPHUV VWHSV DKHDG LQ VRIWZDUH HQJLQHHULQJ

687 DW WKH)$$ �

5
H
Y

$

'
R
F
�
Q
R

0
'
�4

/
6
�
�
��
�
�
�

'
D
WH

�
�
��
�
��
�

� 4�/DEV ����

$OO 5LJKWV 5HVHUYHG�

([SHULHQFH�8VLQJ�6WDWLVWLFDO�8VDJH

7HVWLQJ�DW�WKH�)$$

$UD .RXFKDNGMLDQ

$UD�.RXFKDNGMLDQ#T�ODEV�FRP

�� ��� ��� ����

4�/DEV *URXS

6ZHGHQ� *HUPDQ\� 1RUZD\� 8�6�$�

687 DW WKH)$$ �� 4�/DEV ����

$OO 5LJKWV 5HVHUYHG�

5
H
Y

$

'
R
F
�
Q
R

0
'
�4

/
6

�
�
��
�
�
�
�

'
D
WH

�
�
��
�
��
�

$JHQGD

◆ 7KH 3URMHFW

◆ 6WDWLVWLFDO 8VDJH 7HVWLQJ

◆ 7LPHOLQH

◆ 7HFKQRORJ\ $FTXLVLWLRQ

◆ 8VDJH 0RGHO 'HYHORSPHQW

◆ 7HVW *HQHUDWLRQ DQG ([HFXWLRQ

◆ /HVVRQV /HDUQHG

◆ %URDGHU ,QVLJKWV

◆ 1H[W 6WHSV

687 DW WKH)$$ �� 4�/DEV ����

$OO 5LJKWV 5HVHUYHG�

5
H
Y

$

'
R
F
�
Q
R

0
'
�4

/
6

�
�
��
�
�
�
�

'
D
WH

�
�
��
�
��
�

7KH�3URMHFW

◆ 6XSSRUW 6\VWHP IRU $LU 7UDIILF &RQWUROOHUV

● ,QIRUPDWLRQ V\VWHP WR VXSSRUW FRQWUROOHUV LQ PDNLQJ

ORQJHU WHUPV GHFLVLRQV

● 1RW D FRQWURO V\VWHP

● !!��� .6/2&

◆)$$ KDG UHVSRQVLELOLW\ IRU WHVW�DFFHSWDQFH

DQG VXEVHTXHQW ILHOGLQJ RI WKLV DV D SDUW RI D

ODUJHU V\VWHP

◆ 'HFLGHG WR XVH D XVDJH�EDVHG WHVWLQJ

DSSURDFK

●)RFXV RQ ILHOG UHOLDELOLW\

● 7\SLFDO ¶DFFHSWDQFH· WHVW IHOW WR EH LQVXIILFLHQW

687 DW WKH)$$ �� 4�/DEV ����

$OO 5LJKWV 5HVHUYHG�

5
H
Y

$

'
R
F
�
Q
R

0
'
�4

/
6

�
�
��
�
�
�
�

'
D
WH

�
�
��
�
��
�

6WDWLVWLFDO�8VDJH�7HVWLQJ

◆ 7HVW WKH VRIWZDUH WKH ZD\ XVHUV XVH LW

● 'HYHORS WHVW ZLWKRXW FRGH NQRZOHGJH

● 3URYLGH PD[LPXP ILHOG UHOLDELOLW\ JDLQ

● 3URYLGH XVHU IRFXV IRU TXDOLW\

◆ 7HVWLQJ DV D VWDWLVWLFDO H[SHULPHQW

● 6WDWLVWLFDO LQIHUHQFH

● 7HVWLQJ GHFLVLRQV EDVHG RQ REMHFWLYH GDWD

687 DW WKH)$$ �� 4�/DEV ����

$OO 5LJKWV 5HVHUYHG�

5
H
Y

$

'
R
F
�
Q
R

0
'
�4

/
6

�
�
��
�
�
�
�

'
D
WH

�
�
��
�
��
�

:K\�687"

◆ 7R PD[LPL]H ILHOG UHOLDELOLW\

◆ 7R PD[LPL]H WKH SRWHQWLDO IRU REMHFWLYH

PHDVXUHPHQW

● 0HDVXUHPHQW IRU WHVW SODQQLQJ

● 0HDVXUHPHQW IRU WHVW H[HFXWLRQ

● 0HDVXUHPHQW IRU SURGXFW FHUWLILFDWLRQ

● 0HDVXUHPHQW IRU SURFHVV DVVHVVPHQW

◆ 7R UHPRYH KXPDQ ELDV IURP WHVWLQJ

◆ 7R WHVW FRQVLVWHQWO\ ZLWK ILHOG XVDJH

◆ 7R PDNH VRIWZDUH TXDOLW\ DVVHVVPHQW PRUH

VFLHQWLILF

687 DW WKH)$$ �� 4�/DEV ����

$OO 5LJKWV 5HVHUYHG�

5
H
Y

$

'
R
F
�
Q
R

0
'
�4

/
6

�
�
��
�
�
�
�

'
D
WH

�
�
��
�
��
�

687�3URFHVV
Test P lanning Def ine Test G oals / Stratif y

Def ine Bo undary and Stimuli
Def ine a U se
Allocate Tes t Budget t o Goals
Allocate Tes t Approaches to
Goals

Usage Model
Development

Build Model Struct ure
Ass ign Probabili ties
Analyze Model

Generate Tes t s Generate Script s
Process int o Test Cases
S tudy Coverage
Compute Expected Res ult s

Test Execu tion Run Tes t s
Determine Succes s/Failure
Record Pas s/Fail

Certi fica tion Compute Quality Measures
Compute S toppage Cri teria
Make Release Decisi ons

687 DW WKH)$$ �� 4�/DEV ����

$OO 5LJKWV 5HVHUYHG�

5
H
Y

$

'
R
F
�
Q
R

0
'
�4

/
6

�
�
��
�
�
�
�

'
D
WH

�
�
��
�
��
�

7LPHOLQH

◆ ,QLWLDO 7UDLQLQJ� 6XPPHU ����

◆ ,QLWLDO 0RGHOLQJ� 6XPPHU �����6XPPHU ����

◆ 7HVWLQJ� 6SULQJ �����3UHVHQW

◆ $GGLWLRQDO 7UDLQLQJ� 6SULQJ ����

◆ ([WHQVLRQV�0RGLILFDWLRQV WR 0RGHOV� 6XPPHU

���� � 3UHVHQW

◆ $GGLWLRQDO 6\VWHPV WR 0RGHO� 6XPPHU ���� �

3UHVHQW

687 DW WKH)$$ �� 4�/DEV ����

$OO 5LJKWV 5HVHUYHG�

5
H
Y

$

'
R
F
�
Q
R

0
'
�4

/
6

�
�
��
�
�
�
�

'
D
WH

�
�
��
�
��
�

7HFKQRORJ\�$FTXLVLWLRQ

◆ ,QLWLDO WUDLQLQJ � ��� GD\ FRXUVH WR)$$ VWDII

◆ 7RRO6(7B&HUWLI\� GHOLYHUHG WR)$$

◆ 4�/DEV GLG LQLWLDO PRGHOLQJ

◆)$$ IRFXVHG RQ WHVWLQJ

◆)$$ WRRN RQ PRGHOLQJ UHVSRQVLELOLWLHV ZLWK

PLQRU DPRXQWV RI FRDFKLQJ

687 DW WKH)$$ �� 4�/DEV ����

$OO 5LJKWV 5HVHUYHG�

5
H
Y

$

'
R
F
�
Q
R

0
'
�4

/
6

�
�
��
�
�
�
�

'
D
WH

�
�
��
�
��
�

8VDJH�0RGHO

'HYHORSPHQW

◆ � PDMRU PRGHOV �VWDWH WUDQVLWLRQ GLDJUDPV�

● &RUUHVSRQGHG WR PDMRU PHQX SXOO�GRZQV

● &RPSRVHG IURP ��� VPDOOHU PRGHOV

● 0DMRU PRGHOV KDG !��� VWDWHV

◆ 0RGHOV ZHUH DW D PRXVH FOLFN OHYHO RI

JUDQXODULW\ �DUFV YDOXHV�

◆ 5HSUHVHQWHG DOO SRVVLEOH VHTXHQFHV RI LQSXWV

◆ &XVWRPHU GHILQHG SUREDELOLWLHV RQ DUFV

H[LWLQJ HDFK VWDWH

687 DW WKH)$$ ��� 4�/DEV ����

$OO 5LJKWV 5HVHUYHG�

5
H
Y

$

'
R
F
�
Q
R

0
'
�4

/
6

�
�
��
�
�
�
�

'
D
WH

�
�
��
�
��
�

7HVW�*HQHUDWLRQ�DQG

([HFXWLRQ

◆ $SSUR[LPDWHO\ �� WHVWV DXWRPDWLFDOO\

JHQHUDWHG SHU PRGHO

● $OO H[HFXWHG� IDLOXUHV UHFRUGHG

● /RRNHG DW DUF DQG VWDWH FRYHUDJH EDVHG RQ

VDPSOH

◆ *HQHUDWHG DQG H[HFXWHG DGGLWLRQDO WHVWV

IRU PRGHOV ZLWK ORZ FRYHUDJH

◆ 6XIILFLHQF\ RI WHVW EDVHG RQ VWDWH DQG DUF

FRYHUDJH

◆)DLOXUHV UHFRUGHG E\ W\SH� VHYHULW\ DQG

ZKHUH LQ WHVW WKH\ RFFXUUHG

687 DW WKH)$$ ��� 4�/DEV ����

$OO 5LJKWV 5HVHUYHG�

5
H
Y

$

'
R
F
�
Q
R

0
'
�4

/
6

�
�
��
�
�
�
�

'
D
WH

�
�
��
�
��
�

/HVVRQV�/HDUQHG����

◆ 7HVW FDVHV DSSHDUHG VXIILFLHQW

● 9HU\ IHZ RWKHU WHVWV UXQ

● $SSURDFK ZRUNV IRU WKLV W\SH RI VRIWZDUH

◆ 7HVW TXLWH HIILFLHQWO\ H[HFXWHG

● 7HVWV RQ RQH VFUHHQ

● 7DUJHW VRIWZDUH RQ DQRWKHU

● 6RIWZDUH HDV\ IRU WHVWHUV WR GLUHFWO\ YDOLGDWH

◆ (OLPLQDWLRQ RI SDSHU

● 7HVWV YLHZHG�H[HFXWHG HOHFWURQLFDOO\

● ,QILQLWH QXPEHUV JHQHUDWHG DW DQ\ WLPH

● 1R QHHG IRU SDSHU WHVW LQVWUXFWLRQV

687 DW WKH)$$ ��� 4�/DEV ����

$OO 5LJKWV 5HVHUYHG�

5
H
Y

$

'
R
F
�
Q
R

0
'
�4

/
6

�
�
��
�
�
�
�

'
D
WH

�
�
��
�
��
�

/HVVRQV�/HDUQHG����

◆ 7HVWLQJ HIIHFWLYH

● 1RQ�PRGHOHG FRPSRQHQWV ZHUH PRUH UHOLDEOH SULRU

WR)$$ WHVWLQJ �XVHG 687 RQ WKH ¶ZRUVW· VXEV\VWHP�

● 0RGHOHG FRPSRQHQWV PRUH UHOLDEOH DIWHU)$$ WHVW

◆)RXQG ODUJH QXPEHUV RI UHTXLUHPHQWV DQG

¶ZKDW LI· LVVXHV

● 5HVXOW RI XVDJH PRGHOV EHLQJ SUHFLVH GHVFULSWLRQV

RI EHKDYLRU

● $OORZHG TXHVWLRQV WR EH FRQFUHWH

687 DW WKH)$$ ��� 4�/DEV ����

$OO 5LJKWV 5HVHUYHG�

5
H
Y

$

'
R
F
�
Q
R

0
'
�4

/
6

�
�
��
�
�
�
�

'
D
WH

�
�
��
�
��
�

%URDGHU�,QVLJKWV

◆ 0RGHO EDVHG DSSURDFK HOLPLQDWHG KXPDQ

ELDV

● 7HVWHG ZKDW RQH ZRXOG QRW KDYH RWKHUZLVH WHVWHG

◆ &DQ WHVW ¶IRUHYHU·

● $OZD\V JHQHUDWH ¶IUHVK· WHVWV

◆ &KDQJH LQ WHVWLQJ SDUDGLJP

● *R DZD\ IURP ZDLWLQJ XQWLO HQG WR WKLQN DERXW WHVW

DQG FUHDWLQJ GHWDLOHG SURFHGXUHV

● 6KLIW WR LQLWLDO LQYHVWPHQW ZKLFK SD\V GLYLGHQGV

WKURXJKRXW

◆ /DUJH PRGHOV� UHODWHV WR FRPSOH[LW\ RI

IXQFWLRQDOLW\

687 DW WKH)$$ ��� 4�/DEV ����

$OO 5LJKWV 5HVHUYHG�

5
H
Y

$

'
R
F
�
Q
R

0
'
�4

/
6

�
�
��
�
�
�
�

'
D
WH

�
�
��
�
��
�

1H[W�6WHSV

◆ +DYH PRGHOHG DQRWKHU VXEV\VWHP

◆ :LOO PRGHO UHPDLQGHU RI V\VWHP

◆ &RQYLQFHG WKDW WKLV LV WKH ZD\ WR WHVW

● &DQQRW LPDJLQH ZULWLQJ WHVW SURFHGXUHV

● &RQWLQXH WR XVH PRGHO JHQHUDWHG WHVWV WR WKLV GD\

◆ *DWKHULQJ XS TXDQWLWDWLYH UHVXOWV �FXUUHQWO\

GRLQJ LQVWDOODWLRQV�

	QWE1999.Keynote.pdf
	qwe99.k1_1vg
	qwe99.k2_1pap
	qwe99.k2_1vg
	qwe99.k2_2pap
	qwe99.k2_2vg
	qwe99.k3_1vg
	qwe99.k3_1vgblk
	qwe99.k3_2pap
	qwe99.k3_2vg

	QWE1999.Technology.pdf
	qwe99.1t_pap
	qwe99.1t_vg
	qwe99.2t_pap
	qwe99.2t_vg
	qwe99.3t_pap
	qwe99.3t_vg
	qwe99.4t_pap
	qwe99.4t_vg
	qwe99.5t_pap
	qwe99.5t_vg
	qwe99.6t_pap
	qwe99.6t_vg
	qwe99.9t_pap
	qwe99.9t_vg
	qwe99.10t_pap
	qwe99.10t_vg
	qwe99.11t_pap
	qwe99.11t_vg
	qwe99.12t_pap
	qwe99.12t_vg

	QWE1999.ApplicationsTrack.pdf
	qwe99.1a_pap
	qwe99.1a_vg
	qwe99.2a_pap
	qwe99.2a_vg
	qwe99.3a_pap
	Abstract
	Introduction
	Baseline Project Description
	Process Improvement Experiment Objectives
	Process Improvement Experiment Approach
	Software Development Process
	Software Develpment Environment
	Design Tool Evaluation
	Design Tool Selection
	Key Lessons Learnt
	Major Impacts
	Future Actions
	Conclusions
	Glossary
	References

	qwe99.3a_vg
	qwe99.4a_vg
	qwe99.5a_vg
	qwe99.5a_vgblk
	qwe99.6a_pap
	qwe99.7a_pap
	qwe99.7a_vg
	qwe99.8a_pap
	qwe99.8a_vg
	qwe99.9a_pap
	Keywords
	Abstract
	1 The role of use cases in the software development process
	2 Previous Work
	2.1 Use Cases to Activity Diagrams
	2.2 Use Cases to Interaction Diagrams
	3 Use Case Documents
	3.1 Examples
	4 Use Cases to State Machines
	4.1 Main Success Scenario
	4.2 Variations
	4.3 Extensions
	4.4 Preconditions and Postconditions
	4.5 Subordinate Use Cases
	5 Integration of Use Cases
	6 Using State Machines for Test Automation
	7 Conclusion
	8 References

	qwe99.9a_vg
	qwe99.10a_pap
	qwe99.10a_vg
	qwe99.11a_vg
	qwe99.12a_pap
	qwe99.12a_vg

	QWE1999.Management.pdf
	qwe99.1m_vg
	qwe99.1m_vgblk
	qwe99.2m_vg
	qwe99.3m_pap
	qwe99.3m_vg
	qwe99.4m_pap
	qwe99.4m_vg
	qwe99.5m_pap
	qwe99.5m_vg
	qwe99.6m_pap
	qwe99.6m_vg
	qwe99.7m_pap
	qwe99.7m_vg
	qwe99.8m_pap
	qwe99.8m_vg
	qwe99.9m_pap
	qwe99.9m_vg
	qwe99.10m_pap
	qwe99.10m_vg
	qwe99.11m_pap
	qwe99.11m_vg

	QWE1999.Bonus_Conf.pdf
	qwe99.1b_pap
	qwe99.1b_vg
	qwe99.2b_pap
	qwe99.2b_vg
	qwe99.3b_pap
	qwe99.3b_vg
	qwe99.4b_vg
	qwe99.5b_vg
	qwe99.6b_vg
	qwe99.6b_vgblk
	qwe99.7b_vg
	qwe99.8b_vg
	qwe99.9b_vg
	qwe99.10b_pap
	qwe99.10b_vg
	qwe99.11b_vg
	qwe99.11be_pap
	qwe99.11be_vg
	qwe99.12b_vg
	qwe99.12be_vg
	qwe99.b7_pap
	qwe99_12be_pap

	QWE1999.ExtraSpeakers
	qwe99.ex1_vg
	qwe99.ex2_pap
	qwe99.ex2_vg

	QWE1999.Exhibitors.pdf
	Addison_desc
	cai_desc
	CMG_ad
	CMG_desc
	compuware_ad
	compuware_desc
	ErgoLing_desc
	estrategy_desc
	ewosoft_desc
	Gitek_ad
	gitek_desc
	integri
	ipl_desc
	IQUIP_ad
	IQUIP_desc
	mccabe_desc
	Mercury_ad
	Mercury_ad1
	Mercury_desc
	ps_testware_ad
	pstestware_desc
	qlabs_desc
	qualityhouse
	Qualityhouse_ad
	rational_desc
	Reasoning_ad
	Reasoning_ad4pgs
	Reasoning_desc
	Reasoning_desc75
	SR_ad
	SR_desc

	QWE1999.Vendor.pdf
	qwe99.vt1_vg
	qwe99.vt2_pap
	How to Mitigate the Risks of Computer Failures and Reduce the Cost of Year 2000 Compliance
	1. Introduction
	2. Why Audits of Year 2000 Software Repairs Are Necessary
	3. The Benefits of Software Inspections
	4. How Inspections Lowers Testing Risks and Costs
	5. How to Perform an Inspection
	Who Should Perform an Inspection

	6. Inspection Scenarios
	Internally Remediated Applications
	Offsite or Offshore Factory-Remediated Code
	Consulting Project Audits
	Independent Validation and Verification (IV&V)
	Vendor Software Packages
	Key Supplier Applications
	Maintaining Compliance After Remediation

	7. Inspection Case Studies
	Telecommunications Company #1
	Telecommunications Company #2
	Utility Company
	Aerospace Company
	Health Insurance Company

	8. Conclusion
	9. Footnotes
	10. About Reasoning, Inc.
	Notes

	qwe99.vt2_vg
	qwe99.vt3_
	qwe99.vt4_pap
	qwe99.vt4_vg
	qwe99.vt5_vg
	qwe99.vt5_vgblk
	qwe99.vt6_vg
	qwe99.vt7_vg
	qwe99.vt7_vgblk
	qwe99.vt8_vg
	qwe99.vt9
	qwe99.vt10_vg

	QWE99 Index:
	See Paper:
	See Slides:
	See PaperSee Paper:
	View Ad:

